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SUMMARY

Clear-cell renal cell carcinoma (ccRCC) exhibits a
broad range of metastatic phenotypes that have
not been systematically studied to date. Here, we
analyzed 575 primary and 335 metastatic biopsies
across 100 patients with metastatic ccRCC,
including two cases sampledat post-mortem. Meta-
static competence was afforded by chromosome
complexity, and we identify 9p loss as a highly
selected event driving metastasis and ccRCC-
related mortality (p = 0.0014). Distinct patterns of
metastatic dissemination were observed, including
rapid progression to multiple tissue sites seeded by
primary tumors ofmonoclonal structure. By contrast,
we observed attenuated progression in cases char-
acterized by high primary tumor heterogeneity, with
metastatic competence acquired gradually and
initial progression to solitary metastasis. Finally, we
Cell 173, 581–594, Apr
observed early divergence of primitive ancestral
clones and protracted latency of up to two decades
as a feature of pancreatic metastases.

INTRODUCTION

Large-scale sequencing initiatives, such as the cancer genome

atlas (TCGA) and the international cancer genome consortium

(ICGC), have profiled thousands of primary tumors across

many cancer types. Similar large-scale studies of metastases

have been limited (Robinson et al., 2017; Zehir et al., 2017)

and have not included matched primary tumors. Understanding

the evolution of metastatic disease requires simultaneous

analysis of the primary tumor in order to distinguish between

clones with and without metastatic potential. To date, a number

of primary-metastasis pairs have been analyzed retrospectively

(Shah et al., 2009; Campbell et al., 2010; Yachida et al., 2010;

Ding et al., 2010; Haffner et al., 2013; Bashashati et al., 2013;

Lee et al., 2014; Gerlinger et al., 2014; Brastianos et al.,

2015; Gundem et al., 2015; Schwarz et al., 2015; McPherson
il 19, 2018 Crown Copyright ª 2018 Published by Elsevier Inc. 581
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et al., 2016; Zhao et al., 2016; Casuscelli et al., 2017; Yates

et al., 2017). The well-established molecular landscape of pri-

mary clear-cell renal cell carcinoma (ccRCC), defined by the

loss of 3p and VHL mutations/methylation as early events, pro-

vides an excellent model for the study of cancer evolution. Met-

astatic ccRCC, with its variable clinical presentation and natural

history, is a compelling model for understanding the clonal evo-

lution of metastasis. ccRCC spreads by both lymphatic and he-

matogenous routes, colonizing a range of sites, including lung,

bone, liver, and brain; pancreas, adrenal, parotid, and thyroid

glands; and muscle, skin, and soft tissue (Bianchi et al.,

2012). Liver metastases confer a worse prognosis (McKay

et al., 2014), whereas low-volume lung metastases are associ-

ated with a more indolent disease course. Some ccRCCs also

grow intravascularly, forming a tumor thrombus (TT) in the renal

vein/inferior vena cava. Approximately one-third of patients

have metastases detected at pre-operative screening or sur-

gery, termed ‘‘synchronous metastases.’’ Up to 50% develop

metastases after the removal of the primary tumor (at least

3 months and as late as 30 years after primary surgery), termed

‘‘metachronous metastases.’’ The spatial distribution of meta-

static disease in ccRCC varies from solitary (a single metastasis

in a single location), oligo (limited in number and location; usu-

ally defined as %5 or %3 metastases) (Weichselbaum and Hell-

man, 2011), and widespread (multiple metastases in multi-

ple sites).

The clinical relevance of solitary and oligometastases is that

they can be managed by local strategies (surgery, stereotactic

radiotherapy, and other ablative therapies) rather than systemic

therapy. For metachronous metastases, the outcome of this

approach generally depends on the time interval since the initial

surgery (Dabestani et al., 2014). For patients presenting with syn-

chronous solitary or oligometastases, a multi-modal strategy

that involves cytoreductive nephrectomy (removal of the primary

tumor), metastasectomy (complete resection of the metastasis)

and systemic therapy can achieve an improved outcome (Bex

et al., 2016). However, 20% of these patients progress as early

as 1month following surgery (Bex et al., 2017), sometimes failing

to receive systemic therapy due to the rapid disease pace (Kuti-

kov et al., 2010). Thus, there is a pressing need to understand

which patients harbor more widespread occult metastases and

would not benefit from surgery. In our analyses of 100 primary

ccRCCs in the prospective longitudinal cohort study, TRAcking

renal cell Cancer Evolution through Therapy (TRACERx Renal,

clinical trials no. NCT03226886), we used conserved patterns

of evolution to classify tumors into 7 distinct evolutionary sub-

types (Turajlic et al., 2018a, Mitchell et al., 2018). Primary tumors

with low intratumor heterogeneity (ITH) and a low fraction of the

tumor genome affected by somatic copy-number alterations

(SCNAs) had an overall low metastatic potential. Primary tumors

with high ITH were associated with an attenuated pattern of pro-

gression, whereas primary tumors with low ITH but elevated

SCNAs were associated with rapid progression at multiple sites

(Turajlic et al., 2018a). A pre-defined endpoint in the TRACERx

Renal study was to explore the contribution of subclonal dy-

namics to ccRCCmetastasis. To distinguishmetastasis-compe-

tent from incompetent clones and examine the routes and timing

of metastases across multiple anatomic sites, we analyzed 463
582 Cell 173, 581–594, April 19, 2018
primary and 169 matched metastatic regions from a subset of

38/100 patients in the TRACERx Renal Cohort (Turajlic et al.,

2018a); 69 primary regions and 51 metastatic regions in an

extension cohort of 26 patients; 34 matched primary metastasis

pairs in a further validation cohort; and finally, 9 primary and 81

metastatic regions obtained at post-mortem in 2 patients. In to-

tal, we analyzed 5 primary and 335 metastatic biopsies from 100

patients.

RESULTS

Overview of the Cohorts under Study
ccRCC tumors exhibit a variety of progressive phenotypes,

including invasion of the peri-renal and renal sinus fat (T3a),

direct invasion through the renal capsule (Gerota’s fascia) and

the adrenal gland (T4), intravascular tumor growth (T3a-T3c),

and lymph node (N1/N2) and visceral metastases (M1), including

indirect spread to the adrenal gland. In 38 patients whose pri-

mary tumors were profiled in the TRACERx Renal cohort (Table

S1A; Figure S1), we profiled multiple regions from matched TT,

lymph node, and visceral metastases using a bespoke gene

panel (STAR Methods).

The overall number of driver events (mutations and SCNAs as

presented in Figure 1A) was lower in metastases (mean = 9),

compared to primary tumors (mean = 12, p = 0.05, adjusted

for the varying number of profiled regions; STAR Methods) (Fig-

ure 1A). Consistent with evolutionary bottlenecking, metastases

were significantly more homogeneous (proportion of clonal var-

iants = 0.87) compared to primary tumors (proportion of clonal

variants = 0.32, p = 3.63 10�13, adjusted for the varying number

of profiled regions) (Figure 1B). Across all primary-metastasis

pairs, 456 driver events were shared between primary tumors

and metastases, 230 were private to primary tumors, and 39

driver events were private to metastases (Figure 1C). Driver phy-

logenies were reconstructed to infer clonal relationships be-

tween primary tumors and metastases (STAR Methods).

The TRACERx Renal cohort was enriched for synchronous

metastases (Figure 1D), and to widen our investigation we

analyzed two additional cohorts. Using the Driver Panel (STAR

Methods), we multi-region profiled the ‘‘HUC’’ (Hospital

Unversitario Cruces) cohort of archived formalin-fixed paraffin-

embedded (FFPE) primary ccRCCs and matched synchronous

(6 cases), and metachronous metastases (0 cases) (Table S1;

STAR Methods). We successfully profiled 69 primary tumor re-

gions and 51 metastatic regions in 26 patients (two patients

contributed multiple metastases) (Figure S2). For the second

cohort, ‘‘MSK’’ (Memorial Sloane Kettering), we reanalyzed the

sequencing data from a study of primary-metastasis pairs

(Becerra et al., 2017) (STAR Methods), to obtain both mutational

and SCNA events in a total of 34 cases, including 19 synchro-

nous, and 15 metachronous metastases (Figure S2; Table S1).

As expected, we noted a difference in the overall frequency of

driver events in the HUC and MSK cohorts compared to the

TRACERxRenal cohort, owing to the increased sensitivity for de-

tecting subclonal alterations in the latter (Table S2). There was a

wide temporo-spatial representation of metastases across the

three cohorts encompassing 18 distinct metastatic sites (Fig-

ure 1E), presenting 0–17 years after the removal of the primary

https://clinicaltrials.gov/ct2/show/NCT03226886
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Figure 1. Overview

(A) An overview of somatic alterations detected in matched primary and metastatic tumors across 38 TRACERx Renal patients. The top panel shows the pro-

portion of clonal and subclonal alterations. In the middle panel alterations in primary tumors are indicated in a lighter shade and those detected in metastases in a

darker shade. Clonal alterations are shown as rectangles and subclonal alterations as triangles. Parallel evolution is indicated in orange with a split indicating

multiple events. Abbreviations for tumor sites: P, primary; TT, tumor thrombus; AD, adrenal gland, indirect metastasis; AD(D), direct invasion of adrenal gland;

AD(CL), contralateral adrenal gland; Renal(CL), contralateral kidney; Pr, perirenal invasion; and Pf, peri-nephric fat and Gerota’s fascia invasion.

