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SUMMARY

The evolutionary features of clear-cell renal cell car-
cinoma (ccRCC) have not been systematically stud-
ied to date.We analyzed 1,206 primary tumor regions
from 101 patients recruited into the multi-center pro-
spective study, TRACERx Renal. We observe up to
30 driver events per tumor and show that subclonal
diversification is associated with known prognostic
parameters. By resolving the patterns of driver event
ordering, co-occurrence, and mutual exclusivity at
clone level, we show the deterministic nature of
Cell 173, 595–610, April 19,
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clonal evolution. ccRCC can be grouped into seven
evolutionary subtypes, ranging from tumors charac-
terized by early fixation of multiple mutational and
copy number drivers and rapid metastases to highly
branched tumors with >10 subclonal drivers and
extensive parallel evolution associated with attenu-
ated progression. We identify genetic diversity and
chromosomal complexity as determinants of pa-
tient outcome. Our insights reconcile the variable
clinical behavior of ccRCC and suggest evolutionary
potential as a biomarker for both intervention and
surveillance.
2018 ª 2018 Francis Crick Institute. Published by Elsevier Inc. 595
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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INTRODUCTION

Renal cell carcinoma (RCC) is the 7th most frequently diagnosed

malignancy (Znaor et al., 2015), with a rising incidence in the

developed world (Smittenaar et al., 2016). The most common

histological subtype, clear cell (ccRCC), is associated with a

wide range of clinical outcomes. Around one-third of patients

with localized ccRCC relapse following surgery, with tumor

size, grade, and necrosis (Leibovich et al., 2003), the presence

of vascular and/or fat invasion (da Costa et al., 2012), and sarco-

matoid differentiation (Zhang et al., 2015) shown to impact the

risk of recurrence. While these parameters are useful for patient

counselling and stratification for follow-up and adjuvant studies,

their predictive accuracy is inexact. Solitary metastasis at

relapse may be amenable to surgery (metastasectomy) or local

therapy (e.g., ablation) on a case-by-case basis (Bex et al.,

2016). Patients relapsing with multiple but low volume, slow-

growing metastases could be observed initially, but the risk of

deferring systemic therapy remains unclear (Rini et al., 2016).

Up to 30% of patients present with metastatic disease at the

outset. In select cases, primary surgery is still used with cytore-

ductive intent; while some patients will also undergo a complete

metastasectomy with curative intent. Patient selection for these

interventions remains under intense debate, as does the man-

agement of small renal masses (SRMs) (renal lesions <4 cm in

size). Increasing use of abdominal cross-sectional imaging has

led to incidental discovery of SRMs, the majority of which have

favorable natural history, leading to concerns about over-treat-

ment (Welch et al., 2017). At present, molecular profiling does

not impact decision-making in any of these clinical scenarios.

The molecular landscape of ccRCC was elucidated by a num-

ber of next-generation sequencing studies (Cancer Genome

Atlas Research Network, 2013; Dalgliesh et al., 2010; Sato

et al., 2013; Scelo et al., 2014; Varela et al., 2011) that revealed

frequent inactivation of the VHL tumor suppressor gene, alter-

ations in the SWI/SNF complex (Varela et al., 2011), histone-

modifying genes (Dalgliesh et al., 2010), and the PI3K/AKT/

mTOR pathway (Cancer Genome Atlas Research Network,

2013; Sato et al., 2013; Scelo et al., 2014). Recurrent arm level

or focal losses are observed on chromosomes 1p, 3p, 4q, 6q,

8p, 9p, and 14q, and gains on chromosomes 1q, 2q, 5q, 7q,

8q, 12p, and 20q (Beroukhim et al., 2009; Cancer Genome Atlas

Research Network, 2013). We previously reported significant

mutational and somatic copy number alteration (SCNA) intratu-

mor heterogeneity (ITH) in ten cases of advanced ccRCC (Gerlin-

ger et al., 2014; Martinez et al., 2013), showing that single-biopsy

analyses may miss important genetic events or misclassify them

as clonal due to the ‘‘illusion of clonality,’’ thus hindering our un-

derstanding of tumor evolution. To date, attempts to molecularly

classify ccRCC have included single biopsy analyses of muta-

tions (Hakimi et al., 2013; Kapur et al., 2013; Sato et al., 2013)

or gene expression and methylation (Cancer Genome Atlas

Research Network, 2013; Chen et al., 2016).

To aid an evolutionary classification of RCC, we established a

multi-center prospective longitudinal cohort study, Tracking

Renal Cell Cancer Evolution through therapy (TRACERx Renal,

https://clinicaltrials.gov/ct2/show/NCT03226886), with a proto-

col-specified endpoint of examining the association of ITH with
596 Cell 173, 595–610, April 19, 2018
disease stage and clinical outcomes through multi-region

genomic profiling of primary tumors (Turajlic and Swanton,

2017). The TRACERx Renal program began recruitment in July

2012, enrolling patients undergoing nephrectomy (with curative

or cytoreductive intent) for suspected or confirmed renal cell car-

cinoma (STAR Methods), with a target accrual of 320 patients

with ccRCC. We report our interim findings of the patterns of

ITH, clonal evolution, and tumor progression in the first 101 pa-

tients with the diagnosis of clear cell non-familial RCC (for full in-

clusion criteria for this cohort see STAR Methods).

RESULTS

Intratumor Heterogeneity of Driver Events in
Primary ccRCC
Clinical annotation of the 101 patients under study is provided in

Table S1. Demographic and stage distribution were consistent

with the referral patterns of the participating centers. All the sam-

ples were profiled using a bespoke sequencing panel targeting

�110 putative ccRCC driver genes (Figure S1A and STAR

Methods, Driver Panel). This approach enabled us to maximize

the sequencing depth, a critical factor for correctly inferring

evolutionary trajectories (Noorbakhsh and Chuang, 2017). Single

nucleotide variants (SNVs), dinucleotides variants (DNVs), small

insertion and deletions (INDELs), and SCNAs were successfully

derived from 1,206 tumor regions across 106 primary tumors

(median 7 [range, 3–75] regions per tumor) from 101 patients,

as five patients donated pairs of primary tumors. Within the

same cohort, 107 regions from 17 tumors were profiled by whole

exome sequencing (WES), 81 regions from 27 tumors by whole

genome sequencing (WGS), with six further tumors from the

broader TRACERx Renal cohort also profiled by WGS

(Figure S1B).

Median sequencing coverage across 1,206 tumor regions pro-

filed by the Driver Panel was 6123 (range, 105–1,5203). We

identified a total of 740 somatic mutations including 538

SNVs (440 non-synonymous SNVs), 7 DNVs, and 195 INDELs

(Table S2). We specifically considered non-silent mutations in

high-confidence ccRCC driver genes (termed ‘‘driver muta-

tions,’’ annotated in Figure 1A; STAR Methods). The median

number of driver mutations was 3, range 0–15 per tumor (Fig-

ure 1A). VHL mutations were the only consistently clonal event,

present in 77/106 tumors (Figure 1A). VHL was methylated in

17 additional tumors (Figure 1A and Data S1). One tumor

harbored a clonal mutation in the TCEB1 gene, a part of the

VHL complex (Hakimi et al., 2015) (Figure 1A), thus 90% (95/

106) of the tumors harbored clonal disruption of the VHL

pathway. 4/11 VHL wild type tumors (K206, K228, K427, and

K446) (Figure 1A) had evidence of sarcomatoid differentiation

(Table S1), a feature reported to be associated with a lower fre-

quency of VHLmutations (Malouf et al., 2016; Wang et al., 2017).

K255, another VHL wild-type tumor, had evidence of both clear

cell and papillary histology, and we observed SCNAs specific to

both subtypes, including gains of 5q and 16 (Data S2). We

observed no mutations in the known ccRCC driver genes in

K110 (Figure 1A), and the copy number profile, involving whole

chromosome losses on 1, 6, 10, and 17, was consistent with

chromophobe RCC (Davis et al., 2014). Additional pathology

https://clinicaltrials.gov/ct2/show/NCT03226886
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Figure 1. Overview

(A) Overview of somatic driver alterations, including SNVs, DNVs, INDELs, and SCNAs, detected in the tumors of 101 TRACERx Renal cases. Rectangles and

triangles indicate clonal and subclonal alterations, respectively. Parallel evolution is indicated in orange with a split indicating 2 or more parallel events. Five

bilateral/multi-focal cases are shown on the right; distinct VHL mutations within tumor pairs are indicated with an asterisk.

(B) Mutational frequency in 14 key driver genes in the TRACERx Renal cohort and three single biopsy ccRCC studies (TCGA KIRC, Sato et al. [2013], and

Scelo et al. [2014]). Clonal mutations are shown in the darker shade, subclonal in lighter.

(C) Frequency of SCNAs in the TRACERx Renal cohort. Copy number gains and losses are indicated in red and blue respectively. Clonal SCNAs are shown in

darker and subclonal SCNAs in lighter shade of color. Putative driver copy number altered regions are annotated. The dotted line indicates the frequency of the

same SCNAs in the TCGA KIRC cohort.

See also Tables S1 and S2 and Data S1, S2, S3, and S4.
review confirmed chromophobe histology, and K110 was

removed from all subsequent analyses.

The overall frequency of driver mutations was higher in our

cohort compared to the published single biopsy studies (Cancer

Genome Atlas Research Network, 2013; Sato et al., 2013; Scelo

et al., 2014) (Figure 1B). Notably, the frequency of VHLmutations
in our and Scelo et al. (2014) studies was higher than that re-

ported in the TCGA and Sato et al. (2013) studies, potentially

due to the higher overall number of VHL INDELs called (Fig-

ure 1B). VHL INDELS in the TRACERx Renal cohort were all

confirmed by Sanger sequencing (Data S1). The higher fre-

quency of mutations in other driver genes was due to the
Cell 173, 595–610, April 19, 2018 597



detection of subclonal events through multi-region profiling in

our cohort (Figure 1B).

An important goal of the TRACERx Renal study is to determine

thecontributionofSCNAs toclonal evolution. In ccRCC, recurrent

SCNAs occur at a limited number of genomic sites (Beroukhim

et al., 2009;CancerGenomeAtlasResearchNetwork, 2013), usu-

ally as whole chromosome or chromosome arm events, and the

rate of genome doubling is low (Zack et al., 2013). Therefore,

recurrent SCNAs can be reliably detected by the Driver Panel,

as shown by the high level of concordance withWGS results (Ta-

ble S2). We measured the fraction of the tumor genome affected

by SCNAs using the weighted genome instability index (wGII)

(Endesfelder et al., 2014), taking the maximum observed wGII

score across all regions per tumor.Maximum valueswere utilized

in order to capture the potential highest risk, and hence most

clinically relevant, subclones in each tumor (STAR Methods).

