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In this manuscript I attempt to produce the most fundamental descrip-
tion of physics and reality I believe to be possible. Specifically, using
algorithmic information theory, statistical physics and entropy as my
tools, my strategy is to define reality as the ensemble of all realized
experiments (the ensemble of what "I" has indubitably proven), the do-
main of science as the set of all realizable experiments (the set of what
"I" could prove) and finally nature as the group of all possible transfor-
mations of the ensemble. Then, at its most fundamental level, physics is
—quite simply— the probability measure that makes reality maximally
informative (to "I"/ the observer) within the domain of science and un-
der the constraint of nature. The procedure yields novel physics in the
form of the mathematical origin of (an extended version of) the Born
rule as the probability measure connecting the domain of science to re-
ality, while the geometry of space-time itself is automatically emergent
in the structure of said extended Born rule; a process which, notably, is
self-limited to precisely four space-time dimensions. Thus producing,
automatically, uniquely and necessarily, the equations for the familiar
four-dimensional geometric quantum mechanical universe as the in-
escapable result of applying a formalization of the practice of science to
an indubitable description of reality.
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Notation

Parentheses will be used to denote the order of operations and
square brackets will be used exclusively for the inputs to a map.
For instance a map f : X → R will be written as f [x] for x ∈ X. S
will denote the entropy, S the action, L the Lagrangian, and L the
Lagrangian density. Sets, unless a prior convention assigns it another
symbol, will be written using the blackboard bold typography (ex:
L, W, Q, etc.). Matrices will be in bold upper case (ex: A, B), whereas
vectors and multivectors will be in bold lower case (ex: u, v, g) and
most other constructions (ex.: scalars, functions) will have plain ty-
pography (ex. a, A). The identity matrix is I, the unit pseudoscalar
(of geometric algebra) is I and the imaginary number is i. The Dirac
gamma matrices are γ0, γ1, γ2, γ3 and the Pauli matrices are σx, σy, σz.
The basis elements of an arbitrary curvilinear geometric basis will
be denoted e0, e1, e2, . . . , en (such that eν · eµ = gµν) and if they are
orthonormal as x̂0, x̂1, x̂2, . . . , x̂n (such that x̂µ · x̂ν = ηµν). The asterisk
z∗ denotes the complex conjugate of z, and the dagger A† denotes
the conjugate transpose of A. A geometric algebra of n dimensions
over a field F is noted as Gn(F). We note the matrix representation
of a multivector g as M[g], defined as a map M : Gn(F) → M(n, F)
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which equates the geometric product to the matrix product, and thus
benefits from group isomophism. The grades of a multivector will
be denoted as 〈v〉k. Specifically, 〈v〉0 is a scalar, 〈v〉1 is a vector, 〈v〉2
is a bivector, 〈v〉n−1 is a pseudovector and 〈v〉n is a pseudoscalar.
Furthermore, a scalar and a vector 〈v〉0 + 〈v〉1 is a paravector, and a
combination of even grades (〈v〉0 + 〈v〉2 + 〈v〉4 + . . . ) or odd grades
(〈v〉1 + 〈v〉3 + . . . ) are even-multivectors or odd-multivectors, re-
spectively. The commutator is defined as [A, B] := AB − BA and
the anti-commutator as {A, B} := AB + BA. We use the symbol
∼= to relate two sets that are related by a group isomorphism (ex:
G4(C) ∼= M(4, C)).

1 Anti-pattern: postulating a path to reality

Nearly all currently available physical theories are formulated as
a list of axioms such that each corresponds to a law, and said laws
are justified based on the analysis of empirical data. The archetypal
example is special relativity which postulates an invariant inter-
val between any two space-time events, justified primarily under
the repeated failure of the Michelson-Morley experiments. Another
example would be electricity and magnetism that was empirically
identified decades, if not centuries, before they were integrated in a
unified basis by Maxwell, such that four (relatively simple) laws are
now the axioms. Finally, a third example would be Dirac–von Neu-
mann axioms that defines quantum mechanics in terms of operators
acting on a Hilbert space, justified under at least two decades of prior
accumulated empirical data.

These physical laws are made formal within a choice of mathe-
matical framework: popular ones include manifolds, linear algebra or
Hilbert spaces. Since these mathematical frameworks are formulated
as structures layered on top of structures (for instance manifolds
are layered on topology which is layered on set theory) and that the
laws of physics are at the very end, one seems invited to ask: can we
eventually get reality by postulating enough stacks? As Exhibit A,
consider a recent book, titled "The Road to Reality: A complete guide
to the laws of the universe" by Roger Penrose3, spanning over 1123

3 Roger Penrose. The road to reality: A
complete guide to the laws of the universe.
Random house, 2006

pages organized in 32 chapters from natural numbers to complex
numbers to manifolds to quantum field theory (and beyond!). At
each step of the way, the author introduces a few more mathematical
concepts (in the forms of postulates or definitions) with the goal to
bring us ever closer to ’reality’. If one’s goal is to postulate one’s way
to reality, then Roger Penrose is definitely the man to speak to. His
book embodies, in my opinion, the most complete work in line with
this methodology. But full stop, near the end on page 1033, Roger
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Penrose ends with the following conclusion:

"I hope that it is clear, [...] our road to the understanding the nature of
the real world is still a long way from its goal."

then continues with:

"If the ‘road to reality’ eventually reaches its goal, then in my view
there would have to be a profoundly deep underlying simplicity about
that end point. I do not see this in any of the existing proposals."

Penrose erects what is possibly the highest and most complete
"tower of postulates" produced thus far, and then, as expected, con-
cludes that he does not see a road to reality in any of the proposals.
So... why does tower-building not achieve the desired goal of bring-
ing us closer to reality? What’s truly missing?

I’ve nearly always harbored the intuition that postulating an equa-
tion (or generally a law, or set of laws) to be true (in the axiomatic
sense) is a fatal mistake that necessarily disconnects the formalism
from reality, because —in reality— it is the laws that are derived
and it is reality that is axiomatic. That is, postulating an empirically-
derived law is not only an oxymoron (i.e. a postulated derived law),
but more than that, it is the fundamental anti-pattern that erases real-
ity from the equations. If you will allow, I will give my best attempt
to explain my reasoning behind why I think that to be the case.

"An anti-pattern is a common response to a recurring problem that is
usually ineffective and risks being highly counterproductive."4 4 D Budgen. Software design . harlow,

uk, 2003; and Scott W Ambler. Process
patterns: building large-scale systems using
object technology. Cambridge university
press, 1998

My earliest memory of thinking about this was on my second
day of school, but before I can explain what happened and why it
happened I need to lay out the context leading up to it. So, please
allow me to share this anecdote — I promise it will be relevant. My
father’s strategy of choice to prepare me for the world was, I would
summarize, to "sync my mind to reality" by constantly trying to
transform the environment against my expectations (often while
I wasn’t looking). I believe that he intuitively felt that by permut-
ing over all possible (reasonable) states of the environment was the
best and possibly only way to make sure I would not develop an
idea that is "disconnected from reality". Essentially, he attempted to
falsify whatever expectations of reality I would derive from my in-
ternal model of reality. A specific example that comes to mind was
one Easter when he brought a large chocolate bunny home and two
smaller ones for myself, himself and my mother, respectively. I ate
a tiny little bit around the ear of my chocolate bunny, then safely
placed it in the cupboard. On the next day I woke up to find that half
of my bunny was eaten, and my father is insisting that I am the one
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who ate it yesterday. Upon my objection, he insisted that I am just
confused about the quantity I ate, causing me to ponder on whose
memories can be trusted more; his or mine, and how would I know.
This is just a small example, but ’tricks’ of this nature were made on
a daily basis. To cope with these random transformations and con-
stant requisitioning of the assumptions, I came to the conclusion that
I had to train myself not to inject any of my biases into my expecta-
tions of the world and, instead to simply accept that the present state
of the world is the undeniable foundation to reality; any expectations
I might have of its future states (and in the extreme case even my
memory of past states could be questioned) can be no less than the
set of all ’physically-permissible’ rearrangement of the environment.
Consequently, I reasoned that the best case strategy to adopt in the
wild was to assign a likelihood to each scenario and to preferably
have a backup plan for most undesirable scenarios so as to amortize
the risk/fluctuations over time. My intuitive mental foundation to re-
ality was that the instantaneous state of the system is the only arbiter
of truth for the system — everything else is up to questioning.

On my first day of school, the teacher taught us that one plus one
equals two (and showed us how to work the symbols out as an equal-
ity). I remember being so flabbergasted by the genius of this equation
that I barely slept during the night. Then, on the second day, the
teacher extended this concept to all the numbers: "We learned yes-
terday that one plus one equals two, but it also works with two plus
three equals five, and with three plus one equals four, and so on".
Then at some point she said, "and this is why if you take a rock from
outside and then grab another rock, you will have two rocks in your
hand". As soon as she say that, my face changed completely. I could
not understand why she seemingly conceived of the relationship
between ’rules on a blackboard’ and ’reality’ in the opposite logical
direction of its true entailment. Of course, at that age I wasn’t able
to articulate that thought using the language that I use in the present
text — I just had the intense intuition that she misunderstood some-
thing fundamental about reality and therefore her statements had to
be verified before they could be trusted. So during the lunch break
(for about 1.5 hours) I set out to do just that. I picked up rocks from
the schoolyard and added them all out, permuting over the differ-
ent arrangements I could construct and by so doing, verified a (tiny)
subset of arithmetic. Okay, so I have established that it works with
rocks, but does it work with... branches? So I went to get branches,
and verified it again, and sure it worked for branches too. One of
the other kids asked me what I was doing and I told him that I was
trying to verify that what the teacher had said was true. He asked,
surprised, "oh. You don’t believe her?". I responded along the lines
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of: "I am almost certain that she is right, but I cannot take the risk
to take it on faith". Eventually, the bell rang and I ran out of time.
Back in class began a long process of ruminating over what had tran-
spired. Before I could continue with the program, I had to somehow
grind away at the claim that all arithmetical permutations of num-
bers holds in reality. Clearly, it works with small numbers; I in fact
just recently verified it in the schoolyard. For numbers larger than
what I could personally verify, I convinced myself of the somewhat
reasonable argument that possibly millions of other human beings
where taught these equations before me and themselves have surely
verified very exhaustively the claims. However, I reckoned that there
was still a limit (a very large one indeed) beyond which arithmetic
statements remain unverified by anybody. And an even a larger limit
beyond which nobody ever could (presuming that the resources of
our universe are finite). I could not rule out the fact that, outside
some verifiable boundary, arithmetic holds some statement to be true
that are outside the scope of reality. Thus I held as stringly suspect
even something as seemingly banal as the inclusion of ’unbounded’
arithmetic within the "tower of postulates" of reality.

During the following school years, I developed and nurtured a
healthy existential angst regarding our willingness to use an un-
scoped axiomatic basis (first with arithmetic, but eventually with any
mathematical or physical theory) which I know does not connect ex-
actly to reality in its infinite scope. I tried to express my concerns a
number of times with my teachers, but I do not think I made myself
sufficiently clear as I recall one of the responses to be that I would
learn all about rocks in the third year of high school. So I waited to
let the program unfold expecting an eventual deconstruction of the
disconnected tower of postulates in some upcoming more advanced
classes, but the deconstruction never came; instead the complexity
simply piled up; from natural numbers, to classical mechanics to
eventually quantum field theory and everything in between. Then,
when I was presented with string theory (and its competitors) as the
next and possibly final step, I called quit. It would take me years to
merely acquire the technical language sufficient to describe the prob-
lem, then to pinpoint exactly what causes it, and finally to produce a
proposal able to cure it.

Returning to the question at hand, I do not share the belief that
building a tower of postulates will ever bring us closer to reality.
All "tower-builders" make the same fundamental critical mistake:
they assume that reality comes from the tower, and if it doesn’t, then
they reckon that it simply means that the tower must be patched and
improved until it does. This reversed logical entailment came to be
the primary mode of mathematical construction of physical theories;
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from Newton to quantum field theory and almost everything in
between. As an example, let us consider Newton’s second law of
motion, mathematically expressed as follows:

∑
F∈F

F = ma (1)

To come up with such a law, one presumes that Newton at least
reviewed the published experimental data of his time, in addition
to have conducted numerous experiments of his own. So clearly
the law is logically entailed by ’something’, and that ’something’ is
empirical evidence. How shaky then is the logical foundation of a
theory that claims that a law (known to be derived from ’something’)
is an axiom (derived from nothing)? What price to we pay when we
erase that ’something’ by writing "F = ma" as an axiom instead of
as a theorem? Specifically, we create the logical equivalent of a cargo
cult, and allow me to explain.

A cargo cult is characterized as a belief, by a technologically less
advanced culture, that building an airstrip or a tower out of bamboo
sticks will trigger the arrival of modern re-supply transport planes
to deliver highly desirable cargo, based on the observation that a
technologically advanced society has previously build a functional
cargo-receiving airstrip nearby. These cults were first reported in
Melanesia in the late 19th century following contact with western
societies. According to one theory, the belief is held due to a lack
of proper understanding of supply chain logistics essential to the
delivery mission, as well as to an unawareness of the necessity of
building the airplanes in some (out of sight) assembly plant. What is
the parallel with modern theoretical physics? In theoretical physics,
we construct the largest "tower of postulate" that we can, whilst eras-
ing from the formalism all of the logistics that brings us the laws of
physics from reality (by writing them as axioms instead of as theo-
rems), yet we somehow expect reality to be delivered to us on a silver
platter by merely having constructed the tower. Wrong: reality is at
the street level, not at the penthouse.

I also place a not insignificant part of the blame in the human bias
to wish to set the foundation of a mathematical theory to its simplest
expression. It appears that since F = ma is simpler than "100 pages
of experimental data", then it gets to be the axiom and not the data,
even though the relationship is logically entailed in the reverse. Ex-
tending the argument to something as complex as the observable
universe may appear as another problem and that may also have
something to do with it. Let us consider a theory which takes the
present experimental arrangement of the entire observable universe
as its axiomatic basis. Since it may require upwards 10122 bits of in-
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formation5 to write down its axiom, it could therefore be qualified as 5 Seth Lloyd. Computational capacity
of the universe. Physical Review Letters,
88(23):237901, 2002

intractable. Even if such a theory could logically imply no wrong (by
virtue of its axiom being an exact description of reality), one might
nonetheless want something simpler (hence the bias part). My pro-
posal however is able to derive the laws of physics without having to
individually interrogate all 10122 bits of reality, by instead using algo-
rithmic information theory to produce a concise representation of any
and all possible experimental states. This preserves the universality
of the problem yet makes it tractable.

I feel I must apologize to Roger Penrose for singling out his book;
In fact, I do have the utmost respect for the quality of his book as
a reference tool of the mathematical concepts important to physics,
and I have relied upon his work to formalize my own work in this
very paper (we do after-all recover the laws of physics here, therefore
a good portion of the tools remain usable). The clarity, utility and
completeness of his book is of the highest level. Consequently, my
intent is of course not to be attribute fault to Mr. Roger Penrose or
to his book, but more to use his book as an illustration of the current
state of affairs and (incorrect) expectations of tower-building as a
whole, of which Penrose’s book just happens to be the single most
complete embodiment of such. I stress that this is not meant as a
critique of Roger Penrose’s book specifically.

2 Towards a mathematical model of reality

My primary goal with this work is to construct two mathematical
models; first, a model of reality and, second, a model of science.
Furthermore, these constructions will have the key feature that con-
necting the second model (science) to the first (reality) via entropy
produces a third model (physics). The construction is thus able to
provide a mathematical account of the origin of the laws of physics,
without having to postulate said laws as axioms.

To achieve this goal, we must begin with a number of modifi-
cations to our understanding of the usual practice of science such
that it is conductive to a mathematical formulation. Let us start
with a quick summary of the very familiar current practice. As il-
lustrated in Figure 1, in the current practice both theoretical and
empirical physics work in tandem to eventually (and hopefully)
converge towards a correct model of reality via an iterative falsi-
fication/refinement process. In the one hand, postulated laws are
compared to empirical laws, and in the other, measured experimental
states are compared to predicted experimental states. Any discrep-
ancy then ought to trigger a modification of the postulated laws, and
the process begins again with the new postulated laws. From the fig-
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ure, we note that ’empirical physics’ measures experimental states
then derives empirical laws, and theoretical physics postulates laws,
then derives states. As such, they are logically entailed in opposite
directions.

Theoretical PhysicsEmpirical Physics

Postulated Laws

Predicted
Experimental States

Measured
Experimental States

Empirical laws

Falsification/
Refinements

Figure 1: The current practice
of physics, summarized.

Measured
Experimental States

Empirical laws

Equivalence-
thesis

Postulated
Experimental States

Universal laws

unchanged, compared to
empirical physics untangled flipped, compared to

theoretical physics

Real Experiments Thought Experiments Figure 2: In my proposal, the
falsification/refinement "algo-
rithm" of science is untangled
to a mere equivalence-thesis by
reversing the typical relation-
ship between states and laws
used in theoretical physics.

The modification that I propose is summarized in Figure 2. The
key change is that the usual relationship between postulated laws
and predicted states will now be reversed. Instead of postulating
laws we postulate states, and instead of solving for states, we solve
for laws.

How does one solves for laws? The laws derived by my method
are derived in a manner conceptually identical to their empirical
counterparts. An empirical law is derived by repeating an experiment
over a wide range of (similar) conditions then a general pattern is
identified, and a law in our setup is derived as the universal pattern
found by permuting over all possible arrangements and rearrange-
ments of postulated states.

An equivalence thesis between the set of all possible thought ex-
periments and all possible real experiments is supported as a direct
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consequence of the computational universality which applies to both
sets — remarkably, if reality is the purview of science, then it cannot
be the case that there exists a real experiment that cannot be formu-
lated as a (properly constructed) thought experiment, and vice-versa.
With the equivalence thesis, it is then implied that my method is a
mathematical copy of empirical physics. Using this copy, one recov-
ers the laws of physics by applying science to the set of all possible
thought experiments, for the same reason that applying science to
all possible real experiments also produces them. In the present case
however, the laws of physics are derived without having to leave the
realm of mathematics, yielding physics as a mathematical theorem.

2.1 Math is work

The possibility of creating a purely mathematical structure that
nonetheless has properties normally associated only to physical ob-
jects runs counter to expectations and therefore the philosophically
safe bet has usually been to assume it to be an impossibility. How-
ever, contrary to expectations, a number of years ago I was able to
lay out a precise path able to do so. In this section, I will provide a
simplified example of the technique that I use, which illustrates the
key concepts.

