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Tumor growth is an evolutionary process governed by somatic mutation, clonal selection and 

random genetic drift, constrained by the co-evolution of the microenvironment1,2. Tumor 

subclones are subpopulations of tumor cells with a common set of mutations resulting from 

the expansion of a single cell during tumor development, and have been observed in a 

significant fraction of cancers and across multiple cancer types3. Peter Nowell proposed that 

tumors evolve through sequential genetic events4, whereby one cell acquires a selective 

advantage so that its lineage becomes predominant. According to this traditional model, the 

selective advantage is conferred by a small set of driver mutations, but, as the subclones that 

bear them expand successively, they accumulate passenger mutations as well, which can be 

detected in sequencing experiments1. Genomes of individual tumors contain hundreds to 

many thousands of these genetic variants, at a wide range of frequencies5,6. Given that 

genetic drift alone can drive novel variants to high frequencies, it is of great interest to 

discern the relative importance of selection and drift in shaping the frequency distribution of 

variants in any given tumor.

Williams et al.7 recently proposed a way to do so. They found that a simple model of tumor 

growth in which all novel variants are selectively neutral, that is, whose dynamics are 

governed entirely by drift, predicts a linear relationship between the number of mutations 

M(f) present in a fraction f of cells and the reciprocal of that fraction: M f ∝ 1
f . They 

argued that deviation from this null model, i.e. the R-squared of the linear fit is below the 

minimum observed in neutral simulations (R2 < 0.98), indicates the presence of selection 

and that this can be tested by means of variant allele frequencies (VAFs) from which f can be 

derived. Applying this rationale to real cancer data from The Cancer Genome Atlas 

(TCGA), the test proposed by Williams et al. did not reject the null model, that is neutrality, 

in about one third of the cases and the authors concluded that these tumors are neutrally 

evolving. More recently, multiple myelomas with evidence for the proposed linear 

relationship were associated with poorer prognosis8.

While providing an interesting approach to infer selection in human cancers, unfortunately 

four major simplifying assumptions underlie the analysis by Williams et al. that might 

render the conclusions questionable.
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First, inferring f of variants from their VAF requires accurate estimates of local copy 

number, overall tumor purity and ploidy. Williams et al. attempted to account for some of 

these factors by restricting their analyses to variants with VAF between 0.12 and 0.24 and 

located in copy-neutral regions of the genome. However, even in that limited VAF window, 

the VAF of a mutation does not reflect its true f in many cases. For example, in tumors with 

whole genome duplications, i.e. 37% of tumors in the analyzed dataset9, the peak of clonal 

mutations acquired after the whole genome doubling event is at or below VAF = 0.25 (one 

out of four copies in a 100% pure tumor sample), which would lead to artificial deviation 

from the linear fit within that VAF window.

Second, the interpretation of the analyses is inconsistent with the use of neutrality as a null 

model. Failure to reject the null hypothesis is not the same as proving it true, i.e. that all 

neutral simulations have R2 > 0.98 does not prove that non-neutral simulations would never 

yield R2 > 0.98. One would need to demonstrate that this condition is sufficient to infer 

neutrality but also, no equally suited models of non-neutral tumor growth should yield R2 > 

0.98.

To assess this, we simulated simple tumor growth in which we explicitly model one 

subclonal expansion with a selective advantage, i.e. increasing its division rate λ and/or the 

mutation rate µ of the subclone (Supplementary Methods). Using the original method 

described by Williams et al., neutrality is rejected only within a narrow range of λ and µ 
values tested that would lead to detectable subclones (true rejection of neutrality in ~11% of 

simulations; Fig. 1a). We conclude that a linear fit with R2 > 0.98 is not sufficient to call 

neutrality and that improper use of this model could result in substantial over-calling of 

neutrality.

Third, the deterministic model of tumor growth described by Williams et al. relies on strong 

biological assumptions, among which are synchronous cell divisions, constant cell death and 

constant mutation and division rates. Stochastic models of tumor growth are biologically 

more realistic, as they allow for asynchronous divisions and probabilistic mutation 

acquisition, cell death and division rates. Using simple branching processes to simulate 

neutral and non-neutral growth10 (Supplementary Methods), we show that R2 > 0.98 for 

M f ∝ 1
f  is neither a necessary nor a sufficient property of neutrally evolving tumors (Fig. 