Median wGII in the TRACERx Renal cohort was 32.8% (range,

4.7%–97.4%). All SCNAs were annotated using previously

defined cytobands (Beroukhim et al., 2009) to quantify driver

SCNAs (Figure 1A; STAR Methods). In total, we detected 751

driver SCNAs; median 7, range 1–14 per tumor (Figure 1A).

Loss of chromosome 3p, which is pathognomonic with ccRCC

and encompasses four commonlymutated genes (VHL,PBRM1,

SETD2, and BAP1), was observed in all but five tumors (K021,

K375, K354, K255, K114R) (Figure 1A). Of the five, three tumors

had clonal 3p copy neutral allelic imbalance (CNAI) (STAR

Methods) (K021, K375, K354) (Data S3), one was a mixture of

clear cell and papillary histology with no mutations in 3p genes

(K255; Figure 1A), and one harbored a mutation in TCEB1 with

8q loss (K114R; Figure 1A). 3p loss was subclonal in five tumors:

one harboring a VHL mutation (K252) (Figure 1A), one VHL

methylation (K070) (Figure 1A), one tumor that was VHL wild-

type but SETD2muttant (K427) (Figure 1A), and two with no mu-

tations in any of the 3p genes (K169, K446) (Figure 1A).

The overall frequency of driver SCNAs was higher compared

to the published single biopsy studies (Cancer Genome Atlas

Research Network, 2013; Sato et al., 2013; Scelo et al., 2014)

due to the detection of subclonal SCNAs in our cohort (Fig-

ure 1C). Notably, the frequency of SCNAs with reported prog-

nostic significance, such as loss of chromosomes 14q and 9p

and gain of chromosomes 8q and 12p, is markedly underesti-

mated in single biopsy studies (Cancer Genome Atlas Research

Network, 2013). Overall ITH was measured as an index (ITH

index = # subclonal drivers/# clonal drivers, where ‘‘drivers’’

include all drivermutations anddriver SCNAs shown in Figure 1A)

(STARMethods). Median ITH index value was 1, with a high vari-

ability across the cohort (range, 0–13.5; SD = 2.16).

Clonal Evolution and Clinical Variables in ccRCC
ccRCC prognostic variables include primary tumor size, overall

tumor stage (TNM), Fuhrman grade, and the presence of necro-

sis. Overall, the number of driver events was significantly associ-

ated with all of these parameters, with the associations specific

to subclonal, and not clonal events (Data S4). Similarly, higher

ITH index values were associated with advanced tumor size,

stage, and grade (Data S4). Clonal ordering techniques (see

STAR Methods) were used to infer clonal structures and driver

phylogenetic trees (Figure 2). The median number of clones de-
598 Cell 173, 595–610, April 19, 2018
tected was 4 per tumor (range, 1–23). Clone number increased

with tumor stage and grade (Data S4), but showed a non-linear

association with tumor size, initially increasing in line with tumor

dimensions but then plateauing at �10 cm beyond which

clone number began to marginally reduce with increasing size

(Data S4). In conclusion, known prognostic parameters are asso-

ciated with an increasing repertoire of driver alterations and sub-

clonal driver diversification in ccRCC.

Convergent Evolution
Weprofiled three patientswith synchronous bilateral ccRCCs and

two patients with multifocal ccRCCs, with no family history of

ccRCC, or germlinemutations in the knownccRCCpredisposition

genes (Table S1). All five tumor pairs evolved independently, but

converged on the VHL pathway. K265, K352, and K334 harbored

distinct mutations in VHL and 3p loss events in each of the tumors

(Figure 1A and Data S3). The right-sided K097 tumor harbored a

VHL mutation and VHL was methylated in the left tumor (Figures

1A and Data S1). Left K114 tumor harbored a VHL mutation and

3p loss, while in the right tumor we detected a clonal TCEB1mu-

tation with the loss of 8q21.11, encompassing the TCEB1 locus

(Figure 1A). K150 tumor was presumed to be a contralateral renal

metastasis from a previously resected left high-risk ccRCC. How-

ever, the two tumorshaddistinctVHLmutations (DataS1) implying

a case of bilateral metachronous ccRCCs. Our findings illustrate

the importance of molecular profiling of patients presenting with

multiple renal tumors to guide appropriate clinical management.

Parallel Evolution
We and others have reported parallel evolution of mutations in

the same genes or pathways within distinct tumor subclones in

ccRCCs (Brastianos et al., 2015; Gerlinger et al., 2014). In the

TRACERx Renal cohort, 13% of untreated primary tumors had

evidence of parallel evolution, with SETD2, BAP1, and PTEN

(all p < 0.05, false discovery rate [FDR] <0.1) (Figure 3) signifi-

cantly enriched for parallel evolution, corrected for the number

of profiled regions. Certain tumors were notable for the number

of parallel events they harbored (e.g., K243 had 10 distinct

SETD2 mutations) (Figure 3). In tumor K448, we observed 5

distinct BAP1 mutations and 3 SETD2 mutations, but BAP1

and SETD2mutations never co-occurred within the same clone.

We recently identified parallel evolution of SCNAs in non-small

cell lung cancer (Jamal-Hanjani et al., 2017) through mirrored

subclonal allelic imbalance (MSAI) (Data S3). We analyzed the

incidence of MSAI in a subset of TRACERx Renal patients where

whole genome or exome sequencing data were available (n = 41)

(STAR Methods) and observed MSAI events in 15/41 tumors

(Data S3; STAR Methods), a subset of which were validated

by an orthogonal method (Data S3). Parallel loss of chro-

mosome 14q was the most common event (4 patients) (Data

S3), encompassing the ccRCC tumor suppressor HIF1A locus

(Shen et al., 2011).

Identification of Conserved ccRCC Evolutionary
Features
To understand the constraints of ccRCC evolution, we analyzed

conserved patterns of driver event co-occurrence, mutual exclu-

sivity and timing to identify statistically significant patterns. We



Figure 2. Driver Phylogenetic Trees

Driver phylogenetic trees for each tumor (or multiple tumors from the same patient) are shown. The trees are ordered by the overall tumors stage: I–IV. The

founding clone is indicated in light blue, with subsequent sub clones shown in distinct colors. The size of each node represents the number of SCNAs detected

within that subclone. The length of lines connecting tumor subclones does not contain information.

See also Data S2.
utilized the clonal/phylogenetic hierarchy determined for each

case (STAR Methods), in order to accurately place driver events

within the same tumor subcloneand establish the relative ordering

of driver events across the evolutionary path of each tumor.
In our analyses of event co-occurrences at the clone level

(STARMethods), we observe an enrichment for mutual exclusiv-

ity between BAP1 and SETD2/PBRM1 mutations (Figure 4A).

However, at a patient level these events were found to co-occur
Cell 173, 595–610, April 19, 2018 599



Figure 3. Parallel Evolution

Table shows driver gene events with >10 subclonal mutations across the cohort. These genes were tested for evidence of parallel evolution using a permutation

model accounting for overall gene mutation frequency and the number of biopsies per tumor (see STARMethods). BAP1, SETD2, and PTENwere found to show

significant evidence of parallel evolution (p < 0.05, FDR < 0.1). Example driver trees and accompanying tumor sampling images are presented for each significant

gene: BAP1, PTEN, and SETD2. Parallel events are marked on the driver trees and clone color is matched from the tree to the corresponding sampled tumor

region.

See also Data S3.
(Figure 1A), often in separate spatially distinct major tumor sub-

clones (e.g., K153) (Data S2). BAP1 had a propensity for being a

lone additional mutational driver event in VHL-mutant clones,

whereas PBRM1 and SETD2 were enriched for mutual clonal

co-occurrence. Due to limited sample size, these patterns did

not reach formal significance, however, we note the results are

in agreement with previously published patient-level meta-anal-

ysis (Peña-Llopis et al., 2013). Of all the driver mutations, BAP1

was associated with the highest number of driver SCNAs in the

same clone (Figures 4A and S2, p = 0.014 for BAP1 mutant

clones versus BAP1 wild-type clones), consistent with its role

in chromosome stability (Peng et al., 2015). Overall, the strongest

evidence for co-occurrence was found for the following pairs of

driver SCNAs: 14q loss with 4q loss, 14q loss with 9p loss, and

4q loss with 9p loss (Figure 4A, all p < 0.05, adjusted for multiple

testing). These pairs of events were all found to co-occur R1.8

times more frequently than expected by chance. We validated

these observations in the TCGA ccRCC data (all p < 0.05, Fig-

ure S2), showing that the specific event pairings co-occurred

together beyond the general expected correlation between

SCNAs (e.g., for 14q loss, the most common partner event

genomewidewas 9p loss, Figure S2). We note that these SCNAs

harbor well-known tumor suppressors 14q31.1-HIF1A (Shen

et al., 2011), 9p21.3-CDKN2A (Beroukhim et al., 2009), and 4q-

CXXC4 (Kojima et al., 2009).
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In our previous report of ten ccRCC tumors (Gerlinger et al.,

2014), mutations in VHL and loss of 3p were consistently clonal,

and PBRM1 was an additional clonal driver mutation in three

cases. In our current prospective cohort, we observed a subset

of cases that harbored two or more additional clonal driver

mutations, aside from VHL. Simulated models of tumor growth

(Reiter et al., 2013) suggest that just one additional driver will

significantly increase the growth rate, and we utilized WGS

molecular clock timing data (see the accompanying paper by

Mitchell et al., 2018) to test this hypothesis in our data. Time to

presentation was calculated as the time elapsed from the emer-

gence of the most recent common ancestor (MRCA) to clinical

diagnosis. The median time to presentation from the emergence

of the MRCA for cases with VHL as the only clonal driver muta-

tion, (n = 14 cases, 48% of the WGS cohort) was 28 years (min

= 4, max = 49). The addition of one further clonal driver mutation

(n = 13 cases) was associated with a shortening of time to diag-

nosis, to 5 years (min = 1, max = 34), and the addition of two

further clonal driver mutations (n = 2 cases) shortened the time

to diagnosis to 5 years with a narrow range (min = 4, max = 7)

(p = 0.007, Figure 4B). Despite the shortened time of tumor

growth, tumor size was found to be comparable across all the

groups (Figure 4C), and we observed no difference in the

mode of presentation (incidental versus symptomatic) across

the three groups, suggesting there was no lead-time bias.
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Figure 4. Conserved Features of ccRCC Evolution

(A) Event co-occurrence analysis, with red indicating enrichment for co-occurrence and blue for mutual exclusivity. Values are log2(observed no. of co-occur-

rences/expected no. of co-occurrences, STAR Methods), with significant patterns marked according to the legend. Data are shown for event co-occurrence/

mutually exclusivity, in first truncal clones only per case (bottom left) and second all terminal subclones (top right) such that all clonal and subclonal interactions

are considered (see STAR Methods). p values are calculated under a probabilistic model, as implemented in R package ‘‘co-occur,’’ with only interactions

significant in both ‘‘clonal’’ and ‘‘clonal + subclonal’’ analyses are considered significant.