I will now create a formal mathematical theory that has a shelf-life.
Wait, "a shelf-life", in a mathematical theory... a shelf-life like with
milk, or eggs? Yes, a shelf-life; meaning, the mathematical theory is
perfectly usable today, but in some amount of "time" it will eventu-
ally rot. To the best my knowledge, rotting mathematical theories are
a novel invention.

The construction is surprisingly simple, yet its philosophical impli-
cations are incredibly powerful. To construct such a theory, I simply
obfuscate a statement behind a computationally-intensive algorithm
that I then add as an axiom. For instance, consider the contradictory
statement of arithmetic 1 + 1 = 1 that we assume I have encrypted
using a secure6 perfect7 hash function. 6 A secure hash function can only be

inverted by brute force.
7 A perfect hash function is an injective
function that maps each input to an
hash, with no collisions.

For example, suppose my hash produces the following result:

hash[1 + 1 = 1] = fa1869db4bfbf1767a5446b6a9290243 (2)

Specifically, the hash function takes as input an element of LPA,
the set of all valid sentences of arithmetic, and outputs an element of
Lhex, the set of all hexadecimal sentences:

hash : LPA −→ Lhex

statement 7−→ hash
(3)
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I also define the inverse function:

bruteforce : Lhex −→ LPA

hash 7−→ statement
(4)

The bruteforce function finds the solution by brute force: it hashes
all statements of LPA in shortlex in a loop then halts once it finds
the statement that matches the hash, then it outputs said statement.
Reversing the map of a hash function is, by design, computationally
intensive.

Now, let me define a new axiom as follows:

Definition (Axiom of rot).

rot := bruteforce[fa1869db4bfbf1767a5446b6a9290243] (5)

Finally, using the axiom of rot, I define a new formal theory as the
union between the axiom of rot and the Peano’s axioms of arithmetic
(PA):

Definition (Rotting arithmetic).

rot∪PA (6)

In the present case since I already revealed the rot statement to
you, it follows that you know that Rotting arithmetic is ultimately
inconsistent without having to execute the bruteforce function. But
consider instead the following axiom:

Definition (Axiom-X).

Axiom-X := bruteforce[0cfae383362bc63d7ac429a5755fef05] (7)

Now I ask you, knowing the hash but not the statement, is the for-
mal theory comprised of PA∪Axiom-X, consistent or inconsistent?
Maybe the original statement I chose was 1 = 0 (inconsistent), or
maybe it was 1 + 1 = 2 (consistent). It may not be so obvious now
whether Axiom-X causes the theory to rot or not, is it? If you are
willing to work at it, you will eventually find the non-obfuscated
form of the axiom by brute force. In this context, I find it rather
illustrative to employ the terms fresh/rotten (as opposed to con-
sistent/inconsistent) to accentuate the timely connection between
finitely axiomatic systems and some notion of work. A finitely ax-
iomatic system is either fresh (if no contradictions are known) or
rotten (if contradictions are known). We note that one who randomly
proves theorems in rotten arithmetic will almost certainly map out
a very large portion of standard arithmetic before the axiom of rot
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becomes a problem. We also note that no finitely axiomatic system
can rot without significant expenditure of computing work.

Consider the case where Axiom-X may have been hashed such
that more work would be required to brute force the solution than
what is available in the universe. Seth Lloyd8 estimates that there 8 Seth Lloyd. Computational capacity

of the universe. Physical Review Letters,
88(23):237901, 2002

are approximately 10122 bits (and approximately the same amount
of operations) available for computations in the universe. What if
our bruteforce function requires, say, 10122 + 1 bits or higher to halt?
Such a finitely axiomatic system, although rotten in principle, could
actually never rot in our present day universe. Its shelf-life would
exceed the age and size of the universe. Rotting arithmetic, with a
> 10122 bits bruteforce function would be mathematically rotten, but
"physically" fresh.

As per the Gödel incompleteness theorem, we recall that a (suf-
ficiently expressive) finitely axiomatic system cannot prove its own
consistency. It could be the case, hypothetically, that some finitely
axiomatic system, perhaps believed to be consistent, contain a deeply
hidden contradiction. In fact, since the dept of mathematical proof
complexity knows no bound9, then a contradiction could be injected, 9 Alan M Turing. On computable

numbers, with an application to the
entscheidungsproblem. Proceedings of
the London mathematical society, 2(1):230–
265, 1937; and Gregory J Chaitin. Meta
math! the quest for omega. arXiv
preprint math/0404335, 2004

accidentally or on purpose, at any level of computational complex-
ity within a theory. My specific example with a bruteforce function
shows how to purposefully inject a contradiction at a tunable level
of computational complexity, but nonetheless, in principle, all (suf-
ficiently expressive) finitely axiomatic systems have the potential to
rot. In the general case, mathematics offers us no tool to rat out rot,
other than pure computing power.

For the present example, I have used a hashing function in order
to make my point obvious; inverting a hashing function is known to
be computationally intensive, thus we immediately notice a connec-
tion between work and our knowledge of the non-obfuscated form
of the axiom. But do not let the presence of an hashing function dis-
tract you; in fact, all mathematical theorems require the consumption
of some, always non-zero, quantity of computing resources to be
proven. In essence, all mathematical theorems are hidden behind a
"computing pay-wall" which must be paid with computing resources
to unlock the proof. In many day-to-day cases the price is negligible
and thus goes unnoticed. Ex: prove that 1 + 1 + 1 = 3 is a theorem
of PA — the truth of this statement is immediately obvious and so we
do not easily notice the computing cost, but it is there nonetheless.
All proofs have a computing cost, whether the proofs are verified by
computer or by any other devices.

Let us take another example by asking the question: "Is ZFC con-
sistent?". An answer along the following lines is often provided:
"Although according to Gödel’s incompleteness’ theorem ZFC cannot
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prove its own consistency, it has been studied for over 80-90 years
by hundreds of thousands of people. Certainly if there was any (ob-
vious) contradictions it would have been found by now. The fact
that no one has so far found any is very convincing evidence (but
of course will never be not proof of) that no contradictions will be
found". So why do I believe very strongly that ZFC is consistent, but
I would have must less faith in recent non-peer verified results, even
if I may not be immediately aware of any contradictions in either the-
ories? If the consistency of a theory is entirely implied by its axioms,
why does work (or time spent studying it) have anything to do with
our belief in its consistency? More specifically, why does it appears to
be the case that a person who spends, say, 1020 bits and operations of
computation on a theory is seemingly closer to identify rot (if rot is
present) than a person who spends only, say, 105 bits and operations
of computation, and therefore to quantify why one may logically
have more faith in the former than the later.

Intuitively the answer is obvious (finding mistakes takes effort),
but now comes the problem of actually constructing a framework
able to formalise this intuition. To do so, we will rely on algorithmic
information theory, initially on the works of Gregory Chaitin10, but 10 Gregory J. Chaitin. A theory of

program size formally identical to
information theory. J. ACM, 22(3):329–
340, July 1975

also on the more recent works of Baez and Stay regarding algorithmic
thermodynamics11 which imports the tools of statistical physics into

11 John Baez and Mike Stay. Algorith-
mic thermodynamics. Mathematical.
Structures in Comp. Sci., 22(5):771–787,
September 2012

algorithmic information theory. Using these tools, we will create a
statistical ensemble of programs comprised of a manifest, a domain, a
ground state and an equation of state. The elements of the quartet are
related to each other as shown on Figure 3.

Axioms
(ground state)

Domain
(non-computable state)

∞Manifest
(set of proven theorems)

(consumed mathematical work)
Equation of State

Figure 3: The equation of state
quantifies the amount of mathe-
matical work required to excite
the system to a given manifest.

On the left, we have the set of axioms of the finitely axiomatic
system. In the middle, we have the manifest. The manifest is the
instantaneous state of the system; specifically, it is the set of all state-
ments that are proven and verified to be true by the system. In this
sense, the manifest is the mathematical description of the proven state
of the system. Then, on the far right we have the domain spanned
by the axioms. In the general case, the domain is a non-computable
infinite set comprising all statements provable from the axioms. The
manifest is always sandwiched between the axioms and the domain,
and is related to them as follows:



an attempt to prove physics by making reality indubitable 14

Axioms ⊆ Manifest ⊂ Dom[Axioms] (8)

In the ground state, the manifest is equal to the axioms. To leave
the ground state (and thereby prove any theorems), the system must
consume mathematical work. It is the equation of state that quantifies
the amount of mathematical work required to excite the system as
the manifest is moved further along the axis.

2.2 The fundamental structure of reality

Why is this approach able to transpose a structure to reality? Specif-
ically, it boils down to the relationship between manifest and mathe-
matical work:

Syllogism 1 (The fundamental structure of reality). :

1. All manifests are contingent on mathematical work.

2. At least one manifest exists indubitably.

3. Therefore, reality is contingent on mathematical work.

(We note that statement 1 was argued for in the previous section and will
be formalized in section 5.2, and statement 2 will be proven here.)

To fundamentally understand the power of this syllogism, and to
prove statement 2, we have to start at the very beginning of the ratio-
nal inquiry. Allow me first to lay out the groundwork using Cartesian
philosophy, then we will use our tools to modernize the argument.
We will recall the philosophy of René Descartes (1596–1650), the fa-
mous french philosopher most directly responsible for the mind-body
dualism ever so present in western philosophy. Descartes’ main idea
was to come up with a test that every statement must pass before
it will be accepted as true. The test will be the strictest imaginable.
Any reason to doubt a statement will be a sufficient reason to reject
it. Then, any statement which survives the test will be considered ir-
refutable. Using this test and for a few years Descartes rejected every
statement he considered. The laws and customs of society, as they
have dubious logical justifications, are obviously amongst the first to
be rejected. Then, he rejects any information that he collects with his
senses (vision, taste, hearing, etc) because a “demon” could trick his
senses without him knowing. He also rejects the theorems of mathe-
matics, because axioms are required to derive them, and such axioms
could be false. For a while, his efforts were fruitless and he doubted
if he would ever find an irrefutable statement. But, eureka! He finally
found one which he published in 1641. He doubts of things! The
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logic goes that if he doubts of everything, then it must be true that he
doubts. Furthermore, to doubt he must think and to think, he must
exist (at least as a thinking being). Hence, ’cogito ergo sum’, or ’I
think, therefore I am’. This quite remarkable argument is, almost by
itself, responsible for the mind-body dualism of western philosophy.

How did Descartes addressed the mind-body problem? In the
Treatise of man (written before 1637, but published posthumously)
and later in the The passions of the soul (1649), Descartes presents his
picture of man as composed of both a body and a soul. The body
is a ’machine made of earth’ and the soul is the center of thoughts.
Communication between the two parts would be handled by the ’in-
famous’ pineal gland, whose inner working he covers in great detail
in (a good part) of a hundred pages manuscript. Specifically, he states
"[The] mechanism of our body is so constructed that simply by this
gland’s being moved in any way by the soul or by any other cause, it
drives the surrounding spirits towards the pores of the brain, which
direct them through the nerves to the muscles; and in this way the
gland makes the spirits move the limbs"12. We note that bio-electrical 12 Gert-Jan Lokhorst. Descartes and

the pineal gland. In Edward N. Zalta,
editor, The Stanford Encyclopedia of
Philosophy. Metaphysics Research
Lab, Stanford University, winter 2018

edition, 2018

signals were characterized in 1791 by Luigi Galvani, as bioelectro-
magnetics some ≈150 years later. Of course, the Cartesian pineal
gland theory was incorrect, but the problem on how to connect the
mind and the body remained.

The proof of the ’cogito ergo sum’ by Descartes is the only proof
of the existence (of something/anything) that I find to be completely
satisfactory within the body of philosophy; all other attempts fall
short in one way or another. However, as good as the first part is,
appealing to the biological structures of the brain to attempt a con-
nection from mind to body violates the standards of the proof for
the simple and obvious reason that the existence of these biological
structures do not survive universal doubt and thus ought not to be
used in the proof. This is a pitfall that one must side-step.

Let me clarify that I consider the term ’body’ to be a euphemism
for the material universe, and not to be the literal human body as
Descartes used the term. I also consider the term ’mind’ to be a eu-
phemism for the domain of mathematics. The problem then trans-
lates to a modern form: how does one obtain a structure equivalent
to the material universe from a purely mathematical starting point? I
am claiming that an ensemble of indubitable statements, along with
the mathematical work it is contingent upon, is a concept than once
paired with entropy can solve the problem up to equivalence. Specif-
ically, the framework attributes to the material universe a description
as, quite remarkably and perhaps even surprisingly, a (special kind
of) probability measure that is exactly four-dimensional, geomet-
ric and quantum mechanical. All of these properties elegantly and
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automatically come out of the framework without having to inject
any prior physical or logical baggage. We note that such a probabil-
ity measure is a purely mathematical object, but nonetheless, as per
conventional quantum mechanical wisdom, it constitutes a complete
description of the system — thereby, recovering the material uni-
verse, as we said, ’up to equivalence’. Interpreted consistently with
this derivation, it is then suggestive that what an observer reports
as the material universe can be construed as a simple side-effect of
understanding the verification of indubitable facts via this probability
measure —which is its maximally informative interpretation—, and
the reported perceived inviolability of the laws of physics is also a
side-effect of, in this case, mathematical work, the structure which
obeys these laws, serving as the constraints of the probability mea-
sure. The proof along with the accompanying argument is somewhat
substantial but each step is remarkably intuitive, and primarily in-
volves formalising the concepts normally associated with the practice
of science. The method thus produces the laws of physics as a result
of formally applying the practice of science to an indubitable de-
scription of reality, which I would argue is precisely where one could
excepts to find the laws of physics within mathematical space in the
first place.

The first step is to produce an indubitable description of reality.
Specifically, this will take the form of a universal/Turing-complete
indubitable framework. Descartes helps us here — he essentially
constructed what amounts to the first universal proof checker, and
applied it to the set of all mathematical statements. However, since
it was done in an informal manner, he missed out on this massive
opportunity.

Let us start with the definition of language:

Definition 1 (Language). A language L, with alphabet Σ, is the set of all
sentences (s1, s2, . . . ) that can be constructed from the elements of Σ and it
includes the empty sentence ∅:

L := {∅, s1, s2, . . . } (9)

For instance, the sentences of the binary language are:

Lb := {∅, 0, 1, 00, 01, 10, 11, 000, . . . } (10)

and its alphabet is:

Σb = {0, 1} (11)
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Definition 2 (Shortlex ordering). A shortlex ordering is a list of the
sentences of L, first ordered by length from shortest to longest, then alpha-
betically.

For instance, the shortlex ordering of Lb is:

(∅, 0, 1, 00, 01, 10, 11, 000, . . . ) (12)

Let us now define a "Cartesian-Turing machine", which works as
follows:

Definition 3 (Minimal proof checker).

MPC : L −→ {1,@}
sentence 7−→ result

(13)

Under the hood, the machine works as a brute force automatic theorem
prover. Specifically, the machine contains a set of internal rules of inference
(logical axioms) which it uses to attempt to formulate a proof of the input
sentence using said rules. If a proof is found, then MPC[sentence] outputs
1 otherwise it never halts. The machine may take a very long time to find a
proof, but time is not our concern here as we only require that should a proof
exists, it eventually finds it. For example, once given a sentence as input,
the machine could analyse every sentences of L in shortlex one by one by
scheduling its work according to a dovetailing algorithm until one is found
to be the proof, then outputs 1 and halts.

Let us now investigate the behavior of MPC using an example.
Say Descartes feeds the sentence (1 + 1 = 2) to the MPC. Will the
machine find a proof for it? Well lets see. To prove (1 + 1 = 2), one
requires PA (or an equivalent). However, since the machine only con-
tains logical axioms, it will never halt because no proof will ever be
found. On the surface, it may seem that the conclusion of Descartes
regarding the idea that one can doubt of all mathematical theorems
because the axioms they rely upon need not be true, is sound.

However, once in a while something quite interesting happens.
Let’s say we feed all sentences of L in shortlex to MPC using dove-
tailing scheduling. Eventually this statement will be feed to MPC:

PA ` (1 + 1 = 2) (14)

The statement states: PA proves that one plus one equals two. As
we did with the previous example, we also ask here will MPC[PA `
(1 + 1 = 2)] eventually halt? In this case, the answer is yes. Indeed,
PA just so happens to be the missing part required for the machine
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to prove the statement. The statement supplied the missing set of
axioms required to become a necessary true statement.

The second step of the exercise will be to construct a manifest ex-
clusively using such statements. There are of course infinitely many
statements of the type A ` B, and such statements include all possi-
ble mathematical proofs for all possible mathematical theories. Their
significance rely on the fact that they are the means to describe reality
to any level of complexity or expressivity desired or required while
guaranteeing soundness, and to further do so without constructing a
preliminary "tower of postulates". Manifests constructed from these
statements are necessarily the most fundamental description of re-
ality possible; indeed, all other representations that include at least
one statement not of this type must adopt said statement as an axiom
(without proof), and thus invariably ends up being less fundamental.
The set of all indubitable statements is a universal mathematical rock
bottom.

Specifically, the significance of this set is as follows:

The set of all indubitable statements is the only mathe-
matical construction which is both necessarily sound over
reality, and universal in the computational sense.

First, we re-iterate that soundness over reality is guaranteed by
the fact that each statement is indubitable. Second, we state, via the
Church-Turing thesis, that Turing completeness is the highest level of
completeness available to mathematics. This description thus gives us
the highest mathematical level of expressiveness available to describe
reality in a necessarily sound manner.

Let us define a set M, which we call a manifest, of n statements
verifiable by MPC:

M :={
A1 ` T1,

A2 ` T2,

A3 ` T3,

...

An ` Tn,

} (15)

where the letter A designate the axiomatic part of the statement,
and the letter T designate the theorem part. Finally, the symbol `
states that A logically entails, or proves, T.

In this case, the manifest is a set of indubitable statements of the
kind that the universal doubt method of Descartes fails to invalidate.
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A specific instance of such a manifest can be constructed simply by
conducting a small number of thought experiments; it could be as
simple as doing basic arithmetic in one’s head:

Syllogism 2 (At least one manifest exists indubitably). :

1. That which survives the universal doubt method exists indubitably.

2. The statements of the manifest comprised of {PA ` (1 + 1 = 2)}
survives the universal doubt method.

3. Therefore, at least one manifest exists indubitably (as a provable fact of
reality).

We note that existence is proven in a similar sense to how Descartes
uses the universal doubt method to prove his own existence only as a
thinking being, but fails to prove that he has a body; here indubitably
proving {PA ` (1 + 1 = 2)} implies the statements exists as a prov-
able fact of reality (it does not imply that the statement exists as a
physical object — structures that behave as physical objects will be
the purview of mathematical work, not of statements).

