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Abstract

Prostate cancer (PCa) represents a significant clinical challenge because it is difficult to predict 

outcome and advanced disease is often fatal. We sequenced the whole genomes of 112 primary 

and metastatic PCa samples. From joint analysis of these cancers with those from previous studies, 

930 cancers in total, we identified evidence for 22 novel putative coding driver genes, as well as 

evidence for NEAT1 and FOXA1 acting as drivers through non-coding mutations. Through the 

temporal dissection of aberrations, we identified driver mutations specifically associated with steps 

in the progression of PCa, for example establishing loss of CHD1 and BRCA2 as early events in 

cancer development of ETS fusion negative cancers. Computational chemogenomic (CanSAR) 

analysis of PCa mutations identified eleven targets of approved drugs, seven of investigational 

drugs and sixty-two compounds that may be active and should be considered candidates for future 

clinical trials.

Introduction

Prostate cancer is the most common solid cancer in men (diagnosed in 12%) and often fatal 

(9% of male cancer deaths). It is difficult to manage clinically due to a poor current 

understanding of what dictates its highly variable natural history, and of what underlies the 

development of castration-resistant disease1. Extensive data on the structure of prostate 

cancer genomes have been published2–6, including work from our own consortium7–10. 

These studies have identified a number of genetically distinct subgroups, including cancers 

with ERG, ETV1, ETV4, FLI1, SPOP, FOXA1 and IDH1 alterations. Overlapping with 

these categories, cancers may have alterations in PI3K and DNA repair pathways, with the 
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latter significantly over-represented in advanced disease4. However, we have relatively 

limited understanding of the ordering of genetic events with the exception that ETS gene 

alteration appears to represent an early event, whilst mutations of AR are later, sometimes 

convergent, events, occurring in advanced and metastatic disease. Indeed, we have very little 

understanding of the evolution of mutational processes, the various genetic paths that 

cancers traverse on their way to progression, the levels of heterogeneity at different stages of 

development or the effect of these factors on clinical outcome.

Gene status has been used in studies designed to improve the poor predictive value of 

conventional clinical markers (PSA, Gleason sum, stage) and to develop disease 

management strategies. For example, genetic alteration of BRCA1/211, PTEN deletion12, 

amplification of AURKA together with the MYCN gene13, and coordinated loss of 

MAP3K7 and CHD114 have been reported to have prognostic value. A number of 

commercial prognostic tests based on gene expression profiles are also available15,16,17 

and a classification framework has been proposed18. Improvements in the treatment of 

castration-resistant disease have been made through better targeting of AR regulation using 

abiraterone19 and enzalutamide20, whilst PARP inhibitors are effective against cancers 

harbouring BRCA1/2 mutations and other defects in DNA repair pathways21. However, 

significant advances have been made recently through the re-tasking of approved drugs22.

In the present study, we use previously unpublished whole genome DNA sequencing data in 

combination with published data to provide new insights into the mechanism of progression 

of prostate cancer to lethal disease, and to design novel molecular-based strategies for drug 

targeting.

Results

We whole genome sequenced cancerous and matched normal samples from 87 primary 

prostate cancers from the UK and 5 from China, together with 10 hormone-naïve prostate 

metastases and 10 castration-resistant metastases from the USA. Analysis (see Online 

Methods) reveals insights into the nature and order of acquisition of driver alterations, 

genomic heterogeneity in primary and metastatic cancers, changes in mutational signatures 

during progression, and potential drug targets. In addition, we identify coding and non-

coding drivers by combining single nucleotide variants (SNVs) and small insertions/

deletions (indels) within our dataset with those from TCGA4 (425 samples), the COSMIC 

database23 (243 samples) and Stand Up to Cancer24 (SU2C-PCF, 150 samples) to give a 

combined dataset, hereafter referred to as the ‘joint dataset’, comprising 710 primary 

cancers and 220 metastases. Supplementary Table 1 summarises the genes affected in both 

our study and the joint dataset.

For the 112 cancer-normal pairs in our cohort, we identified 392,753 SNVs, 54,952 indels 

and 10,921 chromosomal rearrangements (Fig. 1). The mean genome-wide substitution rate 

was 1.23/Mb, with a significant difference in mutational burden between the primary (0.99) 

and metastatic (2.30) samples (P=4.4x10-15, Online Methods). Moreover, within the 

metastatic subset, mutation burden was higher in men treated with androgen deprivation 

therapy (ADT or CRPC) than treatment-naïve cases (2.98 vs 1.61, P=0.015). There were 
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also significantly more rearrangements in metastatic than in primary samples (P=0.0059), 

whilst the proportion of breakpoints attributed to a chromoplexy-like event25 was 

indistinguishable between the two groups. Within the metastatic group, the ADT samples 

had more rearrangements than did the hormone-naïve (P=0.027), with no difference in the 

proportion of chromoplexy-like events (Fig. 1).

Genes of interest were identified through a comprehensive set of analyses to identify: excess 

non-synonymous mutations in coding regions; excess missense mutations within a gene, 

indicative of an oncogenic driver; excess mutations in non-coding regions; regions with an 

excess of structural variants in either ETS+ or ETS- cancers; regions with recurrent copy 

number aberrations in either ETS+ or ETS- cancers. Overall, we identified 73 genes with 

evidence for involvement in prostate cancer development (Fig. 2, Table 1, Supplementary 

Table 2). Based on a literature search, each gene was assigned a high, medium or low level 

of previous supporting evidence (Table 1, Supplementary Table 2). In addition to 22 genes 

with little or no previous evidence of involvement in prostate cancer (Table 1, ‘low’ previous 

evidence), we provide corroborating evidence for 8 further genes previously lacking strong 

evidence of driving prostate cancer (Table 1, ‘medium’ previous evidence).

Coding drivers

We identified 28 genes with an excess of non-synonymous coding mutations, five of which 

are previously unknown drivers in prostate cancer (Supplementary Table 2). TBL1XR1 was 

enriched in truncating SNVs and indels and is also located in a genomic region enriched for 

rearrangements in ETS+ cancers (chr3: 172-179Mb) (Fig. 3). These rearrangements result in 

loss of heterozygosity (LOH) or, in one case, homozygous deletion, suggesting a cancer 

suppressor role for this gene. Another significantly mutated gene primarily affected by 

truncating mutations was ZMYM3, which encodes a component of CoREST, a 

transcriptional repressor complex including REST (RE-1 silencing transcription factor) and 

involved in suppression of neuronal differentiation-related genes in non-nervous tissues26. 

In addition, two further CRPC samples from the SU2C-PCF study24 had nonsense 

mutations and one sample within our study had a 70kb exonic deletion in REST.