(B) Molecular clock timing analysis from the whole genome sequenced cohort, with time from the most recent common ancestor (MRCA) to tumor diagnosis

plotted on the x axis. On the y axis are cases split into three groups, based on having one, two or three clonal driver events. VHL wild type cases (n = 2) are

excluded on account of their distinct etiological and phenotypic profile. p value is assessed using a linear model, adjusting for the total clonal mutation burden

per tumor.

(C) Same y axis patient groups as (B), but plotted on the x axis is tumor size (mm). p value is based on Kruskal-Wallis test.

(D) On the y axis, all cases from the 100-patient cohort, again VHLwild-type cases were then excluded, and remaining cases were split into three groups based on

one, two, or three clonal driver mutations. Multi-region data on%of cells staining positive for proliferationmarker Ki67 is shown on the x axis. p value is based on a

linear mixed effect model to account for non-independence of multiple observations per tumor.

(E) Left: an illustrative schematic tree to demonstrate the method used to trace each tumor’s evolutionary paths. Right: results from the event ordering analysis for

all pairs of events with n = 10 or more observations. Plotted are the counts of instances where: event 1 was found to precede event 2, and event 1 was found to

follow event 2. Significance was tested using a binomial test with p values shown after correction for multiple testing using Benjamini-Hochberg procedure.

See also Figure S2 and Table S3.
Overall, the groups had the same total median number (n = 3) of

driver mutations (considering clonal and subclonal events).

Assessment of proliferation by multiregional Ki67 immuno-

histochemistry (IHC) staining (STAR Methods) showed elevated

proliferation index in cases with additional clonal driver muta-

tions (p = 0.034, Figure 4D; Table S3), consistent with the simu-

lation (Reiter et al., 2013).

Order of Events during ccRCC Evolution
The order inwhichdriver events are acquired can have prognostic

and therapeutic implications, as shown by Ortmann et al. (2015)

with respect to the order of JAK2 and TET2 mutations in myelo-

proliferative neoplasms. We considered the ordering of driver

events in ccRCC, assessing for recurrent patterns of driver events

preceding or following one another. To conduct this analysis, we

traced all possible evolutionary trajectories, starting at the base of

each driver tree and tracing the path through to each terminal
subclone, considering all possible sequential paths between

events (Figure 4E). Due to the dense spatial sampling in this

cohort the driver tree ordering was typically robust, with evidence

of sequential waves of clonal expansion between events usually

confirmed across multiple biopsy regions. In order to reduce

the burden ofmultiple testing, we limited further analyses to those

trajectories containing the most frequent ccRCC driver events:

VHL, PBRM1, SETD2, BAP1, PI3K/AKT/mTOR pathway muta-

tions, or driver SCNAs (Figure 1B). Event combinations that

we observed in ten or more cases were then tested for signifi-

cance in the ordering pattern (STAR Methods). Six significantly

conserved patterns were detected (all FDR <0.05), the first three

of which confirmed VHL as a universally preceding event, as ex-

pected. In addition, PBRM1mutations were found to consistently

precede PI3K pathway mutations, SETD2 mutations, and driver

SCNA events (Figure 4E). In many of these cases, the event

sequences were observed exclusively in one direction (i.e.,
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Figure 5. Evolutionary Subtypes

Cases grouped by evolutionary subtype, with the following parameters also annotated: presence of clonal wGII (blue > median, white % median), presence of

subclonal wGII (blue >median, white%median), ITH index score (red >median, white%median), and tumor size (mm) (range [18–180], white = low, black = high).

Occurrences of parallel evolution are denoted in the heatmapwith ‘‘P.’’ Plotted next is the distribution of stages per subtype, followed by grade, colored as per the

legend, and then a further six metrics are summarized as the average values for each group: (1) mean number of tumor clones, (2) % of patients with grade 4

(legend continued on next page)

602 Cell 173, 595–610, April 19, 2018



PBRM1 precedes SETD2 in 11 separate cases), but the opposite

was never observed.

Evolutionary Subtypes
A pertinent question is whether conserved patterns of ccRCC

evolution relate to distinct clinical or biological phenotypes; to

investigate this in an exploratory context we classified all the tu-

mors under study according to the patterns observed in the

evolutionary order, timing, and co-occurrence analyses (Fig-

ure 4). Seven evolutionary subtypeswere defined (Figure 5) using

a rule-based classification system (STAR Methods), which was

supported by unsupervised clustering (Figure S3). Subtypes

were compared across different genomic and clinical metrics

(STAR Methods) including levels of wGII, percentage of cells

positive for Ki67, ITH index, clonal structure, and clinical param-

eters including stage, percentage of tumors that are Fuhrman

grade 4 (%G4), or presence of microvascular invasion (%MVI)

(Figure 5). The first subtype consisted of tumors with ‘‘multiple

clonal drivers’’ (defined as R2 BAP1, PBRM1, SETD2, or

PTEN clonal mutations), and was characterized by high levels

of wGII (9 out of 12 cases with wGII > cohort wide median value),

enrichment for late stage disease (all cases were stage III+) and a

high level of %MVI/%G4/%Ki67. These tumors harbored a

smaller number of clones (mean = 5, range [1–14]) and had

limited ITH (11 out of 12 cases had ITH < cohort wide median

value) (Figure 5; STAR Methods). This pattern would be consis-

tent with sufficient selective fitness being achieved within the

dominant clone through fixation of multiple driver mutations

and SCNAs causing a clonal sweep during tumorigenesis.

A second and related subtype comprised ‘‘BAP1 driven’’

cases characterized by tumor clones with BAP1 as a lone muta-

tional driver in addition to VHL (Figure 5). Where the tumors

harbored other driver mutations, they were never found in the

same subclone as the BAP1 mutation (K448, K252, K153,

K136) (Figure 1 andData S2). This groupwas enriched for tumors

with elevated wGII (8 out of 12 > median), fewer clones, and a

higher tumor grade (%G4). This pattern suggests that BAP1mu-

tations coupled with SCNAs afford a fitness advantage such that

no additional driver events become fixed making them terminal

drivers within individual clones. The third subtype consisted

of ‘‘VHL wild-type’’ tumors, characterized by high Ki67%

(highest across all groups), elevated levels of wGII, potentially

compensating for a lack of driver mutations, and additional

phenotypic differences such as frequent presence of sarcoma-

toid differentiation.

The fourth subtype was ‘‘PBRM1 / SETD2’’-driven, a group

characterized by highly branched trees (>10 clones per tumor;

range [3–23]), the highest mean ITH score in the whole cohort,

lower Ki67%, frequent parallel evolution events, and advanced

disease stage (Figure 5). This pattern would be consistent with

the notion of slower branched growth with early PBRM1 muta-

tions followed by strong and repeated selection for SETD2

mutations. Supporting this notion was the mean time-to-pro-
disease, (3) % of patients with microvascular invasion, (4) mean % of cells stainin

across the cohort), (5) % of patients with disease relapse/progression, and (6) rel

per group, and shown last are three example driver phylogenetic trees from eac

See also Figure S3.
gression (defined as time-to-progression following cytoreduc-

tive nephrectomy or the time-to-relapse following nephrectomy

with curative intent) in this group (11.7 months), which was

more than twice as long as that for ‘‘multiple clonal driver,’’

‘‘BAP1 driven,’’ and ‘‘VHL wild-type’’ tumors (4.7, 5.9, and

4.5 months, respectively, not formally significant). Critically, the

observed features of this subtype were independent of tumor

size, with no significant difference between the highly branched

‘‘PBRM1 / SETD2’’ (mean tumor size, 105 mm) (Table S1) and

the more monoclonal ‘‘multiple clonal driver’’ subtype (mean tu-

mor size, 107 mm) (Table S1). The fifth and sixth subtypes were

‘‘PBRM1 / PI3K’’ and ‘‘PBRM1/ SCNA,’’ characterized by

early PBRM1 mutation followed by mutational activation of the

PI3K/AKT/mTOR pathway or subclonal SCNAs, respectively,

and enriched for lower grade tumors.

The final evolutionary subtype consisted of the ‘‘VHL mono-

driver’’ tumors, which displayed limited branching and a mono-

clonal structure, with no additional driver mutations and low

wGII. The majority of tumors in this group presented at an early

stage (mean tumor size, 45mm) suggesting theymay be an early

evolutionary ancestor of the more complex subtypes described

above. Small renal masses (SRMs) without evidence of vascular

or fat invasion (T1a) are an increasingly common clinical entity,

which can potentially be managed by active surveillance (Jewett

et al., 2011). We note that the only %4 cm tumor that was

upstaged due to the presence of renal vein invasion (K021)

was in the ‘‘multiple clonal driver’’ category, consistent with

this evolutionary path enhancing vascular invasion independent

of tumor size.

Specific evolutionary subtypes could not be assigned in 37

cases from a wide distribution of disease stages (stage I = 12,

II = 2, III = 16, IV = 7). These tumors are likely to be driven by rarer

evolutionary patterns not yet identifiable with current sample

sizes. Several appeared to exhibit precursor subtype features

(e.g., clonal VHLmutation) followed by PBRM1mutation in ama-

jor subclone, that may have continued to evolve if they remained

in situ. Further elucidation of the genomic and non-genomic

drivers of evolutionary subtypes in larger datasets will be of ma-

jor interest.

ITH Index and Saturation of ccRCC Driver Events
While pervasive ITH has been described in multiple tumor types,

only one prospective study of multiregional tumor profiling has

been reported to date (Jamal-Hanjani et al., 2017). TRACERx

Renal, with 1,206 primary tumor biopsies profiled across 101

ccRCC cases, affords an unprecedented opportunity to system-

atically explore the ITH extent. In a subset of tumors (n = 15) that

underwent extensive sampling (R20 biopsies), we considered

driver event (mutation and SCNA) ‘‘saturation,’’ measured as

the proportion of events discovered with each additional tumor

region profiled. Our analysis revealed a wide spectrum of satura-

tion gradients (Figure 6A), highlighting the challenge of attempt-

ing to establish a biopsy count reliably applicable to all ccRCCs.
g positive for Ki67 proliferation index (mean calculated first per class and then

apse/progression time. Shown next are relapse/progression-free survival plots

h group.
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Figure 6. Intratumor Heterogeneity Index

and Saturation Analysis

(A) Number of tumor biopsies profiled (x axis)

versus the number of driver events (i.e. all gene

mutations and SCNAs shown in Figure 1A)

discovered (y axis) for densely sampled (20+

biopsies) cases.