This completes the proof of statement 2 of syllogism 1.

3 Towards a mathematical model of science

The previous definition of a manifest as a set of statements of the
type A ` T, although conceptually simpler, is not the best possible
definition for a manifest, for a number of reasons. For instance, the
dependence on the symbol ` is a hindrance, notably, because it rules
out all formal languages that do not admit the symbol even if they
may be completely legitimate otherwise. Furthermore, the depen-
dence on MPC on some specific logical axioms is also an undesirable
that should be removed. The formulation should be fee of linguis-
tic features. The preferred framework to formalize these definitions
will be that of algorithmic information theory and that of theoretical
computer science including the formalism of Turing machines. In this
language, a manifest is simply a finite set of programs:

M := {p1, p2, p3, . . . , pn} (16)

To each such manifest one can then define at least one Turing ma-
chine TM that halts for (and only for) each p ∈ M. In more technical
terms, M is the domain of TM. Mathematical work, that we now pre-
fer to call computational work, is produced by this Turing machine as
the elements of M are verified.
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To obtain manifest theories (a mathematically formal definition of
a scientific theory) one first selects a universal Turing machine UTM
as the baseline (sometimes referred to as the choice of language),
then for each program p ∈ M a Turing machine, understood as an
abstraction layer and referred to in this context as a manifest theory,
is also provided as input to the universal Turing machine. Specifi-
cally, all programs of M are then verified as follows:

{
UTM[TM1, p1]

UTM[TM2, p2]

UTM[TM3, p3]

...

UTM[TMn, pn]

} (17)

Although this is not what we typically think of when we think of
a physical theory, a universal Turing machine UTM that recursively
enumerated M does provide the means to verify all programs of
the manifest, but it does so in a "patchy manner". Specifically, in the
case where two or more programs are verifiable by the same Turing
machine, say it happens to be the case that TM3 = TM4 = TM9, then
the theory forms a "logical grain" such that the programs p3, p4, p9

are entailed from the same axiomatic basis.
If computational work is abundant, large logical grains are fa-

vored. Intuitively, one with access to a very powerful quantum com-
puter can, in principle, directly solve quantum field theory to get
the higher scientific disciples (chemistry first, then biology and so
on — the higher level theories are eventually made redundant by
computational work abundance). Whereas; one with access to less
computational work must then compensate by creating more abstrac-
tion layers as required such that every programs of the manifest are
within its computational reach.

The set of all manifest theories for the system are the various log-
ical grains that can be formed based on the availability of compu-
tational work. Like the grain structure that arises naturally when a
crystal (of solid state physics) is formed, an initial choice of abstrac-
tion layer can then determine how future grains can be structured
whilst fitting with the pre-existing arrangement of grains. Further-
more, manifest theories are subject to refinements as grains are fused
or reorganized following a change in computational work availability.

One is free, even encouraged, to produce a plurality of logically
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independent manifest theories, each valid within their own domain
of applicability and each corresponding to a grain and each verify-
ing a subset of the manifest. In this sense, we may suspect that all
manifest theories are subject to possible falsification or refinements as
computational work abundance is increased, but some formulations
are non-abstracting and universally valid for all arrangements and
rearrangements of the system. For instance, the theory of computa-
tion is, this context, a meta-scientific theory which holds a privileged
position (computational work is computational work regardless of its
abundance), and, as we will eventually see, physics is another.

So, to be truly general we will think of statements as arbitrary pro-
grams that halt of a universal Turing machine, instead of as sentences
with specific structures. Let us now investigate how it is possible for
reality to be completely equivalent to a set of programs, as we enter
the first hint.

3.1 Hint: John A. Wheeler

Information, physics and entropy have, of course, a long and rich
history. Skipping over the very familiar Maxwell demon (for brevity)
we take, as an example, the Landauer13 limit, an expression for the 13 Rolf Landauer. Irreversibility and heat

generation in the computing process.
IBM journal of research and development,
5(3):183–191, 1961; and Rolf Landauer
et al. Information is physical. Physics
Today, 44(5):23–29, 1991

minimum amount of energy required to erase one bit of information
for a system at thermodynamic equilibrium:

E ≥ TkB ln 2 (18)

where E is the energy (in Joules), T is the temperature (in Kelvin)
and kB is Boltzmann’s constant. Such relation, although considered
extremely fundamental, cannot in our case be used as the starting
equivalence. Indeed, since we are not yet at the stage where energy
or temperature are defined, we thus cannot use a relation which
refers to them in order to connect mathematical information to physi-
cal reality.

What about other connections found in the literature? A strong
contender relying upon modern notions such as black-hole entropy
(or more generally entropy-bearing horizons) and the holographic
principle suggests a connection between information on the surface
of an horizon and gravity in the bulk of the enclosed volume. Lets
hypothesise how and if we could use this contender in our case.
Perhaps we are to map our manifest to the surface of an information-
bearing horizon then use the holographic principle to recover the
bulk? Alas, no - the same problem as before also occurs here but
instead of energy/temperature, we have surface-geometry/surface-
gravity as the presumed pre-existing physical concepts. Unfortu-
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nately, any pre-existing physical quantities needed to formulate a
relation between information and some element of physical real-
ity, precludes those quantities from been given an origin within this
information.

So we ask, is such a connection possible - can all physical concepts
be reduced to information, or are there irreducible physical concepts?
As we work our way to the proposed solution, let us review the best
contender I have thus far identified in the literature. We will now
investigate two hints; the first by John A. Wheeler regarding the
’participatory-universe’ hypothesis, the second by Gregory Chaitin
regarding the undecidability of mathematical formalism and the
link between mathematics and science. Together these two hints
will allow us to identify a universal relation entirely free of physical
baggage.

We summarize John A. Wheeler’s participatory universe hypoth-
esis as follows. First, for any experiments, regardless of their sim-
plicity or complexity, the registration of counts (in the form of binary
yes-or-no alternatives, the bit) is taken as a common book-keeping
tool, unifying the practice of science. Further to that, John A. Wheeler
suggests (in the aphorism "it from bit" 14) that what we consider to 14 John Archibald Wheeler. Frontiers

of time. In Problems in the Foundations
of Physics. North-Holland for the Soci-
eta italiana di fisica, 1978; and John A
Wheeler. Information, physics, quan-
tum: The search for links. Complexity,
entropy, and the physics of information, 8,
1990

be the "it" is simply one out of many possible mixtures of theoretical
glue that binds the "bits" together. Essentially, the ’bit’ is real and the
’it’ is derived. John A. Wheeler states;

"It from bit symbolizes the idea that every item of the physical world
has at bottom — at a very deep bottom, in most instances — an im-
material source and explanation; that what we call reality arises in the
last analysis from the posing of yes-no questions and the registering
of equipment-evoked responses; in short, that all things physical are
information-theoretic in origin and this is a participatory universe"

The bit is the anchor to reality. The bit would come into being in
the final act, so to speak, and then constrains the possible "it"s, whose
theoretical formulation must, of course, be consistent with all bits
generated (and not erased) thus far. Furthermore, he mentions that
the bit is registered following an equipment-evoked response. To
further illustrate his point of view, John A. Wheeler gives the photon
as an example of the theme:

"With polarizer over the distant source and analyzer of polarization
over the photodetector under watch, we ask the yes or no question,
"Did the counter register a click during the specified second?" If yes,
we often say, "A photon did it." We know perfectly well that the photon
existed neither before the emission nor after the detection. However,
we also have to recognize that any talk of the photon "existing" during
the intermediate period is only a blown-up version of the raw fact, a
count."
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For John A. Wheeler, it makes little sense to speak of the pho-
ton existing (or not existing) until a detector registers a count. But
he goes further and suggests that even after the registration of a
count, deducing that the photon existed in-between the counts is a
"blown-up version of the raw fact, a count". Here, John A. Wheeler
implies that the counts are what is real, not the theory that explains
the counts. The theory is one hypothesis among many alternatives
and is, at best, a mathematical tool to make some sense of the counts,
which by themselves define the world irrespectively of the theory.

In "Frontiers of time" (about a decade before ’it from bit’), John A.
Wheeler lays out multiple attempts to derive some form of physical
behavior/law from the study of experimentally-derived bits, but his
approaches suffer from introducing physical baggage to get them
started. Taking a specific example, on page 150, he reasons that time
should emerge out of entropy. So far so good, but then he argues that
because the universe goes from Big Bang to Big Stop, to Big Crunch,
the statistics of entropy must be time-symmetric. Therefore, he con-
cludes that the acceptable rules of statistics to describe the dynamics
of this entropy are those that he calls "double-ended statistics" which
works in both directions of time (pages 150-155). The argument has,
of course, an obvious fatal error: if time is derived from the bits,
then so should the cosmos — why would one not be allowed to re-
fer to time apriori (it must be derived from entropy), but be allowed
to refer to the cosmos’ hypothetical future time-reversal to justify
some properties on the bits? Thirty-nine years later, the results of the
Planck Collaboration15 indicate a critical density consistent with flat 15 N Aghanim, Y Akrami, M Ashdown,

J Aumont, C Baccigalupi, M Ballardini,
AJ Banday, RB Barreiro, N Bartolo,
S Basak, et al. Planck 2018 results. vi.
cosmological parameters. arXiv preprint
arXiv:1807.06209, 2018

topology and eternal expansion, possibly contradicting Wheeler’s
argument relying upon the necessity of some upcoming future cos-
mological reversal. Obviously, the eventual correct approach is only
appealing if all physical statements (the ’its’) follow from the bits
such that the future time reversal, if any, ought to be derived from
the ’bits’. John A. Wheeler’s book presents a myriad of similarly con-
structed arguments. John A. Wheeler does understand this to be a
problem, and in his defense, he does present "double-ended statis-
tics" only as an example of what might be done. Some 11 years later
he corrects his approach to the participatory-universe hypothesis.

In "Information, physics, quantum: The Search For Links", he pro-
vides general guidance on how to rectify this. It is there that he in-
troduces the core idea that the bits are the result of the registering
of equipment-evoked responses. With this John A. Wheeler discards
the idea of referring to the cosmos at all to enforce any kind of prop-
erties on the distribution of the bits and instead refers to equipment
evoked responses exclusively. After-all, evidence for both time and
the cosmos are derived from the information provided to us by ex-
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perimental devices (including the biological senses).
This completes our summary of the core concepts of John A.

Wheeler’s participatory universe hypothesis16. 16 John A Wheeler. Information, physics,
quantum: The search for links. Complex-
ity, entropy, and the physics of information,
8, 1990; and John Archibald Wheeler.
Frontiers of time. In Problems in the
Foundations of Physics. North-Holland
for the Societa italiana di fisica, 1978

So why this brief mention by John A. Wheeler of associating bits
to an equipment-evoke response, essential — why can’t bits just
stand on their own merits? To understand this, we have to first recog-
nize that the bits only have meaning if they are associated with some
logical structure and that bits without it are meaningless. Let’s see
why with the following example.

Let’s say that we were to provide someone with a list of bits:

111010110001001110101010101 (19)

How valuable would this person find this information? Probably
not much —why? As a hint, imagine if we were to tell this person
that these bits represent the winning numbers of the next lottery
draw. Then, all of sudden and although the sequence of bits stays the
same, the bits are much more valuable.

Alternatively, we could have said that these bits are the results
of random spin measurements. The bits once again stay the same,
but their meaning is now completely different. Thus, some form of
a logical structure must be associated with any bits that we acquire
about the world otherwise they are without context or sense. This
is why the pairing of experimental results (in the form of bits) and
the experimental setup (under which the bits are acquired) are both
equally crucial for a meaningful description.

But how do we describe the very complex world of experimental
equipment without invoking physical baggage? I have the impression
that this may have been a primary roadblock encountered by John A.
Wheeler: formalizing equipment-evoked response seems to require
some physical description of said equipment, and as this would
contain physical baggage, then the fundamentality of the theory
would be compromised.

The solution that I retained was to define an experiment not by
the physical devices that are used in it, but instead by the protocol
that must be followed to realize it. This is how the connection to
programs is made. Instead of connecting information to some com-
plex pre-existing physical quantity, we here connect it to the general
concept of an experiment. The ’it’ of Wheeler is a consequence of
protocol-evoked responses, not equipment-evoked responses — a
very important but subtle difference. As we will see with the next
hint, shifting the description from equipment to protocol is the key to
make the endeavor mathematically precise.
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3.2 Hint: Gregory Chaitin

But before we can formalize science within mathematics, it helps to
identify a mathematical structure that behaves as science does.

Gregory Chaitin summarizes his work on the halting probability17, 17 Gregory J. Chaitin. A theory of
program size formally identical to
information theory. J. ACM, 22(3):329–
340, July 1975

the Ω construction, in the book "Meta Math!"18. Let U be the set of all

18 Gregory J Chaitin. Meta math!
the quest for omega. arXiv preprint
math/0404335, 2004

universal Turing machines, then:

Ω : U −→ [0, 1]
UTM 7−→ ∑p∈Dom[UTM] 2−|p|

(20)

The image of this Ω function is the set of all real numbers that are
normal, incompressible and provably algorithmically random due to
their connection to the halting problem in computer science. We note
to the reader that we offer a more detailed primer on Ω in the few
paragraphs of our technical introduction (Section 5.2) on algorithmic
information theory.

In the book "Meta Math!" Gregory Chaitin states that the following
is his ’strongest’ incompleteness theorem:

"A finitely axiomatic system (FAS) can only determine as many bits of
Ω as its complexity.

As we showed in Chapter V, there is (another) constant c such that a
formal axiomatic system FAS with program-size complexity H[FAS]
can never determine more than H[FAS] + c bits of the value for Ω."

where H[p] is the Kolmogorov complexity of p.

This result essentially quantifies the general incompleteness in
mathematics (originally identified/proved by Gödel for a specific
case: the Gödel sentences in Peano’s axioms) and equates it to the
Kolmogorov complexity, measured in quantities of bits, of the ax-
iomatic basis of the finitely axiomatic system.

Gregory Chaitin dedicated a considerable amount of time to con-
sider the implication of his Ω construction regarding the philosophy
of mathematics. What does such widespread incompleteness mean
for mathematics? He concludes the following:

"I, therefore, believe that we cannot stick with a single finitely ax-
iomatic system, as Hilbert wanted, we’ve got to keep adding new ax-
ioms, new rules of inference, or some other kind of new mathematical
information to the foundations of our theory. And where can we get
new stuff that cannot be deduced from what we already know? Well,
I’m not sure, but I think that it may come from the same place that
physicists get their new equations: based on inspiration, imagination
and on — in the case of math, computer, not laboratory-experiments."

Finally, Gregory Chaitin further suggests:
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"So this is a “quasi-empirical” view of how to do mathematics, which
is a term coined by Lakatos in an article in Thomas Tymoczko’s inter-
esting collection New Directions in the Philosophy of Mathematics.
And this is closely connected with the idea of so-called “experimental
mathematics”, which uses computational evidence rather than con-
ventional proof to “establish” new truths. This research methodology,
whose benefits are argued for in a two-volume work by Borwein, Bai-
ley, and Girgensohn, may not only sometimes be extremely convenient,
as they argue, but in fact, it may sometimes even be absolutely nec-
essary in order for mathematics to be able to progress in spite of the
incompleteness phenomenon..."

In another more recent article19, Gregory Chaitin provides con- 19 Gregory Chaitin. Doing math-
ematics differently. https:

//inference-review.com/article/

doing-mathematics-differently, 02

2019. Accessed: 2019-12-04

crete examples of how the incompleteness phenomenon can enter
some fields of mathematics. Specifically, he states:

"In theoretical computer science, there are cases where people behave
like physicists; they use unproved hypotheses. P 6= NP is one example;
it is unproved but widely believed by people who study time complex-
ity. Another example: in axiomatic set theory, the axiom of projective
determinacy is now being added to the usual axioms. And in theo-
retical mathematical cryptography, the use of unproved hypotheses is
rife. Cryptosystems are of immense practical importance, but as far as
I know it has never been possible to prove that a system is secure with-
out employing unproved hypotheses. Proofs are based on unproved
hypotheses that the community currently agrees on, but which could,
theoretically, be refuted at any moment. These vary as a function of
time, just as in physics."

Finally, we note Gregory Chaitin’s Meta-biological theory pro-
posed in20, "Proving Darwin: making biology mathematical", which refer- 20 Gregory Chaitin. Proving Darwin:

making biology mathematical. Vintage,
2012

ences many of these concepts.

4 Foundation

4.1 The Axioms of Science

The fundamental object of study of science is not the electron, the
quark or even super-strings, but the experiment. An experiment
represents an ’atom’ of verifiable knowledge.

Definition 4 (Experiment). An experiment p is a tuple comprising two
sentences of L. The first sentence, h, is called the hypothesis. The second
sentence, TM, is called the protocol. Let UTM: L × L → L ∪ {@}
be a universal Turing machine, then we say that the experiment holds if
UTM[TM, h] halts, and fails otherwise:

UTM[TM, h]

= r halts =⇒ p holds

@ ¬halts =⇒ p fails
(21)

https://inference-review.com/article/doing-mathematics-differently
https://inference-review.com/article/doing-mathematics-differently
https://inference-review.com/article/doing-mathematics-differently
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If p holds, we say that the protocol verifies the hypothesis. Finally, r, also
a sentence of L, is the result. Of course, in the general case, there exists no
computable function which can decide if an experiment holds or doesn’t.

An experiment, so defined, is formally reproducible. Indeed, for
the protocol TM to be a Turing machine, the protocol must specify
all steps of the experiment including the complete inner workings of
any instrumentation used for the experiment. The protocol must be
described as an effective method equivalent to an abstract computer
program. Should the protocol fail to verify the hypothesis, the entire
experiment (that is the group comprising the hypothesis, the protocol
and including its complete description of all instrumentation) is
rejected.

The set of all experiments that hold are the programs that halt.
The set includes all provable mathematical statements and it is uni-
versal in the computer theoretic sense.