(B) The number of clonal and subclonal somatic alterations in primary and metastatic tumors.

(C) The number of somatic alterations (1) detected in both primary tumor (P) and the matched metastatic tumor (M), (2) detected in primary tumor but not the

matched metastatic tumor, and (3) detected in the metastatic tumor but not the matched primary tumor.

(D) The proportions of synchronous and metachronous metastatic tumors profiled in the TRACERx Renal, HUC, and MSK cohorts.

(E) The range of the metastatic sites sampled across the TRACERx, HUC, and MSK cohorts. The total number of metastases sampled (n) and the number from

each cohort are shown in brackets (Tx represents TRACERx Renal; HUC and MSK are extension cohorts).

See also Tables S1 and S6 and Table S2.
tumor (Tables S1A–S1C). Finally, we profiled a wide range of

metastatic tissues sampled at post-mortem in the context of

the Cancer Research UK Posthumous Evaluation of Advanced

Cancer Environment (PEACE) study (NCT03004755) in two

cases of metastatic ccRCC (Table S1A).
Characterization of the Metastasizing Clone(s)
Taking advantage of the dense spatial sampling and phylogenetic

reconstruction conducted in the TRACERx Renal cohort (Turajlic

et al., 2018a), we analyzed the progression of individual clones

from primary to metastatic sites. Across the 38 patients we
Cell 173, 581–594, April 19, 2018 583
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Figure 2. Characterization of a Metastasizing Clone(s)

(A) Illustration of the method used to categorize tumor clones.

(B) Four violin plots summarizing (starting at the top left and working clockwise): (1) non-synonymous mutation count, (2) wGII, (3) ploidy, and (4) Ki67. Values are

compared between tumor clones ‘‘not selected’’ and ‘‘selected’’ in metastasis, with all region/clone values plotted per tumor (excluding MRCA ‘‘maintained’’

clones; see the STAR Methods). A linear mixed effects (LMEs) model was used to determine significance, to account for the non-independence of multiple

observations from individual tumors.

(C) For each driver event the proportion of times it was observed in ‘‘not selected’’ and ‘‘selected’’ clones for TRACERx, HUC, and MSK cohorts. The far-right

panel shows the log10 p value for each event for enrichment in ‘‘selected’’ versus ‘‘not selected’’ clones. Testing was performed using a binomial test with meta-

analysis conducted using Fisher’s method of combining p values from independent tests. p values are corrected for multiple testing using Benjamini-Hochberg

procedure.

(legend continued on next page)
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observed 253 distinct tumor clones which we categorized into

three groups based on the evidence of selection in the metas-

tasis/metastases: (1) clones that are not selected (‘‘not selected,’’

n = 130 clones, defined as subclonal in the primary and absent in

metastasis), (2) clones that are maintained (‘‘maintained,’’ n = 38

clones, defined as the most recent common ancestor (MRCA)

clones, clonal in both primary and metastasis), and (3) clones

that are selected (‘‘selected,’’ n = 85 clones, defined as subclonal

in the primary and clonal in metastasis; or absent in the primary

and present in metastasis) (Figure 2A; STAR Methods). Clones

that were private to the metastasis may have evaded detection

as a minor subclone in the primary tumor or arisen de novo in

the metastasis. The ability to differentiate the clones that appear

to be selected versus not on a matched patient/tumor-specific

background across the whole cohort allowed us to characterize

the features associated with metastasis. We observed no differ-

ence in the number of non-synonymous mutations between the

two groups (based on Driver Panel profiling, median value = 4

for both, p = 0.5099); however, wGII was significantly elevated in

selected clones (median ‘‘selected’’ = 0.29 vs. ‘‘not selected’’ =

0.17, p<0.001 (Figure 2B). This was further supported by ploidy

(determined by regional fluorescence activated cell sorting,

FACS; STAR Methods) also being significantly elevated in

selected clones (mean DNA index ‘‘selected’’ = 1.29, ‘‘not

selected’’ = 1.16, p <0.001 (Figure 2B).Multi-region immunohisto-

chemistry staining for Ki67 (STARMethods) demonstrated higher

proliferation index in the clones that were selected, compared to

those that were not (median Ki67 +40% higher in selected versus

non-selected clones, p = 0.0317 (Figure 2B). Finally, we observed

increased allelic imbalance at the human leukocyte antigen (HLA)

locus in selected versus non-selected clones (HLA allelic imbal-

anceobserved inn=12 ‘‘selected’’ vs. n=2 ‘‘not selected’’ clones;

Table S3), consistent with the recent findings in non-small-cell

lung cancer (McGranahan et al., 2017).

Next, we considered the individual driver events, mutational or

SCNAs, that are selected during progression to metastasis, by

comparing, for each event, the proportion of times it was found

in ‘‘selected’’ versus ‘‘not selected’’ clones (Figure 2C). We

conducted this analysis across TRACERx Renal (n = 38), HUC

(n = 26), and MSK (n = 34) cohorts. Significance was calculated

by comparing event selection proportions to null background

rates as observed across all passenger events in each cohort

(STAR Methods). ‘‘Selected’’ event frequencies were compared

to "not selected", and one event was found to be significantly en-

riched in "selected" clones: loss of chromosome 9p21.3 (p =

0.0026, padj < 0.1 after adjustment for multiple testing (Fig-

ure 2C). We also note loss of chromosome 14q31.1 reached sig-

nificance in the meta-analysis before correction for multiple

testing (p = 0.0275, padj = 0.303), suggesting this and other

driver events may also contribute to metastasis. We acknowl-

edge the risk of illusion of clonality (i.e., subclonal events appear-

ing clonal within a single region of a primary tumor) limited our
(D) Overall survival hazard ratios for events with p < 0.05 in the analysis in (C). D

resenting the hazard ratio value and the lines corresponding to the 95% confide

(E) Overall survival results for TRACERx and HUC cohorts (combined), split into tw

9p21.3 or normal wild-type copy number) in the metastasizing clone.

See also Figure S2 and Table S3.
power to detect metastatic selection in the MSK, and to a lesser

extent HUC, cohorts. For example, 53% of events in the TRAC-

ERx Renal cohort were subclonal, compared to only 31% in HUC

and 11% in MSK cohorts.

Metastatic ccRCC has a variable spectrum of survival out-

comes, with overall survival (OS) times ranging from short

(<6 months), to prolonged (>5 years). Accordingly, we conduct-

ed OS analysis for the two events that were enriched in metasta-

sizing clones (p < 0.05 from Figure 2C), to understand if they

were also driving early ccRCC-related mortality, based on their

presence/absence within the metastasizing clone(s) of each

case. OS data were not available for the MSK cohort. Hazard

ratios (HR) were observed as follows (Figure 2D): 9p loss (HUC

cohort HR = 7.7, [2.8–20.8] 95% confidence interval, TRACERx

cohort HR = Infinity [no events in WT group], p = 0.0014 log-

rank test across both cohorts) and 14q loss (HUC cohort HR =

1.5, [0.6–3.9] 95%, TRACERx cohort HR = 2.0, [0.5–8.2], non-

significant). We note the strong association between reduced

survival and 9p loss in the metastasizing clone remained signifi-

cant after correction for known clinical variables (p = 0.046,

adjusted for stage, grade, and cohort) (Figure 2E). 9p deletion

has been reported to confer a poor prognosis (El-Mokadem

et al., 2014; La Rochelle et al., 2010); however, the hazard ratios

in our analysis (HR = 7.7; HR = infinity) are higher than reported in

those studies (HR = 4.3 in El-Mokadem et al. [2014]; HR = 1.7 in

La Rochelle et al. [2010]), whichmay reflect the greater sensitivity

of profiling events within the metastasizing clones.

Evolution of Tumor Thrombus
Intravascular tumor growth and formation of TT is observed in

�15% of ccRCCs in the renal vein (level I), extending to the infra-

hepatic inferior vena cava (IVC) (level II), retrohepatic or suprahe-

patic IVC (level III), or reaching the right atrium (level IV) (Psutka

and Leibovich, 2015) (Figure 3). Untreated TT is associated

with a poor outcome (Reese et al., 2013), but aggressive surgical

management involving a thrombectomy can result in long-term

survival in some patients (Psutka and Leibovich, 2015). In the

TRACERx Renal cohort 33/100 ccRCC cases presented with

venous tumor extension (Turajlic et al., 2018a), only one of which

was classified as a ‘‘VHL monodriver’’ tumor, which harbored 9p

loss (K253) (Figure 3). Median survival in patients with TT was

17.8 months (Table S1) with 3 patients dying within 6 months

of surgery due to disease progression (K328, K263, and K390);

classified as ‘‘multiple clonal’’ driver (2 cases) and ‘‘VHL wild-

type’’ (1 case) subtypes (Table S1).

