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Abstract

The rapid expansion of flow cytometry applications has outpaced the functionality of traditional 

manual analysis tools used to interpret flow cytometry data. Scientists are faced with the daunting 

prospect of manually identifying interesting cell populations in 50-dimensional datasets, equalling 

the complexity previously only reached in mass cytometry. Data can no longer be analyzed or 

interpreted fully by manual approaches. While automated gating has been the focus of intense 

efforts, there are many significant additional steps to the analytical pipeline (e.g., cleaning the raw 

files, event outlier detection, extracting immunophenotypes). We review the components of a 

customized automated analysis pipeline that can be generally applied to large scale flow cytometry 

data. We demonstrate these methodologies on data collected by the International Mouse 

Phenotyping Consortium (IMPC).
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1. Introduction

The current standard approach for analyzing and interpreting flow cytomtery data involves 

2D dot plots and Boolean gates in which cell populations are sequentially selected for 

further analysis based on gates regions drawn manually [2]. The large number of possible 

pairs of parameters (e.g., 350 markers or 7:18e+23 potential subsets with 50 markers) can 

make manual gating both extremely labour intensive and time consuming for high 

dimensional data [2, 3]. However, this increase in dimensionality has enabled previously 

unknown cell populations to be identified [4].

The automated analysis pipeline (Figure 1) we will describe is generalizable to any flow 

cytometry (FCM) dataset. Our aim is to demonstrate the comparison between manual and 

automated analysis and how automated analysis generally exceeds the performance of 

manual analysis in terms of results and time savings.

We use datasets from the Wellcome Trust Sanger Institute (WTSI) and King’s College 

London (KCL) generated as part of the International Mouse Phenotyping Consortium 

(IMPC) project. Even though we have the full sequence of many mammalian genomes, the 

function of most genes remains unknown. The IMPC, a $900 million open-access health 

research project involving 15 centres across 5 continents is aiming to address this knowledge 

gap [5]. This global infrastructure is creating 20,000 knockout mouse strains, characterizing 

each strain through a standardized phenotyping protocol, integrating the data to existing 

mouse and human disease resources, and finally providing strains and phenotype data for 

use by the research community. One component of this effort is immunophenotyping of 

spleen and other organs by FCM, generating approximately 77,000 FCS files. We 

demonstrate how automated analysis tools can perform quality checking, automated gating, 

and biomarker identification.

There are three aims for the FCM analysis in the context of the IMPC, generalizable to other 

studies:

1. Detect batch effects and outliers at both sample and dataset level.

2. Enumerate cell populations using both supervised and semi-supervised 

computational analysis.

3. Identify cell populations significantly different between sample groups (e.g., 

knockout lines and wild type controls.

All the tools that will be discussed in this paper are written in R, a programming language 

for statistical computation and graphics. It provides high level graphics, interfaces to other 

languages and debugging facilities. R has been widely used in the development of tools for 

computational analysis of FCM dataset [2], with more than 70% of the tools available for 

FCM analysis written in this language. These tools cover a broad spectrum of processing 

steps, not limited to data wrangling, quality checking, automated gating (27 tools 

approximately covering both supervised and unsupervised cell population identification), 

biomarker identification and visualization. Most of these tools are made available by the 

bioinformaticians at no cost to the research community and include open source code and 
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unrestrictive software licensing. Many of the tools have been developed to address similar 

analysis objectives via different approaches. They might provide optimal results for different 

datasets, such that there is no “right” or “best” tool, and using several algorithms in 

combination might yield even better results and exceed the possibilities offered by manual 

analysis [2]. In addition, many of these tools perform one specific task and don’t try to solve 

the entire analysis pipeline. This allows tools to be combined and swapped in and out with 

new advances, while keeping other parts of the pipeline intact. Since most of these tools are 

developed in R, their common infrastructure facilitates this. These tools can be integrated 

into FlowJo, FCSExpress, and CytoBank (popular commercial analysis software packages).