Two other genes with recurrent truncating mutations were IL6ST and CASZ1 (Fig. 3). The 

latter is a putative cancer suppressor in neuroblastoma27 while the former encodes 

glycoprotein 130, the signal-transducing subunit of the interleukin 6 (IL6) receptor. The 

pattern of mutations we observe in the joint dataset for IL6ST is dominated by truncating 

events. Moreover, this gene is located in a genomic region recurrently rearranged in ETS+ 

cancers, resulting in either LOH or homozygous deletion (four cases of each), suggesting a 

cancer suppressive role. TBX3, previously reported to harbor mutations in breast cancer28, 

exhibited a mixed pattern of mutations with mostly missense mutations and two cancers 

harbouring truncating events.

Analysis of missense mutations identified recurrent mutations in seven further genes, of 

which two are newly reported (Supplementary Table 2). CNOT3 exhibited mutation hotspots 

in two amino acid positions, p.E20K (4/932 samples) and p.E70K (5/932 samples), as well 

as a nonsense mutation in a single sample (Fig. 3). CNOT3 has a known cancer suppressive 

function in T-cell acute lymphoblastic leukaemia29. Enrichment for missense mutations was 
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identified in RPL11 a ribosomal protein and putative cancer suppressor upstream of the 

MDM2/TP53 pathway30. In contrast to previous studies, the enrichment for missense 

mutations in both CNOT3 and RPL11 suggests oncogenic, rather than tumor suppressor, 

roles in prostate cancer.

A comparison between coding mutations in metastatic and primary samples within the joint 

dataset identified enrichment in metastases for mutations in TP53, AR, KMT2C, KMT2D, 
RB1, APC, BRCA2, CDK12, ZFHX3, CTNNB1, PIK3CB (Supplementary Table 2), 

confirming previous studies3,24.

Non-coding drivers

Analysis of non-coding components of the genome identified two regions significantly 

enriched for mutations. NEAT1, a lncRNA recently reported to be associated with PCa 

progression31, was mutated in 13/112 ICGC cases with significant over-representation in 

patients with metastatic disease (6/20 metastases vs. 7/91 primaries, Fisher exact test, 

P=0.012, Fig. 3). Interestingly, out of the metastatic cases NEAT1 mutations were found 

only in patients that had undergone ADT, consistent with the link between high NEAT1 
expression and resistance to AR-targeting therapies31. Notably, two of these six cases had 

two separate NEAT1 mutations. The FOXA1 promoter also had significant evidence of 

selection. This gene modulates AR-regulated transcriptional signalling32 and has previously 

been found to harbor recurrent coding mutations5. In our series, we identified 14 samples 

with coding and 6 samples with non-coding mutations, with two samples (PD14721a and 

PD12813a) bearing both a coding and a non-coding mutation. Interestingly, we also 

identified mutations in the FOXP1 promoter, a gene with known cancer-suppressive effect in 

prostate tumorigenesis33, in three samples, but this was insufficient to reach statistical 

significance.

Structural variant enrichment in ETS+ and ETS- cancers

The density of rearrangements varies across the genome as a result of various factors 

including chromatin state, GC content, gene density, replication timing and repetitive 

sequence. In order to remove the effect of these factors, we segmented inter-breakpoint 

distance across the genome separately in ETS+ and ETS- cancers and identified regions with 

differential enrichment for rearrangements between the two subtypes. The functional 

importance of many of these regions was supported by an excess of truncating mutations or 

CNAs.

In addition to regions previously identified as enriched for rearrangements in ETS+ cancers 

(FOXP1, RYBP, SHQ1, PTEN, and TP53)34–37, two unreported regions were identified. 

The region chr5:55-59Mb covers the genes PPAP2A, PDE4D, MAP3K1 and IL6ST (Fig. 3). 

In IL6ST we also detected significant enrichment for coding mutations, suggesting this is the 

main target of the aberrations. In chr3:171:178Mb, TBL1XR1 is similarly enriched for both 

rearrangements and truncating mutations.

In ETS- cancers, we confirmed a previously reported enrichment for rearrangements 

containing CHD1(38,39). A target of enriched rearrangements in the region 

chr1:149-158Mb is likely ETV3. In 5/9 cancers, ETV3 was exclusively affected by these 
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events (4 LOH by deletion and 1 by translocation). Additionally, one cancer had a truncating 

mutation (p.R413fs*3) and two had missense mutations (p.A73V and p.L37Q). In total, 12 

patients had localised alteration, 10 of whom had ETS- cancers. Moreover, within the joint 

dataset, there are four cancer samples with truncating mutations in this gene. In contrast to 

ETV4, the nature of variants in ETV3 is indicative of a tumor suppressive role in PCa. 

Manual inspection of the recurrently rearranged region chr3:76-84Mb identified ROBO1 and 

ROBO2 as possible targets (Fig. 3). In total 16/112 samples had an event affecting one or 

other of these genes, and in four samples both were affected. Previously implicated in 

pancreatic ductal adenocarcinoma40, these two genes have not been previously reported in 

the context of PCa.

Events enriched at chr6:80-114Mb indicate that ZNF292 is a possible target. 11/112 patients 

(5 ETS+ and 6 ETS-) had loss of at least one chromosome copy and in two patients there 

was a homozygous loss specifically targeting ZNF292. Moreover, the joint dataset contained 

5/932 samples with a truncating mutation, further suggesting a cancer suppressive function 

for this gene in PCa. Another gene affected by recurrent rearrangements on 6q was SENP6, 

a small ubiquitin-like modifier (SUMO)-specific protease that removes SUMO polypeptides 

from conjugated proteins41, and possibly plays a role in AR function42. Of note, 4/5 

rearrangements in this region affected SENP6 only, leading to a significant reduction in 

expression (Supplementary Fig. 1). Finally, located at chr6:126Mb, the nuclear receptor co-

activator NCOA7 was altered in six samples, one sample having homozygous loss.

Further regions enriched in ETS- cancers were chr2:133-144Mb (LRP1B), chr8:112-114 

(CSMD3) and chr8:40-41Mb (MYST3). The first two genes are very large and fall within 

reported fragile sites43. Nevertheless, preferential enrichment of breakpoints in ETS- 

cancers may suggest either that underlying structure, such as AR binding sites or 

nucleosome structure, or epistatic interactions between ETS fusion and other rearrangements 

affect the occurrence of rearrangements at these loci. Samples containing structural variants 

affecting MYST3 were found to have significantly reduced RNA expression (Supplementary 

Fig. 1).

Timing of copy number aberrations

In order to identify routes to progression in PCa, we developed a novel approach to order the 

occurrence of copy number aberrations by combining information on: the clonality of copy 

number aberrations; timing relative to whole genome duplication; timing of homozygous 

deletions relative to neighboring hemizygous losses. Information from all tumors was 

combined using a Bradley-Terry model, to give the most likely ordering of events. By 

applying a set of logical rules (see Online Methods), we deciphered the temporal ordering of 

subclonal CNAs within each cancer. In general, homozygous deletions appear late in 

oncogenesis, corroborating previous findings that homozygous deletions are associated with 

advanced disease44–46. Clear differences emerge in the evolution of ETS+ and ETS- PCa’s. 

