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Table S1. Energetics of reactions considered in the discussion of the mechanism of elemental lead formation with Pb(dbda) at higher temperatures. The energies are calculated at the temperature of 

298.15 K. 

Reaction 
∆H 

(kJ/mol) 

∆S 

(kJ/K mol) 

∆G  

(kJ/mol) 

PbS deposition reactions 

Pb(btsa)2 + H2S → PbS (s) + 2 H(btsa) -230 0.074 -250 

Pb(dbda) + H2S → PbS (s) + H2(dbda) -300 -0.10 -270 

Pb(dbda) thermolysis 

Pb(dbda) → Pb + 2 N-tert-butylacetaldimine 82 0.088 56 

H2(dbda) → 2 N-tert-butylacetaldimine + H2 150 0.36 43 

Pb(dbda) + H2(dbda) → Pb + H2 + 4 N-tert-butylacetaldimine 240 0.45 110 

Reduction by H2S 

Pb(btsa)2 + H2S → Pb (s) + 2 H(btsa) + ⅛ S8 8.9 -0.073 31 

Pb(dbda) + H2S → Pb (s) + H2(dbda) + ⅛ S8 -41 -0.30 48 

Etching by Pb precursor 

Pb(btsa)2 + PbS (s) → 2 Pb (s) + S(btsa)2 390 -0.32 490 

Pb(dbda) + PbS (s) → 2 Pb (s) + S(dbda) 370 -0.32 470 

Etching by free ligand 

PbS (s) + 2 H(btsa) → Pb (s) + H2 + S(btsa)2 410 -0.27 490 

PbS (s) + H2(dbda) → Pb (s) + H2 + S(dbda) 440 -0.054 460 

PbS (s) + H2(dbda) → Pb (s) + H2S + 2 N-tert-butylacetaldimine 360 0.24 290 

Table continues on the next page → 
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Reaction 
∆H 

(kJ/mol) 

∆S 

(kJ/K mol) 

∆G  

(kJ/mol) 

Reduction by H2 

Pb(btsa)2 + H2 → Pb (s) + 2 H(btsa) -22 -0.046 -8.3 

Pb(dbda) + H2 → Pb (s) + H2(dbda) -71 -0.27 9.3 

Imine thiolysis and oligomerization 

H2S + N-tert-butylacetaldimine → thioacetaldehyde + t-butylamine 27 0.011 24 

H2S + N-tert-butylacetaldimine → ⅓ cis-thioacetaldehyde trimer + 2 t-butylamine -68 -0.12 -32 

H2S + N-tert-butylacetaldimine → ⅓ trans-thioacetaldehyde trimer + 2 t-butylamine -66 -0.12 -30 

Pb(dbda) + 2 H2S → ⅔ cis-thioacetaldehyde trimer + 2 t-butylamine + Pb -55 -0.15 -10 

Pb(dbda) + 2 H2S → ⅔ trans-thioacetaldehyde trimer + 2 t-butylamine + Pb -50 -0.16 -2.3 

Miscellaneous 

H2S → H2 + ⅛ S8 31 -0.027 39 

PbS → Pb + ⅛ S8 240 -0.15 290 

PbS (g) → PbS (s) -230 -0.16 -180 

Pb (g) → Pb (s) -200 -0.11 -170 
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Table S2. Element concentrations measured with TOF-ERDA in PbS films deposited with Pb(btsa)2 and Pb(dbda). The films were deposited 

with 1.0 s precursor pulses and purge durations. The number of deposition cycles was chosen according to Figure 1c so that the target 

thickness was approximately 100 nm. 

 
Pb(btsa)2 – H2S process 

Pb(dbda) – H2S process 

Dep. 

Temp. 
65 °C 75 °C 95 °C 115 °C 45 °C 60 °C 75 °C 95 °C 115 °C 135 °C 155 °C 

Pb 

[at. %] 

50.5 

± 0.3 

50.3 

± 0.3 

50.3 

± 0.3 

46.5 

± 0.4 

45.5 

± 0.3 

46.4 

± 0.3  

48.0 

± 0.3  

48.0 

± 0.3 

59.7 

± 0.5 

75.3 

± 0.5 

79.8 

± 0.5 

S 

[at. %] 

47.0 

± 0.4 

47.4 

± 0.5 

47.1 

± 0.5 

48.7 

± 0.6 

51.6 

± 0.5 

51.6 

± 0.5 

50.5 

± 0.4 

47 

± 0.5 

33.5 

± 0.6 

19.7 

± 0.4 

16 

± 0.3 

O 

[at. %] 