In this paper, we do not intend to present a unified tool which would incorporate all the tools 

used in the various stages of the pipeline under one umbrella. This is because as mentioned 

earlier, for any one stage, there are more than one possible tool at each step and using 

combination of them might yield better results than manual analysis. In addition, the 

pipeline is modular, thus allowing users to swap in newly developed tools. This pipeline 

requires users to have some capabilities in R, which can be attained either by learning the 

language, collaborating with people who knows R, or bringing onto the team a 

bioinformatician with requisite experience.

Most of the FCM related packages are dependent on flowCore which provides basic 

infrastructure and functions to deal with FCM data. It defines important FCM data classes, a 

few of which are listed below [9, 10]:

• flowFrame: a class for storing observed quantitative properties for a population 

of cells from an FCM experiment

• flowSet: a class for storing FCM raw data from quantitative cell-based assays

• compensate: class and methods to compensate for spillover between channels by 

applying a spillover matrix to a flowSet or a flowFrame assuming a simple linear 

combination of values

• transform: a class for transforming flow-cytometry data by applying scale factors

• filter: a class for representing filtering operations to be applied to flow data

A goal in automated analysis is to apply the same pipeline on all the FCS files in a dataset, 

without file-specific tweaking that often occurs with manual analysis (Figure 1). Using this 

approach, the final results are more robust, and more importantly reproducible. The WTSI & 

KCL dataset had complete and in depth analysis available, allowing benchmarking of 

automated analysis in order to demonstrate performance. However gating, in the absence of 

some external outcome, lacks such a robust and reproducible gold standard and is 

benchmarked as the current state-of-the-art.

2. Data

The WTSI & KCL dataset comprised 10–14 dimensional FCS files divided into 5 panels and 

3 organs (spleen, mesenteric lymph node, and bone marrow) collected over a period of more 

than three years. Separate pipelines were developed for the 3 organs and applied to
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• > 2000 knockout FCS files

• > 600 wild type FCS files

• > 500 knockout mouse lines

Table 1 shows the markers used for each of the 5 panels. The T cell, B cell, and Myeloid 

panels each had two sets of data collected from the spleen and mesenteric lymph node 

organs. With these markers, 45 cell populations were targeted from the T cell panel, 25 from 

the B cell panel, 22 from the Myeloid panel, 21 from the Bone marrow panel, and 35 from 

the P2 panel (Table A.3 lists the identified cell populations).

3. Methodology

Automated analysis pipelines can generally be divided into pre-processing, quality checking, 

cell population identification (using supervised, semi-supervised or unsupervised automated 

gating), biomarker identification and visualization (Figure 1). Like manual analysis, 

automated analysis is also performed on a per tissue and per panel basis.

3.1. Pre-processing

It is important that metadata information linking to the data (FCS files) be made available. 

Usually this is provided in the form of spreadsheets, and contain information such as sex, 

assay date, birth date, treatment and outcome, or phenotype such as survival time for each 

sample. This can then be combined to link detailed information on each FCS file. In 

addition, it is important that metadata files have a unique ID that matches to the FCS files. 

This enables the identification of duplicates within the dataset. The metadata spreadsheet 

also is very important for the pipeline because when the results are sent back to the 

biologists, the metadata information can be included with each FCS file and its respective 

result. This makes it easier for the biologists to comprehend the results for each file.

The first step of pre-processing ensures that metadata and FCS files are compatible and 

eliminates duplicate and corrupted files from further analysis. Further, files that deviate in 

the data content (number of channels, set of markers etc.) and amount of data (lower than 

defined by user cell number) are identified and might be removed or reassessed.

In the next step, doublets and dead cells are removed from each file. Then a global frame is 

created by storing 1000 random cells from each FCS file of the dataset. The 

estimateLogicle() function of the flowCore package is used on the global frame to 

automatically estimate the logicle transformation based on the data. This logicle 

transformation is then used as a scale factor for the transformation of each FCS file, which 

acts as an advantage for display of FCM data, before they proceed through the next stages in 

the pipeline (Figure 2).