Where present, the deletion between the TMPRSS2 and ERG genes in ETS+ cancers was an 

early (generally clonal) event, as was gain of chr8q within the locus 112 – 137Mb (Fig. 4a). 

The earliest homozygous deletions in ETS+ cancers include chr5: 55Mb-59Mb, 
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corroborating the rearrangements targeting PPAP2A, PDE4D, MAP3K1 and IL6ST, and 

chr10:89Mb-90Mb, which covers PTEN (Figs. 3 and 4a).

In ETS- cancers, losses at chr5:60–100Mb (CHD1 and RGMB), chr13:32-91Mb (which 

includes BRCA2, RB1 and FOXO1), and chr6:73-120Mb are followed by losses at 

chr2:124-142Mb, then by gains at chr3:100-187Mb, and then whole chromosome gain of 

chr7 (Fig. 4b). Loss of CHD1 has been previously implicated in the initiation of ETS- 

prostate cancers, preventing ERG re-arrangement in the prostate38 and our data confirm the 

exclusivity between ETS positivity and homozygous loss of CHD1 (Fig. 4c).

In both ETS+ and ETS- cancers, whole genome duplication (WGD) correlated with loss of 

chromosomal segments at: chr1:94Mb, chr2:140Mb, chr12:12Mb, chr16:85Mb and 

chr17:7Mb (Fig. 4c). From timing analysis, these losses appear to occur co-synchronously 

with WGD in most cases. Gains at chr8:101Mb occurred prior to WGD, chr3:131Mb 

occurred synchronously, and gains at chr7:88Mb tended to follow WGD.

Timing point mutations and indels

SNVs and indels were clustered according to their cancer cell fraction (CCF) using a 

Bayesian Dirichlet process47. The proportion of SNVs identified as subclonal showed 

considerable variation across cancers, but was significantly higher in primary than metastatic 

samples (Fig. 5a, P=0.022, Wilcoxon rank sum test), as was the proportion of subclonal 

indels (P=0.00033) and the fraction of the genome with subclonal copy number aberrations 

(P=0.0037, Supplementary Fig. 2). This is apparent evidence for a bottleneck in acquiring 

metastatic potential rather than a response to treatment, since levels of heterogeneity in 

untreated metastases are no lower than in androgen-deprived metastases (Fig. 5a).

The levels of heterogeneity observed in SNVs and indels were correlated (Fig. 5a, Pearson r 

= 0.57, P=2.3x10-9). Higher levels of heterogeneity were observed amongst indels than 

SNVs (P=2.4x10-8). However, it cannot be ruled out that variant calling of indels may have 

greater sensitivity for low allele frequency variants than calling of SNVs.

Driver SNVs were identified as clonal or subclonal in each sample according to the cluster 

to which they were assigned, with 84 classified as clonal and 22 (21%) as subclonal. Our 

power to detect subclonal mutations is limited by sequencing depth and the real number of 

subclonal driver mutations is likely much higher. The driver mutations identified as 

subclonal include two mutations in APC in the same sample, PD14713a. Interestingly, this 

cancer has undergone clonal loss of one copy of chr5q, followed by mutations in APC in 2 

different subclones (Fig. 5b and Supplementary Fig. 3), suggesting convergent evolution. 

Five other samples each have two subclonal drivers: PD12808a has a missense mutation in 

ZNF292 and an essential splice site mutation in SMAD2; PD13401a has a nonsense 

mutation in PPP1R3A and a mutation in the promoter of NEAT1; PD13402a has a nonsense 

mutation in USP34 and an essential splice site mutation in ABI3BP (Fig. 5b); PD12820a has 

a missense mutation in USP48 and an essential splice site mutation in ASXL2; PD13389a 

has a frameshift mutation in PHF12 and an essential splice site mutation in TBX3 (not 

shown).
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Subclonal mutations are also seen in several common drivers including one in TP53 
(PD13339a) and one in PTEN (PD12840a). On the other hand, SPOP was mutated in 10 

samples, always clonally and always in ETS- tumors (Fig. 2).

Mutational signatures

Analysis of the mutational signatures by non-negative matrix factorisation (NMF) revealed 

that, in addition to the ubiquitous ‘clock-like’ signatures 1 and 5, there was presence of the 

previously described signatures 2, 3, 8, 13 and 1848. Signature-3-positive samples were 

enriched for germline/somatic mutations in BRCA1/2 genes (4/6 samples) as reported 

previously48 (Fig. 1). However, the presence of high levels of microhomology (MH)-

mediated deletions was even more strongly correlated with the presence of BRCA mutations 

(6/6 samples). Separating the mutations into early clonal, late clonal and subclonal epochs, 

as described in Online Methods, revealed that the proportion of signature 1 mutations 

decreases over time, suggesting an increase of cancer-associated mutagenic processes 

relative to innate processes (P=2.2x10-16, test for trend in proportions).

Signature 13, previously associated with the activity of the AID/APOBEC family of cytidine 

deaminases, was over-represented in advanced disease, 45% (9/20) in metastases vs. 14% 

(14/92) in primaries (Fisher exact test, P=5.6x10-3). Similarly, signature 18, which has been 

previously associated with failure of base excision repair and to the accumulation of 

mutations from 8-Oxoguanine damage49, was enriched in advanced disease, 40% (8/20) in 

metastases vs. 11% (10/92) in primaries (Fisher exact test, P=3.8x10-3). In a recent report of 

560 breast cancer whole-genomes, signature 8 correlated with DNA damage repair 

deficiency50. Androgen signalling is known to positively regulate multiple genes involved in 

DNA repair51,52, while androgen deprivation impairs DNA double-strand break repair53. In 

support of these previous reports, the proportion of mutations assigned to signature 8 is 

consistently higher amongst later appearing (subclonal) populations of cells (55% ± 24%) 

than earlier (clonal) populations (28% ± 12%) (t-test, P=1.3×10-4, Supplementary Table 3). 

The proportion of metastases with evidence for the action of signature 8 was higher than that 

for primary tumors, although not reaching statistical significance (8/20 metastases, 25/92 

primaries, Fisher exact test P=0.28). Increased prevalence of DNA-damage related genes in 

metastatic prostate cancer as well as the observations made in this study warrant an 

extensive study of mutational signatures in therapy-naïve disease and CRPC in a larger 

dataset to explore the relevance of check-point inhibition as an alternative therapy for 

advanced prostate cancer.