Definition 5 (Domain of science). We note D as the domain (Dom) of
science. We can define D in reference to a universal Turing machine UTM
as follows:

D := Dom[UTM] (22)

Thus, for all sentences s in L, if UTM[s] halts, then s ∈ D.
(We note that the choice of UTM determines the language/structure of the

programs of the domain, however the formalism will be independent of this
choice.)

Definition 6 (Manifest). A manifest M is a subset of D:

M ⊂ D (23)

We note that the set of all possible manifests is the power set of D:

S := P [D] (24)

Definition 7 (Observer). An observer O is a Turing machine that recur-
sively enumerates the domain of science. Given a program p as input, the
observer eventually halts for p iff p is an element of the domain of science,
otherwise it never halts.

4.2 The Axioms of Reality

The fundamental object of study of reality is the manifest.
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Assumption 1 (The fundamental assumption of reality). The state of
affairs of the world is describable as a set of experiments. Therefore, the state
of affairs is describable as a manifest. Furthermore, to each state of affairs
corresponds a manifest, and finally, the manifest is a complete description of
the state of affairs. In other words, experiments are complete with respect to
reality.

Axiom 1 (Existence of the reference manifest). As the world is in a
given state of affairs, then there exists, as a brute fact, a manifest M̊ which
corresponds to its state:

∃!M̊ (25)

• M̊ is called the ’reference manifest’.

• The symbol M will denote any manifest in P [D], whereas M̊ specifically
denotes the reference manifest corresponding to the present state of affairs.

• We consider the overhead ring symbol to be the designator of ontological
existence and to be distinct from mathematical existence referenced by
the symbol ∃. For instance, in set theory, all manifests M exists (∃), but
in reality, only the state of affairs described by M̊ exists ontologically as
verified facts (whereas any M 6= M̊ exists as verifiable facts but that are
not yet verified).

• Unique to M̊, and unlike other manifests, its elements are verified, and is
thus subject to syllogism 1.

Intuition: The reference manifest is how the world presents itself
to us in the most direct, unmodelled, uninterpreted and uncom-
pressed manner. Brutely knowing the manifest is how one perceives
the world without understanding any patterns and without knowing
any laws of physics.

4.3 The Axioms of Physics

The axioms of physics, comprises the axioms of reality, those of sci-
ence and the following:

Axiom 2 (Equivalence thesis). All experiments verified by O are elements
of M̊, and all elements of M̊ are verified by O.

Intuition: The reference manifest is the set of all observations and
of all experiments made by the observer.

Intuition 2: This idea is closely related to the concept in ordinary
quantum physics that a quantity may exist if and only if it is mea-
sured.
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Technical note: Using a result of quantum physics, that the set
of all observations need, a-priori, only be defined in reference to
one observer is supported in a very general sense in the form of
the Wigner’s friend thought experiment: An observer that made a
measurement, but his hiding this information from other observers,
is acting as a glorified hidden variable theory, which is ruled out by
Bell’s inequality. Consequently, it follows that no observer can in
principle hide measurement results from other observers.

Personal note: I had initially assumed that the starting point
would include multiple observers and that the reference manifest
would be defined in reference to the union of all observations made
by all observers. Then I attempted to extend this initial idea using
a theory of observer-communication & agreement which equated
the set of all agreed upon observations to the foundation of reality.
Eventually, I realized I was going down the wrong path. I realized
that I only needed to start with one observer, because the existence
or non-existence of other observers is simply a fact, like any other,
itself subject to experimentation and falsification by inspection of
the elements of the reference manifest. Intuitively, a newborn baby
will eventually deduce that other observers exist by inspecting the
evidence — it is not a-priori knowledge.

The requirement that the elements of the reference manifest are
verified implies, by syllogism 1, the existence of mathematical work
in quantities exactly sufficient to verify them. In the context of the
reference manifest, we give mathematical work the special name of
nature.

Definition 8 (Nature). Nature N is a system of mathematical work used
to verify M̊. Thus, experiments are verified in nature.

Syllogism 3 (Existence of Nature). :

1. All manifests are contingent on mathematical work.

2. There exists the reference manifest (Axiom 1).

3. Therefore, reality is contingent on nature.

We note that since the state of affairs represents the axiomatic
basis of the model, it cannot be derived from more fundamental
principles. As infinitely many manifests M can be constructed from
the elements of D, one may wonder why it is the reference manifest
M̊ that is actual and not any other.

Assumption 2 (The fundamental assumption of physics). The refer-
ence manifest M̊ is randomly selected from the set of all possible manifests
P [D].
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With this assumption, we abandon all hope, as difficult to cope
with as it may be, of there being a model which tells us why M̊ and
not M is actual. However, as existentially dreadful as this may be, it
is the key to recover the corpus of physics. The first step is to asso-
ciate knowledge of M̊ to information, and it is precisely because M̊

is randomly selected from a larger set that this is possible. We briefly
recall the mathematical theory of information of Claude Shannon:
Specifically, M̊ will be interpreted as a message randomly selected
from the set P [D]. Using ρ[M] as the probability measure, we will be
able to quantify the information in the message M̊.

It is from this connection to information that we will find our
opportunity to create a physical theory. For this purpose, we will
investigate the framework of statistical physics which is able to con-
strain a probability distribution, or more precisely the entropy of
such, with a set of constraints, as the candidate to recover physics.
Here, the manifests will serve as the microstates, and nature will be
the macroscopic constraint.

However, we will find that statistical physics, in its usual form,
comes short of the goal. It will be in fact, using an extension to sta-
tistical physics, that I call universal statistical physics, that we will
be able to reformulate physics as entirely emergent in the sense of
statistical physics.

Definition 9 (Physics). We define physics as the probability measure that
maximizes the information O gains by knowing M̊ as an element that is
randomly selected from P [D], under the constraint of nature N .

As we will see with these axioms and definitions, our goal to re-
duce physics to its simplest and purest expression, such that the
recovery of the laws of physics is incidental to this information maxi-
mization procedure, will have been achieved.

5 Towards a mathematical proof of physics

To precisely quantify the relationship between entropy, mathematical
work, and how this produces physics as a theorem, we will eventu-
ally construct a statistical ensemble of universal statistical physics.
But before we introduce this framework, we will provide a recap of
ordinary statistical physics, and then of algorithmic thermodynamics.

5.1 Recap: Statistical Physics

The applicability of statistical physics to a given physical system
relies primarily upon two assumptions21. 21 Jos Uffink. Compendium of the

foundations of classical statistical
physics. Philosophy of Physics, 03 2006
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1. The average of all experimental measurements of a given observ-
able in a macroscopic system converges to a well defined value,
called a constraint.

2. "Any macroscopic system at equilibrium is described by the max-
imum entropy ensemble, subject to constraints that define the
macroscopic system."22 22 Victor S. Batista. Postulates of statis-

tical mechanics. http://xbeams.chem.

yale.edu/~batista/vaa/node20.html.
Accessed: 2019-12-17

The first assumption is responsible for implying a number of
fixed macroscopic quantities, known as the constraints. Let Q be
a set of micro-states and N be a set of n constraints (identified as
O1, O2, . . . , On), then set of all probability measures compatible with
the constraints is:

P :=

ρ : Q→ [0, 1]

∣∣∣∣∣∣ ∑
q∈Q

ρ[q] = 1

∣∣∣∣∣∣N
 (26)

The observables, in general, are functions defined as:

Oi : P −→ R

ρ 7−→ ∑q∈Q ρ[q]Oi[q]
(27)

where Oi : Q → R. Typical thermodynamic observables are shown
in Table 1.

Symbol Name Units Type

E[q] energy Joule extensive
1/T = kBβ temperature 1/ Kelvin intensive
E average energy Joule macroscopic

V[q] volume meter3 extensive
p/T = kBγ pressure Joule /(Kelvin-meter3) intensive
V average volume meter3 macroscopic

N[q] number of particles kg extensive
−µ/T = kBδ chemical potential Joule/(Kelvin-kg) intensive
N average number of particles kg macroscopic

Table 1: Typical thermodynamic
quantities

The second assumption is responsible for fixing the probability
measure which maximizes the entropy:

S : P −→ [0, ∞[

ρ 7−→ −kB ∑(q∈Q) ρ[q] ln ρ[q]
(28)

under said constraints. This probability measure, which can be
obtained from the method of the Lagrange multipliers by maximizing
the entropy under the constraints, is the Gibbs ensemble:

http://xbeams.chem.yale.edu/~batista/vaa/node20.html
http://xbeams.chem.yale.edu/~batista/vaa/node20.html
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ρ : Q×Rn −→ [0, 1]
(q, α1, . . . , αn) 7−→ Z−1 exp

(
−α1O1[q]− · · · − αnOn[q]

)
(29)

where α1, . . . , αn are Lagrange multipliers. The partition function Z
is:

Z : Rn −→ R

(α1, . . . , αn) 7−→ ∑(q∈Q) exp
(
−α1O1[q]− · · · − αnOn[q]

)
(30)

and the observables (which includes the n constraints) are ex-
pressed as follows:

Oi = Z−1 ∑
(q∈Q)

Oi[q] exp
(
−α1O1[q]− · · · − αnOn[q]

)
(31)

The constraints are also equivalently given by the following rela-
tions:

∂ ln Z[α1, . . . , αn]

∂αi
= Oi (32)

And the variance by the following n relations:

∂2 ln Z[α1, . . . , αn]

∂α2
i

= (∆Oi)2 (33)

The entropy for this ensemble is:

S[α1, . . . , αn] = kB(ln Z + α1O1 + · · ·+ αnOn) (34)

Taking the total derivative of the entropy, we obtain:

dS[α1, . . . , αn] = kB(α1 dO1 + · · ·+ αn dOn) (35)

which is called the equation of the state of the system.
Thermodynamics is derived from statistical physics which is

concerned primarily by the equation of state (35). Thermodynamic
changes (and cycles) can be realized by changing the quantities
{α1, . . . , αn} and/or by modifications of Q. Under modification of
Q, usually by cross product: Q×Q1 = Q2, or by set complement
Q \Q3 = Q4, quantities which are invariant {α1, . . . , αn} are called
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intensive, and quantities which are variant {O1, O2, . . . , On} are called
extensive.

As an example, consider the following typical thermodynamic
quantities taken from Table 1:

α1 := β (36)

α2 := γ (37)

α3 := δ (38)

O1[q] := E[q] (39)

O2[q] := V[q] (40)

O3[q] := N[q] (41)

the partition function would be:

Z[β, γ, δ] = ∑
q∈Q

exp
(
−βE[q] + γV[q] + δN[q])

)
(42)

The Gibbs measure is:

ρ(q, β, γ, δ) =
1
Z

exp
(
−βE[q]− γV[q]− δN[q]

)
(43)

The observables are:

E =
1
Z ∑

q∈Q

E[q] exp
(
−βE[q]− γV[q]− δN[q]

)
(44)

V =
1
Z ∑

q∈Q

V[q] exp
(
−βE[q]− γV[q]− δN[q]

)
(45)

N =
1
Z ∑

q∈Q

N[q] exp
(
−βE[q]− γV[q]− δN[q]

)
(46)

The entropy is:

S[β, γ, δ] = kB(ln Z + βE + γV + δN) (47)

and the equation of state is:

dS[β, γ, δ] = kB(β dE + γ dV + δ dN) (48)

In the case where the constraints are continuous, the partition
function may be replaced by an integral:

Z[β] =
∫

exp
(
−βH[O1, O2, . . . , On]

)
dO1 dO2 dO3 (49)
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where, in the general case H is a scalar valued function of the
constraints.

Finally, in the case where the constraints are uncountable and are
functions, the partition function is to be replaced by a functional
integral:

Z[β] =
∫
Dφ exp

(
−βH[φ]

)
(50)

5.2 Recap: Algorithmic Thermodynamics

Many authors[19, 7, 20, 21, 22, 23, 24, 25, 26] have discussed the sim-
ilarity between the Gibbs entropy S = −kB ∑q∈Q ρ[q] ln ρ[q] and the
entropy in information theory H = −∑q∈Q ρ[q] log2 ρ[q]. Further-
more, the similarity between the halting probability Ω and the Gibbs
ensemble of statistical physics has also been studied23. First let us 23 Ming Li and Paul M.B. Vitanyi. An

Introduction to Kolmogorov Complexity
and Its Applications. Springer Publishing
Company, Incorporated, 3 edition, 2008;
Cristian S. Calude and Michael A. Stay.
Natural halting probabilities, partial
randomness, and zeta functions. Inf.
Comput., 204(11):1718–1739, November
2006; John Baez and Mike Stay. Algo-
rithmic thermodynamics. Mathematical.
Structures in Comp. Sci., 22(5):771–787,
September 2012; and Kohtaro Tadaki. A
generalization of chaitin’s halting prob-
ability omega and halting self-similar
sets. Hokkaido Math. J., 31(1):219–253, 02

2002

introduce Ω. Let U be the set of all universal Turing machines, and
let UTM be an element of U. Then, the usual definition of Ω is:

Ω := ∑
p∈Dom[UTM]

2−|p| (51)

Here, |p| denotes the length of p, a computer program. The do-
main, Dom[UTM], is the domain of the universal Turing machine (the
set of all programs that halt for it). The sum represents the proba-
bility that a random program will halt on UTM. Chaitin’s construc-
tion24 (a.k.a. Ω, halting probability, Chaitin’s constant) is defined

24 Gregory J. Chaitin. A theory of
program size formally identical to
information theory. J. ACM, 22(3):329–
340, July 1975

for a universal Turing machine as a sum over its domain (the set of
programs that halts for it) where the term 2−|p| acts as a special prob-
ability distribution which guarantees that the value of the sum, Ω,
is between zero and one (The Kraft inequality25). As the sum does 25 L. G. Kraft. A device for quanitiz-

ing, grouping and coding amplitude
modulated pulses. Master’s thesis,
Mater’s Thesis, Department of Electrical
Engineering, MIT, Cambridge, MA,
1949

not erase halting information, knowing Ω is enough to know the
programs that halt and those that do not on UTM. Since the halting
problem is unsolvable, Ω must, therefore, be non-computable. Ω’s
connection to the halting problem guarantees that it is algorithmi-
cally random, normal and incompressible.

It is possible to calculate some small quantity of bits of Ω. As
such, Calude26 calculated the first 64 bits of Ω for some specific uni- 26 Cristian S Calude, Michael J Dinneen,

Chi-Kou Shu, et al. Computing a
glimpse of randomness. Experimental
Mathematics, 11(3):361–370, 2002

versal Turing machine u ∈ U as:

Ωu = 0.0000001000000100000110...2 (52)

Running the calculation for a handful of bits is certainly possible,
however, any finitely axiomatic systems will eventually run out of
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steam and hit a wall. Calculating the digits of π, for instance, will
not hit this kind of limitation. For π, the axioms of arithmetic are
sufficiently powerful to compute as many bits as we wish to calcu-
late, limited only by the physical resources of the computers at our
disposal. To understand why this is not the case for Ω, we have to
realize that solving Ω requires solving problems of arbitrarily higher
complexity, the complexity of which always eventually outclasses the
power of any finitely axiomatic system.

In 2002, Tadaki27 suggested augmenting Ω with a multiplication 27 Kohtaro Tadaki. A generalization of
chaitin’s halting probability omega and
halting self-similar sets. Hokkaido Math.
J., 31(1):219–253, 02 2002

constant D, which acts as an ’algorithmic decompression’ term on Ω.

Chaitin construction → Tadaki ensemble

Ω = ∑
p∈Dom[UTM]

2−|p| → Ω[D] = ∑
p∈Dom[UTM]

2−D|p| (53)

With this change, Tadaki argued that the Gibbs ensemble com-
pares to the Tadaki ensemble as follows:

Gibbs ensemble Tadaki ensemble

Z[β] = ∑
q∈Q

e−βE[q] Ω[D] = ∑
p∈Dom[UTM]

2−D|p| (54)

Interpreted as a Gibbs ensemble, the Tadaki construction forms
a statistical ensemble where each program corresponds to one of its
micro-state. The Tadaki ensemble admits the following quantities
— the prefix code of length |q| conjugated with D. As a result, it
describes the partition function of a system which maximizes the
entropy subject to the constraint that the average length of the codes
is some quantity |p|;

|p| = ∑
p∈Dom[UTM]

|p|2−D|p| (55)

The entropy of the Tadaki ensemble is proportional to the average
length of prefix-free codes available to encode programs:

S[D] = ln Ω + D|p| ln 2 (56)

The constant ln 2 comes from the base 2 of the halting probability
function instead of base e of the Gibbs ensemble.

John C. Baez and Mike Stay28 took the analogy further by suggest- 28 John Baez and Mike Stay. Algorith-
mic thermodynamics. Mathematical.
Structures in Comp. Sci., 22(5):771–787,
September 2012

ing a connection between algorithmic information theory and ther-
modynamics, where the characteristics of the ensemble of programs
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are equivalent to thermodynamic constraints. A stated aim was to
import tools of statistical physics into algorithmic information theory
to facilitate its study. In algorithmic thermodynamics, one extends Ω
with algorithmic quantities to obtain the Baez-Stay ensemble:

Ω : R3 −→ R

(β, γ, δ) 7−→ ∑p∈Dom[UTM] 2−βE[p]−γV[p]−δN[p] (57)

Noting its similarities to the Gibbs ensemble of statistical physics,
these authors suggest an interpretation where E[p] is the expected
value of the logarithm of the program’s runtime, V[p] is the expected
value of the length of the program, and N[p] is the expected value
of the program’s output. Furthermore, they interpret the conjugate
variables as (quoted verbatim from their paper):

"

1. T = 1/β is the algorithmic temperature (analogous to temperature).
Roughly speaking, this counts how many times you must double
the runtime in order to double the number of programs in the
ensemble while holding their mean length and output fixed.

2. p = γ/β is the algorithmic pressure (analogous to pressure). This
measures the trade-off between runtime and length. Roughly speak-
ing, it counts how much you need to decrease the mean length to
increase the mean log runtime by a specified amount while holding
the number of programs in the ensemble and their mean output
fixed.

3. µ = −δ/β is the algorithmic potential (analogous to chemical po-
tential). Roughly speaking, this counts how much the mean log
runtime increases when you increase the mean output while hold-
ing the number of programs in the ensemble and their mean length
fixed.