(B) Saturation curves for all cases with R15 bi-

opsies, with biopsy number plotted on x axis and

proportion of the total driver events detected (from

all biopsies) on y axis, increasing with each addi-

tional biopsy taken. Data are shown for all cases

and tumors split based on low and high ITH

(above/below median).

(C) Boxplot summary of the absolute number (top)

of biopsies needed todetectR0.75of driver events

for tumors grouped by evolutionary subtype. Also

shown (bottom) is the proportion of biopsies

needed (out of the total number taken from each

tumor) to normalize for absolute biopsy count.

(D) Illustration of the potential errors arising from a

two-site biopsy approach: considering all pairs of

biopsies, plotted on the x axis is the mean number

of subclonal driver events misidentified as clonal

(illusion of clonality), on y axis is the number of

subclonal driver events missed entirely. Data are

shown for three clinical scenarios. Left: small renal

masses (size, <4 cm). Middle: tumors treated by

nephrectomy with curative intent. Right: tumors

treated by cytoreductive nephrectomy. The size of

points within a panel is proportional to the number

of biopsies available for that tumor and colors vary

only to distinguish overlapping points.
Accepting this caveat, and considering all the tumors with R15

biopsies (n = 20) we calculated the stepwise change in driver

event discoverywhen using between 1 to 15 biopsies (Figure 6B).

On average, two biopsies were required to detect R50% of all

variants and seven were required to detectR75% of all variants

(Figure 6B). As expected, these values changed markedly based

on tumor ITH, with homogenous tumors (%median ITH index)

achieving R0.75 detection within four biopsies, as opposed to

eight biopsies required for heterogeneous tumors (>median

ITH) (Figure 6B). Splitting instead by evolutionary subtype,

fewest biopsies were needed to reach 0.75 driver detection in

the ‘‘multiple clonal driver’’ and ‘‘VHL monodriver’’ groups, and

largest number for ‘‘PBRM1 / SETD2’’ tumors (Figure 6C).

We considered the utility of a radiologically guided two-site

biopsy approach for primary tumors that present as an SRM,

or larger tumors without (M0) or with metastases (M1). We

down-sampled our dataset to two biopsies per tumor (STAR

Methods) and considered the mean results across all possible
604 Cell 173, 595–610, April 19, 2018
combinations to simulate how many sub-

clonal driver events would be missed and

how many subclonal events would be

misclassified as clonal (‘‘illusion of clonal-

ity’’). For the SRM group, 11/15 tumors

had a mean of %1 driver event missed

and %1 driver event misclassified as

clonal with a paired biopsy approach
(Figure 6D, panel 1). For larger tumors, whether metastatic or

not, performance was less favorable, with the majority suffering

from multiple missed subclonal drivers and/or events misclassi-

fied as clonal (Figure 6D, panels 2 and 3). For these tumors, our

data suggest that a range of four to eight biopsies is required to

capture the majority of events (R75% detection), although this

approach may still miss some important drivers.

Clonal Evolution and Clinical Significance
Association of the ITH index and disease progressionwas a pre-

defined endpoint of the TRACERx Renal study (Turajlic and

Swanton, 2017). We therefore assessed whether patients

whose tumors had high ITH index (>median value) had signifi-

cantly reduced progression free survival (PFS), compared to

those with low ITH index. While we detected this in a univariate

analysis (p = 0.0160 log-rank, hazard ratio [HR] [95% confi-

dence interval (CI)] HR = 2.4 [1.1–5.2]), the association was

not significant when adjusted for known prognostic variables



A

B C

Figure 7. Clinical Endpoints

(A) Kaplan-Meier plots for progression free survival (PFS) in the TRACERx Renal cohort (three plots in top row) and for overall survival (OS) in TCGA KIRC cohort

(three plots in bottom row). Three groupings are plotted for each cohort. Left: high (>median) versus low ITH index. Middle: high (>median) versus lowwGII. Right:

four group high/low combination groupings of the two metrics. Log-rank and adjusted (for stage and grade as covariates in a Cox proportional hazard model)

p values are stated.

(B) Proportion of cases, within each of the high/low four groups, that progressed to disseminated versus solitary metastases, based on each patient’s first

progression event. Counts in the highest group ‘‘low ITH, high wGII,’’ were compared to all other groups through Fisher’s exact test.

(C) Cancer-related deaths OS analysis (as opposed to PFS shown in A) for the TRACERx Renal cohort, with patients grouped using the four-category high/low

ITH/wGII system. Log-rank and adjusted (for stage and grade as covariates in a Cox proportional hazard model) p values are stated.

See also Table S4.
in a Cox proportional hazards model (p = 0.4800 adjusted) (Fig-

ure 7A; STAR Methods). As elevated wGII was consistently

enriched in the high risk evolutionary subtypes, we also consid-
ered its association with PFS. Patients in our cohort whose

tumors had high wGII (>median value) had a non-significant

trend towards shorter PFS compared to those with low wGII
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(p = 0.0717 log-rank HR = 1.9 [0.9–4.0], p = 0.9400 adjusted)

(Figure 7A). To determine whether the absence of significance

may simply be a function of the sample size of this intermediate

cohort, we further investigated ITH and wGII metrics in the

larger andmore robustly powered TCGAKIRC cohort and found

both measures to be significantly associated with PFS (p =

0.0021 HR = 1.9 [1.2–2.8] and p = 0.0004 HR = 2.1 [1.4–3.3],

respectively, log-rank). Importantly, this association remained

independently significant after adjusting for stage and grade

(p = 0.05 HR = 1.5 [1.0–2.3] and p = 0.02 HR = 1.7 [1.1–2.6],

respectively, adjusted) (Figure 7A), and in addition, both mea-

sures were found to be significantly associated with overall sur-

vival (OS) in an adjusted analysis (p = 0.04 HR = 1.7 [1.0–2.7] and

p = 0.04 HR = 1.7 [1.0–2.8], respectively, adjusted) (Table S4).

We note that the single biopsy approach is likely to have

reduced the sensitivity to detect ITH and subclonal SCNAs in

the TCGA cohort.

Next, we considered ITH and wGII measures in combination,

to ascertain if a low score in one measure but high in the other

was sufficient on its own to be associated with increased patient

risk. Significantly reduced survival was observed in all groups

compared to ‘‘Low ITH and Low wGII’’, suggesting that either

driver event intratumor heterogeneity, or a homogeneous profile

with high wGII (e.g., ‘‘Multiple Clonal Driver’’ evolutionary sub-

type), were the underlying factors associated with poor prog-

nosis (TRACERx Renal 100: p = 0.0019 log-rank, p = 0.7500

adjusted, TCGA PFS: p = 0.0025 log-rank, p = 0.0041 adjusted,

Figure 7A, TCGA OS: p = 0.0001 log-rank, p = 0.0040 adjusted,

see Table S4 for full TCGA Cox model results).

We finally considered whether ITH and wGII measures associ-

atedwith the pattern ofmetastatic progression.Within our cohort,

37patientsdevelopedprogressive disease, andweclassified their

disease progression (following cytoreductive or curative intent ne-

phrectomy) into ‘‘rapid’’ or attenuated’’ (TableS1; STARMethods).

67% (n = 9) of ‘‘Low ITH, High wGII’’ patients had rapid progres-

sion, as compared to 18% (n = 28) in the other three groups (p =

0.0106, Fisher’s exact) (Figure 7B). Although limited by a small

number of events (n = 14), overall cancer-specific survival analysis

(as opposed to PFS) in our cohort also demonstrated an associa-

tionbetween ITH/wGIImetrics andpatient survival (p= 0.0065 log-

rank). The shortest survival time was observed in the ‘‘Low ITH,

HighwGII’’ group, further highlighting the aggressive nature of ho-

mogeneous tumors with high wGII, a measure reflecting early fix-

ation of chromosomal complexity (Figure 7C; Turajlic et al., 2018).

DISCUSSION

Weused clonal event co-occurrence,mutual exclusivity, and tem-

poral ordering to reveal deterministic features of ccRCC evolution

and infer seven evolutionary subtypes. The ‘‘multiple clonal

drivers’’ subtype was characterized by clonal co-occurrence of

drivers that are usually mutually exclusive (BAP1 and PBRM1;

BAP1 and SETD2), pointing to their combination being both toler-

ated and advantageous in certain contexts. These tumors had

high wGII and low diversity, suggesting high clonal fitness with

limited ongoing selection or a clonal sweep. Despite being the

largest tumors in the whole cohort, they had the shortest time

from the most recent common ancestor to diagnosis, consistent
606 Cell 173, 595–610, April 19, 2018
with a clonal sweep and accelerated tumor growth, due presum-

ably to the presence of additional drivers as shown in simulated

models of tumor growth (Reiter et al., 2013).We note that our find-

ings are in keeping with the observation of an aggressive sub-

group of ccRCC with the concurrent loss of expression of

PBRM1 and BAP1, a likely surrogate for the ‘‘multiple clonal

drivers’’ subtype (Joseph et al., 2016). The ‘‘BAP1driven’’ subtype

confirmed the tendency to mutual exclusivity between BAP1 and

PBRM1 (Peña-Llopis et al., 2013) mutations at the clone level. The

majority of these tumors had no other detectable mutational

drivers, suggesting that BAP1 mutations combined with SCNAs

drive a robust clonal expansion. Accordingly, in a recently pub-

lishedmouse model of ccRCC, co-targeting of VHL and BAP1 re-

sulted in high grade tumors with short latency (Gu et al., 2017).

At the other end of the evolutionary spectrum the ‘‘PBRM1 /

SETD2’’ tumors had extensive branching, high ITH, and prepon-

derance for parallel evolution. The conserved ordering of SETD2

and PBRM1 mutations and the strong repeated selection of

SETD2 mutant subclones that induce a limited clonal expansion

raise interesting biological questions. It is possible that this

sequence of events cannot achieve broader clonal growth due

to a narrow selective fitness or because it occurs after the primary

tumor bulk is established. The spatial clustering of parallel SETD2

mutations suggests a potential role for niche-specific selection, or

even niche construction by the SETD2 mutant subclones.