Clinical correlates

CDH12 and ANTXR2 alterations were significantly associated with time to biochemical 

recurrence (Benjamin-Hochberg adjusted P = 0.0060 (CDH1) & 0.012 (ANTXR2), HR = 

9.3 & 7.7, Cox regression model, Fig. 6), and were significant predictors of biochemical 

recurrence independent of cofactors Gleason, PSA at prostatectomy, and pathological T-

stage (P = 0.00061 (CDH1) & 0.0015 (ANTXR2), HR = 7.3 & 6.5, Cox regression model, 

Supplementary Table 4). A Cox regression model containing a combination of CDH12, 
ANTXR2, SPOP, IL6ST, DLC1 & MTUS1 mutations was determined to be an optimal 

predictor of time to biochemical recurrence and was a significant improvement over a 
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baseline model of Gleason, PSA at prostatectomy, and pathological T-stage (model χ2 test, 

P = 0.00053). The number of mutational signatures identified in a cancer was negatively 

correlated with time to biochemical recurrence in prostatectomy patients (P = 0.014, HR = 

3.0; Cox proportional hazards model on number of processes greater than 3, Supplementary 

Fig. 4) and is an independent predictor (P = 0.0061, HR = 3.6; Cox proportional hazards 

model). The number of SNVs detected was also an independent prognostic biomarker 

(P=0.031, HR=1.005; Cox proportional hazards model). The numbers of both samples and 

events within this study are modest and further analysis of larger cohorts is required to 

establish firmly these findings.

Druggable targets in the prostate cancer disease network

A key opportunity arising from systematic analyses of cancer genomics is the early 

identification of therapeutic intervention strategies. To this end, we applied established 

chemogenomic technologies using the canSAR knowledgebase54 to map and 

pharmacologically annotate the cellular network of the prostate disease genes identified in 

this study. We derived the network using curated protein-protein and transcriptional 

interaction data. We included the protein products of the genes identified in this study and 

other key proteins that directly interact with these proteins or affect their function (see 

Online Methods and Supplementary Fig. 5 for details). This resulted in a focussed prostate 

network of 156 proteins. Each protein was annotated based on multiple assessments of 

‘druggability’, i.e. the likelihood of the protein being amenable to small molecule drug 

intervention (Table 2 and Supplementary Table 5). We find that PCa driver genes are 

embedded in a highly druggable cellular network that contains eleven targets of approved 

therapies and seven targets of investigational drugs. As well as the Androgen Receptor (AR) 

and the Glucocorticoid Receptor (GR), the network contains targets of drugs approved for 

other indications, several of which (e.g. BRAF, ESR1, RARA, RXRA, HDAC3) are under 

clinical investigation for PCa.

Seven proteins within the prostate network are targets of drugs currently in clinical trials. In 

particular, the ataxia-telangiectasia mutated (ATM) inhibitor AZD-0156, currently in Phase 

1 for safety assessment, is a likely candidate for exploration in PCa due to the recently 

described role of DNA damage repair, particularly in advanced PCas21,55. The network 

highlights targets of PI3 Kinase pathway inhibitors (PI3K, AKT1) that are undergoing 

clinical investigation in PCa, as well as IDH1 and MDM2 drug targets.

To give an indication of the potential of these drugs, we analysed the most recent drug 

sensitivity data (GDSC56, see URL below). Eighteen drugs acting on our network were 

URLs
http://www.cancerrxgene.org (GDSC)
http://cansar.icr.ac.uk/cansar/publications/sequencing_prostate_cancers_identifies_new_canc 
er_genes_routes_progression_and_drug_targets/ (link via google chrome)
https://icgc.org/
https://www.ebi.ac.uk/ega/studies/EGAS00001000262
https://github.com/cancerit/dockstore-cgpwgs
https://github.com/Wedge-Oxford/battenberg
http://www.phosphosite.org/
http://archive.broadinstitute.org/cancer/cga/chainfinder
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tested in GDSC on PCa cell lines. Of these, 5 showed significant effect on growth inhibition 

and the remaining13 drugs showed weak activity in at least one cell line (Supplementary 

Table 6). However, to validate fully the potential of these drugs, extensive drug sensitivity 

testing needs to be performed in disease-relevant cancer models that correctly reflect the 

patient population.

Potential future opportunities for PCa therapy are also highlighted by 13 proteins that are 

under active chemical biology or drug discovery investigation (Table 2). These include 

Menin (MEN1), a component of the MLL/SET1 histone methyltransferase complex. Mice 

with MEN1 mutations develop PCa57 and recent data have shown that menin expression is 

involved in CRPC58. A further 49 proteins are predicted to be druggable and therefore 

potentially amenable to drug discovery. These include the known PCa protein SPOP, the 

transcription activator BRG1 (SMARCA4), CDK12, and the CREB binding protein 

CREBBP.

In summary, we find that 80 of the 156 proteins central to the prostate disease network are 

either targets of existing drugs or have the potential to be targeted in the future. To maintain 

an up-to-date-view of this analysis, we provide a link to a live-page in canSAR (see link 

below).

Discussion

The analysis of whole genome sequence data from 112 prostate cancers has revealed many 

of the genetic factors underlying the processes of carcinogenesis, progression, metastasis 

and the acquisition of drug resistance. Supporting evidence has been provided for thirty 

candidate driver genes with limited or no previous support, including the non-coding drivers 

NEAT1 and FOXA1.

Through the timing of genomic aberrations, we have a picture of the possible routes to 

progression in PCa. Most driver mutations may occur either clonally or subclonally, but 

mutations in SPOP and ETS-fusions occur early in cancer development and are exclusively 

clonal. Whereas the gain of 8q and ETS fusion appear to be sufficient to drive a dominant 

clonal expansion, ETS- cancers typically need a combination of large-scale losses, acquired 

over an extended period of time. Known cancer drivers are frequently observed subclonally 

and two competing drivers are seen in several cancers. Metastases have less genomic 

heterogeneity, likely resulting from a bottleneck in achieving metastatic potential.

We observe changes in the mutational processes operative upon cancers during progression. 

Signature 8 was enriched in subclonal expansions, and signatures 13 and 18 were enriched 

in metastatic cancers. Cancers with germline or somatic BRCA1/BRCA2 mutations were 

enriched for signature 3, demonstrating the effect of double-strand repair defects throughout 

cancer evolution.

Losses of CDH12 and ANTXR2 result in poorer recurrence-free survival. We identify 69 

PCa associated proteins that are either targets for currently available drugs or new potential 

targets for therapeutic development.
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Analysis of the whole-genome sequences of over a hundred prostate cancers has started to 

reveal the complex evolutionary pathways of these cancers. The early acquisition of driver 

aberrations including ETS-fusions and whole genome duplications strongly affects the 

acquisition of subsequent aberrations. Acquisition of individual mutations affects both the 

subsequent likelihood of metastasis and response to treatment. Network analyses identified, 

in addition to previously known drivers, targets that could be exploited for clinical 

investigation with existing drugs as well as targets for new drug discovery, giving potential 

for the results of genome analysis to be translated rapidly into therapeutic innovation and 

patient benefit.