In 24/33 cases, we successfully profiled the TT along its length

(Table S1) and reconstructed driver phylogenies to infer the clonal

relationship between the primary tumor and the intravascular tu-

mor extension (Figure 3). The TT was seeded directly by the

most recent common ancestor (MRCA, the clone which harbors

the full complement of alterations common to all the clones in

the tumor; denoted by the first node in the phylogenetic tree) in
ata are shown for TRACERx and HUC cohorts separately, with the circle rep-

nce interval estimate.

o groups based on SCNA status at chr 9p21.3 (either copy-number loss at chr
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Figure 3. Tumor Thrombus

This figure shows tumor thrombus (TT) driver trees with primary clones in the lower panels and level I, level II, level III, and level IV TT clones in light green, blue,

orange, and red, respectively, in the upper panels. Tumor TNM stage and driver events leading to TT are annotated. Length of branches connecting clones is not

informative.

See also Figure S3.
10 cases (K239, K118, K250, K207, K059, K167, K276, K107,

K253, and K191) (Figure 3), suggesting intravascular growth was

an early event. In other cases, the TT emerged from the more

advanced subclones in the primary tumor, which harbored addi-

tional drivers, including 9p loss. Whereas most primary tumors

hadevidenceofongoingevolution, tumor thormbiharbored limited

additional alterations (94.9% of TT events were shared with pri-

mary). Consistent with the propensity of TT to progress rapidly

(Woodruff et al., 2013),weobservedanelevatedproliferation index

within primary tumors presenting with TT compared to those

without (p = 0.00095) (Figure S3A). Thus, the lack of fixation of

new driver events in TTs may be due to their rapid extension

and/or limited selective pressure in the intravascular space.

An interesting biological and clinical question relates to the

ability of TT to act as a source of other metastases, and in this

context, we profiled six patients with venous tumor extension

and concurrent lymph node and/or visceral metastases (Fig-

ure S3B). In some cases distinct clones in the primary tumor

seeded the TT and the metastasis (K326 and K390; Figure S3B).

Consistent with the poor prognosis conferred by lymph node

involvement in ccRCC, the lymph node seeding clone in K390

harbored 9p loss, whereas the TT clone did not. The same pri-

mary clone seeded both TT and metastasis in K096 and K427

(Figure S3B), whereas in K107 and K263 (Figure S3B) the metas-
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tasizing clone appeared to first seed the thrombus and then

lymph node and adrenal sites, respectively. These observations

suggest that TTmay act as a reservoir of metastases in some pa-

tients, consistent with the poor outcomes of untreated thrombus

(Reese et al., 2013). The alternative explanation is that all the

sites, including TT were seeded by a clone which evaded detec-

tion in the primary tumor.

Evolution of Progressive Disease
Within the 38 TRACERx Renal primary metastasis cohort, 25 pa-

tients developed progressive disease. The clinical outcomes in

this group were variable, with overall survival time ranging from

1.5–54.4 months (Table 1A). Given that cytoreductive nephrec-

tomy and metastasectomy are performed to achieve longer dis-

ease-free survival, we considered the evolutionary features of

cases that progressed rapidly (i.e., multiple sites of disease pro-

gression within 6 months of surgery) versus those with attenu-

ated progression (i.e., single-site progression < 6 months; or

multi-site progression > 6 months), capturing both the speed

and the extent of metastatic spread (Figure 4A; Table S1). One

patient (K328) died from operative complications and was

excluded from the analysis. Eight cases were classified as hav-

ing ‘‘rapid progression’’: K376, K326, K263, K107, K153, K446,

K390 and K066 (Figure 4A). This group was enriched for
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Figure 4. Evolution of Progressive Disease

(A) Driver trees and the clinical course for cases with lymph node and distal metastases. Cases were grouped into those with ‘‘rapid progression’’ and ‘‘attenuated

progression.’’ The primary tumor evolutionary subtype, primary tumor ITH/wGII classification, and select driver events on the tree (VHL, BAP1, PBRM1,MTOR,

SETD2, TSC1, TSC2, chr 9p loss, and chr 14q loss) are annotated for each case. Metastasis seeding subclones and any subclones private to metastasis are

highlighted in blue. Clinical course is shown from the time of nephrectomy to death or last follow-up. Pattern of disease progression is classified as multiple new

metastases (multiple circles), solitary newmetastasis (single circle), and progression of existingmetastases (‘‘PD’’). Progression and follow-up times are shown in

months. Systemic treatments are indicated. Synchronous andmetachronousmetastatic sites are listed under corresponding time points. Profiledmetastases are

highlighted in blue boxes. Abbreviation for tumor sites: P, primary; TT, tumor thrombus; AD, adrenal gland; AD(D), direct invasion of adrenal gland; AD(CL),

contralateral adrenal gland; renal(CL), contralateral kidney; Pr, perirenal invasion; and Pf, peri-nephric fat and Gerota’s fascia invasion.

(B) The number of cases with ‘‘rapid progression’’ or ‘‘attenuated progression’’ in each evolutionary subtype.

(C) The maximum wGII and ITH in cases with ‘‘rapid progression’’ and ‘‘attenuated progression.’’

See also Figure S4 and Table S1.
‘‘multiple clonal driver,’’ ‘‘VHL wild-type,’’ and ‘‘BAP1 driven’’

evolutionary subtypes (Figure 4B) and associated with lower

ITH and elevated wGII relative to the cases with attenuated pro-

gression (Figure 4C). The association with ITH did not reach sta-
tistical significance, however we note that "low ITH, high wGII"

tumours were linked to rapid progression in the larger cohort

(p=0.01, Turajlic et al., 2018a). All primary tumors in this group

harbored loss of 9p (Figure 4A). They were more likely to
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Figure 5. Latent Metastases

(A) The distribution of times from nephrectomy to

metastasis resection split by site of metastasis.

The circle represents the median value, and the

gray lines depict the median average deviation

(MAD) value (i.e., plus/minus one MAD). The range

(min to max) values are far right in brackets.

(B) wGII values per region split by site of metas-

tasis. All regions are shown per metastasis, and a

linear mixed effects (LMEs) model was used to

determine significance (for pancreas vs. all other),

to account for the non-independence of multiple

observations from individual tumors.

(C) Fishplots for the three cases (SP006, SP023,

and SP058) with latent pancreatic metastases.

*Case SP058 had additional metastases to skeletal

muscle (time = 0) and the small bowel (time = 7).

See also Figure S5.
progress to liver metastases (6/8) compared to cases in the

‘‘attenuated progression’’ group (1/16) (p = 0.0013), and had a

short overall survival (Figure 4A). Particularly notable was case

K153 in which lymph node and lung metastases were seeded

from the same ‘‘BAP1 driven’’ subclone, which had high wGII

and harbored 9p loss, while the competing ‘‘PBRM1/SETD2’’

subclone failed to metastasize (Figure S4).

16 cases were classified within the ‘‘attenuated progression’’

group: K379, K096, K208, K071, K243, K206, K520, K180,

K029, K228, K427, K253, K229, K386, K276, K280 (Figure 4A).

Disease progression interval was longer and often limited to a

single metastatic site. Consequently, in some patients metasta-

tic disease was controlled with further surgery (K029) or radio-

therapy (K096, K228, K208 and K243), consistent with the lack

of other occult metastases. This group was enriched for

‘‘PBRM1/SETD2’’ and ‘‘PBRM1/PI3K’’ evolutionary sub-

types, with the primary tumors characterized by higher ITH index

and lower wGII, as compared to the ‘‘rapid progression’’ group
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(Figure 4C). For example, case K029

(‘‘PBRM1/PI3K’’) presented with

spatially separate bone metastases 3

years apart; the metastasizing clone

harbored a PBRM1 mutation, but not 9p

loss (Figure S4).

Evolution of Latent Metastases
We compared the time from primary tu-

mor to metastasis, by tissue site, across

the combined TRACERx/HUC/MSK co-

horts. In keeping with the known modes

of late recurrence in ccRCC, we observed

the pancreatic metastases to have the

longest time to presentation (median 15

years, compared to 3 years for all other

tissue sites) (Figure 5A). In an exploratory

analysis, pancreatic metastases were

found to have significantly lower wGII, as

compared to all other metastatic tissue

sites (p = 0.0489) (Figure 5B). A shared

clonal ancestry was confirmed between
primary and metastatic sites in all three cases, and we observed

a low number of additional driver alterations in pancreatic metas-

tases, despite the extended latency time (Figure 5C). In the case

of SP006, the pancreatic metastasis was diagnosed 17 years af-

ter the primary tumor was resected, and the latent clone was

mapped directly back to the founding MRCA clone, suggesting

early divergence from the primitive ancestral clone. Similarly, in

SP023, a case with pancreatic metastasis at 15 years, the latent

clone derived from the primary MRCA and only acquired one

additional driver mutation in MTOR (Figures 5C and S5). Finally,

SP058 presented with pancreatic metastasis at 8 years, with a

single additional driver event (SETD2 mutation) in metastasis,

while we detected alternative subclones with a greater number

of driver events in the primary tumor (Figure 5C). The seeding

by the ancestral clone and the lack of 9p loss suggests that

the pancreas may be a more permissive metastatic niche for

ccRCC. The reasons for the characteristic latency of pancreatic

metastases remain unknown, but are likely to involve
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Figure 6. Spatial Resolution of Metastases through Post-Mortem Sampling

(A and B) Shows cases K548 (A) and K489 (B), which were sampled at post-mortem with the extent of sampling. The clinical time course (in months) and

therapuetic interventions are shown. Metastatic progression is illustrated using fish plots with the select driver events annotated (VHL, BAP1, PBRM1, MTOR,

SETD2, TSC1, TSC2, 9p loss, and 14q loss). Metastasizing clone color matches that of the corresponding metastatic site.