1.49 

± 0.08 

1.32 

± 0.08 

1.32 

± 0.09 

2.78 

± 0.15 

1.04 

± 0.07 

0.95 

± 0.06 

0.8 

± 0.06 

3.6 

± 0.2 

4.9 

± 0.2 

3.9 

± 0.2 

3.5 

± 0.2 

C 

[at. %] 

0.21 

± 0.03 

0.22 

± 0.04 

0.27 

± 0.04 

0.53 

± 0.07 

0.46 

± 0.05 

0.26 

± 0.04 

0.26 

± 0.03 

0.54 

± 0.07 

0.56 

± 0.08 

0.18 

± 0.04 

0.23 

± 0.05 

H 

[at. %] 

0.77 

± 0.19 

0.73 

± 0.20 

1.00 

± 0.24 

1.47 

± 0.35 

1.39 

± 0.11 

0.79 

± 0.12 

0.48 

± 0.05 

0.88 

± 0.15 

1.3 

± 0.2 

0.89 

± 0.12 

0.51 

± 0.08 

S/Pb ratio 
0.93 

± 0.01 

0.94 

± 0.01 

0.94 

± 0.01 

1.05 

± 0.02 

1.13 

± 0.01 

1.11 

± 0.01 

1.05 

± 0.01 

0.98 

± 0.01 

0.56 

± 0.02 

0.26 

± 0.02 

0.20 

± 0.02 
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Table S3. Band gaps of PbS thin films reported in literature. Feature size refers either to crystallite size or to grain size depending on the 

method used for its determination. 

Band gap 

(eV) 

Band gap 

Method 

Range 

examined (eV) 

Film thicknesses 

(nm) 

Feature size 

(nm) 

Feature size 

Method 
Reference 

1.4 – 1.7 Tauc 0.8 – 4.5 200 - - Lee et al.1 

0.9 – 1.6 Tauc 0.6 – 2.0 200 16 – 52 Scherrer Yeon et al.2 

1.4 – 1.6 Tauc - - - - Kaci et al.3 

0.4 – 1.5 Tauc 0.4 – 3.0 120 – 400 
70 – 90 Scherrer 

Sadovnikov et al.4 
40 – 70 SEM 

1.7 Tauc 1.1 – 3.5 100 - - Kotadiya et al.5 

2.5 – 2.7 Tauc 1.1 – 3.1 93 - 110 60 – 217 SEM Göde et al.6 

2.7 Tauc 1.0 – 3.0 750 50 SEM Filho et al.7 

1.5 Tauc 1.0 – 2.0 170 100 SEM Mohanty et al.8 

0.8 – 1.3 Tauc 0.6 – 1.5 250 – 400 30 – 40 Scherrer Hone et al.9 

1.8 Tauc 1.4 – 2.0 - 20 – 60 SEM Cheraghizade et al.10 

1.0 – 1.2 Tauc 0.4 – 1.4 550 
7 – 30 

Williamson-

Hall Veena et al.11 

400 – 600 SEM 

1.7 – 2.3 Tauc 1.0 – 3.0 600 – 1000 17 – 44 Scherrer Abbas et al.12 

1.2 – 1.8 Tauc 0.4 – 2.8 150 20 – 30 Scherrer Motlagh et al.13 

1.2 – 1.5 Tauc 1.0 – 2.0 - 10 – 30 Scherrer Thangavel et al.14 

1.0 – 1.4 Tauc 1.0 – 3.5 110 – 220 - - Gonzalez et al.15 

0.4 – 2.8 STM n/a 2 – 16 30 – 150 SEM Dasgupta et al.16 
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Figure S1. Photographs of PbS films deposited with Pb(btsa)2 and H2S at 65 °C. Precursor pulse and purge durations were 1.0 s and the 

number of applied deposition cycles was 1000. PbS films deposited with Pb(dbda) and H2S have similar appearance. Substrate size is 5 x 5 

cm. 
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Figure S2. GPC as function of the purge duration between precursor pulses. In these experiments precursor pulse durations were fixed at 

1.0 s and the number of cycles at 1000. Purge duration after both precursor pulses was varied. For example 0.5 s purge duration corresponds 

to a process cycle consisting of 1.0 s lead precursor pulse, 0.5 s purge, 1.0 s H2S precursor pulse and 0.5 s purge. 
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Figure S3. PbS film thickness on sapphire as a function of applied deposition cycles. Films deposited with 1.0 s precursor pulses and purge 

durations. 
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Figure S4. XRR thickness maps with 0.5 cm edge exclusion of films deposited on 5 x 5 cm2 Si substrates. a) and b) are measured from PbS 

films deposited with 1000 cycles, 1.0 s precursor pulses and 2.0 s purge durations with Pb(btsa)2 at 75 °C and Pb(dbda) at 60 °C respectively. 

c) is from a reference Al2O3 film deposited with trimethylaluminum (TMA) and water at 200 °C with 1000 cycles, 1.0 s precursor pulse and 

purge durations. In d) half of the substrate holder of the F120 ALD reactor with precursor inlets and exhaust marked with arrows is shown. 