Online Methods

Patient Cohorts, Samples and Ethics

We have complied with all relevant ethical regulations. 92 cancer samples from 

prostatectomy patients treated at The Royal Marsden NHS Foundation Trust, London, at the 

Addenbrooke’s Hospital, Cambridge, at Oxford University Hospitals NHS Trust, and at 

Changhai Hospital, Shanghai, China were collected as described previously68,69. Clinical 

details for the patients are shown in Supplementary Table 7. Ethical approval was obtained 

from the respective local ethics committees and from The Trent Multicentre Research Ethics 

Committee. All patients were consented to ICGC standards. (see link below). 20 men from 

PELICAN (Project to ELIminate lethal CANcer)70, an integrated clinical-molecular autopsy 

study of metastatic prostate cancer, were the subjects of the current study. Subjects 

consented to participate in the Johns Hopkins Medicine IRB-approved study between 1995 

and 2005. (Supplementary Table 7). A17 had a germline BRCA1 mutation, as previously 

reported71.

DNA preparation and DNA sequencing

DNA from whole blood samples and frozen tissue was extracted and quantified using a ds-

DNA assay (UK-Quant-iT™ PicoGreen® dsDNA Assay Kit for DNA) following the 

manufacturer’s instructions with a Fluorescence Microplate Reader (Biotek SynergyHT, 

Biotek). Acceptable DNA had a concentration of at least 50ng/μl in TE (10mM Tris/1mM 

EDTA), was between 1.8-2.0 with an OD 260/280. WGS was performed at Illumina, Inc. 

(Illumina Sequencing Facility, San Diego, CA USA) or the BGI (Beijing Genome Institute, 

Hong Kong), as described previously, to a target depth of 50X for the cancer samples and 

30X for matched controls68.

The Burrows-Wheeler Aligner (BWA) was used to align the sequencing data to the GRCh37 

reference human genome72. Sequencing data have been deposited at the European Genome-

phenome Archive (EGAS00001000262).

Variant Calling Pipeline

SNVs, insertions and deletions were detected using the Cancer Genome Project Wellcome 

Trust Sanger Institute pipeline as described previously68. In brief, SNVs were detected 

using CaVEMan with a cut-off ‘somatic’ probability of 95%. Post-processing filters were 

applied. Insertions and deletions were called using a modified version of Pindel73. Variant 
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allele frequencies of all indels were corrected by local realignment of unmapped reads 

against the mutant sequence. Structural variants were detected using Brass68. A positive 

ETS status was assigned if a breakpoint between ERG, ETV1 or ETV4 and previously 

reported partner DNA sequences was detected.

Data availability

Sequencing data that support the findings of this study have been deposited in the European 

Genome-phenome Archive with the accession code EGAS00001000262.(see link below). 

See Supplementary Table 7 for sample specific EGA accession codes.

Code availability

Alignment and variant calling was performed using analysis pipelines in the Cancer Genome 

Project (CGP) at the Wellcome Trust Sanger Institute. Software versions applied to each 

sample are listed in Supplementary Table 9. The CGP pipelines may be downloaded (see 

link below).

Chromoplexy was called using Chainfinder version 1.0.1. Chainfinder may be downloaded 

(see link below)

The Battenberg algorithm was used to call clonal and subclonal copy number aberrations in 

all samples. The Battenberg pipeline may be downloaded (see link below).

Putative drug targets were identified using CanSAR version 3.0.

Data analysis was carried out using R, version 3.0.0.

Mutation burdens

Mutation burdens were compared between primary and metastatic samples and between 

ADT and hormone-naïve samples using a negative binomial generalised linear model 

(GLM), implemented with the R package MASS. Sample type was found to be an 

independent predictor of number of SNVs, as was age at time of sampling.

Timing of copy number events

We developed a novel approach to order the occurrence of copy number aberrations by 

combining three sources of information:

• Clonality of copy number aberrations

• Timing relative to whole genome duplication

• Timing of homozygous deletions relative to neighboring hemizygous losses.

Information from all tumors was combined using a Bradley-Terry model, to give the most 

likely ordering of events during progression of PCa.

The Battenberg algorithm was used to detect clonal and subclonal somatic copy-number 

alterations (CNAs) and to estimate ploidy and cancer content from the next-generation 

sequencing data as previously described74. Briefly, germline heterozygous SNPs were 
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phased using Impute2, and a- and b- alleles were assigned. Data were segmented using 

piecewise constant fitting75 and subclonal copy-number segments were identified via a t-test 

as those with b-allele frequencies that differed significantly from the values expected of a 

clonal copy number state. Ploidy and cancer purity were estimated with the same method 

used by ASCAT76.

In this cohort, we defined WGD samples as those that had an average ploidy greater than 3. 

For tumors that had not undergone WGD, gains were defined as those regions that had at 

least one allele with copy number greater than 1, while losses were defined as those 

segments that undergone LOH. For tumors that had undergone WGD, losses were called in 

those segments with at least one allele with copy number of less than 2, whereas gains were 

called for those with an allelic copy number greater than 2. An extension of this logic was 

used for subclonal copy number segments – the evolving cellular fraction was always 

defined as that which deviated away from overall ploidy (defined as 2 for non-WGD 

samples and 4 for WGD samples). For example, if 75% of cells within a non-WGD tumor 

have a copy number of 3 + 1 at a given genomic loci, with the remaining 25% of cells 

having a copy number of 2 + 1, then we assume there has been clonal gain to 2 + 1, and then 

a subclone containing 75% of cells has undergone a further gain.

Three independent approaches were used to extract evolutionary data from each cancer 

sample. The first involved ordering clustered sub-clonal cancer fractions, the second used 

implicit ordering of clonal HDs in relation to losses, and the third estimated the relative 

timing of whole genome duplication. The logical arguments used within each approach were 

considered in turn:

1. Battenberg algorithm-derived estimates for the cellular fraction and standard 

deviation of each subclonal aberration were input to a Markov Chain Monte 

Carlo hierarchical Bayesian Dirichlet process to group linked events together in 

an unsupervised manner. This defined clusters of different cell populations, each 

present at a calculated cancer cell fraction. The pigeonhole principle was then 

used to determine the hierarchical relationship between these clusters. Using this 

process, gains, losses and HDs were ordered with the following caveat to ensure 

that only independent events are ordered: if there was a clonal and subclonal gain 

(or loss) at the same locus, then only the clonal or initial gain (or loss) was 

ordered.

2. Homozygous deletions have implicitly occurred after loss of heterozygosity at 

the same locus.

3. The parsimony principle was used to define the allele counts that correspond to 

early and late changes in relation to WGD. For losses, if the minor allele copy 

number equals 0, then the loss occurred prior to WGD. Otherwise the loss 

occurred after WGD. Regarding gains, if the major allele copy number is twice 

or greater than ploidy, then the gain occurred prior to WGD. Otherwise, the gain 

occurred after WGD.

The above arguments allow us to gain insights into the order of copy number events within 

each individual tumor sample. To establish a consensus order across a cohort of tumor 
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samples requires the ordering data to be integrated across all samples. As specific copy 

number events (location of breakpoints and the individual copy number states) tend to be 

unique to individual samples, we defined reference copy number segments that occurred 

recurrently. These were then used to build an overall contingency table.

The reference genomic segments were defined as regions that were recurrently aberrant. 