See also Table S1.
interactions with the tumor microenvironment, the immune sys-

tem and altered epigenetic states (Giancotti, 2013).

Spatial Resolution of Metastases through Post-Mortem
Sampling
To explore the clonal dynamics of multiple metastases we

sampled two cases at post-mortem(Figure 6; Table S1A) through

the PEACE study (NCT03004755). Case K548 presented with a

primary ccRCC which had already disseminated to multiple sites

including adrenal, loco-regional and mediastinal lymph nodes,

liver, and pleura (Table S1). All disease sites, including the primary

tumor, were sampled at post-mortem (Figure 6A). Clonal muta-

tions were detected in VHL, PBRM1, and SETD2 genes, and

accordingly this casewascategorizedasa ‘‘multiple clonal driver’’

subtype. The primary tumor had low ITH and high wGII, and all 13

metastatic sites sampled were seeded by the dominant clone

which was characterized by 9p and 14q loss (Figure 6A). We

note this patient progressed rapidly through two lines of systemic

therapy and died 6 months after the diagnosis of ccRCC (Table

S1). The evolutionary features of the primary tumor are in keeping

with those we observe in the TRACERx Renal cases with ‘‘rapid

progression’’ (Figure 4A).

In case K489 the patient presented with a primary ccRCC and

underwent a nephrectomy with curative intent (Figure 6B). 7

years following surgery two pancreatic metastases were de-

tected on imaging and the patient underwent a complete meta-
stasectomy (Figure 6B; Table 1). 4 years later, they presented

with lymph node and lung metastases (Figure 6B). They received

multiple lines of systemic therapy, subsequently developing me-

tastases at additional sites including liver and bone, and suc-

cumbing to their disease 17 years after the original diagnosis

(Figure 6B; Table 1). We obtained fresh samples at post-mortem

from multiple lymph node sites, liver, lung, and contralateral

kidney metastases, and we accessed the primary tumor and

the resected pancreatic metastases from archived FFPE

material. The primary tumor harbored a clonal VHL mutation

and 3p loss, and a subclonal PBRM1 and multiple SETD2

mutations, indicating parallel evolution. These features were

consistent with the ‘‘PBRM1/SETD2’’ evolutionary subtype

(Turajlic et al., 2018a). In accordance with our observations in

the TRACERx renal cohort (Figure 4), the pattern of disease

spread was consistent with ‘‘attenuated progression.’’ The two

pancreatic metastases were seeded by separate clones (indi-

cating potentially distinct waves of metastatic spread) neither

of which harbored 9p loss. By contrast, subsequent metastases

to the lymph nodes, liver, lung, and kidney were seeded by a

subclone harboring additional SCNA events, including loss of 9p.

DISCUSSION

We present an integrated analysis of 575 primary and 335 met-

astatic biopsies across 100 patients with metastatic ccRCC,
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Figure 7. Summary of Key Conclusions

from the Study
including the first report of ccRCC profiled in a post-mortem

setting. To our knowledge, this is the largest study of its kind

to date, offering broad insights into the diverse spectrum of

modes of progression from primary to metastatic disease. A

key objective of the TRACERx Renal study is to reduce sampling

bias and provide clonal resolution of the primary tumor, such

that the metastasis seeding clones can be distinguished from

metastasis incompetent clones more reliably. Clonal resolution

facilitates an improved understanding of the genomic events,

and broader clonal characteristics, that drive metastasis and

mortality risk. In addition, the wide range of metastatic tissue

sites sampled in this study allows detailed analysis of the vary-

ing metastatic phenotypes in ccRCC.

First, in characterizing metastases, we show profound evi-

dence of evolutionary bottlenecking, with metastatic sites being

both more homogeneous (proportion of clonal variants = 0.87)

and harboring fewer driver somatic alterations (mean = 9),

compared to their matched primary tumors (0.32 and 12).

Furthermore, only a minority of driver events (5.4%) were found

to be private (or de novo) in metastases, indicating that the

majority of driver diversity accumulated at the primary tumor

site, which then serves as the substrate for selection of metas-

tasis-competent populations. Tumor clones that were

‘‘selected’’ and progressed from primary to metastatic sites

of disease were characterized by elevated levels of somatic

copy-number alterations, increased proliferation, and evidence

of immune evasion (in the form of HLA LOH), but not by

increased driver SNV/INDEL counts. 9p loss was found to be

a potent driver of both metastasis and ccRCC mortality risk,
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even after adjustment for established

clinically prognostic indicators. Loss of

14q also showed a trend towards signif-

icance, and taken together these two

events represent hallmark genomic alter-

ations in ccRCC metastasis (overall 36 of

38 TRACERx Renal cases had loss of at

least one of these chromosome arms).

Furthermore, 71% (n = 27) of the meta-

static cases in the TRACERx renal

cohort had loss of both 9p and 14q,

compared to only 35% (n = 22) of cases

without metastatic disease at presenta-

tion (n = 62) (Turajlic et al., 2018a), sug-

gesting these events interact to drive

metastatic risk. While investigation of

functional mechanisms is beyond the

scope of this study, we note that p16

(encoded by CDKN2A on 9p) has been

shown to modulate VEGF expression

via its interaction with HIF-1alpha, en-

coded by HIF1A on 14q (Zhang et al.,

2010). Critically, in the context of their

potential utility as biomarkers both 9p
and 14q loss were predominantly subclonal in our multi-

regional analysis of primary ccRCC (Turajlic et al., 2018a) and

may be missed by single biopsy approaches.

Secondly, our analyses highlight distinct modes of metastatic

dissemination (Figure 7). In primary tumors characterized by low

ITH and high wGII, metastatic competence is acquired within

themost recent common ancestor, which drives rapid dissemina-

tion, leading to surgical failure, poor response to systemic therapy

and early death from disease. These observations are consistent

with the presence of occult micrometastases at the time of sur-

gery. The ‘‘multiclonal driver’’ case K548, examined at post-mor-

tem, is an exemplar of the disseminated metastatic seeding from

such tumors. In this context, we note that these cases are a mi-

nority in the TRACERx Renal cohort which was weighted towards

operable patients (Turajlic et al., 2018a); hence, low ITH/high wGII

pattern may be prevalent in patients who are deemed inoperable.

Acquisition of the metastatic potential at the early stage of tumor

evolution has been reported in pancreatic (Notta et al., 2016) and

breast cancers (Gao et al., 2016) and uveal melanoma (Field et al.,

2018), consistent with the tendency of some tumors to metasta-

size rapidly. Improving outcomes in such cases presents a signif-

icant challenge.

We observed a contrasting phenotype in primary tumors char-

acterized by lower wGII, high ITH, and ‘‘attenuated progression’’

(Figure 4). Metastatic competence was acquired gradually and

was limited to certain subpopulations in the primary tumor at

the time of surgical resection. The clinical course was character-

ized by an initial solitary or oligometastatic pattern, withmetasta-

tic capacity increasing over time resulting in more efficient and



widespread metastases, as exemplified by case K489. The

marked latency of metastases in case K489 may have been

mediated by effective immune surveillance. Our observations

in this group underpin the role of cytoreductive nephrectomy in

removing the ‘‘evolutionary sink of diversity’’ (Gerlinger et al.,

2012) and thus minimizing the risk of future metastatic seeding

from evolving primary tumors harboring clones of variable meta-

static potential. We note that the evolutionary trajectories in this

group are underpinned by PBRM1 alterations, in keeping with

the observation by Brugarolas and colleagues that loss of

PBRM1 expression is associated with an increased risk of

metastasis but not with decreased survival (Joseph et al.,

2016). Further OS analysis in larger metastatic cohorts will be

required to comprehensively contrast the drivers of metastasis

from the drivers of early mortality.