PBRM1 mutations are highly enriched as an early event in

ccRCC, evidenced by their being clonal in 74% of cases, but

also by the ‘‘PBRM1 / PI3K’’ and ‘‘PBRM1 / SCNA’’ evolu-

tionary subtypes. In a mouse model of ccRCC (Gu et al., 2017),

co-targeting of VHL and PBRM1 led to low grade ccRCC tumors

that arose late, while an aggressive phenotype was triggered by

the additional disruption of TSC1, a component of the PI3K

pathway. Thus, although PBRM1 is frequently selected early

on, it appears to have a strong necessity for later subsequent

driver events.

The ‘‘VHLwildtype’’ tumorswere characterized by highwGII of

cryptic etiology and were enriched for sarcomatoid differentia-

tion, while the ‘‘VHL monodriver’’ tumors had few driver events

and low wGII, and were enriched for SRMs.

The evolutionary subtype group sizes were too small for formal

survival analysis, and assessment in the full TRACERxRenal study

cohort (target n = 320) will be of significant interest. Nevertheless,

the combination of the features critical in distinguishing the evolu-

tionary subtypes, diversity (ITH), and chromosomal complexity

(wGII) was prognostic in our and the TCGA KIRC cohort. Low di-

versity, high wGII tumors were more likely to progress rapidly and

widely, suggesting the presence of occult metastases at presen-

tation, while heterogeneous tumors (high ITH) with or without high

wGII, were more likely to have an attenuated progression pattern,

often with solitary metastasis. Thus, cytoreductive nephrectomy,

metastasectomy, or deferral of systemic therapy may not be

beneficial in the low diversity/high wGII cases, and ongoing inves-

tigations will determine if the proposed classification could help to

optimize the benefit from these interventions.

An increasingly important area of clinical management are

SRMs, which account for almost one-half of all newly diagnosed

renal masses (Kane et al., 2008). There is an ongoing debate

about their treatment due the low rate of progression observed



during active surveillance (Jewett et al., 2011). The majority of

SRMs in our cohort had low ITH and low wGII, consistent with

high cure rates achieved with early surgical intervention. These

tumors could potentially be amenable to observation. However,

some SRMs in our cohort were characterized by high ITH or wGII

and could progress in the absence of surgical intervention.

Therefore, evolutionary classification could aid an active surveil-

lance strategy in the context of SRMs.

The number of driver events required for tumor initiation, main-

tenance, and progression is subject of active debate and study

(Tomasetti et al., 2015). We observed an extensive repertoire of

disease drivers, with up to 30 mutational and SCNA driver events

detectable in a single tumor. The question remains how many bi-

opsies are required to determine the panoply of disease drivers.

While it appears that the gain in driver detection per additional bi-

opsy begins to decline after �8 biopsies, in some tumors, espe-

cially the ‘‘PBRM1 / SETD2’’ subtype, a large number of driver

eventswould still bemissed if only�8 biopsies are taken.Without

taking into account the spatial arrangement of the tumor bi-

opsies, we note a two-site biopsy approach recovers nearly all

subclonal driver events in the majority of SRMs with a moderate

risk of illusion of clonality. For larger tumors, our data suggest a

biopsy number in the range of four to eight is required to capture

the majority of events. We recognize that in the setting of clinical

practice, molecular profiling of multiple biopsies will not be prac-

tical, and alternative approaches are needed.

Our data account for a number of clinical and experimental ob-

servations in ccRCC and highlight important evolutionary princi-

ples. Clonal co-occurrence of multiple drivers resulting in a clonal

sweep is consistent with the hypothesis of punctuated evolution,

proposedasanalternative tophyleticgradualismbyEldredgeand

Gould (1997), while the contribution of chromosomal complexity

to an aggressive phenotype has parallels with Goldschmidt’s

view of macroevolution, in Material Basis of Evolution (Gold-

schmidt, 1940). We acknowledge, however, that both micro and

macro evolution, as well as non-genetic diversity, are likely to in-

fluence clinical outcomes. Finally, while evolutionary contingency

was clearly evident in patients with multiple independent primary

tumors, the deterministic nature of ccRCC evolution was illus-

trated by the highly conserved sequence of driver events. We

conclude that an understanding of the clonal dynamics and the

evolutionary potential of a tumor provide biological insight as

well as a potential rationale for clinical decision-making.
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Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Charles

Swanton (Charles.swanton@crick.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patients were recruited into TRACERx Renal, an ethically approved prospective cohort study (National Health Service Research

Ethics Committee approval 11/LO/1996). The study sponsor is the Royal Marsden NHS Foundation Trust. The study is coordinated

by the Renal Unit at the Royal Marsden Hospital NHS Foundation Trust. The study is open to recruitment at the following sites: Royal

Marsden Hospital NHS Foundation Trust, Guy’s and St Thomas’ Hospital NHS Foundation Trust, Royal Free Hospital NHS Founda-

tion Trust and Western General Hospital (NHS Lothian). Patients were recruited into the study according to the following eligibility

criteria:

Inclusion criteria
d Age 18- years or older

d Patients with histologically confirmed renal cell carcinoma, or suspected renal cell carcinoma, proceeding to nephrectomy/

metastectomy
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e2
d Medical and/or surgical management in accordance with national and/or local guidelines

d Written informed consent (permitting fresh tissue sampling and blood collection; access to archived diagnostic material and

anonymised clinical data)
Exclusion criteria
d Any concomitant medical or psychiatric problems which, in the opinion of the investigator, would prevent completion of treat-

ment or follow-up

d Lack of adequate tissue

Further eligibility criteria were applied to the cohort presented in this paper (it therefore follows that these patients do not have

consecutive study ID numbers from 001 to 100):

d Confirmed histological diagnosis of clear cell renal cell carcinoma.

d No documented germline renal cell carcinoma predisposition syndrome (including VHL).

d At least three primary tumour regions available for analysis.

The cohort was representative of patients eligible for curative or cytoreductive nephrectomy. Full clinical characteristics are pro-

vided in Table S1. Demographic data include: Sex, Age and Ethnicity. Clinical data include: Presenting symptoms, Smoking status,

BMI, History of Previous RCC, Family History of RCC, Bilateral orMulti-focal RCC, Neoadjuvant therapy (6 patients received systemic

therapy prior to nephrectomy). Histology data include: overall TNM Stage (based on Version 7 classification), Location of nephrec-

tomy, Number of harvested and involved lymph nodes, presence of Microvascular Invasion, presence of Renal Vein Invasion, pres-

ence of IVC tumour thrombus, Size of primary tumour, Leibovich score, Fuhrman Grade, Time to nephrectomy (days). Clinical status

of patients included: Relapse free survival (months), Total follow up (months), Survival Outcome. 16 patients were lost to follow-up: 8

were stage I, 5 stage III and 3 stage IV. For clinical parameter correlation and outcome analyses for cases with multiple tumours

(K114, K324, K354, K097, k265) we used the higher stage (or if stage was equal, then the larger of the two tumours, namely:

K114_L, K334_R, K352_1, K097_L, K265_1.

Classification of disease progression pattern for metastatic cases.

Patterns of disease progression (Table S1) were classified as follows (1) Rapid- disease progression with multiple new lesions or can-

cer-specific deathwithin 6months of surgery (2) Attenuated- no disease progression (for example completely resectedmetastases at

presentation, remains disease-free); disease progression with a single new lesion within 6 months of surgery (for example a solitary

bone, brain or lung deposit) OR disease progression after >6 months of surgery.

METHOD DETAILS

Sample collection
All surgically resected specimens were reviewed macroscopically by a pathologist to guide multi-region sampling for this study and

to avoid compromising diagnostic requirements. Tumour measurements were recorded and the specimen were photographed

before and after sampling. Primary tumours were dissected along the longest axes and spatially separated regions sampled from

the ‘‘tumour slice’’ using a 6 mm punch biopsy needle. The punch was changed between samples to avoid contamination. The total

number of samples obtained reflects the tumour size with a minimum of 3 biopsies that are non-overlapping and equally spaced.

However, areas which are obviously fibrotic or haemorrhagic are avoided during sampling and every attempt is made to reflect

macroscopically heterogeneous tumour areas. Primary tumour regions are labelled as R1, R2, R3. Rn and locations are recorded.

Normal kidney tissue was sampled from areas distant to the primary tumour and labelled N1. Each biopsy was split into two for snap

freezing and formalin fixing respectively, such that the fresh frozen sample has its mirror image in the formalin-fixed sample which is

subsequently paraffin embedded. Fresh samples were placed in a 1.8 ml cryotube and immediately snap frozen in liquid nitrogen

for >30 seconds and transferred to -80C for storage. Peripheral bloodwas collected at the time of surgery and processed to separate

buffy coat.

Nucleic acid isolation from tissue and blood (TRACERx Renal cohort)
DNA and RNA were co-purified using the AllPrep DNA/RNA mini kit. (Qiagen). Briefly, a 2mm3 piece of tissue was added to 900ul of

lysis buffer and homogenised for five seconds using the TissueRaptor (Qiagen) with a fresh homogenisation probe being used for

each preparation. Each lysate was applied to a QiaShredder (Qiagen) and then sequentially purified using the DNA and RNA columns

according to the manufacturer’s protocol. Germline control DNA was isolated from whole blood using the DNeasy Blood and Tissue

kit (Qiagen) according to the manufacturers protocol. DNA quality and yield was measured and accessed using the TapeStation

(Agilent) and Qubit Fluorometric quantification. (ThermoFisher Scientific)
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Detection of VHL mutations by Sanger sequencing
Validation of the patient VHLmutations was carried using PCR followed by Big Dye Terminator Sanger sequencing on the ABI 3700.

20ng of patient DNA was amplified for each VHL exon. PCR conditions involved 35 cycles of denaturation at 950C, followed by oligo-

nucleotide primer annealing at 55oC and sequence extension at 720C using Qiagen Taq polymerase and reagents. See Data S1 for

Oligonucleotide sequences

Methylation specific PCR
Methylation of the VHL promoter was detected after bisulphite treatment of 500ng of patient DNA using the EZ DNA Methylation-

Direct kit (Zymo Research). Bisulphite treated DNA was amplified in the PCR using methylation specific oligonucleotides followed

by Big Dye terminator Sanger sequencing. Methylation was confirmed by comparing and contrasting patient tumour and normal

renal tissue for methylation protected CpG sequences. See Data S1 for oligonucleotide sequences

Independent pathology review of individual tumour regions
Where available, (median of 7 regions per patient (range: 1-63) from 79 patients) histological sections of each region in each case

were evaluated by the same pathologist (JIL). Tumor type was assigned to each case following current classification of the Interna-

tional Society of Urologic Pathology (ISUP) (Srigley et al., 2013). Four main histological types were considered based only on hema-

toxylin-eosin sections: clear cell renal cell carcinoma, papillary renal cell carcinoma, chromophobe renal cell carcinoma and renal

oncocytoma. Atypical cases, including unclassified and tumours with mixed histology, were specifically annotated. Tumor architec-

ture was also considered. The presence of rhabdoid and syncytial (Przybycin et al., 2014;Williamson et al., 2014) cells in any region of

tumours were also considered, since both are related to amore aggressive clinical course. Tumour grading was performed according

to the most up to date ISUP classification (Delahunt et al., 2013) and the presence of necrosis sarcomatoid changes and microvas-

cular invasion was noted. Percentage of viable tumour cells was also estimated in every sample to provide an approximate percent-

age of tumour content.