3.2. Quality checking

Once the files pass the pre-processing stage, they go through a quality checking stage. Two 

approaches flowClean [11] (Figure 3) and flowAI [12] (Figure 4) are two freely available R-

based tools that identify anomalous events and clean the data by removing them.
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flowClean is an algorithm that tracks subset frequency changes within an FCM sample 

during acquisition, and flags time periods with fluorescence deviations leading to the 

emergence of false populations. Anomalous time periods are reported as a new parameter 

and added to a revised data file, allowing users to easily review and exclude those events 

from further analysis [11]. flowAI is the only other currently available algorithm which 

cleans FCS files from unwanted events. It is not only an automatic method that adopts 

algorithms for the detection of anomalies, but it also has a graphical user interface 

implemented in an R/Shiny application, which makes it interactive. flowAI checks and 

removes spurious events that derive from abrupt changes in the flow rate, instability of 

signal acquisition, and outliers in the lower limit and margin events in the upper limit of the 

dynamic range [12]. However flowAI can on occasion remove more events than necessary 

when compared to flowClean (Figures 3 and 4).

3.3. Cell population identification (automated gating)

Automated gating algorithms can generally be broken down into supervised and 

unsupervised approaches. Supervised learning is based on training a data sample from data 

source with correct classification already assigned [15]. In a supervised approach, the data 

scientist acts as a guide to teach the algorithm what conclusions it should arrive at. Examples 

of tools based on supervised learning method include flowDensity [6], where parameters can 

be fixed by the user (though it can also be run in a default mode, but with poorer results) and 

DeepCyTOF, a standardization approach for gating, based on deep learning techniques and 

means parameterizing [16]. Supervised analysis methods can be customized on a per-

population basis and thus have the advantage of being designed to more closely match 

manual analysis, which is often the goal of a researcher. For analytical pipelines where the 

user’s goal is to automate the manual gating and mimic it, supervised analysis is 

recommended. For best performance this requires being provided with the gating strategy 

(that is, the sequence of gates) and using this to optimize the identification of each cell 

population of interest, using manual gating analysis results on a subset of files as a 

benchmark for performance. This approach tends to outperform unsupervised approaches. 

OpenCyto [30] can be used as an alternative to flowDensity. The larger OpenCyto platform 

includes flowDensity. flowDensity is a supervised clustering algorithm which aims to gate 

predefined cell populations of interest where the gating strategy is known. It automates the 

current practice of manual 2D gating and adjusts the gates for each FCS data file 

individually [6], based on parameters set globally for all files. flowDensity identifies these 

predefined cell subsets based on characteristics of the marker density distribution (e.g., 

number, height, width of peaks, and slope of the distribution curve). A 2D gate consists of 

two channels (dimensions) or in other words, a phenotype with two markers. In addition, the 

corresponding expression level for each channel is given. For example, in Figure 5A 

phenotypes “CD19+CD20+”, “CD19+CD20−”, “CD19−CD20+”, and “CD19−CD20−” 

have markers CD19 and CD20 with expression values “positive” and “negative” (example 

adapted from the vignette of flowDensity package). Parameters can be adjusted on a 

population-specific basis when extra information apart from the intrinsic density profile is 

available (e.g., desired percentile cut-off, number of standard deviations from the peak).
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deGate() is a built-in function in flowDensity which is used to tweak the parameters in 

order to set the correct gating threshold for each population. deGate() outputs an integer 

value (vector) of cutoff(s), that is, threshold(s), on the specified channel. The following code 

is adapted from the vignette of flowDensity, which shows deGate() and its parameters. 

Lines preceded with the symbol ‘#’ refer to comments in R and have been added for better 

understanding.

Table A.4 in Appendix A shows the details of the arguments of deGate().

Once the gating thresholds are found, they are used as input parameters for flowDensity,

flowDensity(obj, channels, position, gates, …)

For better understanding of how deGate() calculates the gating thresholds and how these 

thresholds are used as parameters in flowDensity to gate and find specific populations, we 

will look into snippets of our codes (written in R), which is used for gating the T cell panel 

of the WTSI & KCL dataset. In addition we also present the 2D gating plots (Figure 6) 

generated by flowDensity as part of the result of running the extracted codes. During the 

initial writing of the code for getting the thresholds by using the various parameters of the 

deGate() function of flowDensity, it is generally based on a handful of data files 

selected randomly, which acts as representative of the entire dataset. Once the script works 

for these selected files in finding the correct thresholds, it is applied to the entire dataset to 

find the gating thresholds. A FCS file from the WTSI & KCL T cell panel has been added as 

Supplemental material (see Appendix A for details), so that the provided R codes can be 

tested to generate the bi-variate plots of Figure 6.

