SUPPLEMENTARY MATERIAL

A new diarylhexane and two new diarylpropanols from the roots of *Knema globularia*

Uraiwan Sriphana^{*a}, Chavi Yenjai^b, Jittra Suthiwong^c and Kitisak Poopasit^b

^aDepartment of Science and Technology, Faculty of Liberal Arts and Science, Roi Et Rajabhat University, Roi Et 45120, Thailand ^bNatural Products Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand ^cDepartment of Science and Mathematics, Faculty of Industry and Technology, Rajamangala

Department of Science and Mathematics, Faculty of Industry and Technology, Rajamangala University of Technology Isan, Sakon Nakhon Campus, Sakon Nakhon 47160, Thailand

Abstract: A new diarylhexane, kneglobularone B (1) and two new diarylpropanols, kneglobularols A–B (2–3) along with seven known compounds (4–10) were isolated and characterized from the roots of *Knema globularia*. It is the first time to find arylpropyl quinone (4) and isoflavone (8) in Myristicaceae family. In addition, 5 was found for the first time in *Knema* genus. Their structures were elucidated by UV, IR, MS, 1D and 2D NMR techniques. Compound 4 exhibited strong cytotoxicity against the NCI–H187 and MCF–7 cell lines with IC₅₀ values of 3.08 and 6.68 μ g/mL, respectively.

Keywords: Knema globularia, cytotoxicity, diarylhexane, diarylpropanol

*Corresponding author. E-mail address: uraiwan_s49@yahoo.com

Contents

Table S1	¹ H NMR spectroscopic data of 1–3		
Table S2	¹³ C NMR spectroscopic data of 1–3	S 4	
Table S3	Cytotoxicity of selected compounds	S 5	
Figure S1	Key HMBC and $^{1}H^{-1}H$ COSY correlations of 1–3	S5	
Figures S2–3	IR and ¹ H spectra of 1	S 6	
Figures S4–5	13 C NMR and 1 H $^{-1}$ H COSY spectra of 1	S 7	
Figures S6–7	NOESY and HMQC spectra of 1	S 8	
Figures S8–9	HMBC and Mass spectra of 1	S 9	
Figures S10–11	IR and ¹ H NMR spectra of 2	S10	
Figures S12–13	¹³ C NMR and ¹ H– ¹ H COSY spectra of 2	S 11	
Figures S14–15	NOESY and HMQC spectra of 2	S12	
Figures S16–17	HMBC and Mass spectra of 2	S13	
Figures S18–19	IR and ¹ H NMR spectra of 3	S14	
Figures S20–21	¹³ C NMR and ¹ H– ¹ H COSY spectra of 3	S15	
Figures S22–23	NOESY and HMQC spectra of 3	S16	
Figures S24–25	HMBC and Mass spectra of 3	S17	

Table S1. ¹H NMR spectroscopic data of 1–3 [400 MHz, ($\delta_{\rm H}$, mult. and J in Hz)]

Position	1 (CDCl ₃)	2 (CDCl ₃ +CD ₃ OD)	3 (CDCl ₃)
1	2.52, t (8.0)	4.87, dd (10.0, 2.0)	5.08, dd (10.0, 2.8)
2	1.50–1.64, m	1.94–2.14, m	2.12–2.30, m
3	1.22–1.44, m	2.62–2.70, m	2.76–2.86, m
		2.80–2.90, m	2.89–3.02, m
4	1.22–1.44, m		
5	1.50–1.64, m		
6	2.80, t (8.0)		
1'			
2'			
3'		6.32, d (2.0)	6.46, d (2.4)
4'	6.26, s		
5'		6.34, dd (8.4, 2.0)	6.53, dd (8.4, 2.4)
6'	6.26, s	6.85, d (8.4)	7.00, d (8.4)
1''			
2"	6.66, s	6.83, s	
3"			6.49, s
4''		6.83, s	
5''	6.72, d (8.0)		
6''	6.60, d (8.0)	6.89, s	6.63, s
OCH ₂ O	5.92, s		5.91, d (1.6)
CH ₃	2.63, s		
OH-3'	13.00, s		
OH-5'	5.78, br s		
OH–2',2"			6.65, br s
OCH ₃ -4'			3.76, s
OCH ₃ -3"		3.84, s	

Table S2. ¹³C NMR spectroscopic data of **1–3** [100 MHz, (δ_c , Type)]

Position	1 (CDCl ₃)	2 (CDCl ₃ +CD ₃ OD)	3 (CDCl ₃)
1	35.5, CH ₂	78.0, CH	78.0, CH
2	31.5, CH ₂	30.1, CH ₂	27.9, CH ₂
3	28.8, CH ₂	24.6, CH ₂	24.4, CH ₂
4	29.4, CH ₂		
5	32.1, CH ₂		
6	36.2, CH ₂		
1'	147.7, C	113.1, C	114.0, C
2'	115.3, C	155.6, C	154.4, C
3'	161.0, C	103.2, CH	101.8, CH
4'	101.7, CH	155.9, C	159.1, C
5'	165.9, C	108.2, CH	108.5, CH
6'	110.6, CH	129.9, CH	130.2, CH
1"	136.4, C	133.4, C	117.2, C
2"	109.0, CH	119.1, CH	150.0, C
3"	147.4, C	147.1, C	99.4, CH
4''	145.4, C	114.6, CH	148.0, C
5"	108.1, CH	145.5, C	141.3, C
6"	121.1, CH	109.2, CH	106.3, CH
СО	204.2, C		
OCH ₂ O	100.7, CH ₂		101.2, CH ₂
CH ₃	32.1, CH ₃		
OCH ₃ -4'			55.4, CH ₃
OCH ₃ -3"		55.8, CH ₃	

 Table S3.
 Cytotoxicity of selected compounds

Compound	Cytotoxicity (µg/mL)			
Compound	KB	MCF-7	NCI-H187	
1	17.48	inactive ^a	18.42	
4	8.47	6.68	3.08	
5	inactive ^a	inactive ^a	18.09	
7	29.79	ND^b	30.11	
8	inactive ^a	inactive ^a	inactive ^a	
9	25.16	33.50	24.94	
10	25.61	43.55	9.20	
Ellipticine	3.27	_	3.70	
Doxorubicin	0.658	9.72	0.087	
Tamoxifen	_	8.45	_	

^a Inactive at > 50 μ g/mL

^bNo Data

Figure S1 Key HMBC and ¹H–¹H COSY correlations of 1–3

Figure S2 IR spectrum of 1

Figure S3 ¹H NMR spectrum of 1

Figure S4 ¹³C NMR spectrum of 1

Figure S5 ¹H–¹H COSY spectrum of 1

Figure S6 NOESY spectrum of 1

Figure S7 HMQC spectrum of 1

Figure S8 HMBC spectrum of 1

Figure S9 Mass spectrum of 1

Figure S10 IR spectrum of 2

Figure S11 ¹H NMR spectrum of 2

Figure S12 ¹³C NMR spectrum of 2

Figure S15 HMQC spectrum of 2

Figure S16 HMBC spectrum of 2

Figure S17 Mass spectrum of 2

Figure S18 IR spectrum of 3

Figure S19¹H NMR spectrum of 3

Figure S20¹³C NMR spectrum of 3

Figure S21 ¹H-¹H COSY spectrum of 3

Figure S22 NOESY spectrum of 3

Figure S23 HMQC spectrum of 3

Figure S24 HMBC spectrum of 3

Figure S25 Mass spectrum of 3