Regional staining by Immunohistochemistry and Digital Image Analysis of Ki67
Tissue sections of 4mm were mounted on slides and immunohistochemical staining for Ki67 was performed using a fully automated

immunohistochemistry (IHC) system and ready-to-use optimized reagents according to the manufacturer’s recommendations (Ven-

tana Discovery Ultra, Ventana, Arizona, USA). Primary antibody used was rabbit anti-Ki67 (AB16667, Abcam, Cambridge, UK) and

secondary antibody was Discovery Omnimap anti-rabbit HRP RUO (760-4311, Roche, Rotkreuz, Switzerland). DAB kit was Discov-

ery Chromomap DAB RUO (760-4311, Roche). After IHC procedure, slides were first evaluated for Ki67 staining quality using mouse

intestine tissue as positive control. Regions containing tumor tissue were identified and marked by a pathologist and subsequently

scanned in brightfield at 20x magnification using Zeiss Axio Scan.Z1 and ZEN lite imaging software (Carl Zeiss Microscopy GmbH,

Jena, Germany). Digital images were then subjected to automated image analysis using StrataQuest version 5 (TissueGnostics,

Vienna, Austria) for Ki67 quantification. Three different gates were set to quantify low, medium and high intensity DAB staining which

corresponded to Ki67 expression levels. Results were depicted as total percentage of Ki67-positive nuclei.

Flow Cytometry Determination of DNA Content (FACS)
Fresh frozen tumour tissue samples, approximately 4mm3 in size, were mechanically disrupted and incubated in 2ml of 0.5% pepsin

solution (Sigma, UK) at 37 oC for 40minutes to create a suspension of nuclei. The nuclei were washedwith phosphate-buffered saline

(PBS) and then fixedwith 70%ethanol for aminimumof 90minutes. The nuclei werewashed again with PBS and stainedwith 200ml of

propidium iodide (50mg/ml) overnight. Flow cytometric analysis of DNA content was performed using the LSR Fortessa Cell Analyzer

(Becton Dickinson, San Jose, USA), BD Facs Diva� software and FlowJo software (FlowJo LLC, Oregon, USA. Aminimum of 10,000

events were recorded (typically up to 20,000 and up to 100,000 in complex samples). Analysis was performed usingmethods derived

from the European Society for Analytical Cellular Pathology DNA Consensus in Flow Cytometry guidelines and following discussions

with Derek Davies (Head of Flow Cytometry Facility, The Francis Crick Institute). Gating of forward and side scatter was applied to

exclude debris and cell clumping. Samples with <7,500 events after gating were excluded from further analysis. The coefficient of

variation (CV) was measured on each G1 peak. Samples with a CV>10% were excluded from further analysis. Each tumour sample

was assumed to contain normal cells to act as internal standard. Where possible the position of the diploid peak was calculated with

reference to the peak of diploid cells in a casematched normal tissue sample. The DNA index (DI) of any aneuploid peak present was

calculated by dividing the G1 peak of the aneuploid population by the G1 peak of the normal diploid cells. Diploid samples were

defined as having DI of 1.00. Any additional peak was defined as aneuploid. A tetraploid peak was defined as having a DI of

1.90-2.10 and containing >15% of total events unless a second peak corresponding to G2 was clear on the histogram. Similarly,

aneuploid peaks near to G1 (DI 0.90-1.10) were only considered if there was a clear second peak containing >15% of total events.

Targeted Driver Panel (DP) design and validation
Driver gene panels (Panel_v3, Panel_v5 and Panel_v6) were used in this study. Panel_v3 was designed in 2014, including 110

putative driver genes. Panel_v5 and Panel_v6were designed in 2015, including 119 and 130 putative driver genes respectively. Driver

genes were selected from genes that were frequently mutated in TCGA (accessed in April 2015) or highlighted in relevant studies
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(Arai et al., 2014; Sato et al., 2013; Scelo et al., 2014). Only alterations in driver genes represented in all three panels were considered

in the overall driver mutation analyses. All panels targeted potential driver SCNA regions. To prevent inter-patient samples swaps, we

included the 24 SNPs that were previously identified by Pengelly et al. (2013) in Panel_v5 and Panel_v6. Details of the 3 panels can be

found in Supplementary table (Table S2).

Driver Panel Library Construction and Targeted Sequencing
Following isolated gDNA QC, depending on the available yield, samples were normalised to either 1-3 mg or 200 ng for the Agilent

SureSelectXT Target Enrichment Library Protocol; standard or low input sample preparation respectively. Samples were normalised

using a 1X Low TE Buffer. Samples were sheared to 150-200bp using a Covaris E220 (Covaris, Woburn, MA, USA), following the run

parameters outlined in the Agilent SureSelectXT standard 3 mg and low input 200 ng DNA protocols. Library construction of samples

was then performed following the SureSelectXT protocols, using 6 pre-capture PCR cycles for the standard input samples and 10

pre-capture PCR cycles for the 200 ng low input samples. Hybridisation and capture were performed for each individual sample using

the Agilent custom Renal Driver Panel target-specific capture library (versions 3, 5 & 6). The same version of the capture library being

used for all samples from the same patient case. Captured SureSelect-enriched DNA librarieswere PCRamplified using 14 post-cap-

ture PCR cycles in PCR reactions that included the appropriate indexing primer for each sample. Amplified, captured, indexed

libraries passing final QC on the TapeStation 4200 were normalised to 2nM and pooled, ensuring that unique indexes were allocated

to all final libraries (up to 96 single indexes available) in the pool. QC of the final library pools was performed using the Agilent Bio-

analyzer High Sensitivity DNA Assay. Library pool QC results were used to denature and dilute samples in preparation for sequencing

on the IlluminaHiSeq 2500 andNextSeq 500 sequencing platforms. The final libraries were sequenced 101bp paired-endmultiplexed

on the Illumina HiSeq 2500 and 151bp paired-end multiplexed on the NextSeq 500, at the Advanced Sequencing Facility at the Fran-

cis Crick Institute. Equivalent sequencing metrics, including per sample coverage, was observed between platforms.

Whole Exome Library Construction and Sequencing
gDNA isolated from each sample were normalized to 1-3 mg. Libraries were prepared from using the Agilent SureSelectXT Target

Enrichment Library protocol and Agilent SureSelectXT Human All Exon v4 enrichment capture library. The libraries were prepared

using 6 pre-capture and 12 post-capture PCR cycles. Captured Whole Exome final libraries passing the final QC step were normal-

ised to 2nM and pooled for sequencing on the HiSeq 2500 instrument. Dual HiSeq SBS v4 runs at 101bp paired-end reads generated

the data for analysis. Target coverage was 400-500x for the tumour regions and 100-200x for the associated normal.

SNV, and INDEL calling from multi-region DP and multi-region WE sequencing
Paired-end reads (2x100bp) in FastQ format sequenced by Hiseq or NextSeq were aligned to the reference human genome (build

hg19), using the Burrows-Wheeler Aligner (BWA) v0.7.15. with seed recurrences (-c flag) set to 10000 (Li and Durbin, 2009). Interme-

diate processing of Sam/Bam files was performed using Samtools v1.3.1 and deduplication was performed using Picard 1.81

(http://broadinstitute.github.io/picard/) (Li and Durbin, 2009). Single Nucleotide Variant (SNV) calling was performed using Mutect

v1.1.7 and small scale insetion/deletions (INDELs) were called running VarScan v2.4.1 in somatic mode with a minimum variant fre-

quency (–min-var-freq) of 0.005, a tumour purity estimate (–tumor-purity) of 0.75 and then validated using Scalpel v0.5.3 (scalpel-dis-

covery in - -somatic mode) (intersection between two callers taken) (Cibulskis et al., 2013; Fang et al., 2016; Koboldt et al., 2009).

SNVs called byMutect were further filtered using the following criteria: i)%5 alternative reads supporting the variant and variant allele

frequency (VAF)% 1% in the corresponding germline sample, ii) variants that falling intomitochondrial chromosome, haplotype chro-

mosome, HLA genes or any intergenic region were not considered, iii) presence of both forward and reverse strand reads supporting

the variant, iv) >5 reads supporting the variant in at least one tumour region of a patient, v) variants were required to have cancer cell

fraction (CCF)>0.5 in at least one tumour region (see Subclonal deconstruction of mutations section for details of CCF calculation) , vi)

variants were required to have CCF>0.1 to be called as present in a tumour region, vii) sequencing depth in each region need to

be >=50 and%3000. Finally, suspected artefact variants, based on inconsistent allelic frequencies between regions, were reviewed

manually on the Integrated Genomics Viewer (IGV), and variants with poorly aligned reads were removed. Dinucleotide substitutions

(DNV) were identified when two adjacent SNVs were called and their VAFs were consistently balanced (based on proportion test,

P>=0.05). In such cases the start and stop positions were corrected to represent a DNV and frequency related values were recalcu-

lated to represent the mean of the SNVs. Variants were annotated using Annovar (Wang et al., 2010). Deleterious mutations were

defined if two out of three algorithms - SIFT, PolyPhen2 andMutationTaster - predicted themutation as deleterious. Individual tumour

biopsy regions were judged to have failed quality control and excluded from analysis based on the following criteria: i) sequencing

coverage depth below 100X, ii) low tumour purity such that copy number calling failed. Mutations detected in high-confidence driver

genes (VHL, PBRM1, SETD2, PIK3CA, MTOR, PTEN, KDM5C, CSMD3, BAP1, TP53, TSC1, TSC2, ARID1A, TCEB1) were defined as

driver mutations. As TSC1 and TSC2 were not targeted in Panel v5, to check the mutation status in these two genes, patients were

sequenced using Panel v5 were re-sequenced with Panel v6 and no new mutations were detected.