Code Part 01 - For 2D gating plot refer to Figure 6A
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Code Part 02 - For 2D gating plot refer to Figure 6B

Code Part 03 - For 2D gating plot refer to Figure 6C
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Figure 7 illustrates flowDensity automated gating of populations, with two markers in bi-

variate plots, similar to what is seen in manual gating. Gating thresholds are not static, they 

move objectively to gate the correct cell subsets for each file (Figure 7A). flowDensity also 

identifies very rare cell subsets (Figure 7B).

flowDensity can accept control data (e.g., FMO controls) for each channel used in gating. 

When a control sample is included, the gating threshold is calculated based on the control 

population. The user first sets the desired gating thresholds on the control data, and these 

gating thresholds are later applied to the data files corresponding to that control data file. 

Appendix A Figures A.15 and A.16 illustrates how complete automated gating plots by 

flowDensity look like once they are complete along with the proportions and event counts 

for each populations saved in spreadsheets.

Unsupervised learning algorithms identify patterns in input data without user training. The 

lack of direction in unsupervised learning algorithm can sometimes be advantageous, since it 

enables the algorithm to look for patterns that have not been previously considered [15]. 

Examples of unsupervised learning algorithms have been based on k-means clustering, 

principal and independent component analysis, and association rules. In the analysis of big 

FCM data, unsupervised approaches use clustering methods to detect cell populations. 

Clustering analysis may be performed on data from a single biological sample, on data from 

multiple samples on a per-sample basis, or on combined data from multiple samples. 

Detected clusters or cell populations can then be analyzed individually or compared across 

samples. Unsupervised procedures allow previously unknown cell populations to be 

described in an unbiased, data-driven manner. This type of exploratory analysis is difficult 

with manual gating, especially when analyzing high-dimensional data [17]. Many 

unsupervised algorithms have been developed and evaluated through FlowCAP community-

based challenges[18, 19]: FLOCK [20], flowClust [21], flowMeans [22], flowMerge [23], 
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flowPeaks [24], immunoClust [25], PhenoGraph [26], SamSPECTRAL [27], and SWIFT 

[28]. A recent review by Weber and Robinson [17] identified FlowSOM [29], as the current 

best approach for unsupervised analysis.

Once the results of the cell population identification analysis is ready, calculating the 

variations between manual and automated gating is the next step in moving the pipeline into 

production use. This is done by calculating the coefficient of variation (CV) [31] for each 

population within a dataset for both manual and automated analysis and then these CVs are 

compared population by population.

3.4. Biomarker discovery

After gating, the next step in the pipeline is biomarker discovery step, with the goal to 

identify cell populations that are significantly associated with an outcome of interest, in the 

case of our example dataset cell populations that are at different proportions in KO mice 

versus WT. The approach is generalizable to any case where samples can be divided into two 

groups based on some outcome of interest such as different disease types [32], time to onset 

of symptoms [33], or different sample types [34]. The approach can be based on any 

approach to identify cell populations but we recommend basing this on flowDensity 
(discussed in Section 3.3) as the final results will be easily interpretable by the biologist. 

Channels were thresholded into positive, negative, and neutral populations using the tool 

flowType [7]. Therefore, for any number of markers (M) used as input parameters in 

flowType, the number of possible cell populations generated is 3 to the power of M. As an 

example, if there are 10 markers, the gating thresholds of these 10 markers would generate 

310, that is, approximately 60,000 populations, based on the manually specified thresholds. 