In an exploratory analysis of intravascular tumor growth, we

observe that TT can be seeded from the ancestral clone. In

this context, the TT conceivably formed shortly after the clonal

sweep in the primary tumor, ascending rapidly through the

IVC, resulting in clinical diagnosis (majority of patients presented

with symptoms). This notion is consistent with the observation

that TT is not prognostic in the absence of nodal or metastatic

disease (Wszolek et al., 2008) and that thrombectomy can be

curative. In contrast, isolated lymph node involvement portends

an extremely poor prognosis in ccRCC, significantly worse than

in other solid tumor types (Gershman et al., 2017). We observe

that lymph node metastases are characterized by similar levels

of wGII compared to distant metastases (no significant differ-

ence, p = 0.21) and frequently harbor 9p loss (21/22 cases), indi-

cating that lymphatic and hematogenous spread require compa-

rable metastatic competence. Our observations contrast the

divergent lymph node/distant metastasis patterns reported in

other tumor types (Brastianos et al., 2015; Yates et al., 2017),

and are consistent with the frequent presentation of lymph

node metastases with visceral metastases, and the lack of ther-

apeutic benefit from lymph node clearance in ccRCC (Bhindi

et al., 2018). Finally, in our limited analyses of late recurrences

in the pancreas (3 HUC and 1 PEACE case), the metastasis-es-

tablishing clone diverged from the primary tumor early and

harbored few additional events, consistent with protracted la-

tency. The metastasizing clones lacked 9p loss, suggesting

that less aggressive clones establish pancreatic metastasis in

isolation in keeping with the excellent clinical outcome in these

patients.

In summary, we demonstrate that the fitness attribute common

to metastases and TT-seeding (sub)clones is chromosomal

complexity. Chromosome-level alterations that simultaneously

affect the expression of 100s of genes can support the complex

metastatic cascade by altering many functional phenotypes

(Santaguida and Amon, 2015) and potentially by impacting im-

mune evasion (Davoli et al., 2017). The onset of chromosomal

complexity in ccRCC provides a permissive genomic back-

ground for selection of 9p loss, previously linked to poor out-

comes (El-Mokadem et al., 2014; Klatte et al., 2009; La Rochelle

et al., 2010). While preliminary in nature, our collective observa-

tions point to the deterministic nature of the ccRCC evolutionary

subtypes and their association with the mode and tempo of met-

astatic progression. The ‘‘rapid progression’’ group has echoes
of the punctuated equilibrium model of rapid speciation events

(Eldredge and Gould, 1997) and subsequent clonal stasis. In

contrast, the evolution of the ‘‘attenuated progression’’ group is

analogous to Darwin’s phyletic gradualism. Continuing longitudi-

nal and post-mortem sampling opportunities in the TRACERx

Renal and PEACE studies aim to validate these findings in larger

cohorts.

In conclusion, evolutionary classification of metastatic poten-

tial could serve as an important biomarker for stratification of pa-

tients for surgical intervention (e.g., cytoreductive nephrectomy/

metastasectomy) in the presence of metastatic disease, for

management of patients following surgery with curative intent,

including decisions on surveillance schedule and adjuvant ther-

apy, and in the context of active surveillance of small renal

masses.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Human reference genome NCBI build 37,

GRCh37

Genome Reference Consortium http://www.ncbi.nlm.nih.gov/projects/

genome/assembly/grc/human/

Oligonucleotides

Oligonucleotide sequences for VHL exon

amplification and methylation specific PCR

This paper Table S5

Primer, D6S248; Forward:TGCAGTGAGC

CGAGATCAA

https://genome.ucsc.edu D6S248_FAM_F

Primer, D6S248; Reverse: GACAATATCA

AAAAGAACTGCCAAA

https://genome.ucsc.edu D6S248_R

Primer, ATA12D05 Forward: AAAGTGAGA

CTCCGCCTCAT

https://genome.ucsc.edu ATA12D05_HEX_F

Primer, ATA12D05 Reverse: CACCTCAGC

CTCTTTGGTAG

https://genome.ucsc.edu ATA12D05_R

Software and Algorithms

Burrows-Wheeler Aligner (BWA) v0.7.15 Li and Durbin, 2009 http://bio-bwa.sourceforge.net/

Samtools v1.3.1 Li and Durbin, 2009 http://samtools.sourceforge.net/

Picard 1.81 http://broadinstitute.github.io/picard/

Mutect v1.1.7 Cibulskis et al., 2013 http://archive.broadinstitute.org/cancer/

cga/mutect

VarScan v2.4.1 Koboldt et al., 2009 http://varscan.sourceforge.net/

Scalpel v0.5.3 Fang et al., 2016 https://github.com/hanfang/

scalpel-protocol

Annovar Wang et al., 2010 http://annovar.openbioinformatics.org/en/

latest/

CNVkit v0.7.3 Talevich et al., 2016 https://github.com/etal/cnvkit

R package ‘Copynumber’ Nilsen et al., 2012 http://bioconductor.org/packages/release/

bioc/html/copynumber.html

ABSOLUTE v1.0.6 Carter et al., 2012 http://archive.broadinstitute.org/cancer/

cga/absolute

bedtools package Quinlan and Hall, 2010 http://bedtools.readthedocs.io/en/latest/

R package ‘TRONCO’ De Sano et al., 2016 http://www.bioconductor.org/packages/

release/bioc/html/TRONCO.html

AlleleCounter N/A https://github.com/cancerit/alleleCount

ASCAT Van Loo et al., 2010 https://github.com/Crick-

CancerGenomics/ascat

Battenberg Nik-Zainal et al., 2012 https://github.com/cancerit/

cgpBattenberg
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Charles

Swanton (Charles.swanton@crick.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patients were recruited into TRACERx Renal, an ethically approved prospective cohort study (National Health Service Research

Ethics Committee approval 11/LO/1996). The study sponsor is the Royal Marsden NHS Foundation Trust. The study is coordinated
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by the Renal Unit at the Royal Marsden Hospital NHS Foundation Trust. The study is open to recruitment at the following sites: Royal

Marsden Hospital NHS Foundation Trust, Guy’s and St Thomas’ Hospital NHS Foundation Trust, Royal Free Hospital NHS Founda-

tion Trust and Western General Hospital (NHS Lothian). Patients were recruited into the study according to the following eligibility

criteria:

Inclusion criteria
d Age 18- years or older

d Patients with histologically confirmed renal cell carcinoma, or suspected renal cell carcinoma, proceeding to nephrectomy/

metastectomy

d Medical and/or surgical management in accordance with national and/or local guidelines

d Written informed consent (permitting fresh tissue sampling and blood collection; access to archived diagnostic material and

anonymised clinical data)
Exclusion criteria
d Any concomitant medical or psychiatric problems which, in the opinion of the investigator, would prevent completion of treat-

ment or follow-up

d Lack of adequate tissue

Further eligibility criteria were applied to the cohort presented in this paper (it therefore follows that these patients do not have

consecutive study ID numbers from 001 to 100):

d Confirmed histological diagnosis of clear cell renal cell carcinoma.

d No family history of renal cell carcinoma.

d No known germline renal cell carcinoma predisposition syndrome (including VHL).

d At least three primary tumour regions available for analysis.

The cohort was representative of patients eligible for curative or cytoreductive nephrectomy. Full clinical characteristics are pro-

vided in Table S1. Demographic data include: Sex, Age and Ethnicity. Clinical data include: Presenting symptoms, Smoking status,

BMI, History of Previous RCC, Family History of RCC, Bilateral orMulti-focal RCC, Neoadjuvant therapy (6 patients received systemic

therapy prior to nephrectomy). Histology data include: overall TNM Stage (based on Version 7 classification), Location of nephrec-

tomy, Number of harvested and involved lymph nodes, presence of Microvascular Invasion, presence of Renal Vein Invasion, pres-

ence of IVC tumour thrombus, Size of primary tumour, Leibovich score, Fuhrman Grade, Time to nephrectomy (days). Clinical status

of patients included: Relapse -free survival (months), Total follow up (months), Survival Outcome.

Extension cohort of primary and metastatic (P-M) pairs was accessed under the approval of Basque Country Research Ethics

Committee, Hospital Universitario Cruces (Ref CEIC-Euskadi PI2015101).

Post-mortem sampling was performed in the context of the PEACE study (National Health Service Research Ethics Committee

approval 13/LO/0972/AM05); https://clinicaltrials.gov/ct2/show/NCT03004755.

METHOD DETAILS

Sample collection (TRACERx cohort and post-mortem sampling)
All surgically resected specimens were reviewed macroscopically by a pathologist to guide multi-region sampling for this study and

to avoid compromising diagnostic requirements. Tumour measurements were recorded and the specimen were photographed

before and after sampling. Primary tumours were dissected along the longest axes and spatially separated regions sampled from

the ‘‘tumour slice’’ using a 6 mm punch biopsy needle. The punch was changed between samples to avoid contamination. The total

number of samples obtained reflects the tumour size with a minimum of 3 biopsies that are non-overlapping and equally spaced.

However, areas which are obviously fibrotic or haemorrhagic are avoided during sampling and every attempt is made to reflect

macroscopically heterogeneous tumour areas. Primary tumour regions are labelled as R1, R2, R3.and locations are recorded.