1b). Although it can be shown that the expected cumulative number of mutations – i.e. the 

average over many independent samples – M f ∝ 1
f ,10 due to the biological noise modeled 

in branching processes, a typical realization of the neutral process in a single sample 

deviates substantially from the expected linear fit, rendering an R-squared threshold 

inaccurate to infer neutrality. As a result, discrimination of neutral and non-neutral simulated 

tumors using a linear fit is almost arbitrary, with 53.5% false positive neutral calls in non-

neutral tumors (Fig. 1b) and an area under the ROC curve of 0.42 for the classification of 

1,919 neutral and 1,919 non-neutral tumors (Fig. 1c).

Fourth, we reason that in tumors called neutral, no subclonal selection should be detected. 

To evaluate this, we use an orthogonal method to identify selection, based on the observed 

variants themselves rather than on their allele frequencies. dN/dS analysis derives the 
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fraction of mutated non-synonymous positions to the fraction of mutated synonymous 

positions in the coding regions. It has been widely used to detect the presence of negative or 

positive selection of non-synonymous variants in coding regions11,12. We applied a dN/dS 

model optimized for the detection of selection in somatic cancer variants13 to TCGA exome 

data using a published list of 192 cancer genes14 (Supplementary Methods). The analysis 

was performed separately using variants called as clonal or subclonal (Supplementary 

Methods), in tumors called neutral and non-neutral based on the rationale outlined by 

Williams and colleagues7. dN/dS ratio analysis revealed significant positive selection in 

subclonal mutations of tumors classified as neutral (Fig. 1d), further suggesting that the 

approach described by Williams et al. is under-equipped to detect the presence or absence of 

selection.

In summary, Williams et al. proposed that about one third of tumors are neutrally evolving. 

However, we highlight four simplifying assumptions – to our knowledge not previously 

highlighted – and find that the proposed approach will often identify individual tumors as 

neutral when they are non-neutral and non-neutral when they are neutral. A new paper by 

the same group15 introduces a Bayesian test for detecting selection from VAFs. The test 

estimates selection coefficients and, as such, is an important advance over Williams et al.’s 

frequentist test, which does not. The authors acknowledge that the test can only detect large 

fitness differences, but nevertheless call tumors that fail it “neutral” when they are merely 

those in which a weak test has failed to detect selection. We note that neutral theory has been 

developed in population genetics, ecology and cultural evolution and that similar tests have 

been proposed in all of these fields and, in all, eventually been found wanting for the same 

reason: variant abundance distributions do not contain enough information to exclude 

selection16–18. It is of clinical importance to identify and better understand the drivers of 

the potentially more aggressive (sub)clones expanding under selective biological or 

therapeutic pressure, as these are good candidates for predicting resistance and exploring 

combination therapy. Williams et al. are to be commended for having introduced explicit 

neutral tumor growth models into tumor genomics. However, quantifying the relative 

importance of drift and selection in shaping the allele frequencies of single tumors clearly 

remains an open challenge. Studies relying on their proposed test (e.g. 8) might, then, need 

reevaluation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Parts of the results published here are based upon data generated by the TCGA Research Network: http://
cancergenome.nih.gov/.
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Figure 1. 
(a) Neutrality calls in simulations of tumor growth with subclonal expansion 
underlying selective sweeps. The tree topology being modelled is represented on the right 

together with the parameters of the neutral evolution equations for the two subpopulations of 

cells (Supplementary Methods). The subclone’s fraction (subclone %) increases with its 

selective advantage advsubclone. We vary the λ = 1 + advsubclone and µ parameters of the 

subclone along a grid. Simulations are defined as true non-neutral (light blue) or false 

neutral (dark blue) when the growing subclone has expanded sufficiently to be detectable 
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and the sweep is not complete, i.e. 10% ≤ subclone % ≤ 90%, otherwise the subclone is 

considered beyond detection (light green). Non-neutral call: R2 < 0.98; neutral call: R2 ≥ 

0.98. (b) As (a), using the Gillespie algorithm to simulate branching processes10. 

Simulations leading to subclones beyond detection are either called neutral (light green) or 

non-neutral (dark green). Because of the stochastic nature of branching processes, different 

subclone % values are obtained across simulations from the same advsubclone values. For five 

increasing advsubclone values, we report median ± mad of the subclone % across the 

simulations. (c) Summary ROC curve for the neutral vs. non-neutral classification 
based on the R2 values in 1,919 non-neutral simulations from (b), and 1,919 
simulations of neutral tumors. The false positive rate and the true positive rate are 

highlighted for R2 = 0.98 used by Williams et al. (d) dN/dS analysis. Maximum likelihood 

estimates of the dN/dS ratios and associated 95% confidence intervals for (sub)clonal 

mutations in TCGA tumors categorized into neutral and non-neutral groups. Ratios for 

missense and truncating mutations are given. dN/dS > 1 indicates positive selection.
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