60,000 cell populations is a large number, therefore the chance of getting false positive hits 

is high; hence, the next task is to filter this large set of populations to identify significant 

immunophenotypes. The Wilcoxon rank sum test [35] is used followed by p-value 
adjustment [36]. For the p-value adjustment, the Benjamini–Hochberg procedure is used 

[37]. Cell populations with p-value of 0.05 and less are considered as significant and those 

greater are screened out. A large percentage of cell population is excluded because they have 

very few events. Populations are excluded when both wild type and knockout population 

sizes have less than 200 cell counts (this threshold of 200 cells is further discussed in details 

later). This helps to reduce the 60,000 cell populations set into a much smaller one (Figure 

8).

An alternate to Wilcoxon rank sum test is a multiple group comparison test such as one-way 

analysis of variance (ANOVA) or Kruskal–Wallis test, which could be applied for centres 

where there are more than one set of WTs (the groupings of the WTs are based on how and 

where the experiments have been carried out). Once a statistically significant p-value 
(usually meaning p < 0.05) is returned, a post hoc test can be applied to determine between 

exactly which two datasets the difference lies. A few such post hoc tests include, Tukey’s 

Honestly Significant Difference Test (Tukey–Kramer test), Newman–Keuls test, 

Boneferroni’s test, Dunnett’s test, Scheffe’s test, Dunn’s test and so on [38].

In order to address the question if there is an agreement between the assessment techniques 

of WTs and KOs, intraclass correlation coefficient (quantitative method) or Bland-Altman 
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plot (graphical method in which the difference between two variables x and y is plotted 

against the mean of x and y) can be applied [38]. Since FCM datasets involve time versus 

fluorescence analysis, statistical analysis involving a difference between time-to-event trends 

between the WTs and KOs can also be applied. A few such applicable tests are Cox-Mantel 

test, Gehans (generalized Wilcoxon) test, or log-rank test [38].

As part of further screening to identify significant immunophenotypes, Figure 9 shows a bi-

variate plot where the x-axis is the average cell proportion over all mice of a particular 

knockout line and the y-axis is the log10 of the adjusted p-value. The black horizontal line 

signifies the adjusted p-value of 0.05 (value of −log10(0.05) = 1.30) and any dots below this 

line colored as blue in this plot symbolize significant cell populations, that is, populations 

with adjusted p-value < 0.05. The blue dots with orange outlines are the 15 populations with 

the largest effect size (that is, significant cell populations with the highest proportions). The 

blue dots with green outlines are the 15 most significant populations, that is, cell populations 

with the lowest adjusted p-values. In some knockouts, populations which fall in both 

categories were also found. Such cell populations were marked and highlighted separately.

Extremely rare cell populations are often identified as being statistically significant (Figure 

9). These are often identified by the co-expression of 12 or more markers in combinations 

not commonly seen, making hypothesis to their biological function a challenge. For this 

study, cell populations with less than 200 events were discarded as the number of significant 

phenotypes identified increased sharply when including populations with very few events, 

likely indicating a raise in false positive hits (Figure 10). Setting a threshold based on how 

many events are enough or if they are real is a perplexing problem in FCM analysis due to 

its uniqueness among all other biological technologies by providing an enormous number of 

measurements on which to base conclusions [39]. Thresholding out smaller cell populations 

focuses attention on populations with 6–8 markers in the label which are more easily 

understood. However, the threshold of 200 cells we used for this study may cause the loss of 

some biologically meaningful cell populations, and was used in our first pass analysis to 

identify the hits of most interest to our collaborators, and taken in consultation with them. 

Given sufficient time and resources all significant hits of potential interest for any study 

should be further investigated.

Once the significant immunophenotypes are extracted, RchyOptimyx [8] is used to build an 

optimized hierarchy tree with colour associated to the magnitude of importance of the 

parameter (Figure 11 where adjusted p-values are visualised by colour).

Cell populations are arranged in a hierarchy starting from all cells, with more significant 

populations (i.e. populations with lower adjusted p-values) colored yellow and orange while 

the less significant ones are colored blue (Figure 11).