Regions of significant recurrence (false detection rate (FDR), P < 0.05) were determined by 

performing 100,000 simulations, placing the copy number aberrations detected from each 

sample in random locations within the genome. The process was repeated for gains, LOH 

and HDs and the randomly generated copy number landscape compared to that arising from 

this cohort provided significance levels. Each significantly aberrant region was initially 

segmented using all breakpoints from all the events that contributed to that region. For 

instance, the significantly enriched region for LOH: chr8: 0-44Mb contains over 300 

breakpoints drawn from from all the samples which contain LOH at chromosome 8p. We 

computed significantly recurrent regions and reference segments for both ETS+ and ETS- 

sample subgroups.

Performing pair-wise comparisons between all segmented results using the Bradley-Terry 

method described below proved computationally expensive and therefore the total number of 

segments used in the pairwise comparison was rationalised by grouping reference segments 

to make combined segments of minimum length 1 MB.

We then considered each tumor sample in turn. If any copy number event overlapped the 

reference genomic segments and was ordered in relation to any other event (that also 

overlapped regions of significance), those overlapped reference segments were ordered in 

comparison to other overlapped reference segments. In addition to these reference segments, 

the TMRPSS2-ERG deletion was ordered more stringently by considering only those 

segments that could result in the gene fusion, and not merely overlap the locus. In this 

manner, a contingency table of contests was constructed, using reference genomic segments 

as the variables. We built contingency tables for both ETS+ and ETS- tumor samples to 

determine whether their evolutionary trajectory differed significantly.

An implementation of the Bradley-Terry model of pairwise comparison in R77 with bias 

reduced maximum likelihood estimated the ability or overall order of each individual 

reference segment.

Subclonal Analysis

The fraction of each cancer genome with subclonal copy number aberrations was calculated 

as the total amount of the genome with subclonal CNA, as identified by the Battenberg 

algorithm, divided by the total amount of the genome that had copy number aberrations. One 

sample (PD13397a, Supplementary Table 8) was identified as having very low cellularity, as 

it had a completely flat copy number profile and only 411 identified SNVs. Since CNAs 

could not called in this sample, it was not possible to adjust allele frequencies to CCFs and 

this sample was excluded from subclonality analysis. SNVs and indels were separately 

clustered using a Bayesian Dirichlet process, as previously described47. Clonal variants are 

expected to cluster at a CCF close to 1.0. However, in 18 tumors (Supplementary Table 8), 
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there was no cluster in the range [0.95,1.05]. The likely cause of a shift in CCF is inaccuracy 

in copy number calling and these samples therefore failed quality control and were excluded 

from subclonality analysis. From Markov Chain Monte Carlo sampling carried out within 

the Dirichlet process model, the posterior probability of each variant having a CCF below 

0.95 was estimated. Variants with a probability above 80% were designated as ‘subclonal’, 

those with probability below 20% were designated ‘clonal’ and those with intermediate 

probabilities were designated as ‘uncertain’. The fraction of subclonal variants used in Fig. 5 

and Supplementary Fig. 2 was then calculated after excluding uncertain variants.

Mutational Spectra

The mutational spectra, defined by the triplets of nucleotides around each mutation of each 

sample were deconvoluted into mutational processes as previously described48,78. Clonal 

and subclonal variants were separated, as defined above. Further separation of clonal 

mutations was performed for mutations in genomic regions that had undergone copy number 

gains. These mutations were classified as ‘early’ or ‘late’ depending whether their observed 

allele frequencies were more likely to indicate their presence on 2 or 1 chromosome copies, 

respectively, as assessed by binomial probability. Assignment of mutations to mutational 

signatures was carried out on each subset of mutations (early, late, clonal, subclonal), as well 

as on all mutations from each sample (Supplementary Table 3).

Clinical survival analyses

A Cox regression model was fitted to 71 features: every gene with mutations (breakpoints, 

subs or indels) with a potential functional impact (missense, nonsense, start-lost, inframe, 

frameshift, or occurred in a non-coding transcript) or a CNA highlighted by the copy number 

aberration analysis that occurred in three of more prostatectomy patients. The endpoint was 

biochemical recurrence. P-values were adjusted for multiple testing using the Benjamini-

Hochberg method. Multivariate analyses were performed on all genes found to be significant 

using discretised Gleason (6, 7, 8 or 9), pathological T-stage (T2, T3) and PSA at 

prostatectomy as cofactors. Gene selection for the optimal predictor of time to biochemical 

recurrence was determined using Lasso79, a shrinkage and selection method for linear 

regression, starting with all genes that had a significant association with time to biochemical 

recurrence. Standard algorithms were used for survival analyses and statistical associations.

Identifying novel oncogenes

The joint dataset was compiled from the aggregation of variants called within our samples 

with 3 other datasets, yielding a total of 930 samples, comprised of 710 primary and 220 

metastatic samples:

• TCGA4, 425 primary cancer samples, whole exome sequencing with SureSelect 

Exome v3 baits on Illumina HiSeq 2000, average coverage ~100X

• COSMIC database22, 243 samples, curated set of mutations from several 

sources, http://cancer.sanger.ac.uk/cosmic
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• Stand Up to Cancer23 (SU2C-PCF), 150 metastatic castrate resistant samples, 

paired-end, whole exome sequencing with SureSelect Exome v4 baits on 

Illumina HiSeq2000, average coverage ~160X

To identify coding and non-coding drivers from SNVs and indels, we used two previously 

described methods50. Coding drivers on the joint dataset (930 cancers) were identified using 

dNdScv, a dN/dS method designed to quantify positive selection in cancer genomes. dNdScv 

models somatic mutations in a given gene as a Poisson process. Inferences on selection are 

carried out separately for missense substitutions, truncating substitutions (nonsense and 

essential splice site mutations) and indels, and then combined into a global P-value per gene. 

Non-coding recurrence was studied using NBR. Both dNdScv and NBR model the variation 

of the mutation rate across the genome using a negative binomial regression with covariates. 

First, Poisson regression is used to obtain maximum-likelihood estimates for the 192 rate 

parameters (rj) describing each of the possible trinucleotide substitutions in a strand-specific 

manner. rj = nj/Lj, where nj is the total number of mutations observed across samples of a 

given trinucleotide class (j) and Lj is the number of available sites for each trinucleotide. 

These rates are used to estimate the total number of mutations across samples expected 

under neutrality in each element considering the mutational signatures active in the cohort 

and the sequence of the elements (Eh = Σj rjLj,h). This estimate assumes no variation of the 

mutation rate across elements in the genome. Second, a negative binomial regression is used 

to refine this estimate of the background mutation rate of an element, using covariates and 

Eh as an offset. Both methods identify genes or non-coding regions with higher than 

expected mutation recurrence, correcting for gene length, sequence composition, mutation 

signatures acting across patients and for the variation of the mutation rate along the genome. 

A QQ-plot confirmed that P-values obtained from this method in this cohort were not 

subject to inflation and consequent over-calling of driver genes (Supplementary Fig. 6).