If the leading edge (top 1.5 cm of the film) is excluded from the analysis, the thickness nonuniformities become 1.8 %, 2.0 % and 1.1 % for 

PbS made with Pb(btsa)2, PbS made with Pb(dbda) and Al2O3 respectively. 
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Figure S5. Impurity element concentrations measured with TOF-ERDA are shown in (a) and (b) for films made with Pb(btsa)2 and Pb(dbda) 

respectively. (c) and (d) show typical TOF-ERDA depth profiles. In (c) the film was deposited with Pb(btsa)2 at 75 °C and in (d) with 

Pb(dbda) at 60 °C. The films were deposited with 1.0 s precursor pulses and purge durations. The number of deposition cycles was chosen 

according to Figure 1c so that the target thickness was approximately 100 nm. 
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Figure S6. GPC of the PbSx film deposited on silicon at 135 °C as a function of (a) Pb(dbda) precursor pulse duration, (b) H2S pulse duration 

and (c) purge durations. (d) shows PbSx film thickness on silicon as a function of applied deposition cycles. Unless otherwise evident, data 

is from films deposited with 1500 cycles, 1.0 s precursor pulses and purge durations. In (c) purge duration after both precursor pulses were 

varied. For example, 0.5 s purge duration corresponds to a process cycle consisting of 1.0 s lead precursor pulse, 0.5 s purge, 1.0 s H2S 

precursor pulse and 0.5 s purge. In all depositions a thin underlayer (ca. 1.6 nm) and overlayer (ca. 3 nm) of Al2O3 was deposited prior to 

and after the PbS deposition. The Al2O3 was deposited with 1.0 s precursor pulse and 4.0 s purge durations. 25 and 50 cycles were used for 

the underlayer and overlayer respectively. 



S10 

 

20 30 40 50 60

(3
1
1
)

1 s Pb(dbda), 1 s H2S

15 s Pb(dbda), 1 s H2S

In
te

n
s
it
y
 (

a
.u

.)

2q (°)

15 s Pb(dbda) no H2S

(2
2
2
)

(2
2
0
)

(2
0
0
)

(1
1
1
)

(2
0
0
)

(1
1
1
)

(2
2
0
)PbS

Pb

20 25 30 35 40 45 50 55 60

0.5

1.0

1.5

(3
1
1
)

(2
2
0
)

(2
0
0
)

(1
1
1
)

(2
0
0
)

(1
1
1
)

2q (°)

H
2
S

 p
u
ls

e
 d

u
ra

tio
n

 (
s)

2
0

0
.0

2
6
5
0

5
1
0
0

7
5
5
0

1
0
0
0
01

.2
4

5
E

+
0

4
1

.4
9

0
E

+
0

4
1

.7
3

5
E

+
0

4
1

.9
8

0
E

+
0

4

Intensity (a.u.)(2
2
0
) PbS

Pb
(a)

Pb(dbda) at 135 °C

(b)

1.0  0.9  1.0

1.0  0.9  1.0

(e)

(c)

20 25 30 35 40 45 50 55 60

0.5

1.0

1.5

2q (°)

P
u

rg
e

 d
u

ra
tio

n
 (

s)

2
0

0
.0

2
8
3
8

5
4
7
5

8
1
1
3

1
.0

7
5

E
+

0
4

1
.3

3
9

E
+

0
4

1
.6

0
3

E
+

0
4

1
.8

6
6

E
+

0
4

2
.1

3
0

E
+

0
4

Intensity (a.u.)(3
1
1
)

(2
2
0
)

(2
0
0
)

(1
1
1
)

(2
0
0
)

(1
1
1
)

(2
2
0
) PbS

Pb

(f)

Pb(dbda) 1 s Si           15 s Si                1 s glass             15 s glass

1 mm

1.0  0.9  1.0

20 25 30 35 40 45 50 55 60

2.5

5.0

7.5

10.0

12.5

15.0

2q (°)