4. Results

When the automated results were compared with that of the manual analysis, high 

correlation was observed between the two approaches (Figures 12 and 13) (Note that this 

statement will be revised at the proof stage by adding citation). The CV of the populations 
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(WTSI & KCL bone marrow dataset) in Figure 13 are expressed as fractions of CD45+ cells 

and it can be seen that the CV for automated analysis is lower than that of manual gating for 

all the populations. In addition, automated gating reduced variations seen over time for 

manual gating (Figure 13, Appendix A Figure A.17). A manuscript on the comparison 

between the automated and manual analysis results of the WTSI & KCL datasets are in 

preparation by the KCL team in London, UK, where greater details are provided on how the 

automated analysis superseded the manual analysis.

4.1. Additional outcomes

Phenodeviant mice were observed at a frequency of approximately 20% of the total 

knockout lines analyzed for the WTSI & KCL subset of the IMPC data. One example was a 

hit in an activated NK cell subset, which was not identified during the manual analysis (see 

Figure 14).

4.2. Time requirements & Efficiency

Automated gating can offer considerable time savings. The time spent on the initial setup of 

the pipeline is more or less the same for manual and automated analysis. Once this setup is 

completed, the time spent in tweaking the manual analysis can be 5–15 minutes/FCS file. 

This information is based on the time taken by the KCL team in London, UK who did the 

manual analysis on the WTSI & KCL dataset. On the other hand, for automated analysis, 

run time is 5 seconds per file with no manual intervention required, resulting in the same 

gates. This represents a time saving of 533 working days for the WTSI & KCL dataset.

5. Conclusion

The methodologies we have presented in this paper are generalizable to any FCM dataset. 

The same pre-processing pipeline is used for most centres without individual customization 

and our computational tools can find cell populations relatively similar to those identified by 

manual gating. High correlations were seen between manual and automated analysis with 

automated gating on the whole reducing variations seen over time. In addition, novel 

biomarkers can be identified using automated analysis that would be missed by even 

thorough manual analysis due to the limitations in exploring high dimensional datasets. 

Automated gating also resulted in considerable time savings.

6. Software Availability

All the tools discussed in this paper are written in R and are freely available in Bioconductor 

[40] or from the developers own private repository.
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Appendix A. Supplementary Data

An FCS file from the WTSI T cell panel can be downloaded from: link for the FCS file will 

be added for download.

Table A.3

The 5 panels of WTSI datasets and their cell populations. The T cell, B cell, and the 

Myeloid panel were used to characterise both spleen and mesenteric lymph nodes.

T cell B cell Myeloid Bone Marrow P2

All Events All Events All Events All Events All Events

Singlets Singlets Singlets Singlets Singlets

Live Live Live Live Live

Lymphocytes Lymphocytes Lymphocytes Lymphocytes Lymphocytes

CD45 CD45 CD45+ CD45+ Granulocytes

Autofluorecence P2 Lineage neg Granulotcyte Pre NOT(Granulocytes)

NOT(P2) NOT Autofluorecence Lin- Mac- NOT(Granulotcyte Pre) Monocytes

gd T-cells B-cells RP Macrophages CD3 T-cells NOT(Monocytes)

GD Resting B1 B-cells Neutrophils 2 NOT(CD3 T-cells) Eosinophils

GD Effector B2 B-cells Eosinophils 3 Plasma NOT(Eosinophils)

GITR GD T-cells GC Ly6G− NOT Plasma CD161+

GD KLRG1+ Late GC Monocytes Ly6c hi Myeloid Pre NK-cells

GD CD5+ Early GC NOT(Monocytes Ly6c hi) B-cells NK immature Ly6C+

GD Naive NOT(GC) pDC CD43+ NK mature Ly6C+

NOT(gd T-cells) MZ+MZP B-cells NOT pDC HFA NK immature Ly6C−

CD5+ MZP B-cells cDC HFB NK mature Ly6C−

P2a MZ B-cells CD8A Type DC HFC NKT-cells

ab T-cells Transitional B-cells CD103+ DC CD43− NKT CD11b− Ly6C+

CD4+ T-cells Transitional-2 CD11B+ CD86Lo HFD NKT CD11b+ Ly6C+

T-helper cells Transitional-1 Misc HFE NKT CD11b− Ly6C−

CD4 Resting/Naive Fo B-cells Misc CD11b positive HFF NKT CD11b+ Ly6C−

CD4 Effector FoI Misc CD11b negative NOT(CD161+)