"

–John C. Baez and Mike Stay

From (Equation 57), they derive analogs of Maxwell’s relations and
consider thermodynamic cycles, such as the Carnot cycle or Stoddard
cycle. For this, they introduce the concepts of algorithmic heat and
algorithmic work. Finally, we note that other authors have suggested
other alternative mappings in other but related contexts29. 29 Ming Li and Paul M.B. Vitanyi. An

Introduction to Kolmogorov Complexity
and Its Applications. Springer Publishing
Company, Incorporated, 3 edition,
2008; and Kohtaro Tadaki. A statistical
mechanical interpretation of algorithmic
information theory. In Local Proceedings
of the Computability in Europe 2008 (CiE
2008), pages 425–434. University of
Athens, Greece, Jun 2008

5.3 Attempt 1: Literal system

Let me start by giving out two attempts and then the retained solu-
tion.
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My first attempt consisted of taking algorithmic thermodynamic
at face-value and to apply it to the presently introduced model of
reality. For this purposes we will use quantities consistent with the
computer-theoretic origin of algorithmic thermodynamics. Instead of
arbitrarily mapping, say the runtime to the energy and the program
length to the volume (or permutations of such) we will ground said
quantities within the terminology of computer science.

We will introduce two types of partition functions. The first is a
canonical ensemble over the domain of a universal Turing machine.
The quantities of this partition function are listed in Table 2. They are
k, the computing repetency conjugated with L[p] the program size, and f
the computing frequency conjugated with T[p] the program runtime. The
partition function is:

Z : R2 −→ R

(k, f ) 7−→ ∑p∈Dom[UTM] 2−kL[p]− f T[p] (58)

Symbol Name Units Type

L[p] program size [bit] extensive
k computing repetency [1/bit] intensive
L average tape usage [bit] macroscopic

T[p] program runtime [operation] extensive
f computing frequency [1/operation] intensive
T average clock usage [operation] macroscopic

Table 2: Algorithmic quantities
of the canonical ensemble of
programs

The second partition function is a grand canonical ensemble. It is
obtained by multiplying multiple partition functions of the canonical
type:

Z =

 ∑
p∈Dom[UTM]

2−kL[p]− f T[p]

n

(59)

Distributing the terms of the sums results in a sum that is the
equivalent of a grand partition function describing an ensemble of
sets of programs. The resulting partition function is over manifests:

Z = ∑
M∈(Dom[UTM])n

g[M]2−kL[M]−tT[M] (60)

where g[M] is the degeneracy of the state M. Executing a man-
ifest of programs on a universal Turing machine refers to a specific
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computation involving multiple programs. In the grand canonical
ensemble, it is customary to add a quantity, such as µ the computing
overhead and conjugate it to N[M], the quantity of programs in the man-
ifest to account for ’equilibrium-preserving’ changes in quantities of
programs within the manifests. This new quantity is shown in Table
3.

Symbol Name Units Type

L[M] size of programs in the manifest [bit] extensive
k computing repetency [1/bit] intensive
L average tape usage [bit] macroscopic

T[M] running time of programs in the manifest [operation] extensive
f computing frequency [1/operation] intensive
T average clock usage [operation] macroscopic

N[M] quantity of programs in the manifest [program] extensive
µ computing overhead [1/program] intensive
N average concurrency [program] macroscopic

Table 3: Algorithmic quantities
of the grand canonical ensem-
ble of programs

The Lagrange multipliers (k, f and µ) are interpreted, in the style
of Baez and Stay, as:

• The computing repetency: k counts how many times the average
tape usage L must be doubled to double the entropy of the en-
semble while holding the average clock usage T and the average
concurrency N fixed.

• The computing frequency: f counts how many times the average
clock usage f must be doubled to double the entropy of the en-
semble while holding the average tape usage L and the average
concurrency N fixed.

• The computing overhead: µ counts how many times the average
concurrency N must be doubled to double the entropy of the
ensemble while holding the average clock time T and the average
tape usage L fixed.

Flexibility is available in the form of the various systems of nat-
ural computing that can be produced by defining other computing
resources, or filtering conditions. Let us give a few examples.

1. Computing time to program frequency formulation:

Z′ : R2 −→ R

(k, t) 7−→ ∑p∈Dom[UTM] 2−kL[p]−tF[p] (61)
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To formulate this relation, we introduce the program frequency
F[p] as the inverse of the program time T[p], thus F[p] := 1/T[p].
This formulation fixes an average clock frequency F by having the
programs executed under a constant computing time t:

• The Computing time: t counts how many times the average
clock frequency F must be doubled to double the entropy of
the ensemble while holding the average tape usage L and the
average concurrency N fixed.

2. Size-cutoff formulation:

Z′′ : R2 −→ R

(k, l) 7−→ ∑p∈{q:Dom[UTM]|L[q]<l} 2−kL[p] (62)

The sum Z′′ only includes programs with size less than or equal to
l. Ω is recovered in the limit when l → ∞ (and with k = 1).

3. Time-cutoff formulation:

Z′′′ : R2 −→ R

(k, t) 7−→ ∑p∈{q:Dom[UTM]|T[q]<t} 2−kL[p] (63)

The sum Z′′′ only includes programs that halt within a time cutoff
t. Thus, Z′′′ contains no "non-halting information" and is com-
putable. Ω is recovered in the limit when t→ ∞ (and with k = 1).

4. Arbitrary filter cutoff formulation:

Let O ⊂ Dom[UTM]:

Z′′′′ : R −→ R

k 7−→ ∑p∈O 2−kL[p] (64)

The sum only includes programs that halt further filtered by an
arbitrary selection process S : O→ Dom[UTM].

So, how close are we to any real physics with this? Let us brain-
storm:

1. Feasible computing complexity:

Usual computational complexity theory has no need for physical
resource indicators (clock speed, time-cutoffs, etc.) to define the
computational complexity of programs because said difficulty is
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defined as the relation between the size of the input and the num-
ber of steps required to solve the problem (a definition indepen-
dent of physical resource availability). For example, in complexity
theory, a program with input n which takes 109999n steps to halt
would likely take longer to run than the age of the universe on
any physical computer (even for n = 1), but computational com-
plexity theory considers this intractable problem to be an easier
problem than one requiring n2 steps. Consequently, computational
complexity theory based on Big O notation does not quite con-
nect to the physical reality of computation with limited available
resources.

A possible application of this framework is to construct a theory
of feasible computational complexity. Indeed, using an ensemble
of algorithmic thermodynamics, a cost-to-compute, measured in
entropy, can be attributed to carrying out a computation using
finite resources.

2. Entropy as a measure of computational ’distance’

Consider an equation of state based on computing resources. The
grand canonical partition function of algorithmic thermodynamics
has the following equation of state:

dS = k dL + f dT + µ dN (65)

Using this equation of state, we can quantify the computing ’dis-
tance’ between two states of the system using the difference in
entropy as the ’meter’.

3. Reservoirs of computing resources:

It is common in statistical physics to appeal to various reservoirs
such as a thermal reservoir or a particle reservoir, etc. The typical
Gibbs ensemble in physics is Z(β) = ∑q∈Q exp

(
−βE[q]

)
. It’s av-

erage energy is given by E = −∂ln Z/∂β and its fluctuations are
(∆E)2 = ∂2ln Z/∂β2. To justify that fluctuations are possible and
compatible with the laws of conservation of energy, the system is
claimed/idealized to be in contact with a thermal reservoir. In this
idealized case, both the system and the reservoir have the same
temperature and they can exchange energy. The reservoir is con-
sidered large enough that the fluctuations of the smaller system
are negligible to its description. Mathematically, the reservoir has
infinite heat capacity. Thus, the reservoir abstractly represents an
infinitely deep pool of energy at a given, constant temperature.

A similar analogy can be supported for a system of natural com-
puting, in which the computing resources are provided to the
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system in the form of reservoirs. For instance, instead of a thermal
reservoir, we may have runtime and tape reservoirs. These reser-
voirs have mathematically infinite runtime and tape capacities and
thus act as infinitely deep pools of computing resources. Com-
puting is made possible by the interaction of the reservoirs with
the system and the intensity of the exchanges is calibrated by the
computing repetency and the computing frequency, instead of by
the temperature.

By considering that the group of reservoirs is the representation of
an idealized ’supercomputer’, the analogy is completed and algo-
rithmic thermodynamics describes the dynamics of computation
in equilibrium with the resources made available by a ’supercom-
puter’.

By taking algorithmic thermodynamics at face value, we have re-
covered a system of computation that maximizes the entropy over
its domain of computation and subject to a variety of resource con-
straints. So far so good; but why not a quantum computation? Where
is quantum mechanics, the qubit, the geometry of space-time... where
is the richness of modern physics?

Quantum computations rests primarily on the idea that one can
define a sequence of unitary operators such that each member of
the sequence is usually (but not necessarily) associated with a com-
putationally simple operation (often called a quantum gate). The
complexity of the sequences one can form by combining these gates
eventually allows one to perform arbitrary computations upon some
initial state. The end result is constructed by measuring multiple
copies (or re-runs) of the computation and taking an average over the
observables.

No matter how much I played with and rearranged algorithmic
thermodynamics, it seamed that the quantum computing description
was outside its scope; or that if I ostentatiously tried to made it fit
regardless, it had to be altered with such artificially that it would feel
like I was just fixing the axioms to give me what I wanted to get in
the first place.

Something exceedingly fundamental was surely missing.

5.4 Attempt 2: Designer Ensemble

My second series of attempts could be grouped under a simple con-
cept: I attempted to construct a specific system of statistical physics
having a double interpretation; one, as a system of algorithmic ther-
modynamics admitting an equation of state involving bits and oper-
ations, and second, that said equation of state be interpretable as a
physical system of space-time.
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In 2002, Lloyd30 calculated the total number of bits available for 30 Seth Lloyd. Computational capacity
of the universe. Physical Review Letters,
88(23):237901, 2002

computation in the universe, as well as the total number of opera-
tions that could have occurred since the universe’s beginning. For
both quantities, Lloyd obtains the number ≈ 10122. This number
is consistent with other approaches; for instance, the Bekenstein-
Hawking entropy31 of a ’holographic surface’ at the cosmological 31 Stephen W Hawking. Black hole

explosions? Nature, 248(5443):30, 1974;
and Damien A. Easson, Paul H. Framp-
ton, and George F. Smoot. Entropic
inflation. International Journal of Modern
Physics A, 27(12):1250066, 2012

horizon32 (also ≈ 10122).

32 Leonard Susskind. The world as
a hologram. Journal of Mathematical
Physics, 36(11):6377–6396, 1995

How did Lloyd derive these numbers? First, he calculated the
value for these quantities while ignoring the contribution of gravity
and he obtained ≈ 1090. It is only by including the degrees of free-
dom of gravity that the number ≈ 10122kB is obtained, which he does
in the second part of his paper. The main relation he obtains is:

#ops ≈ ρcc5t4

h̄
≈ t2c5

Gh̄
=

1
t2

p
t2 (66)

where ρc is the critical density and tp is the Planck time and t is
the age of the universe. With present-day values of t, the result is
≈ 10122. He states:

"Applying the Bekenstein bound and the holographic principle to the
universe as a whole implies that the maximum number of bits that
could be registered by the universe using matter, energy, and gravity is
≈ c2t2

l2
p

= t2

t2
p
."

A particularly interesting consequence of this result is that these
relations appear to imply conservation of both information and op-
erations in space-time (the numerical quantity of 10122 is obtained by
summing over all available degrees of freedom in space-time). Inter-
estingly these computational quantities are related to the square of x
and t, and thus grow as area laws.

A general relation between entropy and space-time has been an-
ticipated (or at least hinted at) since probably the better part of four
decades. The first hints were provided by the work of Bekenstein33 33 Jacob D Bekenstein. Black holes and

entropy. Physical Review D, 7(8):2333,
1973; Jacob D Bekenstein. General-
ized second law of thermodynamics in
black-hole physics. Physical Review D,
9(12):3292, 1974; and Jacob D Beken-
stein. Black-hole thermodynamics.
Physics Today, 33(1):24–31, 1980

regarding the similarities between black holes and thermodynamics,
culminating in the four laws of black hole thermodynamics. The tem-
perature, originally introduced by analogy, was soon augmented to a
real notion by Hawking34 with the discovery of the Hawking temper-

34 Stephen W Hawking. Black hole
explosions? Nature, 248(5443):30, 1974

ature derived from quantum field theory on curved space-time. We
note the discovery of the Bekenstein-Hawking entropy, connecting
the area of the surface of a horizon to be proportional to one fourth
the number of elements with Planck area that can be fitted on the
surface: S = kBc3/(4h̄G)A.

We mention Ted Jacobson35 and his derivation of the Einstein field 35 Ted Jacobson. Thermodynamics of
spacetime: The einstein equation of
state. Phys. Rev. Lett., 75:1260–1263, Aug
1995

equation as an equation of state of a suitable thermodynamic system.
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To justify the emergence of general relativity from entropy, Jacobson
first postulated that the energy flowing out of horizons becomes
hidden from observers. Next, he attributed the role of heat to this
energy for the same reason that heat is energy that is inaccessible
for work. In this case, its effects are felt, not as "warmth", but as
gravity originating from the horizon. Finally, with the assumption
that the heat is proportional to the area A of the system under some
proportionality constant η, and some legwork, the Einstein field
equations are eventually recovered.

Recently, Erik Verlinde36 proposed an entropic derivation of the 36 Erik P. Verlinde. On the origin of
gravity and the laws of newton. Journal
of High Energy Physics, 2011(4):29, Apr
2011

classical law of inertia and those of classical gravity. He compared
the emergence of such laws to that of an entropic force, such as a
polymer in a warm bath. Each law is emergent from the equation
T dS = F dx, under the appropriate temperature and a posited en-
tropy relation. His proposal has encouraged a plurality of attempts to
reformulate known laws of physics using the framework of statistical
physics. Visser37 provides, in the introduction to his paper, a good 37 Matt Visser. Conservative entropic

forces. Journal of High Energy Physics,
2011(10):140, 2011

summary of the literature on the subject. The ideas of Verlinde have
been applied to loop quantum gravity (38), the Coulomb force (39), 38 Lee Smolin. Newtonian gravity in

loop quantum gravity. arXiv preprint
arXiv:1001.3668, 2010

39 Tower Wang. Coulomb force as
an entropic force. Physical Review D,
81(10):104045, 2010

Yang-Mills gauge fields (40), and cosmology (41). Some criticism has,

40 Peter GO Freund. Emergent gauge
fields. arXiv preprint arXiv:1008.4147,
2010

41 Rong-Gen Cai, Li-Ming Cao, and
Nobuyoshi Ohta. Friedmann equations
from entropic force. Physical Review
D, 81(6):061501, 2010; Miao Li and
Yi Wang. Quantum uv/ir relations
and holographic dark energy from
entropic force. Physics Letters B, 687(2-
3):243–247, 2010; and Damien A Easson,
Paul H Frampton, and George F Smoot.
Entropic accelerating universe. Physics
Letters B, 696(3):273–277, 2011

however, been voiced42, including by Visser43.

42 Sabine Hossenfelder. Comments
on and comments on comments on
verlinde’s paper" on the origin of
gravity and the laws of newton". arXiv
preprint arXiv:1003.1015, 2010; Archil
Kobakhidze. Gravity is not an entropic
force. Physical Review D, 83(2):021502,
2011; Shan Gao. Is gravity an entropic
force? Entropy, 13(5):936–948, 2011;
BL Hu. Gravity and nonequilibrium
thermodynamics of classical matter.
International Journal of Modern Physics
D, 20(05):697–716, 2011; and Archil
Kobakhidze. Once more: gravity is
not an entropic force. arXiv preprint
arXiv:1108.4161, 2011

43 Matt Visser. Conservative entropic
forces. Journal of High Energy Physics,
2011(10):140, 2011

Even more recently, a connection between entanglement entropy
and general relativity has been supported by multiple publications[51,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68].

I initially joined in to this effort. However, in the end, we felt that
there was a general problem with this approach and I eventually
scratched about 3 years of work in this direction.

5.5 Anti-pattern: axiomatic fixing

The problem with the second attempt, even if it successfully lead to
some set of valid physical laws, is that any results would be specific
to the constructed ensemble. With this approach, "ensemble-building"
replaces "tower-building" but carries the same philosophical lim-
itations. My choice of designer ensembles was contingent on my
prior knowledge of the laws of physics, as provided to me by the
experimental sciences. That is; I knew before hand what I was sup-
posed to get, therefore I had the opportunity to fix my axiomatic-
basis/designer-ensemble based on this knowledge.

Since the dept of mathematical complexity (and flexibility) has
no bounds, one will eventually be able to construct a fundamental
basis for physics using almost any (Turing-complete) framework, if
one tries hard enough. But will the basis be sound? Axiomatic fixing
is a trap that occurs when one adjust and re-adjust a candidate fun-
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damental basis until all known relevant experimental knowledge is
derivable or integrated with it, but (and perhaps quite shockingly to
the theorists who did the work) the basis fails to survive falsification
each and every-time it is tested outside the experimental domain that
was initially available to it for fixing. Axiomatic fixing suggests that
this, rather than being shocking, is actually nearly unavoidable.

Axiomatic fixing is an anti-pattern that has emerged in theoret-
ical physics in a predominant manner over the last four decades
or so; ever since the novelty of experimental particle physics has
thinned out. Before then, scientific revolutions had the benefit of
novel data available but not yet integrated within the the existing
laws of physics. Thus, the existing laws were modified to account for
this new incompatible data, which resulted in a new more fundamen-
tal basis. However, today, we have two theories (GR/QM) that are
incompatible with one other, yet are compatible with all experimental
data collected thus far. Unification ought to be possible, but since
there is no experimental data available to reduce the search space,
axiomatic fixing is the predominantly emergent anti-pattern.

To avoid this anti-pattern, one must derive the laws of physics in
an incidental manner, for instance as incidental to the goal of deriv-
ing the probability measure that makes reality maximally informa-
tive. This goal can be reached without referencing the already known
laws of physics. Following this goal I can thus claim; I am not trying
to recover the laws of physics per se, instead I just want to maximize
the information I can get out of reality. Then, any derivation of the
laws of physics is incidental to my maximization procedure. Now,
it may well be the case that I will derive the familiar laws of physics
at the end of this process, nonetheless said laws would have been
derived without prior axiomatic fixing. Finally, as the anti-pattern is
avoided, then so are its defects.