P
b

(d
b

d
a

) 
p

u
ls

e
 d

u
ra

tio
n

 (
s)

0
.0

0
0

1
.2

3
1

E
+

0
4

2
.4

6
3

E
+

0
4

3
.6

9
4

E
+

0
4

4
.9

2
5

E
+

0
4

6
.1

5
6

E
+

0
4

7
.3

8
8

E
+

0
4

8
.6

1
9

E
+

0
4

9
.8

5
0

E
+

0
4

Intensity (a.u.)(3
1
1
)

(2
2
0
)

(2
0
0
)

(1
1
1
)

(2
0
0
)

(1
1
1
)

(2
2
0
) PbS

Pb

(d)

 

Figure S7. Contour profile maps of grazing incidence XRD (GIXRD) data for PbSx films deposited on silicon at 135 °C as a function of (a) 

H2S pulse duration, (b) purge durations and (c) Pb(dbda) precursor pulse duration. (d) shows GIXRD of films deposited with 15 s and 1 s 

Pb(dbda) pulse durations as well as a reference where only Pb(dbda) was pulsed for 15 s separated by 1.0 s purges. (e) Photographs of PbSx 

films deposited on Si and soda lime glass with 1.0 s and 15 s Pb(dbda) pulse durations. Vermillion dots and numbers are resistivities in mΩ 

cm measured at that site. (f) FESEM image of a PbSx film deposited with 15 s long Pb(dbda) pulse durations. Unless otherwise evident, data 

is from films deposited with 1500 cycles, 1.0 s precursor pulses and purge durations. In (b) purge durations after both precursor pulses were 

varied. For example, 0.5 s purge duration corresponds to a process cycle consisting of 1.0 s lead precursor pulse, 0.5 s purge, 1.0 s H2S 

precursor pulse and 0.5 s purge. In all depositions a thin underlayer (ca. 1.6 nm) and overlayer (ca. 3 nm) of Al2O3 was deposited prior to 

and after the PbS deposition. The Al2O3 was deposited with 1.0 s precursor pulse and 4.0 s purge durations. 25 and 50 cycles were used for 

the underlayer and overlayer respectively. 
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Figure S8. FESEM images of PbS films deposited at different temperatures with the Pb(btsa)2 – H2S process using 1.0 s precursor pulses 

and purge durations. The number of deposition cycles was chosen according to Figure 1c so that the target thickness was approximately 100 

nm. 
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Figure S9. FESEM images of PbS films deposited at different temperatures with the Pb(dbda) – H2S process using 1.0 s precursor pulses 

and purge durations. The number of deposition cycles was chosen according to Figure 1c so that the target thickness was approximately 100 

nm. Note different magnifications in (h) and (i). 
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Figure S10. Transmittance of ca. 100 nm thick PbS films deposited on sapphire with (a) Pb(btsa)2 and (b) Pb(dbda) at different temperatures. 

(c) Transmittance of PbS films deposited on sapphire with Pb(dbda) at 60 °C and different number of deposition cycles. (d) and (e) Tauc 

plots constructed from (a) and (b) respectively. (c) Optical band gaps of PbS films on sapphire as a function of deposition temperature 

extracted from Tauc plots in (d) and (b). Dashed grey lines in (a-c) separate wavelength ranges measured with different instruments. All 

films were deposited with 1.0 s precursor pulses and purge durations. 
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Figure S11. FESEM images of PbS films deposited with different number of cycles. The films were deposited at 75 °C with the Pb(btsa)2 – 

H2S process using 1.0 s precursor pulses and purge durations. 
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Figure S12. Contour profile maps of out of plane (a, d) and in-plane (b, e) XRD data for PbS films deposited with Pb(btsa)2. In (a) and (b) 

films are ca. 100 nm thick. In (d) and (e) films were deposited at 75 °C. All films were deposited with 1.0 s precursor pulses and purge 

durations. (c) and (f) show the unit cell of PbS (lead is black, sulfur is yellow), list equivalent lattice planes for a cubic unit cell that belong 

to the {200}, {111}, {220} families and show an example of a pair of perpendicular lattice planes that can be observed in the out of plane 

and in-plane measurements. Note that for {111} and {220} families only the following planes are perpendicular: (111) ⊥ (2̅20), (02̅2), 