CD4+ KLRG1+ T-cells FoII T-cells

Tregs Plasma cells Ly6C+ T-cells

Treg Resting/Naive IgG+ Memory B-cells NOT(T-cells)

Treg Effector cDC

Treg KLRG1+ cDC CD8 type

CD8a+ T-cells cDC CD11b+

CD8 Naive B-cell

CD8 Effector B1 B-cells

CD8 KLRG1+ B2 B-cells

CD8 Resting MZB

CD5+ CD4/CD8 Transitional(pre-B)

CD4− NKT-cells Follicular B-cells
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T cell B cell Myeloid Bone Marrow P2

CD4− NKT Resting/Naive P1

CD4− NKT Effector

CD4− NKT KLRG1+

CD4+ NKT-cells

CD4+ NKT Resting/Naive

CD4+ NKT Effector

CD4+ NKT KLRG1+

NK cells

NK Resting/Naive

NK Effector

NK KLRG1+

Table A.4

Arguments of the built-in function deGate - adapted from the vignette of flowDensity

Arguments

flow.frame a ‘FlowFrame’ object.

channel a channel’s name or its corresponding index in the ‘flow.frame’.

n.sd an integer coefficient for the standard deviation to determine the threshold based on the 
standard deviation if ‘sd.threshold’ is TRUE.

use.percentile if TRUE, forces to return the ‘percentile’th threshold.

percentile a value in [0,1] that is used as the percentile. The default value is 0.95.

upper if TRUE, finds the change in the slope at the tail of the density curve, if FALSE, finds it 
at the head. Default value is set to ‘NA’.

use.upper Logical. If TRUE, forces to return the inflection point based on the first (last) peak if 
upper=F (upper=T). Default value is set to ‘FALSE’.

talk Logical. If TRUE, Prints a message if only one peak is found, or when inflection point 
is used to set the gates.

alpha a value in [0,1) specifying the significance of change in the slope being detected. This is 
by default 0.1, and typically need not be changed.

sd.threshold if TRUE, uses ‘n.sd’ times standard deviation as the threshold. Default value is set to 
‘FALSE’.

graphs if TRUE, generates density distribution plot plus its corresponding threshold.

all.cuts if TRUE, returns all the identified cutoff points, i.e. potential thresholds for that 
channel. Default value is set to ‘FALSE’.

tinypeak.removal A number in [0,1] to exclude/include tiny peaks in density distribution.

adjust.dens The smoothness of density in [0,Inf] to be used in density(.). The default value is 1 and 
should not be changed unless necessary.
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Figure A.15. 
Complete automated gating of a sample WTSI & KCL T cell spleen organ data.
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Figure A.16. 
Complete automated gating of a sample WTSI & KCL bone marrow data.
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Figure A.17. 
Automated gating compared to manual gating reduced variations seen over time. Hardy 

Fractions population from the WTSI & KCL bone marrow dataset.
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Highlights

• Customized automated analysis pipeline that can be applied to large scale 

flow cytometry data is proposed.

• Detect batch effects and outliers at both sample and dataset level

• Enumerate cell populations using both supervised and semi-supervised 

computational analysis.

• Identify cell populations significantly different between knockout lines and 

wild type controls.
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Figure 1. 
A typical R based automated analysis pipeline. 1. Raw data files are pre-processed where 

dead cells and doublets are removed. 2. flowClean or flowAI is used to clean the data by 

removing spurious events. 3. Automated gating replicates the manual gating using 

flowDensity [6]. flowDensity identifies predefined cell subsets based on the density 

distribution of the parent cell population. It estimates the region around each cell population 

using characteristics of the marker density distribution. 4. Extraction of known and unknown 

cell populations uses flowType [7], where all channels are thresholded into positive, 

negative, and neutral populations. 5. In the last step once the significant immunophenotypes 

are extracted, RchyOptimyx [8] is used to build an optimized hierarchy tree showing only 