With my attempts, I was also missing out on the full potential of
statistical physics as a general framework. Indeed, statistical physics
can produce conservation equations on the broadest of scales. As
a typical example, we refer to the fundamental relation of thermo-
dynamics involving the conservation of energy over a change in
thermodynamic observables:

dE = T dS + p dV − µ dN (67)

To capture this generality, my retained solution was not to define a
specific system of statistical physics (a.k.a. a designer ensemble), but
instead to increase the generality of statistical physics such that the
default probability measure automatically acquires the structure of
the laws of physics, without fixing.
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6 Physics as the probability measure that makes reality maximally
informative

Personal note: It took me approximately four years to go from at-
tempt one to the retained solution (these are just the attempts at
physics mind you; the axiomatic foundation took decades of inves-
tigation). In the interim I produced approximately 50 draft papers,
and over 2000 pages of notes and calculations searching for the ’right
way’ to think about how to fundamentally derive the physics from
reality. Once I discovered the solution I am about to present, I be-
came so convinced that it is the right way to think about physics that
I almost immediately and without regret scratched (nearly) every-
thing I had done before.

6.1 Intuition: the thermodynamics of ’clicks’

Ordinary statistical physics, in its mathematical construction, is sur-
prisingly close to its experimental foundation. Indeed, the ’onto-
logical backbone’ of statistical physics is based, almost entirely, on
the existence of instruments and measurements. For instance, these
instruments could be the thermometer, the barometer, the energy-
meter, the eudiometer (volume-meter), etc. Then, for a given system,
an observer will make a series of measurements using one or more
of these instruments. Each measurement produces a real44 value that 44 Actually, significant figures of mea-

surements make it such that each phys-
ical quantity are expressible as whole
numbers in some equivalent system of
units. For instance, a length measure-
ment of 5.002 meter becomes a whole
number when expressed in millimeters:
it is 5002 millimeters. That measuring
devices are able to produce "infinitely
deep" numbers to recover the reals is, as
far as I know, empirically unsubstanti-
ated. Saying ’the equations I postulated
requires real numbers!’ is not an em-
pirically substantiated claim. Saying
’the equations I postulated requires real
numbers and they produce very good
predictions as a result!’ *may* render
the claim eventually falsifiable, but it
is still not an empirically substantiated
claim. Nonetheless to keep some level
of sanity and brevity but also because
I doubt that it is worth the effort to
rebuild everything along those lines,
we will define our frameworks using
the reals as it usually done is almost
all physical theories. This can be inter-
preted as an assumption, unfortunately
another possible "micro-disconnection"
from reality, that significant figures can
in principle be reduced as small as we
want.

has a physical unit conveyed to it by the instrument used to measure
it. For instance, a thermometer produces values given in Kelvin, a
eudiometer produces values given in milliliters, etc. Let’s call a real
value with units, a physical value. It is then the set of measured physi-
cal values that form the ’ontological backbone’ of the theory.

One can produce an ’epistemological backbone’ for the system by
maximizing the entropy using the method of the Lagrange multiplier,
under some constraints. Specifically, constraints are defined as the
average value that infinitely-many measurements will converge to.
We stress, and this is very important, that one cannot make infinitely-
many measurements to verify this assumption, and therefore the
epistemological backbone is (slightly) disconnected from reality as
a result. Nonetheless, in this description, the interpretation is clear:
what exists are the measured physical values, and what is derived
is the probability measure over an infinite idealization of these mea-
surements. Yet another "micro-disconnection" from reality occurs
as one usually applies the epistemological backbone to a new "vir-
gin system", whereas in reality, the backbone has been derived from
system that as already undergone some amount of measurements.
Keeping track of all of these micro-disconnections will be quite im-
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portant in the discussion section.
The constraints of ordinary statistical physics are scalars, and as

such they are able to produce scalar macroscopic transformations via
an appropriate equation of state. For instance a change from state a
to b involves a scalar equation of state:

state-a︷ ︸︸ ︷Ea

Va

Na

→ T dE + p dV + µ dN︸ ︷︷ ︸
scalar transformation

→

state-b︷ ︸︸ ︷Eb

Vb

Nb

 (68)

During my exploratory attempts, I eventually realized that the
key to recover the richness of modern physics purely from statistical
physics, was to extend the definition of the measurement to a univer-
sal measurement, that I call the ’click’. A click, like John A. Wheeler
envisioned, is simply the measurement produced by a type of univer-
sal instrument, which we call a detector. Clicks have more structure
than ordinary scalar measurements. Clicks admit a few represen-
tations: the two that we will work with are a matrix representation
and a geometric algebra representation. A transformation of a system
measured by clicks from state a to b, and represented as matrices,
would thus be made as follows:

state-a︷ ︸︸ ︷
Xa

11 . . . Xa
1n

...
. . .

...
Xa

n1 . . . Xa
nn

→


k̃ dX11 . . . k̃ dX1n
...

. . .
...

k̃ dXn1 . . . k̃ dXnn


︸ ︷︷ ︸

linear transformation

→

state-b︷ ︸︸ ︷
Xb

11 . . . Xb
1n

...
. . .

...

Xb
n1 . . . Xb

nn


(69)

We thus add the ’detector’ to the list of thermodynamics instru-
ments as a new type of universal instrument, and the ’click’ as the
universal measurement associated to this instrument, then we will
make the necessary modifications to statistical physics such that we
can maximize the entropy of a system constrained by clicks. Like
in ordinary statistical physics, here the click forms the ontological
backbone of the framework. Its derived epistemological backbone
will be a probability measure obtained by maximizing the entropy
of a system constrained by clicks. As we will see, this extension has
remarkable consequences.

We recall that a volume constraint in thermodynamics is defined
as:
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V = ∑
x∈X

ρ[x]V[x] (70)

In comparison, a click will be defined as follows:

Definition 10 (Click). A click is defined as a system of equations:

λ1 = ∑
x∈X

ρ1[x]λ1[x] (71)

λ2 = ∑
x∈X

ρ2[x]λ2[x] (72)

...

λn = ∑
x∈X

ρn[x]λn[x] (73)

where λ1[x], λ2[x], . . . , λn[x] are the eigenvalue functions of a n × n
matrix-valued function M[x]. We note that each of these equations has
individually the same mathematical structure as that of the scalar volume or
energy constraint.

6.2 The mathematical origin of the Born rule

The main result of the thermodynamics of clicks is a mathematical
derivation (and extension) of the Born rule. In fact, all systems of
universal statistical physics produces an extended Born rule which
is used to connect the domain of science (the set of all verifiable
statements) to reality (the set of verified statements).

We recall that in ’scalar/typical’ statistical physics, one obtains
the Gibbs ensemble using the method of the Lagrange multipliers
by solving for the probability measure which maximizes the entropy
under a set of constraints. Taking E as the scalar constraint, the La-
grange equation would be:

L = −kB ∑
p∈P

ρ[p] ln ρ[p] + α1(−1 + ∑
p∈P

ρ[p]) + α2(−E + ∑
p∈P

ρ[p]E[p])

(74)

where α1, α2 are the Lagrange multipliers. Then, extremalizing it, one
obtains the Gibbs measure:

∂L
∂ρ[q] = 0 =⇒ ρ[p] =

1
Z

exp
(
−βE[p]

)
(75)

We will now repeat the usual treatment of entropy in statistical
physics, but now for a system of multiple Lagrange equations. We
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will show that an extended Born rule appears in the form of the par-
tition function whenever we have a thermodynamic system described
as a system of multiple Lagrange equations. The thermodynamic
constraints will be the eigenvalues of a matrix: specifically, n eigen-
values implies n constraints which implies n Lagrange equations to
extremalize.

Since we will be using the eigenvalues of a matrix as the con-
straints, and such eigenvalues can be complex, the ρ[p] which is
usually a probability measure between zero and one and normalized
to one, will here be changed to a complex amplitude whose sum over
its domain is that of a finite complex value. We now define a few key
quantities:

1. Let M[p] be a n× n matrix-valued function from P→M(n, C)

2. Let λ1[p], . . . , λn[p] be the n eigenvalues of M[p].

3. Let ρ1[p], . . . , ρn[p] be function P → C, each called a complex
amplitude, normalized to a finite complex value ∑p∈P ρ1[p] =

A1, . . . , ∑p∈P ρn[p] = An.

4. Let each eigenvalues of M[p] be a thermodynamic constraint;
∑p∈P ρ1[p]λ1[p] = λ1, . . . , ∑p∈P ρn[p]λn[p] = λn

Now, for each of n eigenvalues, we can define a Lagrange equation
as follows:

L1 = −kB ∑
p∈P

ρ1[p] ln ρ1[p] + α1(−1 + ∑
p∈P

ρ1[p]) + α2(−λ1 + ∑
p∈P

ρ1[p]λ1[p])

(76)

...

Ln = −kB ∑
p∈P

ρn[p] ln ρn[p] + α1(−1 + ∑
p∈P

ρn[p]) + α2(−λn + ∑
p∈P

ρn[p]λn[p])

(77)

We can extremize each Lagrange equations individually. To do
so we take an element q in P and we take the partial derivative of L
with respect to ρ[q]:

0 = ∂L1
∂ρ1[q]

= −kB − kB ln ρ1[q] + α1 + α2λ1[p] (78)

...

0 = ∂Ln
∂ρn [q]

= −kB − kB ln ρn[q] + α1 + α2λn[p] (79)

Solving for ρ[q], we obtain
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ρ1[p] = exp
(
−kB + α1

kB

)
exp

(
α2

kB
λ1[p]

)
(80)

...

ρn[p] = exp
(
−kB + α1

kB

)
exp

(
α2

kB
λn[p]

)
(81)

Using the normalization constraint on ρ[p], we find n ’eigen-
partition function’:

1 =
1

A1
∑
p∈P

exp
(
−kB + α1

kB

)
exp

(
α2

kB
λ1[q]

)
=⇒ exp

(
−kB + α1

kB

)
=

 1
A1

∑
p∈P

exp
(

α2

kB
λn[p]

)−1

(82)

...

1 =
1

An
∑
p∈P

exp
(
−kB + α1

kB

)
exp

(
α2

kB
λn[q]

)
=⇒ exp

(
−kB + α1

kB

)
=

 1
An

∑
p∈P

exp
(

α2

kB
λn[p]

)−1

(83)

Finally, the extended Born rule appears, from universal thermody-
namics, by multiplying the eigen-partition functions.

Definition 11 (Extended Born rule (diagonal case)). We multiply the
eigen-partition functions:

‖Z‖ = Z1Z2 . . . Zn (84)

Let us now apply this result to a few examples:

Theorem 1 (Scalar Thermodynamics). In the case where M[p] is a 1× 1
matrix, one recovers the scalar partition function of usual statistical physics.

Proof. Trivial

Theorem 2 (Grand partition function). In the case where M[p] is the
product of a n-dimensional identity matrix In and a scalar constraint, then
the eigen-partition function multiplication produces a grand partition func-
tion of identical particles.

Proof. Let M[p] := −βE[p]In, where E : P → R and where In is the
n-dimension identity matrix. In this case M[p] is:

M[p] =

 −βE[p] ... 0
...

. . .
...

0 ... −βE[p]

 (85)
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And the parition function is:

‖Z‖ =

∑
p∈P

exp−βE[p]

n

(86)

Theorem 3 (Quantum probabilities (diagonal case)). In the case where
M[p] is the matrix representation of the complex numbers, one recovers the
familiar probability amplitude and Born rule of quantum mechanics.

Proof. Let us now show that quantum probabilities are a special case
of the extended Born rule. Let P := {p1, p2}. We also use the maps
r : P→ R and θ : P→ R as the matrix entries, as follows:

M′[p] =

(
r[p] θ[p]
−θ[p] r[p]

)
(87)

We note that here M[p] is a matrix representation of the complex
numbers, via the group isomorphism of a + ib ∼=

(
a b
−b a

)
. The eigen-

values of M[p] are:

λ1 = r[p] + iθ[p] (88)

λ2 = r[p]− iθ[p] (89)

The universal Born rule becomes:

‖Z‖ =

∑
p∈P

exp
(
r[p] + iθ[p]

)∑
p∈P

exp
(
r[p]− iθ[p]

) (90)

If we now take a two state ensemble P := {p1, p2}, we get:

‖Z‖ =
(

exp
(
r[p1] + iθ[p1]

)
+ exp

(
r[p2] + iθ[p2]

)) (
exp

(
r[p1]− iθ[p1]

)
+ exp

(
r[p2]− iθ[p2]

))
(91)

With straightforward algebraic manipulation and simplifications, we
get:

= (er[p1])2 + (er[p2])2 + 2er[p1]er[p2] cos[θ[p2]− θ[p1]] (92)

This is the typical quantum probability of a two-state system along
with the interference term.
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6.3 Recovery of the formalism of quantum mechanics

We note that when we multiply n identical canonical partition func-
tions to obtain a grand-partition function, a sum is made over tuples
comprised of the states of each contributing canonical partition func-
tion. For instance, a canonical partition function over a set X will,
when multiplied by a canonical partition function of a set Y, produce
a grand-canonical partition function over the set X × Y. The result-
ing grand-canonical partition function retains its classical probability
interpretation, because a Gibbs measure can be defined for it just
as it was possible to do so for the states of each of the contributing
canonical partition functions. Whether one multiplies canonical parti-
tion functions into grand-canonical partition functions, or splits out a
canonical subset to eliminate it from a grand canonical partition func-
tion (via set complement (X × Y)/Y = X), the probability measure
remains classical throughout the modifications.

This is not the case with eigen-partition functions. As such, the
state produced by their multiplication, as it contains an interference
term, cannot be understood generally as a the pairing of two classical
states.

Let us see in more details. We recall that we have defined, in uni-
versal statistical physics, the partition function as the multiplication
of each eigen-partition function. In the case of the matrix representa-
tion of complex numbers, we obtained:

‖Z‖ = Z(Z)∗ (93)

Now, consider that we define n such partition functions, one for
each of a different system P1, . . . , Pn. The partition functions are:

∥∥Z[P1]
∥∥ = Z[P1](Z[P1])

∗ (94)

...∥∥Z[Pn]
∥∥ = Z[Pn](Z[Pn])

∗ (95)

Now, we can define yet another partition functions as a sum of the
previous partition functions. As we will see shortly, this definition
is equivalent to the normalization condition of the wavefunction.
Consequently, let us use

〈
ψ
∣∣ψ〉 to refer to this partition function right

away:

〈
ψ
∣∣ψ〉 =∥∥Z[P1]

∥∥+ · · ·+∥∥Z[Pn]
∥∥ (96)

Here is an example as the sum of two partition functions:
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〈
ψ
∣∣ψ〉 = (|ψ1|2 + |ψ2|2 + 2|ψ1||ψ2| cos[ϕ2 − ϕ1]

)
+
(
|ψ3|2 + |ψ4|2 + 2|ψ3||ψ4| cos[ϕ4 − ϕ3]

)
(97)

This definition recovers the same form as that of the quantum
probability rules for n orthogonal states, usually expressed in the
formalism of quantum mechanics as a column vector with n entries,
of a discreet Hilbert space. For instance, a column vector given as:

∣∣ψ〉 =
 ψ1+ψ2

ψ3+ψ4
...

 (98)

Will produce the following probability:

〈
ψ
∣∣ψ〉 = |ψ1 + ψ2|2 + |ψ3 + ψ4|2 + . . . (99)

=
(
|ψ1|2 + |ψ2|2 + 2|ψ1||ψ2| cos[ϕ2 − ϕ1]

)
+
(
|ψ3|2 + |ψ4|2 + 2|ψ3||ψ4| cos[ϕ4 − ϕ3]

)
+ . . .

(100)

which is the same result as that given by our partition function.
Likewise, our method via the partition function can easily be ex-

tended to the continuum under an appropriate continuous parametriza-
tion and limiting process (the sum is extended to infinitely many
terms, and each term is proportionally reduced to a probability den-
sity), to obtain:

〈
ψ
∣∣ψ〉 = ∫ ∞

−∞
|Z[x]|2 dx (101)

If the above integral yields a finite value, then we can further as-
sociate a probability measure representing the probability that the
system is in a specific state within the range [a, b] as:

ρ[a, b] =
1〈

ψ
∣∣ψ〉

∫ b

a
|Z[x]|2 dx (102)

These are the same relations as those obtained by the formalism
of Hilbert spaces in ordinary quantum mechanics, but here resulting
from universal statistical physics entirely.

Let us now add a statistical physics observable to (96). Let O be
a diagonal matrix with real entries, and let O[P] be a real-valued
function, then:

O =
〈
ψ
∣∣O
∣∣ψ〉 = O[P1]

∥∥Z[P1]
∥∥+ · · ·+ O[Pn]

∥∥Z[Pn]
∥∥ (103)
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The pre-existing requirement that observables of statistical physics
be real valued, allows us to meet the requirement that O be Hermi-
tian.

Now, lets make this interesting by kicking it up a notch:

6.4 The generalized probability measure of reality

The probability of a system of universal thermodynamics to occupy
a microstate is given by a generalization of the Born probability rule,
which extends probabilities to matrices (including non-diagonal
matrices):

Definition 12 (Extended Born rule). Let P be a countable set and let
M[p] be a n× n matrix. We define the extended Born rule as follows:

‖Z‖ = det ∑
p∈P

exp M[p] (104)

In the case where M[p] is diagonal, we recover definition (11).

Theorem 4 (Quantum probabilities). In the case where M[p] is the
matrix representation of the complex numbers, one recovers the familiar
probability amplitude and Born rule of quantum mechanics, even if M[p] is
non-diagonal.

Proof. Let P := {p1, p2}. We also use the maps r : P → R and
θ : P→ R as the matrix entries, as follows:

M[p] =

(
r[p] θ[p]
−θ[p] r[p]

)
(105)

We note that here M[p] is a matrix representation of the complex
numbers, via the group isomorphism of a + ib ∼=

(
a b
−b a

)
. The univer-

sal Born rule becomes:

‖Z‖ = det ∑
p∈P

exp

(
r[p] θ[p]
−θ[p] r[p]

)
(106)

(107)

The matrix exponential reduces to the following expression:

exp

(
r[p] θ[p]
−θ[p] r[p]

)
=

 i√
2

−i√
2

1√
2

1√
2

 exp

(
r[p]− iθ[p] 0

0 r[p] + iθ[p]

) −i√
2

1√
2

i√
2

1√
2


(108)

=

(
er[p] cos[θ[p]] er[p] sin[θ[p]]
−er[p] sin[θ[p]] er[p] cos[θ[p]]

)
(109)
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If we now take a two state ensemble P := {p1, p2}, we get:

‖Z‖ = det

( er[p1] cos[θ[p1]] er[p1] sin[θ[p1]]

−er[p1] sin[θ[p1]] er[p1] cos[θ[p1]]

)
+

(
er[p2] cos[θ[p2]] er[p2] sin[θ[p2]]

−er[p2] sin[θ[p2]] er[p2] cos[θ[p2]]

)
(110)

With straightforward algebraic manipulation and simplifications, we
get:

= (er[p1])2 + (er[p1])2 + 2er[p1]er[p2] cos[θ[p2]− θ[p1]] (111)

Our goal now is to extend this methodology to matrices having
even more structure than just the complex numbers. One can inter-
pret the previous result in the usual sense that M[p] is the matrix
representation of a complex number. However, it is also possible to
interpret M[p] as the matrix representation of the even sub-algebra
of G2(R) (which is group isomorphic to the complex). In this inter-
pretation the complex number are a geometric object (one of many
possible geometric objects), and the extended Born rule is simply an
extension of the Born to any geometric object. As we will see with
the next theorem, the second interpretation can be extended to a
probability rule having an even richer structure. Let us now take the
even sub-algebra of a geometric algebra of higher dimensions.