Chromoplexy, characterized by highly clustered genomic breakpoints that occur in chains 

and are sometimes joined by deletion bridges, has been shown to be prevalent in PCa25. To 

identify rearrangement drivers, we first used ChainFinder25 to account for any bias towards 

regions with chromoplexy and identified ‘unique’ rearranged regions per sample taking the 

mid-point between all the breakpoints ChainFinder assigns to the same chromoplexy event. 

Next, separately aggregating the ICGC samples with and without ERG fusions, we 

calculated inter-breakpoint distance and performed piecewise constant fitting (PCF)75 to 

identify genomic regions which were recurrently rearranged in multiple samples. 

Rearranged regions with potential functional impact were identified using two criteria: a 

minimum 3-fold difference in the number of SVs per MB of ERG+ and ERG- samples; 

region contains at least one gene with multiple samples with truncating events, i.e. 

homozygous deletion, stop codon, frameshift indel or essential splice site mutation. In 

addition, several identified regions were significantly enriched for LOH in either ETS+ or 

ETS- samples, from copy number analysis (see above). The variants identified in key regions 

are depicted in Fig. 3.

Chemogenomics annotation of the prostate cancer network

To construct the network, we used the 71 protein products of the 73 genes identified in this 

study (hereon referred to as Prostate Proteins) to seed a search for all possible interacting 
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proteins in the canSAR interactome54. This interactome contains merged and curated data 

from the IMeX consortium80, Phosphosite, (see link below) and other databases. It includes:

1) interactions where there were more than two publications reporting experiments 

demonstrating the binary interaction between the two proteins

2) interactions where there is 3D protein structural evidence of a direct complex

3) interactions where there are at least two publications reporting that one protein is 

a substrate of the other

4) interactions where there are at least two papers reporting that one protein is the 

product of a gene under the direct regulatory control of the other

It excludes the following:

A) interactions that were inferred from a large immunoprecipitation experiment 

without follow-up to demonstrate the specific binary interaction

B) interactions inferred from text mining

C) interactions inferred from co-occurrence in publications or from gene expression 

correlation.

The initial prostate cancer seeded network resulted in a large collection of 3290 proteins that 

have some experimental evidence of interacting with at least one Prostate Protein. When we 

added extra proteins into the network, we wanted to ensure that we only add proteins that are 

more likely to function primarily through interaction with the proteins in the network rather 

than just be generic major hubs. To this end, we carried out the following steps: Starting 

with the input (prostate protein) list, we obtained all possible first neighbours. We then 

computed, for each new protein, the proportion of its first neighbours that are in the original 

input list. To define the proteins that are most likely to function through our network, we 

calculated the chances of these proportions occurring in a random network. We did this by 

randomising our interactome 10,000 times and computing how often the observed 

proportions can be achieved by chance (empirical p-value). We corrected the p-values for 

multiple testing and retained only proteins that have corrected FDR p-values less than 0.05. 

(Supplementary Fig. 5). We performed network minimisation to maintain only proteins that 

are strongly connected to more than one Prostate Protein or whose only connection is to one 

of the Prostate Proteins. We identified a Prostate Cancer network of 156 proteins. Using 

canSAR’s Cancer Protein Annotation Tool (CPAT)81, we annotated the 156 proteins with 

pharmacological and druggability data. We labelled proteins that are: 1) targets of approved 

drugs; 2) targets of drugs under clinical investigation, 3) targets of preclinical or discovery 

stage compounds that are active at concentrations equal to or less than 100 nM against the 

protein of interest 4) proteins that we predict to be druggable using our structural 

druggability prediction protocols81–84 but that have few or no published active inhibitors – 

these are potential targets for future drug discovery.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Mutational landscape of prostate cancers.
From top-to-bottom: mutation status of DNA repair genes, ETS fusion status and sample 

type; proportion of mutations assigned to each signature48; number of SNVs identified in 

each sample; proportion of small insertions/deletions associated with microhomology or 

repetitive regions; number of insertions, deletions and complex insertions/deletions in each 

sample; total number of structural variants in each sample, separated into inversions, 

translocations, deletions and tandem duplications. Sample ordering is reported in 

Supplementary Table 7.
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Figure 2. Landscape of driver genes in prostate cancer.
Genes were identified using three different methods: upper panel shows genes that have 

undergone genetic aberration in at least 6 samples (n=112 biologically independent 

samples); middle panel shows genes with aberrations enriched in either ERG+ or ERG- 

cancers (Fisher exact test for PTEN, TP53, SPOP, 3p13, PDE4D, PPAP2A; ROBO1 and 

ROBO2 are in a region enriched for SVs in ETS- tumors; IL6ST is in a region enriched for 

SVs in ETS+ tumors; n=59 ETS+, n=53 ETS biologically independent samples); lower 

panel shows genes enriched in metastatic samples (Fisher exact test, n=20 metastatic, n=98 

primary biologically independent samples). Right-hand bar graphs show the fraction of 

samples bearing each type of aberration. DDR = DNA damage response, ‘hemi.loss’ = loss 

of heterozygosity resulting from copy number change, ‘homo.loss’ = homozygous deletion 

resulting from copy number aberration, ‘two allele loss + sub/indel’ indicates genes in 

triploid regions bearing aberrations of all 3 gene copies. Sample ordering is reported in 

Supplementary Table 7.
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Figure 3. Putative novel driver genes.
Putative drivers are shown in red and genomic aberrations are displayed as: missense SNVs 

– circles; nonsense SNVs – open triangles; essential splice site mutations – open squares; 

indels – closed squares; non-coding mutations – closed triangles; simple SV - yellow cross; 

chromoplexy event – blue cross; region enriched for loss of heterozygosity, with height 

proportional to the number samples containing LOH - pink shading; region enriched for 

homozygous deletions, with height proportional to the number of samples containing 

homozygous deletion – blue shading.
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Figure 4. Temporal evolution of copy number aberrations in ETS+ and ETS- prostate cancer.
For (a) ETS+ cancers (n=45 biologically independent primary cancer samples), and b) ETS- 

cancers (n=47 biologically independent primary cancer samples): Left: The landscape of 

copy number aberrations with genomic loci plotted against fraction of cancers. Loss-of-

heterozygosity is depicted in blue, homozygous deletions in black, gains in red, TMPRSS2-
ERG deletion in brown and whole genome duplication in green. Right: The temporal 

evolution of significantly recurrent (p < 0.05, permutation test with Benjamini-Hochberg 

procedure) copy number aberrations by genomic loci over time (mean with 95% confidence 

intervals, log precedence relative to arbitrary reference). Lower values indicate earlier events 

(c) Pairwise associations among copy number aberrations. Recurrently aberrant regions with 

a false discovery rate < 0.1 are shown. Associations are indicated by odds ratio (OR) with 

brown colors depicting mutually exclusive events and blue-green colors depicting correlated 

events. Genomic loci annotated by: type of aberration (G=gain, L=loss, HD=homozygous 
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deletion); chromosome; median position in Mb. For focal events the putative target genes are 

annotated.
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Figure 5. Heterogeneity and subclonal mutations.
(a) Metastatic tumors have less heterogeneity than primary tumors, whether assessed from 

SNVs or indels. Each dot represents a different sample, colored by sample type. x-axis = 

fraction of SNVs that are subclonal, y-axis = fraction of indels that are subclonal, contour 

lines calculated using R package kde2d. n= 93 biologically independent samples (10 ADT 

metastases, 9 hormone naïve metastases, 74 primary tumors) (b) Samples with multiple 

subclonal mutations in driver genes. Fraction of cancer cells carrying mutation is shown as 

grey histogram for all mutations and as red ovals for mutations in known driver genes. 