SCNA calling from multi-region DP and multi-region WE sequencing
To estimate SCNAs, CNVkit v0.7.3 was performed with default parameter on paired tumour-normal sequencing data (Talevich et al.,

2016). Outliers of the derived log2-ratio (logR) calls from CNVkit were detected and modified using Median Absolute Deviation
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Winsorization before case-specific joint segmentation to identify genomic segments of constant logR (Nilsen et al., 2012). Tumour

sample purity, ploidy and absolute copy number per segment were estimated using ABSOLUTE v1.0.6 (Carter et al., 2012). In line

with recommended best practice all ABSOLUTE solutions were reviewed by 3 researchers, with solutions selected based onmajority

vote. Copy number alterations were then called as losses or gains relative to overall sample wide estimated ploidy. Arm gain or loss

was called when >50% of the chromosomal have copy number gain or loss. Driver copy number was identified by overlapping the

called somatic copy number segments with putative driver copy number regions identified by Beroukhim and colleagues (Beroukhim

et al., 2009).We compared SCNAcalls between targeted panel andWGSdatasets, and SCNA concordancewas 87% (Table S2). The

average proportion of the genome with aberrant copy number, weighted on each of the 22 autosomal chromosomes, was estimated

as the weighted genome instability index (wGII).

TCGA WES data analysis
To compare mutation frequency detected in TRACERx Renal cohort with public data (Figures 1B and 1C), event calls from 451 TCGA

KIRC patients were retrieved from cBioportal (http://www.cbioportal.org/) on 2017/07/21. To investigate the clonality of mutations in

TCGA KIRC cohort, we obtained the next generation sequencing data for matched tumour and normal/blood from 338 cases in BAM

format from TCGA, which were then converted into FASTQ format files using bam2fastq in bedtools package (Quinlan and Hall,

2010). SNVs, INDELs and SCNAs were called using the same methods as TRACERx Renal data (STAR Methods: SNV, and INDEL

calling frommulti-region DP and multi-region WE sequencing, SCNA calling from multi-region DP and multi-region WE sequencing).

20 caseswere excluded from the study as the ABSOLUTE v1.0.6 algorithm failed to find a stable SCNA solution, further details can be

found in Table S4. Clonality of SNVs and SCNAswere estimated using ABSOLUTE v1.0.6. Cancer cell fraction for INDELswere calcu-

lated using method described in STAR Methods: Subclonal deconstruction of mutations. INDELs with CCF>0.5 were called clonal.

ITH index for each patient was calculated as the measure of intratumour heterogeneity (ITH index = # subclonal drivers / # clonal

drivers). However, due to the limitation of single biopsy, intratumour heterogeneity was found to underestimated (ITH index range

0-3, median=0.0, sd=0.41).

QUANTIFICATION AND STATISTICAL ANALYSIS

R 3.3.2 was used for all statistical analyses.

Saturation Analysis and Phenotypic Correlations
For saturation analysis, the mean number of variants observed for each subset of biopsies of a given size was calculated by exhaus-

tive consideration of all such subsets when the total number of such subsets was less than 18 million and by consideration of a

random collection of 18 million subsets, with possible repetition, when the total number of possibilities was greater. For phenotypic

correlations, comparisons were performed using the Fisher’s Exact test for 2x2 tables and the "non-parametric 2-way anova" Freid-

man test for n x m tables where at least one of n and m is greater than 2. P-values were corrected for multiple testing using the

Benjamini–Hochberg procedure.

Subclonal deconstruction of mutations
To estimate the clonality of a mutation in a region, we used the following formula:

vaf =
CNmut � CCF � p

CNn � ð1� pÞ+ CNt � p
where vaf is the variant allele frequency at themutation base; p is e
stimated tumour purity;CNt andCNn are the tumour locus specific

copy number and the normal locus specific copy number which was assumed to be 2 for autosomal chromosomes; and CCF is the

fraction of tumour cells carrying the mutation. Consider CNmut is the number of chromosomal copies that carry the mutation, the

possible CNmut is ranging from 1 to CNt (integer number). We then assigned CCF with one of the possible value: 0.01, 0.02, ..., 1,

together with every possible CNmut to find the best fit cancer cell fraction of the mutation. Since we focused on driver genes in

this study and the accuracy of the estimated CCF is limited by the size of the panel, we call mutations with CCF>0.5 as clonal mu-

tations, mutations with CCF%0.5 and CCF>0.1 are subclonal. To determine the clonality of a mutation in a tumour, we ask for the

mutation to be clonal in all regions in a tumour. Exceptions were made for long INDELs that affect >6 bp of the genome, due to

VAF under estimation. If a long INDEL is present in all regions of a tumour, we called it as clonal. To determine the clonality of a

SCNA in a tumour, we ask for the SCNA to be presence in all tumour regions, otherwise it is called subclonal.

Driver tree reconstruction
Amatrix with presence and absence of nonsynonymous and synonymous point mutations, DNVs, INDELs and arm level SCNAs was

created for each tumour, and all the events were clustered based on the following rule: a valid cluster has to have at least two arm

level SCNAs or one non-synonymous mutation. The driver events clusters were then ordered into a clonal hierarchy using TRONCO

and presented as driver trees (De Sano et al., 2016).
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Clustering was performed on multi-region whole exome sequencing using PyClone Dirichlet process clustering (Roth et al., 2014).

For each mutation, the observed variant count was used and reference count was set such that the VAF was equal to half the pre-

clustering CCF. Given that copy number and purity had already been calculated, we set themajor allele copy numbers to 2 andminor

allele copy numbers to 0 and purity to 0.5; allowing clustering to simply group clonal and subclonal mutations based on their pre-

clustering CCF estimates. PyClone was with 10,000 iterations and a burn-in of 1000, and default parameters, with the exception

of –var_prior set to ‘BB’ and –ref_prior set to ‘normal’.

In terms of limitations, we recognise that our Driver Panel phylogenies are based on fewer clonal markers, as compared to whole

exome or genome derived phylogenetic trees. As a consequence some tumour clones are based on only a limited number of genomic

markers, however three contingency measures are in place to mitigate against phylogenetic misconstruction: i) ultra-deep 500x

sequencing coverage, which ensures stably derived cancer cell fraction estimates, ii) a bespoke gene panel which is enriched for

driver events, increasing the likelihood that mutational markers are driving genuine clonal expansion, iii) cross-capture validation

with tree structures in >10 cases confirmed using exome sequencing data (Table S5). Furthermore, the panel sequencing strategy

has allowed extensive tumour sampling, with >1,200 biopsies sequenced, enabling robustness in terms of spatial sampling.

Parallel evolution significance testing
All genes with R 10 subclonal mutations across the cohort were tested for evidence of parallel evolution (qualifying genes: BAP1,

CSMD3, KDM5C, MUC16, MTOR, PBRM1, PTEN, SETD2. TSC1, TP53). For each gene the observed number of parallel mutations

across the 100 case cohort was compared to a null distribution of the expected number of subclonal mutations co-arising in different

tumour regions within the same case due to chance. To simulate the null distribution the mutation frequency of each gene per biopsy

region was calculated, based on total number of unique subclonal mutations for that gene (cohort wide) divided by the total number of

biopsies sequenced (cohort wide). This probability was then used in a simple Bernoulli trials model simulated for each patient, with

the number of trials based on the number of biopsy regions sequenced per case. This model allows for the fact that cases with a large

number of sampled regions have high chance of co-arising mutations in different biopsy regions by chance rather than due to parallel

evolution. The total count of co-arising mutations by chance was calculated across the 100 case cohort (using the specific number of

biopsy regions per case) and then compared to the observed number parallel events. Significance was determined through 1000

permutations per gene, with resulting p-values corrected for multiple testing using the Benjamini–Hochberg procedure.

Detection of allelic imbalance
Heterozygous SNPs called using germline variants were identified using VarScan v2.4.1 in mpileup2snp mode. SNPs used must be

called in all regions of the tumour and have a B-allele frequency (BAF, total variant base / total reference bases at a position) of be-

tween 0.35 and 0.65 in the germline sample. Mean absolute deviation (MAD) from 0.5 calculated for all heterozygous SNPs on each

arm in all samples: mean (abs(arm_hz_BAF – 0.5)). The germline MAD was then subtracted from all tumour region MADs for each

patient’s disease for all chromosome arms. Copy neutral allelic imbalance was then called if: 1) There is no copy number event

(gain or loss) associated with the chromosome arm in a sample but there is a MAD of >= 0.1. 2) There is no copy number event

associated with the chromosome arm in a sample but its MAD is >= the median MAD of gain/loss events in this sample and is

also >= 0.05. 3) If a patient’s disease has the same chromosome arm exhibiting copy neutral allelic imbalance in 2 or more regions

by the above the two criteria, the same chromosome arm in the other regions is re-examined using the lowest quartile MAD of gain/

loss events in each region as a cut off and has a MAD of >=0.05.

Calculating clonality of copy neutral allelic imbalance (CNAI): Only regions with at least one chromosome arm exhibiting a MAD

score of greater than 0.05 were considered for this analysis. Regions with no MAD score greater than 0.05 are marked on the patient

specific supplementary figures ‘‘low purity’’ (Data S3). Copy neutral allelic imbalance calls are shown as diamonds in the patient spe-

cific copy number plots attached in this email. The CNAI occurrences in each patient were then grouped into the following categories:

Clonal CNAI – All regions of the tumour have no copy number gains or losses associated with this chromosome arm but all have been

classified as exhibiting CNAI. Clonal loss andCNAI – All regions of the patient’s disease have either a loss being called or exhibit CNAI

for this chromosome arm.

Detection of mirrored subclonal allelic imbalance (MSAI)
In order to detect mirrored subclonal allelic imbalance (MSAI) allele counts were generated using AlleleCounter (https://github.com/

cancerit/alleleCount) (see companion paper Mitchell et al., 2018). The counts from whole exome sequenced samples were analysed

using ASCAT (Van Loo et al., 2010) to generate copy number calls. Whole-genome samples were analysed using Battenberg

(Nik-Zainal et al., 2012) to generate copy number calls (see companion paper, Mitchell et al., 2018). Heterozygous SNPs among

the 1000 genomes positions (Abecasis et al., 2010) used as input for ASCAT/Battenberg analyses were identified by isolating those

which had a B-allele frequency (BAF) of between 0.3 and 0.7 (calculated by variant reads over total reads) in the germline sample for

each patient. The BAFs of these heterozygous SNPswere then usedwith the segmentation and copy number calls produced for each

region by either ASCAT or Battenberg analyses to detect MSAI events for each patient’s disease using the method outlined previ-

ously (Jamal-Hanjani et al., 2017).

Using the heterozygous SNPs present in the targeted regions detected by Driver Panel sequencing we identified allelic imbalance

(AI) at the level of chromosome arms. In some cases the AI was not associated with a copy number gain or loss relative to the
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sample’s ploidy and was classified as copy neutral allelic imbalance (CNAI) (STAR Methods). In total, we identified 18 cases where

one ormore chromosome arms demonstrated clonal CNAIs (34 events total) and 8 patients where, at least one chromosome armwas

always affected by either loss relative to ploidy or CNAI (13 events total). 5 of these 8 patients also demonstrated instances of ubiq-

uitous arm level CNAI in all regions.