significant gating pathways with p-value depicted by colour.
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Figure 2. 
The pre-processing of the FCS files removing dead cells and doublets. The step starts with 

raw and unprocessed cells (2A). Dead cells and doublets are next removed (2B), thus 

resulting in cells (2C) ready for processing in the next step in the pipeline (quality 

checking).
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Figure 3. 
Quality check using flowClean to identify anomalous events clean the data. This is an FCS 

file downloaded from FlowRepository.org [14].
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Figure 4. 
Quality check using flowAI to identify anomalous events and clean the data. This is the 

same FCS file shown in Figure 3 downloaded from FlowRepository.org.
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Figure 5. 
Automated gating using flowDensity, which identifies predefined cell subsets based on the 

density distribution of the parent cell population.
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Figure 6. 
2D plots generated after running Code Parts 01–03. deGate() of flowDensity is used to 

generate the gating thresholds which are used for gating the ungated population to extract 

the singlets population in 6A. Singlets are then further gated by using the gating threshold of 

the Live/Dead channel to obtain the Live population in 6B. In 6C, the Live population is 

gated by using the thresholds of the channels FSC-A and SSC-A, generated by deGate() to 

extract the lymphocyte population.
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Figure 7. 
flowDensity automated gating of populations in bi-variate plots, similar to what is seen in 

manual gating. The gates of flowDensity move objectively as the population moves. The 

gating thresholds of the CD43 and CD45 markers changes as the distribution and density of 

the lymphocyte population changes from one sample to another, thus gating the correct 

CD45 population (6A). In addition, flowDensity can identify very rare cell populations 

(Plasma cells in 6B).
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Figure 8. 
High dimensional biomarker discovery using flowType
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Figure 9. 
A plot of log10(adjusted p-values) for a particular knockout vs the average proportion over 

all mice. The black horizontal line signifies the adjusted p-value of 0.05 (value of 

−log10(0.05) = 1.30) and any dots below this line colored as blue symbolizes significant cell 

populations, that is, populations with adjusted p-value < 0.05. The orange rings highlight the 

15 populations with the largest effect size (that is, significant cell populations with the 

highest proportions). The green rings highlight the populations that have the lowest adjusted 

p-values.
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Figure 10. 
Setting the threshold to a minimum of 200 cell counts for each population.
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Figure 11. 
Optimized Cellular Hierarchy using RchyOptimix to visualize the most significant 

immunophenotypes.
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Figure 12. 
High correlation between automated and manual results (aggregated spleen and bone 

marrow datasets of WTSI & KCL).
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Figure 13. 
Comparison of coefficient of variations of automated versus manual results (WTSI & KCL 

bone marrow dataset).

Rahim et al. Page 32

Methods. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 14. 
Hit in an activated NK cell subset, identified by unsupervised analysis step and which has 

not been detected by manual analysis.

Rahim et al. Page 33

Methods. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Rahim et al. Page 34

Table 1

The 5 panels of WTSI & KCL datasets and their respective markers (arranged in alphabetical order).

T cell B cell Myeloid Bone Marrow P2

CD4 B220 CD11b B220 CD5/Ly6G

CD5 CD5 CD11c BP1 CD11b

CD8a CD21/35 CD45 CD3 CD11c

CD25 CD23 CD86 CD11b CD19

CD44 CD45 CD103 CD24 CD21/35

CD45 CD95 CD317 CD43 CD23

CD62L CD138 F4/80 CD45 CD161

CD161 GL7 Lin (CD3, CD19, CD161) CD138 Ly6C

GITR IgD Ly6C GR1 MHCII

KLRG1 IgG1 Ly6G IgD

TCRδ IgM MHCII IgM
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Table 2

The various R-based tools that have been discussed in this paper and used in our automated pipeline.

Name Availability Function

flowClean Free (Bioconductor) Removes anomalous events & cleans FCS files

flowAI Free (Bioconductor) Removes anomalous events & cleans FCS files

flowDensity Free (Bioconductor) Automated density-based cell population identification

flowType Free (Bioconductor) Phenotyping FCM assays

RchyOptimyx Free (Bioconductor) Cellular hierarchy optimization for FCM
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