Normal kidney tissue was sampled from areas distant to the primary tumour and labelled N1. Each biopsy was split into two for

snap freezing and formalin fixing respectively, such that the fresh frozen sample has its mirror image in the formalin-fixed sample

which is subsequently paraffin embedded. Fresh samples were placed in a 1.8 ml cryotube and immediately snap frozen in liquid

nitrogen for >30 seconds and transferred to -80 C for storage. Peripheral blood was collected at the time of surgery and processed

to separate buffy coat.

Nucleic acid isolation from tissue and blood (TRACERx and PEACE cohorts)
DNA and RNA were co-purified using the AllPrep DNA/RNA mini kit. (Qiagen). Briefly, a 2mm3 piece of tissue was added to 900ul of

lysis buffer and homogenised for five seconds using the TissueRaptor (Qiagen) with a fresh homogenisation probe being used for

each preparation. Each lysate was applied to a QiaShredder (Qiagen) and then sequentially purified using the DNA and RNA columns
e2 Cell 173, 581–594.e1–e7, April 19, 2018
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according to the manufacturers protocol. Germline control DNA was isolated from whole blood using the DNeasy Blood and Tissue

kit (Qiagen) according to the manufacturers protocol. DNA quality and yield was measured and accessed using the TapeStation

(Agilent) and Qubit Fluorometric quantification (ThermoFisher Scientific).

Purification of DNA from Formalin Fixed Paraffin Embedded (FFPE) tissue
For a minority of TRACERx Renal cases (n = 8), tumour material was obtained from FFPEmaterial (Table S4). An H&E section from all

patient FFPE blocks is reviewed by a pathologist and tumour rich regions are identified for DNA purification. Either a 20uM sections is

cut and the area of interest scraped from the slide using a blade alternatively a 2mm core is directly punched from the block. DNA is

purified using the GeneRead DNA FFPE kit (Qiagen) with yields and quality being determined byQubit quantification and TapeStation

analysis.

Micro-dissection and nucleic acid isolation (HUC extension cohort)
H&E slides from each case were annotated by pathologists for regions of interest (ROI). Multiple ROIs within the primary tumour were

selected on the bases of good tissue preservation avoiding areas of necrosis and haemorrhage, and to reflect microscopically

distinct areas with regards to grade (high vs low) and morphology (clear vs. granular/eosinophilic), and sarcomatoid differentiation,

where present, as well as areas of normal tissue. The annotated H&E was then used as a reference to guide the dissection of ROIs

from serial sections. All tissue sections were cut to 10 mm thickness and deparaffinized with three, five minute incubations in xylene

prior to dissection using the alpha AVENIO Millisect System (Roche Diagnostics, Indianapolis, IN) (Adey et al., 2013). The milling tip

blade size for the dissection was selected based on the estimated area of the ROI, where small ROIs less than 200mm2 used small

blade sizes (200 or 400mm) and ROIs larger than 200mm2 used larger blade sizes (800 mm). The milling buffer for all dissections was

1x TE buffer with 2% SDS, pH 7.5. Genomic DNA was isolated from each of the dissected FFPE tissue samples using a High Pure

FFPE DNA Isolation kit (Roche).

Methylation specific PCR
Methylation of the VHL promoter was detected after bisulphite treatment of 500ng of patient DNA using the EZ DNA Methylation-

Direct kit (Zymo Research). Bisulphite treated DNA was amplified in the PCR using methylation specific oligonucleotides (oligonu-

cleotide sequences are detailed in Table S5), followed by Big Dye terminator Sanger sequencing. Methylation was confirmed by

comparing and contrasting patient tumour and normal renal tissue for methylation protected CpG sequences.

Regional staining by Immunohistochemistry and Digital Image Analysis of Ki67
Tissue sections of 4mm were mounted on slides and immunohistochemical staining for Ki67 was performed using a fully automated

immunohistochemistry (IHC) system and ready-to-use optimized reagents according to the manufacturer’s recommendations

(Ventana Discovery Ultra, Ventana, Arizona, USA). Primary antibody used was rabbit anti-Ki67 (AB16667, Abcam, Cambridge,

UK) and secondary antibody was Discovery Omnimap anti-rabbit HRP RUO (760-4311, Roche, Rotkreuz, Switzerland). DAB kit

was Discovery Chromomap DAB RUO (760-4311, Roche). After IHC procedure, slides were first evaluated for Ki67 staining quality

using mouse intestine tissue as positive control. Regions containing tumour tissue were identified and marked by a pathologist and

subsequently scanned in brightfield at 20x magnification using Zeiss Axio Scan.Z1 and ZEN lite imaging software (Carl Zeiss

Microscopy GmbH, Jena, Germany). Digital images were then subjected to automated image analysis using StrataQuest version

5 (TissueGnostics, Vienna, Austria) for Ki67 quantification. Three different gates were set to quantify low, medium and high intensity

DAB staining which corresponded to Ki67 expression levels. Results were depicted as total percentage of Ki67-positive nuclei.

Flow Cytometry Determination of DNA Content (FACS)
Fresh frozen tumour tissue samples, approximately 4mm3 in size, were mechanically disrupted and incubated in 2ml of 0.5% pepsin

solution (Sigma, UK) at 37 oC for 40minutes to create a suspension of nuclei. The nuclei were washedwith phosphate-buffered saline

(PBS) and then fixedwith 70%ethanol for aminimumof 90minutes. The nuclei werewashed again with PBS and stainedwith 200ml of

propidium iodide (50mg/ml) overnight. Flow cytometric analysis of DNA content was performed using the LSR Fortessa Cell Analyzer

(Becton Dickinson, San Jose, USA), BD Facs Diva� software and FlowJo software (FlowJo LLC, Oregon, USA. Aminimum of 10,000

events were recorded (typically up to 20,000 and up to 100,000 in complex samples). Analysis was performed usingmethods derived

from the European Society for Analytical Cellular PathologyDNAConsensus in FlowCytometry guidelines. Gating of forward and side

scatter was applied to exclude debris and cell clumping. Samples with <7,500 events after gating were excluded from further anal-

ysis. The coefficient of variation (CV) was measured on each G1 peak. Samples with a CV>10%were excluded from further analysis.

Each tumour sample was assumed to contain normal cells to act as internal standard. Where possible the position of the diploid peak

was calculated with reference to the peak of diploid cells in a case matched normal tissue sample. The DNA index (DI) of any aneu-

ploid peak present was calculated by dividing the G1 peak of the aneuploid population by the G1 peak of the normal diploid cells.

Diploid samples were defined as having DI of 1.00. Any additional peak was defined as aneuploid. A tetraploid peak was defined

as having a DI of 1.90-2.10 and containing >15% of total events unless a second peak corresponding to G2 was clear on the histo-

gram. Similarly, aneuploid peaks near to G1 (DI 0.90-1.10) were only considered if there was a clear second peak containing >15%of

total events.
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Detection of allelic imbalance at the HLA locus
Allelic imbalance was detected using two polymorphic Sequence-Tagged Site (STR) markers located on the short arm of chr 6, close

to the HLA locus - (D6S248 and ATA12D05), six STR markers located downstream of the HLA locus on the short arm of chr 6p -

(D6S1960, GATA143B11, D6S1714, D6S1573, D6S438 and D6S257), and six STR markers located upstream of the HLA locus on

the short arm of chr 6p – (D6S410, D6S2257, D6S1034, D6S202, D6S1617, D6S1668). 20ng of patient germline and tumor region

DNA was amplified using the PCR. The PCR comprised of denaturing at 950C for 5mins, then 35 cycles of denaturing at 950C for

1min, followed by an annealing temperature of 550C for 1min, 720C for 1min and then a PCR extension at 720C for 10min. PCR prod-

ucts were separated on the ABI 3730xl DNA analyzer. Fragment length and area under the curve of each allele was determined using

the Applied Biosystems software GeneMapper v5. When two separate alleles were identified for a particular marker, the fragments

could be analyzed for allelic imbalance using the formula (Atumor/Atumor)/(Anormal/Anormal). The output of this formula was defined

as the normalized allelic ratio.

Targeted Driver Panel (DP) design and validation
Driver gene panels (Panel_v3, Panel_v5 and Panel_v6) were used in this study. Panel_v3was designed in 2014, including 110 putative

driver genes. Panel_v5 and Panel_v6 were designed in 2015, including 119 and 130 putative driver genes respectively. Driver genes

were selected from genes that were frequently mutated in TCGA (accessed in April 2015) or highlighted in relevant studies (Arai et al.,

2014; Sato et al., 2013; Scelo et al., 2014). Only alterations in driver genes represented in all three panels were considered in the

overall driver mutation analyses. All panels targeted potential driver SCNA regions. To prevent inter-patient samples swaps, we

included the 24 SNPs that were previously identified by Pengelly et al in Panel_v5 and Panel_v6. Details of the 3 panels can be found

in Table S6.