As we said, in the case of G2(R), an element of the even sub-
algebra is:

v = r + θI (112)

which is group isomorphic with the complex. For G3,1(R), an
element of the even sub-algebra is:

v = r + F + θI (113)

where F is a bivector.
The extended Born rule applied to the matrix representation of

the even sub-algebra element leads us directly to the relativistic
wavefunction, formulated in the language of geometric algebra as
suggested by David Hestenes45: 45 David Hestenes. Spacetime physics

with geometric algebra. American
Journal of Physics, 71(7):691–714, 2003

ψ = exp
(

1
2
(r + F + θI)

)
= R exp

(
1
2
(r + θI)

)
(114)

where R = exp F/2 is a rotor.
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Theorem 5 (Quantum wavefunction (4D)). We now use the matrix rep-
resentation of the even subalgebra of the Clifford algebra in 3+1 spacetime.

Proof. The basis used for the matrix representation of a complete
even multi-vector of G3,1(R), expressed in terms of the Dirac matrix,
is:

I =

(
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
(115)

σ01 =

(
0 0 0 −1
0 0 −1 0
0 −1 0 0
−1 0 0 0

)
σ02 =

(
0 0 0 i
0 0 −i 0
0 i 0 0
−i 0 0 0

)
σ03 =

(
0 0 −1 0
0 0 0 1
−1 0 0 0
0 1 0 0

)
σ12 =

(
i 0 0 0
0 −i 0 0
0 0 i 0
0 0 0 −i

)
σ31 =

(
0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

)

σ23 =

(
0 i 0 0
i 0 0 0
0 0 0 i
0 0 i 0

)
(116)

I =

(
0 0 −i 0
0 0 0 −i
−i 0 0 0
0 −i 0 0

)
(117)

Using this basis, the matrix representation of the most general
even multi-vector of G3,1(R) is:

M[p] = r[p]I + F01[p]σ01 + F02[p]σ02 + F03[p]σ03 + F23[p]σ23 + F13[p]σ13 + F12[p]σ12 + θ[p]I

(118)

=

 r[p]+iF12[p] F13[p]+iF23[p] −F03[p]−iθ[p] −F01[p]+iF02[p]
−F13[p]+iF23[p] r[p]−iF12[p] −F01[p]−iF02[p] F03[p]−iθ[p]
−F03[p]−iθ[p] −F01[p]+iF02[p] r[p]+iF12[p] F13[p]+iF23[p]
−F01[p]−iF02[p] F03[p]−iθ[p] −F13[p]+iF23[p] r[p]−iF12[p]


(119)

One then completes the Born rule by taking the determinant of the
matrix representation of the even element. The key identity is:

det exp
1
2

M[p] = exp Tr
1
2

M[p] = exp 2r[p] (120)

Which yields the same result as in the complex case.

The extended Born rule then automatically cancels out the rotor
(via the relation RR̃ = 1) as well as the complex part (via the rela-
tion the square modulus) and maps ψ directly to a real probability
value. The scope of this cancellation effect implies a prior automatic
inclusion of the space-time geometric structure of the wavefunction
as part of the extended Born rule. Here the wavefunction is a natural
consequence of applying the definition of information (via entropy)
to geometry (geometric algebra represented by matrices). Its meaning
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as a ’wave of probability’ is cemented by this fundamental relation to
universal statistical physics.

The essential insight to this series of result is that the entropy max-
imization procedure applies the exponential map to M(n, C). The
effect is to reduce the microscopic domain to the set of all general
linear matrices via the well-known correspondence:

exp : M(n, C)→ GL(n, C) (121)

that maps exponentials of arbitrary matrices to general linear
transformations. The exponential map is the minimum "filter" re-
quired such that each element has an inverse due to the identity
exp M exp−M = I. Consequently, arbitrary macroscopic transfor-
mations are mapped to the general linear group in the microscopic
sector of the ensemble.

We have previously investigated the role of the even sub-algebra
of G4(R) and we have seen how this recovers the wavefunction in
3+1 spacetime as a pure probabilistic object; the geometric amplitude.
Including the odd algebra terms so as to produce a complete multi-
vector simply extends the rotor component to the group of versors
which will now accounts for all possible Lorentz transformation,
including reflections and inversions.

Theorem 6 (Extended Born rule for a complete multi-vector of
G4(R)).

Proof. The inclusion of the odd part to the microscopic element al-
lows us to express all Lorentz transformations, extending the rotors
made available by the even sub-algebra to now include those of space
and time inversions and reflections. The extended Born rule is able to
account for this general case. It is in this case that 4 unique eigenval-
ues are produced.

Let us choose the geometric algebra G4(C) as the representation
for M(4, C) matrices. With it we can associate the determinant of a
general 4× 4 matrix to a universal norm of space-time. To support
the applicability of this choice, we will rely on the fact that the matrix
representation of geometric algebra G4(C) comprises the full set of
M(4, C); the set of 4× 4 matrix with complex entries.

First, let us note that the Dirac matrices form the generators of the
basis of M(4, C). There are 16 elements of the basis:

1. The identity matrix I

2. Four matrix {γ0, γ1, γ2, γ3}.

3. Six matrix σµν = − 1
2 (γµγν − γνγµ)
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4. One pseudoscalar matrix γ5 = γ0γ1γ2γ3

5. Four matrix vµ = γ5γµ

(where γaγb is the usual matrix multiplication.)
Explicitly, the 16 matrices are:

I =

(
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
(122)

γ0 =

(
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

)
γ1 =

(
0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

)
γ2 =

(
0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0

)
γ3 =

(
0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

)
(123)

σ01 =

(
0 0 0 −1
0 0 −1 0
0 −1 0 0
−1 0 0 0

)
σ02 =

(
0 0 0 i
0 0 −i 0
0 i 0 0
−i 0 0 0

)
σ03 =

(
0 0 −1 0
0 0 0 1
−1 0 0 0
0 1 0 0

)
σ12 =

(
i 0 0 0
0 −i 0 0
0 0 i 0
0 0 0 −i

)
σ31 =

(
0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

)

σ23 =

(
0 i 0 0
i 0 0 0
0 0 0 i
0 0 i 0

)
(124)

v0 =

(
0 0 i 0
0 0 0 i
−i 0 0 0
0 −i 0 0

)
v1 =

(
0 i 0 0
i 0 0 0
0 0 0 −i
0 0 −i 0

)
v2 =

(
0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

)
v3 =

(
i 0 0 0
0 −i 0 0
0 0 −i 0
0 0 0 i

)
(125)

γ5 =

(
0 0 −i 0
0 0 0 −i
−i 0 0 0
0 −i 0 0

)
(126)

One can write any matrix M ∈M(4, C) using a linear combination
of these 16 matrices over the complex (parenthesis added for clarity):

M = (X0)γ0 + (X1)γ1 + (X2)γ2 + (X3)γ3

+ (E1)σ01 + (E2)σ02 + (E3)σ03 + (B1)σ23 + (B2)σ31 + (B3)σ12

+ (V0)v0 + (V1)v1 + (V2)v2 + (V3)v3

+ (a) + (R)γ5 (127)

Likewise, one can write any multivector u ∈ G4 using a linear
combination of the 16 basis elements of G4, also over the complex, as:

u = (X0)x̂0 + (X1)x̂1 + (X2)x̂2 + (X3)x̂3

+ (E1)x̂0 ∧ x̂1 + (E2)x̂0 ∧ x̂2 + (E3)x̂0 ∧ x̂3 + (B1)x̂2 ∧ x̂3 + (B2)x̂1 ∧ x̂3 + (B3)x̂1 ∧ x̂2

+ (V0)x̂1 ∧ x̂2 ∧ x̂3 + (V1)x̂0 ∧ x̂2 ∧ x̂3 + (V2)x̂0 ∧ x̂1 ∧ x̂3 + (V3)x̂0 ∧ x̂1 ∧ x̂2

+ (a) + (R)x̂0 ∧ x̂1 ∧ x̂2 ∧ x̂3 (128)

There exists an bijective map between the elements of G4(C) and
those of M(4, C):

M = M[g] M−1[M] = u (129)
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such that the matrix multiplication of one is the geometric product
of the other:

M2 = M[u2] (130)

The map is realized by replacing the basis x̂i by the gamma matrix
γi, and vice-versa. The two representation are group isomorphic over
the multiplication.

We now reduce the domain to the reals, as we take the microscopic
element as the exponential of a complete multi-vector of G4(R):

ψ[p] = e
1
2 r[p] exp

(
1
2
(θ[p]I + X + F + V)

)
= e

1
2 r[p]G (131)

where F is the previously defined bivector, and where:

X = X0x̂0 + X1x̂1 + X2x̂2 + X3x̂3 (132)

V = V0x̂1 ∧ x̂2 ∧ x̂3 + V1x̂0 ∧ x̂2 ∧ x̂3 + V2x̂0 ∧ x̂1 ∧ x̂3 + V3x̂0 ∧ x̂1 ∧ x̂2

(133)

and finally where

G = exp
(

1
2
(θ[p]I + X + F + V)

)
(134)

Transformations of the wavefunction, such a Lorentz boots, ro-
tation, change of frame of reference, inversions, reflections, etc, can
done by sandwiching: ψ′ = LψL−1, where L is an element of the
versor group, a subgroup of the general linear group. We can fur-
ther require that LL−1 = 1 (in which case the versor group becomes
the pin group), but this is may not be an absolute requirement as we
normalize the partition function in any case. In the matrix represen-
tation, M[p] is:

M[p] =

 a+X0−iB3−iV3 B2−iB1+V2−iV1 −ib+X3+E3−iV0 X1−iX2+E1−iE2
−B2−iB1−V2−iV1 a+X0+iB3+iV3 X1+iX2+E1+iE2 −ib−X3−E3−iV0
−ib−X3+E3+iV0 −X1+iX2+E1−iE2 a−X0−iB3+iV3 B2−iB1−V2+iV1
−X1−iX2+E1+iE2 −ib+X3−E3+iV0 −B2−iB1+V2+iV1 a−X0+iB3−iV3


(135)

As before, the det of exp is related to the trace:

det exp
1
2

M[p] = exp Tr
1
2

M[p] = e2r[p] (136)

and thus reduces to a real number yielding the probability.
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In fact, if we consider the constraint of a system of universal ther-
modynamics to be an arbitrary matrix M(n, C), and possibly even
with the subset of matrix representations of the real geometric al-
gebra M[Gn(R)] ⊂ M(n, C), we get a no-go theorem regarding the
number of dimensions the system can have:

Theorem 7 (Loss of structure beyond 4 space-time dimensions (no-go
theorem)). : If;

1. we attribute physical significance to the eigenvalues of the matrix repre-
sentation of multi-vectors (such as; for the construction of a thermody-
namic system of equations, for a change of basis, etc.), and;

2. we require the laws of physics to be expressible as general solutions in
radicals, and;

3. we require the laws of physics to remain invariant with respect to a
change of numerical value within the entry of the matrix representing
the system (Lorentz invariance, coordinate-change invariance, etc), and;

4. we require the matrix representation to be square so as to be able to use
the determinant, and

5. we consider a system of universal thermodynamics constrained to an
arbitrary M(n, C) matrix,

then for a general/arbitrary matrix, the dimensions stops at 4× 4 because
of the Abel–Ruffini theorem.

Proof. We note:

1. The Abel–Ruffini theorem states that there exists no solutions in
radicals to a general polynomial equation of degree 5 or higher
with arbitrary coefficient.

2. Obtaining the eigenvalues of a n× n matrix requires one to solve
the roots of its characteristic polynomial.

3. The characteristic polynomial, for a n × n matrix with arbitrary
coefficient is of degree up to n.

4. The general multi-vectors of G4(C) form a complete representation
of any elements of M(4, C).

Then, it follows that the characteristic polynomial associated with
the matrix representation of 4× 4 matrices is a general polynomial
of degree 4 with arbitrary coefficient. It further follows that since
above 4 dimensions, one requires a matrix representation higher than
4× 4, the corresponding characteristic polynomial will be of degree
5 or higher and will have no general solutions expressible in radicals.
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Thus, with the extended Born rule, it follows that no wavefuntions
(defined as, roughly, an information bearing single invariant equation
expressible in radicals) can exist beyond 4 dimensions. The extended
Born rule, together with the correspondence between M(4, C) and
G4(C) —allowing for a purely geometric interpretation of M(4, C)—,
produces this no-go theorem beyond 4 space-time dimensions. In
the language of this paper, we will say that microstate of the eigen-
partition functions have no general structure beyond four dimen-
sions. Thus, beyond four dimensions the informational backbone of
the wavefunction fails.

We reiterate of course that if one allows eigenvalues not express-
ible in radicals in the definition of the constraints of the entropy, then
the no-go theorem fails.

We note that in the case where we use only a subset of the G4(C)

algebra, we can obtain radical solutions for the roots of a system of
more than 4 dimensions. For instance, if we take a 1-vector of G4(C):

v = X0x̂0 + X1x̂1 + X2x̂2 + X3x̂3 (137)

then the characteristic polynomial of its matrix representation has
reduced complexity and is not an arbitrary polynomial of degree 4.

The matrix representation of v is:

M[v] =

 X0 0 X3 X1−iX2
0 X0 X1+iX2 −X3
−X3 −X1+iX2 −X0 0

−X1−iX2 X3 0 −X0

 (138)

The characteristic polynomial det
[
M[v]− λI

]
= 0 reduces to:

λ2 = X2
0 − X2

1 − X2
2 − X2

3 (139)

which is a polynomial of degree 2. Thus, special relativity, by
itself, does not limit space-time to 4 dimensions.

The key to limiting the dimensionality of spacetime to 4 is to con-
sider the constraint to include all geometric degrees of freedom of
spacetime (totalling 16 geometric degrees of freedom in the case of
3+1 space-time), which is enough for the characteristic polynomial to
be an arbitrary polynomial of degree 4 and, consequently, to barely
fly under the radar of the Abel-Ruffini theorem.

6.5 Space-time interference pattern

Here, we investigate new classes of interference patterns produced by
the extended Born rule.
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Theorem 8 (Hyperbolic interference (1D)). Now we will apply the
geometric properties of the matrix representation of G2(R) to the universal
Born rule:

I ∼=
(

1 0
0 1

)
x̂1
∼=
(

1 0
0 −1

)
x̂2 ∼=

(
0 1
1 0

)
I ∼=

(
0 1
−1 0

)
(140)

For the 1D case, we will only use I and x̂1. In this case, we obtain an
interference pattern that uses the cosh instead of the cos.

Proof. To start, we define two maps:

r : P→ R (141)

x : P→ R (142)

And we construct M[p] as the sum r[p]I + x[p]x̂1:

M[p] = r[p]

(
1 0
0 1

)
+ x[p]

(
1 0
0 −1

)
=

(
r[p] + x[p] 0

0 r[p]− x[p]

)
(143)

The universal Born rule is:

‖Z‖ = det ∑
p∈P

(
exp

(
r[p] + x[p]

)
0

0 exp
(
r[p]− x[p]

)) (144)

=

∑
p∈P

exp
(
r[p] + x[p]

)∑
p∈P

exp
(
r[p]− x[p]

) (145)

Taking an ensemble of two elements P := {p1, p2} we get:

=
(

exp
(
r[p1] + x[p1]

)
+ exp

(
r[p2] + x[p2]

)) (
exp

(
r[p1]− x[p1]

)
+ exp

(
r[p2]− x[p2]

))
(146)

= exp
(
r[p1] + x[p1]

)
exp

(
r[p1]− x[p1]

)
+ exp

(
r[p2] + x[p2]

)
exp

(
r[p2]− x[p2]

)
+ exp

(
r[p1] + x[p1]

)
exp

(
r[p2]− x[p2]

)
+ exp

(
r[p2] + x[p2]

)
exp

(
r[p1]− x[p1]

)
(147)

= (er[p1])2 + (er[p2])2 + 2er[p1]er[p2] cosh
(
x[p1]− x[p2]

)
(148)

Here, we obtain a hyperbolic interference term in lieu of the cosine
term normally present in quantum mechanics.

Theorem 9 (Geometric interference (2D+)). Let us repeat the same
exercise, but this time we will use two dimensions. We will show that the
interference pattern references the inner product between two vectors.

Proof. To start, we define three maps:
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r : P→ R (149)

x : P→ R (150)

y : P→ R (151)

The resulting matrix is obtained by summing:

M[p] = r[p]I + x[p]x̂1 + y[p]x̂2 (152)

we get:

M[p] =

(
r[p] + x[p] y[p]

y[p] r[p]− x[p]

)
(153)

The universal Born rule is:

‖Z‖ = det ∑
p∈P

exp

(
r[p] + x[p] y[p]

y[p] r[p]− x[p]

)
(154)

With straightforward algebraic manipulations (omitted), the expo-
nentiation yields:

‖Z‖ = det ∑
p∈P

er[p]

cosh
√

x[p]2 + y[p]2 + x[p] sinh
√

x[p]2+y[p]2√
x[p]2+y[p]2

y[p] sinh
√

x[p]2+y[p]2√
x[p]2+y[p]2

y[p] sinh
√

x[p]2+y[p]2√
x[p]2+y[p]2

cosh
√

x[p]2 + y[p]2 − x[p] sinh
√

x[p]2+y[p]2√
x[p]2+y[p]2


(155)

If we take a two-state system P = {p1, p2}, the again with
straightforward algebraic manipulations (omitted), (and by posing
xi = x[pi], yi = y[pi]) we obtain:

‖Z‖ = |ψ1|2 + |ψ2|2 + 2|ψ1||ψ2|

cosh
√

x2
1 + y2

1 cosh
√

x2
2 + y2

2 −
(x1x2 + y1y2) sinh

√
x2

1 + y2
1 sinh

√
x2

2 + y2
2√

x2
1 + y2

1

√
x2

2 + y2
2


(156)

where x1x2 + y1y2 is an inner product between the two states.