(2̅02), (22̅0), (022̅), (202̅); (1̅11) ⊥ (220), (202), (22̅̅̅̅ 0), (2̅02̅), (02̅2), (022̅); (11̅1) ⊥ (220), (022), (22̅̅̅̅ 0), (022̅̅̅̅ ), (2̅02), (202̅); (111̅) ⊥ 
(022), (202), (022̅̅̅̅ ), (2̅02̅), (2̅20), (22̅0). 
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Figure S13. Out of plane and in-plane crystallite sizes in ca. 100 nm thick PbS films deposited with Pb(btsa)2. All films were deposited with 

1.0 s pulse and purge durations. 
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Figure S14. (a) Log (1/T) plots of PbS films deposited on sapphire with Pb(btsa)2 at 75 °C and different number of cycles. (b) Log (1/T) 

plots of ca. 100 nm thick PbS films deposited on sapphire with Pb(btsa)2 at different temperatures. (c) Log (1/T) plots of PbS films deposited 

on sapphire with Pb(dbda) at 60 °C and different number of cycles. (d) Log (1/T) plots of ca. 100 nm thick PbS films deposited on sapphire 

with Pb(dbda) at different temperatures. (e) Interband transitions energies obtained from Log (1/T) plots in (b) and (d) as a function of 

deposition temperature. (f-h) Tauc plot of ca. 100 nm PbS film deposited on sapphire with Pb(btsa)2 at 75 °C. Note that changing the 

examined energy range and Tauc property scale ((αhν)2, y-axis) allows fitting three different energies ca. 0.5 eV, 1.6 and 2.5 eV which 

correspond to E0, E1 and E2 transitions respectively. In the analogous log (1/T) plot, see for example (b), features corresponding to these 

transitions are immediately visible without extensive rescaling. In all figures dashed gray lines are reference energy values by Cardona et 

al.17 All films were deposited with 1.0 s pulse and purge durations. 
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Figure S15. GIXRD pattern of a MAPI (CH3NH3PbI3) film before and after 1000 cycles of 1.0 s long H2S pulses separated by 3.0 s long 

purges at 50 °C. 
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Figure S16. GIXRD patterns of samples where PbS was deposited with Pb(btsa)2 at different temperatures on MAPI films on silicon 

substrates. PbS was deposited with 1000 cycles, 1.0 s precursor pulses and purge durations. 
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Figure S17. GIXRD patterns of samples where PbS was deposited with Pb(dbda) at different temperatures on MAPI (CH3NH3PbI3) films 

on silicon substrates. PbS was deposited with 1000 cycles, 1.0 s precursor pulses and purge durations. 
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Figure S18. GIXRD patterns of MAPI film stored in ambient air. 
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Figure S19. Cross-section SEM image of a PbS capped MAPI and EDS line scans along the purple line. PbS was deposited with Pb(dbda) 

at 45 °C with 1000 cycles of 1.0 s long pulse and purge durations. To examine the cross section the sample was broken in half after being 

stored in air for 413 days. The EDS line scan data was smoothed (adjacent averaging) for clarity. Note also the partial overlap between PbMα 

and SKα lines. 
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Figure S20. GIXRD patterns of a MAPI film capped with a PbS film and stored in ambient air. PbS was deposited with Pb(dbda) at 45 °C 

with 1000 cycles and 1.0 s precursor pulses and purge durations. The capping film thickness estimated from GPC on Si is 66 nm. 
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Figure S21. GIXRD patterns of a MAPI film capped with a PbS film and stored in ambient air. PbS was deposited with Pb(btsa)2 at 65 °C 

with 1000 cycles and 1.0 s precursor pulses and purge durations. The capping film thickness estimated from GPC on Si is 50 nm. 
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Figure S22. GIXRD patterns of a MAPI film capped with an Al2O3 film and stored in ambient air. Al2O3 was deposited with the TMA - 

H2O process at 65 °C with 800 cycles, 1.0 s precursor pulses and 4.0 s purge durations. The capping film thickness estimated from GPC on 

Si is 52 nm. 
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Figure S23. (a) Oxygen transmission rates and (b) water vapor transmission rates for bare BoPET and BoPET with an ALD film deposited 

on it. Al2O3 films were deposited with 1.0 s precursor pulses and 4.0 s purge durations. PbS films were deposited with 6.0 s precursor pulses 

and 3.0 s purge durations. 
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Figure S24. (a) 3D model and (b) photograph of an adapter machined from Al for depositions on BoPET. (c) BoPET after PbS deposition 

without using the adapter. The polymer had moved and bent inside the substrate cassette, causing a partial blockage of the gas flow. (b) 

BoPET after PbS deposition with the adapter. 
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