Driver Panel Library Construction and Targeted Sequencing
Following isolated gDNA QC, depending on the available yield, samples were normalised to either 1-3 mg or 200 ng for the Agilent

SureSelectXT Target Enrichment Library Protocol; standard or low input sample preparation respectively. Samples were normalised

using a 1X Low TE Buffer. Samples were sheared to 150-200bp using a Covaris E220 (Covaris, Woburn, MA, USA), following the run

parameters outlined in the Agilent SureSelectXT standard 3 mg and low input 200 ng DNA protocols. Library construction of samples

was then performed following the SureSelectXT protocols, using 6 pre-capture PCR cycles for the standard input samples and 10

pre-capture PCR cycles for the 200 ng low input samples. Hybridisation and capture were performed for each individual sample using

the Agilent custom Renal Driver Panel target-specific capture library (versions 3, 5 & 6). The same version of the capture library being

used for all samples from the same patient case. Captured SureSelect-enriched DNA librarieswere PCRamplified using 14 post-cap-

ture PCR cycles in PCR reactions that included the appropriate indexing primer for each sample. Amplified, captured, indexed

libraries passing final QC on the TapeStation 4200 were normalised to 2nM and pooled, ensuring that unique indexes were allocated

to all final libraries (up to 96 single indexes available) in the pool. QC of the final library pools was performed using the Agilent

Bioanalyzer High Sensitivity DNA Assay. Library pool QC results were used to denature and dilute samples in preparation for

sequencing on the Illumina HiSeq 2500 and NextSeq 500 sequencing platforms. The final libraries were sequenced 101bp

paired-end multiplexed on the Illumina HiSeq 2500 and 151bp paired-end multiplexed on the NextSeq 500, at the Advanced

Sequencing Facility at the Francis Crick Institute. Equivalent sequencing metrics, including per sample coverage, was observed be-

tween platforms. Single nucleotide variants (SNVs), dinucleotide variants (DNVs), small insertions and deletions (INDELs) and somatic

copy number alterations (SCNAs) were derived from 463 primary tumour regions and 169 matched metastatic regions from 56 pri-

mary-metastasis pairs in 38 patients (with some patients providing multiple metastases (Figures 1A and S1). Median sequencing

coverage was 613x (range 166-1479x) across primary tumour regions and 567x (range 273-2661x) across metastatic regions.

Targeted DP library construction and sequencing (HUC cohort)
DP targeted hybrid-capture panel-

Solution-based hybridization capture probes (Roche Sequencing Solutions) were selected from a genome-wide database of pre-

scored probes, which varied in size from 50 to 100 nucleotides. Capture design matched driver panel_v6. Probes were filtered for

repetitiveness in the human genome by building a 15-mer histogram from the entire human genome, and then calculating the average

15-mer frequency of the probe by sliding a 15 bp window across the length of each probe. Probes with a score greater than 100 were

filtered as repetitive. The remaining probes were scored for uniqueness in the human genome, using SSAHA (http://www.sanger.ac.

uk/science/tools/ssaha). A match in the genome was defined as any 30-mer match in the genome, allowing up to 5 mismatches or

indels along the length of the match. Additional scoring parameters included penalties for simple sequence repeats and penalties for

deviation from a target Tm of 80 C. Target regions of interest were increased to a minimum size of 100 bp, and then tiled with an

average overlap of 35 bp, allowing the probes to overhang the ends of the target regions. These tiled probes were selected from

the aforementioned pre-scored database of probes by choosing the best scoring probe starting in a 15 bp window, moving 20 bp

in the 3’ direction, and repeating. Probes were allowed to have up to 20 possible matches in the genome, though for this panel

99.5% of the probes had 5 or fewer matches. Selected probe sequences were manufactured into biotinylated sequence capture

probe pools by Roche Sequencing Solutions – Madison.
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Library construction

Libraries were constructed using the SeqCap EZ HyperCap Workflow User’s Guide, v1.0 (Roche Sequencing Solutions). The ex-

tracted DNA was enzymatically fragmented using the KAPA HyperPlus library prep kit according to manufacturer’s instructions

(Roche Sequencing Solutions). Fragmentation time for DNA isolated from FFPE was linked to the mass of input DNA, and varied

from 12 to 22 minutes depending on input amount (10 to 100 ng). To increase the efficiency of library prep, adapter volume was

reduced to 3 l and the adapter ligation reaction was extended to 3 hours at 20oC for cases with 100ng of input DNA, and at 16 hours

at 16oC for libraries with less than 100ng of input DNA.

Sequencing

Captured samples were pooled following post-capture amplification, and sequenced using an Illumina HiSeq 2500 instrument. Dual

HiSeq SBS v4 (Illumina) runs at 101 base-paired-end reads generated the data for analysis.

SNV and INDEL calling from multi-region DP sequencing
Paired-end reads (2x100bp) in FastQ format sequenced by Hiseq or NextSeq were aligned to the reference human genome (build

hg19), using the Burrows-Wheeler Aligner (BWA) v0.7.15. with seed recurrences (-c flag) set to 10000 (Li and Durbin, 2009). Interme-

diate processing of Sam/Bam files was performed using Samtools v1.3.1 and deduplication was performed using Picard 1.81 (http://

broadinstitute.github.io/picard/) (Li and Durbin, 2009). Single Nucleotide Variant (SNV) calling was performed using Mutect v1.1.7

and small scale insetion/deletions (INDELs) were called running VarScan v2.4.1 in somatic mode with a minimum variant frequency

(–min-var-freq) of 0.005, a tumour purity estimate (–tumor-purity) of 0.75 and then validated using Scalpel v0.5.3 (scalpel-discovery

in - -somaticmode) (intersection between two callers taken)(Cibulskis et al., 2013; Fang et al., 2016; Koboldt et al., 2009). SNVs called

by Mutect were further filtered using the following criteria: i)%5 alternative reads supporting the variant and variant allele frequency

(VAF) % 1% in the corresponding germline sample, ii) variants that falling into mitochondrial chr, haplotype chr, HLA genes or any

intergenic region were not considered, iii) presence of both forward and reverse strand reads supporting the variant, iv) >5 reads sup-

porting the variant in at least one tumour region of a patient, v) variants were required to have cancer cell fraction (CCF)>0.5 in at least

one tumour region (see Subclonal deconstruction of mutations section for details of CCF calculation) , vi) variants were required to

have CCF>0.1 to be called as present in a tumour region, vii) sequencing depth in each region need to be >=50 and %3000. Finally,

suspected artefact variants, based on inconsistent allelic frequencies between regions, were reviewed manually on the Integrated

Genomics Viewer (IGV), and variants with poorly aligned reads were removed. Dinucleotide substitutions (DNV) were identified

when two adjacent SNVs were called and their VAFs were consistently balanced (based on proportion test, P>=0.05). In such cases

the start and stop positions were corrected to represent a DNV and frequency related values were recalculated to represent themean

of the SNVs. To reduce sequencing artefacts from FFPE samples, we further filtered out variants that were significantly enriched for

presence in FFPE compared with fresh frozen samples (Fisher’s exact test, P<0.001). A high artefact variant rate was observed in

case K489, and to control for this a second germline sample underwent library preperation using the FFPE protocol, and somatic

variants were called on amatched sample type basis (i.e. fresh frozen tumor samples compared to original germline, and FFPE tumor

samples compared to the second FFPE protocol prepared germline). Variants were annotated using Annovar (Wang et al., 2010).

Variants were annotated using Annovar (Wang et al., 2010). Deleterious mutations were defined if two out of three algorithms -

SIFT, PolyPhen2 and MutationTaster - predicted the mutation as deleterious. Individual tumour biopsy regions were judged to

have failed quality control and excluded from analysis based on the following criteria: i) sequencing coverage depth below 100X,

ii) low tumour purity such that copy number calling failed. Mutations detected in high-confidence driver genes (VHL, PBRM1,

SETD2, PIK3CA, MTOR, PTEN, KDM5C, CSMD3, BAP1, TP53, TSC1, TSC2) were defined as driver mutations. As TSC1 and

TSC2 were not targeted in Panel v5, to check the mutation status in these two genes, patients were sequenced using Panel v5

were re-sequenced with Panel v6 and no new mutations were detected.

SCNA calling from multi-region DP sequencing
To estimate somatic copy number alterations, CNVkit v0.7.3 was performed with default parameter on paired tumour-normal

sequencing data (Talevich et al., 2016). Outliers of the derived log2-ratio (logR) calls from CNVkit were detected and modified using

Median Absolute Deviation Winsorization before case-specific joint segmentation to identify genomic segments of constant logR

(Nilsen et al., 2012). Tumour sample purity, ploidy and absolute copy number per segment were estimated using ABSOLUTE

v1.0.6 (Carter et al., 2012). In line with recommended best practice all ABSOLUTE solutions were reviewed by 3 researchers, with

solutions selected based on majority vote. Copy number alterations were then called as losses or gains relative to overall sample

wide estimated ploidy. Arm gain or loss was called when >50%of the chromosomal have copy number gain or loss. Driver copy num-

ber was identified by overlapping the called somatic copy number segments with putative driver copy number regions identified by

Beroukhim et al. (2009). For a subset of TRACERx Renal patients, we compared SCNA calls between targeted panel and WGS data-

sets, and SCNA concordance was 87% (Turajlic et al., 2018a). The average proportion of the genome with aberrant copy number,

weighted on each of the 22 autosomal chromosomes, was estimated as the weighted genome instability index (wGII).