Validation of MSAI
Validation of MSAI was achieved using Polymorphic microsatellite markers specific to the chromosome and chromosome region be-

ing investigated. Once a polymorphic marker is identified, patient DNA is amplified in the PCR, incorporating a fluorescent primer into

the PCR fragment that can be accurately measured for size and fluorescent intensity. Measurement of Fluorescent units under each

allele peak can be used to compare and contrast variation between alleles within and between different tumour regions and the

normal sample using the formula (At/Bt)/(An/Bn).

Co-occurrence testing
Co-occurrence of driver events in each tumour was conducted based on the driver tree clones as determined above. Analysis was

conducted on themost frequent drivermutational events (BAP1, PBRM1, SETD2, VHL, Figure 1B), themost frequent SCNAs (3p loss,

5q gain) and SCNA events with established clinically prognostic value (loss 4q, loss 9p, loss 14q and gain 8q) (Ito et al., 2016; Kojima

et al., 2009; La Rochelle et al., 2010; Monzon et al., 2011; Perrino et al., 2015). For each event pairing tumour clones were assessed to

determine if the given two events were found to co-occur together in the same clone. Analysis was first conducted using only the

‘‘MRCA’’ clone per case (n=100), to ensure independence of observations at the patient level (for bilateral/multi-focal cases the

first/left tumour was taken in each case). Analysis was then repeated using ‘‘MRCA plus subclonal’’ clones (total n=306 across all

tumors, with the set of subclones defined as unique terminal tree nodes). R package ‘cooccur’ (Griffith et al., 2016)was used to

compare observed event co-occurrence frequencies to those expected by chance under a probabilistic model. The distribution

of observed and expected values is shown in Figure S2. Values were plotted as enrichment scores calculated as log2(observed

count/expected count). Only patterns found to be significant in both the ‘‘MRCA’’ and ‘‘MRCA plus subclonal’’ were considered sig-

nificant overall. Correction for multiple testing was conducted using the Benjamini–Hochberg procedure.

Most recent common ancestor (MRCA) and ki67 analysis
The estimated time of MRCA was calculated using multi-region whole genome sequencing data as detailed in the companion paper

by Mitchell et al. (2018). From the total n=33 cases with WGS data, MRCA timing analysis was successful in n=31 cases, from which

known VHL wildtype cases (n=2) were excluded on account of their distinct aetiological and phenotypic profile. Of the n=29 cases

analysed, n=23 overlapped with the renal TRACERx Renal 101 cohort presented here, and n=6 were additional ccRCC patients re-

cruited to the TRACERx Renal study. The association between time from MRCA to tumour diagnosis and number of clonal driver

eventswas assessed using a linearmodel, adjusting for the total clonalmutation burden per tumour. The association between tumour

region ki67%of cells stained as positive and number of clonal driver events was assessed using a linear mixed effect (LME)model, to

account for the non-independence of multiple samples from individual patients, using all cases with available data in the TRACERx

Renal 101 cohort after exclusion of known VHL wildtype tumours.

Event ordering analysis
The ordering of driver events was based on the clonal hierarchy of each tumour, as determined by driver tree reconstruction method

detailed above. Due to dense spatial sampling (median 7 biopsies per tumour, range [3-75]) the driver tree ordering was typically

robust, with evidence of sequential waves of clonal expansion between events usually confirmed across multiple biopsy regions.

The set of sequential event paths (i.e. event A > event B > event C) for each tumour was captured starting with the events in the

MRCA clone. For each MRCA event, evolutionary sequences were traced through each node of the tree until a terminal clone

was reached. All possible sequential paths (trajectories) between MRCA and terminal clone events were recorded. To reduce risk

of multiple testing we limited further analyses to those trajectories containing the most frequent (‘‘core’’) ccRCC driver events:

VHL, PBRM1, BAP1, SETD2, PI3K/AKT/mTOR pathway mutations or driver SCNAs. The list of trajectories was further reduced to

ensure pairings of events were counted only once per case, (e.g. in the case of K243 where a single PBRM1 mutation precedes

10 SETD2 mutations, this is counted only once) and PI3K/AKT/mTOR pathway mutations interacting with SCNAs were not consid-

ered due to the nonspecific many-to-many relationship. The final list of trajectories was analysed using R package Trajectory Miner

(Gabadinho et al., 2011) to identify recurrent patterns of event pairs enriched for occurrence is a consistent direction. Event pairings

observed in ten or more cases were then tested for significance in a specific ordering direction using a Binomial test, with null ex-

pected p=0.5, to reflect an equally balanced 50%:50% distribution of event ordering by random chance. As expected, VHL was

found to be significantly enriched as an early event preceding all other alterations, consistent with its known timing as a universally

clonal event (data not shown in figure). All p-values were corrected for multiple testing using the Benjamini–Hochberg procedure.

Evolutionary subtype classification
Based on the evolutionary analysis in Figures 4 a rule based classification was devised in order to assign cases into subgroups and

allow for comparison against phenotypic and clinical outcomes. Caseswere assigned to groups based on the following series of rules
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(applied in a hierarchical manner in the order listed): i) presence of R 2 BAP1, PBRM1, SETD2 or PTEN clonal mutational events

meant assignment to ‘‘multiple clonal driver’’ group (the selection of these four genes is based on the timing results observed in Fig-

ure 4B) , ii) presence of a tumour clone/subclone with a BAP1 mutational driver event, and no other ‘‘core’’ mutational driver events

aside from VHL in that same clone/subclone, meant assignment to the ‘‘BAP1 driven’’ group, iii) presence of a tumour clone/subclone

with PBRM1 mutation followed by a SETD2 mutation, meant assignment to the ‘‘PBRM1->SETD2’’ group, iv) presence of a tumour

clone/subclone with PBRM1 mutation followed by a PI3K pathway mutation, meant assignment to the ‘‘PBRM1->PI3K’’ group, v)

presence of a tumour clone/subclone with PBRM1 mutation followed by a driver SCNA event, meant assignment to the

‘‘PBRM1->SCNA’’ group, vi) absence of VHL mutation or methylation meant assignment to ‘‘VHL wildtype’’ group, vii) presence

of VHL as the only ‘‘core’’ mutational driver event meant assignment to the ‘‘VHLmonodriver’’ group. For bilateral/multi-focal cases

the evolutionary subtype was assigned based on the first/left tumour in each case. To test the stability and validity of the rule based

classification an unsupervised clustering analysis was additionally performed, using R function daisy, with the distance matrix

computed using Gower’s formula on account of the mixture of continuous and binary data types. Clustering was conducted based

on the following measures: wGII (minimum and maximum regional values per tumour), tumour size (mm), clone number, ITH index,

number of clonal driver events and presence/absence of the six observed evolutionary patterns (BAP1 lone driver clone/subclone,

PBRM1->SETD2 clone/subclone, PBRM1->PI3K clone/subclone, PBRM1->SCNA clone/subclone, VHL mutational status, VHL as

the only ‘‘core’’ mutational driver event). Clustering was performed using a partitioning around medoid method, with cluster number

from 2 to 15 considered, and a 10 cluster solution resulting as the optimal solution. Overall high concordance in cluster assignment

was observed between the rule based and unsupervised methods, and in the unsupervised method three additional subgroups were

identified (Figure S3, the groups are referred to just by cluster number due to currently unclear evolutionary aetiology): cluster 5 which

was characterised by low clone number (median=2) and small size (mean=6.7cm), cluster 7 which exhibited high wGII, and cluster 9

with branched structure (median 11 clones) and large size (mean=10.9cm).

Survival analysis
Survival analysis was conducted using the Kaplan-Meier method, with p-value determined by a log-rank test. Progression free

survival (PFS) was defined as the time to recurrence or relapse, or if a patient had died without recurrence, the time to death. In

the TRACERx cohort, overall survival (OS) was measured as cancer specific death. For the TCGA cohort, all death events were

included in the PFS/OS analyses (consistent with the original author’s analysis of the data, on account of a lack of cause of death

data). Hazard ratio and multivariate analysis adjusting for clinical parameters was determined through a Cox proportional haz-

ards model.

Downsampling simulation
Empirical error rates were determined by exhaustive consideration of all pairs of biopsies from a given tumour sample and, for each

pair, comparing the number of variants detected in one or more of the full set of biopsies not found in either member of that pair

("False negative") or determined to be subclonal in the full set but detected in both samples in that pair ("illusion of clonality").

Each tumour is then represented by the mean value of each of these estimates across all pairs. We acknowledge that, despite dense

sampling, the variant set found across all biopsies per tumour clearly may also bemissing very rare low frequency driver events itself.

DATA AND SOFTWARE AVAILABILITY

The accession number for the Sequencing data reported in this paper is European Genome-Phenome Archive (EGA) hosted by the

European Bioinformatics Institute (EBI): EGAS00001002793. Additional genomic and clinical data are provided via this link:

https://bitbucket.org/tracerxrenal/cell-paper-data-2018/src.

ADDITIONAL RESOURCES

Clinical trial registry number: https://clinicaltrials.gov/ct2/show/NCT03226886

TRACERx Renal study website, detailing investigators, sponsors and collaborators: http://TRACERxRenal.co.uk/studies/renal/
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Supplemental Figures

Figure S1. Consort Diagram, Related to STAR Methods

(A and B) (A) shows the Consort diagram for the filtering steps leading to the reported cohort; (B) shows the summary of Driver Panel, Whole Exome and Whole

Genome Sequencing in the TRACERx Renal 101 Cohort.



Figure S2. SCNAs Co-occurring with Mutational Driver Events, Related to Figure 4

(A–D) (A) shows SCNAs co-occurring with mutational driver events in TRACERx Renal cohort. (B) shows SCNA co-occurrence in TCGA KIRC cohort. (C) shows

14q loss co-occurring with the other SCNAs. 14q loss is shown on X-axis and on Y-axis is log(p-value) for co-occurrence. (D) shows observed versus expected

co-occurrence frequencies.



Figure S3. TRACERx Renal Cohort Unsupervised Clustering Analysis of Evolutionary Features, Related to Figure 5 and STAR Methods

On the x-axis are the rule based evolutionary subtype groups, and on the y-axis are group assignments based on unsupervised clustering. Shown below the

x-axis is the percentage of members, from each evolutionary subtype, which are assigned to the same unsupervised cluster. Colours have nomeaning except to

denote different groups.
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