Mutations are clustered using a Dirichlet process as previously described47, with thick 

plum-colored lines indicating fitted distribution and pale blue regions indicating 95% 

posterior confidence intervals. Peaks with a subclonal fraction close to 1 are clonal, whereas 

peaks at lower subclonal fractions indicate subclonal mutations.
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Figure 6. Clinical outcome. Kaplan-Meier plots for biochemical recurrence.
Kaplan-Meier plots of recurrent mutated genes where there is a significant correlation with 

time to biochemical recurrence after prostatectomy, CDH12 (left, p=0.006) and ANTXR2 

(right, p=0.012) (Cox regression model; Benjamini-Hochberg multiple testing correction). 

Clinical information was available for 89 prostatectomy samples with WGS data, with a 

median follow up of 1108 days in which biochemical recurrence occurred in 26 patients. 

The mutations in both genes consisted of a frameshift deletion in one sample and structural 

variants in the remaining samples.
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Table 1
Putative driver genes.

Genes were identified in our study using several methods, detailed in the last column: dN/dS; enrichment for 

SVs or CNAs in ETS+ or ETS- cancers; enrichment for truncating mutations or homozygous deletions, 

clinical correlation. From a PubMed literature search, prior evidence for each gene being a driver of prostate 

cancer was classified as ‘low’ if the gene has not been previously reported as playing a role in prostate cancer 

tumorigenesis or progression. Isolated alterations may have been observed or biological evidence for 

importance may have been presented as indicated in the prior evidence column. Prior evidence was classified 

as ‘medium’ for genes reported previously as playing a role in prostate carcinogenesis or progression but 

currently lacking statistical support based on genetic alterations. Evidence considered included presence of 

multiple genetic alterations, SNP associations, and known cancer genes in other tissues. The high confidence 

genes are those that are widely accepted to represent cancer genes and to be altered in prostate cancer: this 

would include genes such as HRAS, SPOP, IDH1 etc. In each case there are two or more of the following: 

statistical verification of higher incidence, biological experiments, clinical correlations, confirmation in 

multiple studies, recognition as cancer genes in other cancer types. dN/dS = non-synonymous: synonymous 

ratio, calculated for all SNVs and indels; dN/dS (missense) = non-synonymous: synonymous ratio, calculated 

for missense SNVs only; SV = structural variant; CNA = copy number aberration; SNV = single nucleotide 

variant; indel = small insertion/deletion; ETS = E26 transformation-specific.

gene Mutation type(s) Previous evidence Prior evidence Evidence in our study

ADAM28 SV, CNA low 59biological evidence SVs and CNA in ETS+

ANTXR2 SV, SNV/indel low none clinical correlation

ASH1L SV, SNV/indel low 25 truncating mutations, SVs in ETS-

CDH12 SV low none clinical correlation

FOXOl CNA low 60biological evidence CNA in ETS-

IL6ST SV low 61biological evidence dN/dS, SVs and CNA in ETS+, clinical 
correlation

LCE2B SNV/indel low none dN/dS (missense)

MAP3K1 SV, CNA low none SVs, CNA in ETS+

MYST3 SV low 25 SVs in ETS-, RNA expression

NCOA7 SV low none SVs in ETS-

NDST4 SNV/indel low none dN/dS (missense)

NEAT1 non-coding low 31biological evidence non-coding

PDE4D SV low 62SNP data SVs and CNA in ETS+

PPAP2A SV low 62SNP data SVs and CNA in ETS+

PPP2R2A SV low 63biological evidence SVs and CNAs in ETS+

ROBO1 SV low 64biological evidence SVs in ETS+

R0B02 SV low 25 SVs in ETS+

RPL11 SNV/indel low 25 dN/dS (missense)

SENP6 SV low 42biological evidence enriched SVs, RNA expression

TBL1XR1 SNV/indel, SV low 65known AR co-regulator 
biological evidence

dN/dS
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gene Mutation type(s) Previous evidence Prior evidence Evidence in our study

USP28 SV, CNA, SNV/indel low none SVs, CNA, SNV/indel

ZNF292 SV, CNA SNV/indel, low 25 enriched SVs, homozygous deletions, 
truncating mutations

ARID1A SNV/indel medium 55 dN/dS

CASZ1 SNV/indel medium COSMIC, TCGA and SU2C dN/dS

CNOT3 SNV/indel medium 67Mut. in leukemia dN/dS (missense)

LRP1B SV, CNA medium 62SNP data SVs and CNA in ETS-

PIK3R1 SNV/indel medium 24 dN/dS

RGMB CNA medium 38deletions CNA in ETS-

TBX3 SNV/indel medium known breast cancer gene dN/dS

ZMYM3 SNV/indel medium COSMIC SU2C dN/dS
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Table 2
Drug targets identified from CanSAR analysis.

Proteins in bold typeface are derived from genes identified as prostate drivers in this study or proteins that 

have a significant known interaction with these proteins.

Target of approved drug

AR, BRAF, ESR1, HDAC3, KCNH2, MAP2K1, NR3C1, RARA, RARB, RARG, RXRA

Target of investigational drug

AKT1, ATM, MDM2, PDE4D, PIK3CA, PIK3CB, TP53

Target being investigated chemically

AHR, BRCA1, CTNNB1, HRAS, IDH1, JUN, MAP3K1, MEN1, NCOR1, NCOR2, NR4A1, PIK3R1, PPP2R2A

Predicted target by structure-based method

ANTXR2, APC, ARNT, ASH1L, BRCA2, CBFA2T2, CDH12, CDK12, CHD1, CREBBP, DLC1, DOCK10, ERG, ETV3, FOXA1, FOXG1, 
FOXO1, FOXO4, FOXP1, GATA1, GATA2, HDGF, HNF4A, IL6ST, KAT6A, KDM4A, KDM6A, KMT2C, KMT2D, NKX3-1, PIAS1, PIAS2, 
PTEN, RB1, RGMB, RNF43, SKI, SMAD2, SMAD3, SMAD4, SMARCA4, SPDEF, SPOP, TBL1X, TBL1XR1, TBX3, TP73, ZBTB16, 
ZHX2
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