MSK validation cohort
Matched tumour and normal aligned sequencing files (BAM format) for the MSK cohort were obtained directly from the authors (Be-

cerra et al., 2017) and were then converted into FASTQ format files using bam2fastq in bedtools package (Quinlan and Hall, 2010).
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SNVs, INDELs and SCNAs were called using the same methods as TRACERx Renal data (see the sections SNV and INDEL calling

from multi-region DP sequencing and SCNA calling from multi-region DP sequencing). Of the 49 cases with ccRCC histology, 15

cases (Pair 8, Pair 9, Pair 13, Pair 17, Pair 22, Pair 35, Pair 38, Pair 42, Pair 43, Pair 44, Pair 48, Pair 52, Pair 56, Pair 58, Pair 59)

were excluded from the study as the ABSOLUTE v1.0.6 algorithm failed to find a stable SCNA solution. Clonality of SNVs and SCNAs

were estimated using ABSOLUTE v1.0.6. Cancer cell fraction for INDELs were calculated using method described in the section

Subclonal deconstruction of mutations. INDELs with CCF>0.5 were called clonal. ITH index for each patient was calculated as

the measure of intratumour heterogeneity (ITH index = # subclonal drivers / # clonal drivers).

QUANTIFICATION AND STATISTICAL ANALYSIS

R 3.3.2 was used for all statistical analyses. We tested for difference in driver event count/clonal proportion between primary and

metastatic samples using linear regression, including biopsy number per sample as an independent term in the regression model.

The comparison of wGII, DNA index and Ki67 scores between ‘‘not selected’’ and ‘‘selected’’ clones was assessed using region

values per case. Regions were classified as being within ‘‘not selected’’ or ‘‘selected’’ clones based on the clustering solution for

each tumour. Regions found to be only within the founding MRCA clone, or polyclonal with both ‘‘not selected’’ and ‘‘selected’’

clones, were excluded. The comparison of non-synonymous mutation counts between ‘‘not selected’’ and ‘‘selected’’ clones was

based directly on clonal clustering solution obtained for each case, again with founding MRCA clones excluded. For all ‘‘not

selected’’ versus ‘‘selected’’ comparisons a linear mixed effect (LME) model was used to determine significance, to account for

the non-independence ofmultiple observations from individual tumours. The comparison ofmaximumwGII (defined as themaximum

regional wGII value per primary tumour) between ‘‘Rapid’’ and ‘‘Attenuated’’ metastatic progression groups was assessed using

Mann-Whitney test. Comparison of ITH values (again one score per tumour) between ‘‘Rapid’’ and ‘‘Attenuated’’ metastatic progres-

sion groups was determined using Mann-Whitney test. The comparison of wGII between pancreatic and all other metastatic tissue

sites was assessed conducted using region values per case, with significance determined using a LME model.

Subclonal deconstruction of mutations
To estimate the clonality of a mutation in a region, we used the following formula:

vaf =
CNmut � CCF � p

CNn � ð1� pÞ+ CNt � p
;

where vaf is the variant allele frequency at themutation base; p is e
stimated tumour purity;CNt andCNn are the tumour locus specific

copy number and the normal locus specific copy number which was assumed to be 2 for autosomal chromosomes; and CCF is the

fraction of tumour cells carrying the mutation. Consider CNmut is the number of chromosomal copies that carry the mutation, the

possible CNmut is ranging from 1 to CNt (integer number). We then assigned CCF with one of the possible value: 0.01, 0.02, ..., 1,

together with every possible CNmut to find the best fit cancer cell fraction of the mutation. Since we focused on driver genes in

this study and the accuracy of the estimated CCF is limited by the size of the panel, we call mutations with CCF>0.5 as clonal mu-

tations, mutations with CCF%0.5 and CCF>0.1 are subclonal. To determine the clonality of a mutation in a tumour, we ask for the

mutation to be clonal in all regions in a tumour. Exceptions were made for long INDELs that affect >6 bp of the genome, due to

VAF under estimation. If a long INDEL is present in all regions of a tumour, we called it as clonal. To determine the clonality of a

SCNA in a tumour, we ask for the SCNA to be presence in all tumour regions, otherwise it is called subclonal.

Driver tree reconstruction
Amatrix with presence and absence of nonsynonymous and synonymous point mutations, DNVs, INDELs and arm level SCNAs was

created for each tumour, and all the events were clustered based on the following rule: a valid cluster has to have at least two arm

level SCNAs or one non-synonymous mutation. The driver events clusters were then ordered into a clonal hierarchy using TRONCO

and presented as driver trees (De Sano et al., 2016).

In terms of limitations, we recognise that our Driver Panel phylogenies are based on fewer clonal markers, as compared to whole

exome or genome derived phylogenetic trees. As a consequence, some tumour clones are based on only a limited number of

genomic markers, and similarly the inferred modes of metastatic seeding (e.g. monoclonal vs polyclonal) are also based on a limited

set of markers. However, two contingencymeasures are in place tomitigate against phylogenetic misconstruction: i) ultra-deep 500x

sequencing coverage, which ensures stably derived cancer cell fraction estimates, ii) a bespoke gene panel which is enriched for

driver events, increasing the likelihood that mutational markers are driving genuine clonal expansion.

Enrichment of events in metastases
All tumour clones were categorised into three groups based on evidence of selection in the metastasis/metastases: i) clone that are

not selected (‘‘no selection’’, defined as subclonal in the primary and absent from metastasis), ii) clones that are maintained (‘‘main-

tained’’, defined as the most recent common ancestor (MRCA) clones, clonal in both primary and metastasis ), iii) clones that are

selected (‘‘selection’’, defined as subclonal in the primary and clonal in metastasis; or absent in the primary and present in metas-
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tasis). In addition, we observed a small number of clones with alternative selection patterns: a) being subclonal in both primary and in

metastases (i.e. polyclonal metastases), which we categorised as ‘‘maintained’’, and b) being clonal in primary and sublconal in me-

tastases categorised as ‘‘maintained’’ c) clonal in primary but absent in metasteses (i.e. illusion of clonality or events lost by second-

ary somatic changes), which we categorised as ‘‘no selection’’. For each driver event (mutational or SCNA), the proportion of times it

was found to be ‘‘not selected’’, ‘‘maintained’’ and ‘‘selected’’ clones was calculated for each of the TRACERx, HUC and MSK co-

horts. For comparison purposes, a background null distribution of proportionswas determined for bothmutations and SCNAs, based

on all passenger events in each cohort. The proportion of ‘‘selected’’ events was compared to the ‘‘not selected’’ proportion, using a

Binomial test, with probability of selection taken from the null model, and number of trials based on the number of patients with the

given event in each cohort. Meta-analysis across the three cohorts was conducted using Fisher’s method of combining p values from

independent tests, and p-values were corrected for multiple testing using Benjamini–Hochberg procedure.

Survival analysis
Survival analysis was conducted using the Kaplan-Meier method, with p-value determined by a log-rank test. Hazard ratio andmulti-

variate analysis adjusting for clinical parameters was determined through a Cox proportional hazards model.

DATA AND SOFTWARE AVAILABILITY

Sequencing data that supports this study will been deposited at the European Genome-phenome Archive (EGA), which is hosted by

the European Bioinformatics Institute (EBI); accession number EGAS00001002793. Further supplementary data supporting this pub-

lication can be found at https://bitbucket.org/tracerxrenal/cell-paper-data-2018

ADDITIONAL RESOURCES

Clinical trial registry numbers:

TRACERx Renal: https://clinicaltrials.gov/ct2/show/NCT03226886;

PEACE: https://clinicaltrials.gov/ct2/show/NCT03004755

TRACERx Renal study website, detailing investigators, sponsors and collaborators: http://tracerx.co.uk/studies/renal/
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Supplemental Figures

Figure S1. The flow diagram illustrates the phases of selection of metastatic samples included in the TRACERx Renal Primary-Metastasis

cohort



Figure S2. Driver Events in HUC and MSK Cohorts, Related to Figure 1

(A and B) This figure shows driver mutations and driver SCNAs detected in matched primary and metastatic tumours in HUC (A) and MSK (B) cohorts. Clonal

alterations are shown as rectangles and subclonal alterations as triangles. Parallel evolution is indicated in orange with a split indicating multiple events.



Figure S3. Analysis of Tumor Thrombus, Related to Figure 3

(A and B) (A) shows Ki67 proliferation index data (mean % of cells staining positive for Ki67 across all primary tumour regions) for cases presenting with and

without TT. (B) shows cases with TT and distal metastases.



Figure S4. Fishplot Summary of Selected Cases, Related to Figure 4

This figure shows 2 example cases with distal metastases. Diagrams of the primary tumour and the involved tissue sites are illustrated. Fishplots are used to show

disease evolution. Driver events are annotated on each fishplot.



Figure S5. Shown is the driver mutation and SCNA phylogenetic tree and heatmap illustrating the clonal relationship between the primary

and metastasis for case SP58
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