Then, finally, to a space-time event.

Definition 13 (Probabilities of space-time events). Let us now repeat
the same exercise, but with the gamma matrices and for a paravector. The
gamma matrices along with the identity matrix produces the following basis:
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I =

(
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
γ0 =

(
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

)
γ1 =

(
0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

)
γ2 =

(
0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0

)
γ3 =

(
0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

)
(157)

One introduces fours maps:

r : P→ R (158)

X0 : P→ R (159)

X1 : P→ R (160)

X2 : P→ R (161)

X3 : P→ R (162)

Then, the matrix M[p] is:

M[p] = r[p]I + X0[p]γ0 + X1[p]γ1 + X2[p]γ2 + X3[p]γ3 (163)

and its representation is:

M[p] =

 r+X0 0 X3 X1−iX2
0 r+X0 X1+iX2 −X3
−X3 −X1+iX2 r−X0 0

−X1−iX2 X3 0 r−X−0

 (164)

Using the matrix representation leads to a substantially verbose proof.
Instead, we will remain in the language of geometric algebra. We can write
exp M[p] as:

exp M[p] = er[p] exp
(
X0[p]x̂0 + X1[p]x̂1 + X2[p]x̂2 + X3[p]x̂3

)
(165)

= er[p] exp
(
X[p]

)
(166)

Now, we construct an ensemble of two states P = {p1, p2} and we apply
the universal Born rule to it:

‖Z‖ =det
(

er[p1] exp
(
X[p1]

)
+ er[p2] exp

(
X[p2]

))
(167)

We note three observations:

1. In the case of a paravector, we define the norm as follows:

‖v‖ =
√
(r + x)(r− x) (168)

=
√

r2 + x2 (169)
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2. We further note that the exponential of a vector is

exp x = cosh‖x‖+ x
‖x‖ sinh‖x‖ (170)

3. We note that the Clifford conjugate of exp x is:

(exp x)� = cosh‖x‖ − x
‖x‖ sinh‖x‖ (171)

4. Finally, we adopt the notation X[pi] = xi and r[pi] = ri.

With these observations, we can now find the expression of‖Z‖:

√
‖Z‖ =

(
er1 cosh‖x1‖+ er1

x1

‖x1‖
sinh‖x1‖+ er2 cosh‖x2‖+ er2

x2

‖x2‖
sinh‖x2‖

)
(

er1 cosh‖x1‖ − er1
x1

‖x1‖
sinh‖x1‖+ er2 cosh‖x2‖ − er2

x2

‖x2‖
sinh‖x2‖

)
(172)

= er1 cosh‖x1‖
(

er1 cosh‖x1‖ − er1
x1

‖x1‖
sinh‖x1‖+ er2 cosh‖x2‖ − er2

x2

‖x2‖
sinh‖x2‖

)

+ er2 cosh‖x2‖
(

er1 cosh‖x1‖ − er1
x1

‖x1‖
sinh‖x1‖+ er2 cosh‖x2‖ − er2

x2

‖x2‖
sinh‖x2‖

)

+ er1
x1

‖x1‖
sinh‖x1‖

(
er1 cosh‖x1‖ − er1

x1

‖x1‖
sinh‖x1‖+ er2 cosh‖x2‖ − er2

x2

‖x2‖
sinh‖x2‖

)

+ er2
x2

‖x2‖
sinh‖x2‖

(
er1 cosh‖x1‖ − er1

x1

‖x1‖
sinh‖x1‖+ er2 cosh‖x2‖ − er2

x2

‖x2‖
sinh‖x2‖

)
(173)

= e2r1 cosh2‖x1‖ − e2r1
x1

‖x1‖
cosh‖x1‖ sinh‖x1‖+ er1 er2 cosh‖x1‖ cosh‖x2‖ − er1 er2

x2

‖x2‖
cosh‖x1‖ sinh‖x2‖

+ er2 er1 cosh‖x2‖ cosh‖x1‖ − er2 er1
x1

‖x1‖
cosh‖x2‖ sinh‖x1‖+ e2r2 cosh2‖x2‖ − e2r2

x2

‖x2‖
cosh‖x2‖ sinh‖x2‖

+ e2r1
x1

‖x1‖
sinh‖x1‖ cosh‖x1‖ − e2r1

x2
1

‖x1‖2 sinh2‖x1‖

+ er1 er2
x1

‖x1‖
sinh‖x1‖ cosh‖x2‖ − er1 er2

x1x2

‖x1‖‖x2‖
sinh‖x1‖ sinh‖x2‖

+ er1 er2
x2

‖x2‖
sinh‖x2‖ cosh‖x1‖ − er1 er2

x1x2

‖x1‖‖x2‖
sinh‖x2‖ sinh‖x1‖

+ e2r2
x2

‖x2‖
sinh‖x2‖ cosh‖x2‖ − e2r2

x2
2

‖x2‖2 sinh2‖x2‖

(174)

To simplify this expression, we note the following observations:
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1. First, we note the following well-known identity:

cosh2 x− sinh2 x = 1 (175)

2. we also note that:

x2

‖x‖2 = 1 (176)

Proof. Let x = X0x̂0 + X1x̂1 + X2x̂2 + X3x̂3. Then the geometric
product is x2 = X2

0 −X2
1 −X2

2 −X2
3 which is the same as the square

of the norm.

We proceed with our simplifications as follows:

= e2r1 + e2r2

− e2r1
x1

‖x1‖
cosh‖x1‖ sinh‖x1‖+ er1 er2 cosh‖x1‖ cosh‖x2‖ − er1 er2

x2

‖x2‖
cosh‖x1‖ sinh‖x2‖

+ er2 er1 cosh‖x2‖ cosh‖x1‖ − er2 er1
x1

‖x1‖
cosh‖x2‖ sinh‖x1‖ − e2r2

x2

‖x2‖
cosh‖x2‖ sinh‖x2‖

+ e2r1
x1

‖x1‖
sinh‖x1‖ cosh‖x1‖

+ er1 er2
x1

‖x1‖
sinh‖x1‖ cosh‖x2‖ − er1 er2

x1x2

‖x1‖‖x2‖
sinh‖x1‖ sinh‖x2‖

+ er1 er2
x2

‖x2‖
sinh‖x2‖ cosh‖x1‖ − er1 er2

x1x2

‖x1‖‖x2‖
sinh‖x2‖ sinh‖x1‖

+ e2r2
x2

‖x2‖
sinh‖x2‖ cosh‖x2‖ (177)

= e2r1 + e2r2 + 2er1 er2 cosh‖x1‖ cosh‖x2‖ − 2er1 er2
x1x2

‖x1‖‖x2‖
sinh‖x1‖ sinh‖x2‖

(178)

Here, the pseudo-inner-product (interval of special relativity) is recovered
as the geometric product x1x2.

To combine both the even part and the odd part together, let us
introduce the universal norm:

6.6 The Universal Norm

Definition 14 (Universal Norm). We take the norm of the geometric alge-
bra G4(R) to be a function‖·‖ : G4(R) → R with the requirement that it’s
output be the same as that of the determinant of its matrix representation (If
we include the complex G4(C), the norm remains the same but its domain is
now‖·‖ : G4(C)→ C. It attributes no new geometry to the complexification
of the pre-factors and they simply "pass-through" the norm.):
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‖u‖ := 4
√

det M[u] (179)

We can equivalently define this norm46 fully in the language of geometric 46 Douglas Lundholm and Lars Svens-
son. Clifford algebra, geometric alge-
bra, and applications. arXiv preprint
arXiv:0907.5356, 2009

algebra, as follows:

‖u‖ = 4
√
b(u�)uc{3,4}(u�)u (180)

Let us explain the notation. First, u� is the geometric conjugate (also
called the Clifford conjugate) of a multivector defined, in G4, as follows:

u� = 〈u〉0 − 〈u〉1 − 〈u〉2 + 〈u〉3 + 〈u〉4 (181)

Furthermore, the notation b(u�)uc{3,4} represents the {3, 4}-grade
conjugate. It is defined as follows:

buc{3,4} = 〈u〉0 + 〈u〉1 + 〈u〉2 − 〈u〉3 − 〈u〉4 (182)

For reference, the grades of u are:

〈u〉0 = r (183)

〈u〉1 = (X0)x̂0 + (X1)x̂1 + (X2)x̂2 + (X3)x̂3 (184)

〈u〉2 = (E1)x̂0 ∧ x̂1 + (E2)x̂0 ∧ x̂2 + (E3)x̂0 ∧ x̂3 + (B1)x̂2 ∧ x̂3 + (B2)x̂3 ∧ x̂1 + (B3)x̂1 ∧ x̂2) (185)

〈u〉3 = (V0)x̂1 ∧ x̂2 ∧ x̂3 + (V1)x̂0 ∧ x̂2 ∧ x̂3 + (V2)x̂0 ∧ x̂1 ∧ x̂3 + (V3)x̂0 ∧ x̂1 ∧ x̂2) (186)

〈u〉4 = (θ)x̂0 ∧ x̂1 ∧ x̂2 ∧ x̂3 (187)

Now, let us write out the "half-product" of the norm: (u�)u ∈
G0 ⊕ G3 ⊕ G4:

(u�)u =

r2 − θ2 + B2
1 + B2

2 + B2
3 − E2

1 − E2
2 − E2

3 + V2
0 −V2

1 −V2
2 −V2

3 − X2
0 + X2

1 + X2
2 + X2

3

+ x̂0 ∧ x̂1 ∧ x̂2(2E3V0 + 2B2V1 − 2B1V2 + 2rV3 − 2B3X0 + 2E2X1 − 2E1X2 − 2θX3)

+ x̂0 ∧ x̂1 ∧ x̂3(−2E2V0 + 2B3V1 − 2rV2 − 2B1V3 + 2B2X0 + 2E3X1 + 2θX2 − 2E1X3)

+ x̂0 ∧ x̂2 ∧ x̂3(2E1V0 + 2rV1 + 2B3V2 − 2B2V3 − 2B1X0 − 2θX1 + 2E3X2 − 2E2X3)

+ x̂1 ∧ x̂2 ∧ x̂3(2rV0 + 2E1V1 + 2E2V2 + 2E3V3 − 2θX0 − 2B1X1 − 2B2X2 − 2B3X3)

+ x̂0 ∧ x̂1 ∧ x̂2 ∧ x̂3(2rθ − 2B1E1 − 2B2E2 − 2B3E3 − 2V0X0 + 2V1X1 + 2V2X2 + 2V3X3)

(188)

If we now complete the full product we end up with the following
norm applicable to a general multivector of G4(C), which we call the
universal norm:
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(
b(u�)uc{3,4}(u

�)u
)4

=

(r2 − θ2 + B2
1 + B2

2 + B2
3 − E2

1 − E2
2 − E2

3 + V2
0 −V2

1 −V2
2 −V2

3 − X2
0 + X2

1 + X2
2 + X2

3)
2

+ (2E3V0 + 2B2V1 − 2B1V2 + 2rV3 − 2B3X0 + 2E2X1 − 2E1X2 − 2θX3)
2

+ (−2E2V0 + 2B3V1 − 2rV2 − 2B1V3 + 2B2X0 + 2E3X1 + 2θX2 − 2E1X3)
2

+ (2E1V0 + 2rV1 + 2B3V2 − 2B2V3 − 2B1X0 − 2θX1 + 2E3X2 − 2E2X3)
2

− (2rV0 + 2E1V1 + 2E2V2 + 2E3V3 − 2θX0 − 2B1X1 − 2B2X2 − 2B3X3)
2

+ 4(rθ − B1E1 − B2E2 − B3E3 −V0X0 + V1X1 + V2X2 + V3X3)
2

(189)

Let us now take a few examples. Starting with a scalar:

Example 1 (Universal norm applied to a real).

v := r (190)

=⇒ ‖v‖ = 4
√
b(r�)rc{3,4}(r�)r = r (191)

Example 2 (Universal norm applied to a complex). Let

v := a + bI (192)

=⇒ ‖v‖ =
√

a2 + b2 (193)

Example 3 (Universal norm applied to a 1-vector (Euclid)).

v := X1x̂1 + X2x̂2 + X3x̂3 (194)

=⇒ ‖v‖ =
√

X2
1 + X2

2 + X2
3 (195)

Example 4 (Universal norm applied to a 1-vector (Lorentz)).

v := X0x̂0 + X1x̂1 + X2x̂2 + X3x̂3 (196)

=⇒ ‖v‖ =
√
−X2

0 + X2
1 + X2

2 + X2
3 (197)

Example 5 (Universal norm applied to a 2-vector (Faraday tensor)).

v := E1x̂0 ∧ x̂1 + E2x̂1 ∧ x̂2 + E3x̂0 ∧ x̂3 + B1x̂2 ∧ x̂3 + B2x̂3 ∧ x̂1 + B3x̂1 ∧ x̂2

(198)

=⇒ ‖v‖ = 4
√
(E2

1 + E2
2 + E2

3 − B2
1 − B2

2 − B2
3)

2 + 4(E1B1 + E2B2 + E3B3)2

(199)

We note that the quantities E2
1 + E2

2 + E2
3 − B2

1 − B2
2 − B2

3 and E1B1 +

E2B2 + E3B3 are the two Lorentz invariant of the Faraday tensor.

The universal norm is the foundation of the most general interfer-
ence pattern that can be produced by the extended Born rule.
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6.7 Geometric interference (Falsifiable)

The language of geometric algebra allows us to simplify the two-state
universal interference pattern substantially and reveals considerable
insight. We start with two sub-wavefuntions:

ψ1 = e
1
2 r1 exp

(
1
2
(θ1I + X1 + F1 + V1)

)
= e

1
2 r1 G1 (200)

ψ2 = e
1
2 r2 exp

(
1
2
(θ2I + X2 + F2 + V2)

)
= e

1
2 r2 G2 (201)

and we define a wavefunction ψ as the sum of the two:

ψ = ψ1 + ψ2 (202)

We can the inject ψ into the definition of the universal norm:

N[ψ] = bψ�ψc3,4ψ�ψ (203)

= b(ψ1 + ψ2)
�(ψ1 + ψ2)c3,4(ψ1 + ψ2)

�(ψ1 + ψ2) (204)

= b(ψ�
1 + ψ�

2 )(ψ1 + ψ2)c3,4(ψ
�
1 + ψ�

2 )(ψ1 + ψ2) (205)

= bψ�
1 ψ1 + ψ�

1 ψ2 + ψ�
2 ψ1 + ψ�

2 ψ2c3,4(ψ
�
1 ψ1 + ψ�

1 ψ2 + ψ�
2 ψ1 + ψ�

2 ψ2)

(206)

= (bψ�
1 ψ1c3,4 + bψ�

1 ψ2 + ψ�
2 ψ1c3,4 + bψ�

2 ψ2c3,4)(ψ
�
1 ψ1 + ψ�

1 ψ2 + ψ�
2 ψ1 + ψ�

2 ψ2)

(207)

= bψ�
1 ψ1c3,4(ψ

�
1 ψ1 + ψ�

1 ψ2 + ψ�
2 ψ1 + ψ�

2 ψ2)

+ bψ�
2 ψ2c3,4(ψ

�
1 ψ1 + ψ�

1 ψ2 + ψ�
2 ψ1 + ψ�

2 ψ2)

+ bψ�
1 ψ2 + ψ�

2 ψ1c3,4(ψ
�
1 ψ1 + ψ�

1 ψ2 + ψ�
2 ψ1 + ψ�

2 ψ2) (208)

= bψ�
1 ψ1c3,4(ψ

�
1 ψ1) + bψ�

2 ψ2c3,4(ψ
�
2 ψ2)

+ bψ�
1 ψ1c3,4(ψ

�
1 ψ2 + ψ�

2 ψ1 + ψ�
2 ψ2)

+ bψ�
2 ψ2c3,4(ψ

�
1 ψ1 + ψ�

1 ψ2 + ψ�
2 ψ1)

+ bψ�
1 ψ2 + ψ�

2 ψ1c3,4(ψ
�
1 ψ1 + ψ�

1 ψ2 + ψ�
2 ψ1 + ψ�

2 ψ2) (209)

Since bψ�
1 ψ1c3,4(ψ

�
1 ψ1) and bψ�

2 ψ2c3,4(ψ
�
2 ψ2) are simply the deter-

minant of the matrix representation of the multivector, they reduce
to:

bψ�
1 ψ1c3,4(ψ

�
1 ψ1) = (er1)2 (210)

bψ�
2 ψ2c3,4(ψ

�
2 ψ2) = (er2)2 (211)

We get:
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N[ψ] = (er1)2 + (er2)2

+ bψ�
1 ψ1c3,4(ψ

�
1 ψ2 + ψ�

2 ψ1 + ψ�
2 ψ2)

+ bψ�
2 ψ2c3,4(ψ

�
1 ψ1 + ψ�

1 ψ2 + ψ�
2 ψ1)

+ bψ�
1 ψ2 + ψ�

2 ψ1c3,4(ψ
�
1 ψ1 + ψ�

1 ψ2 + ψ�
2 ψ1 + ψ�

2 ψ2) (212)

Thus, in the general case, an interference pattern, far exceeding
the complex interference pattern producible by ordinary quantum
mechanics, is predicted by this model.

I note that this paper47 has also predicted an extended interfer- 47 I Bohdan et al. Wave function as
geometric entity. Journal of Modern
Physics, 2012, 2012

ence pattern in the geometric formulation of the wavefunction, as an
even algebra subset of the above and suggesting a variation of the
Aharonov-Bohm Effect experiment as a possibly way to falsify these
predictions,

6.8 Extended Path integral

The Feynman path integral is:

K =
∫

Dx[t] exp
(

i
∫

dtL[x, ẋ, t]
)
=
∫

Dx[t] exp
(
iS[x[t]]

)
(213)

and the associated probability distribution is obtained by applica-
tion of the Born rule:

P[x] =
∣∣∣∣∫ Dx[t] exp

(
i
∫

dtL[x, ẋ, t]
)∣∣∣∣2 (214)

t1 t2 T

A
B

x1,1

x1,2

x1,3

x2,1

x2,2

x2,3

x2,4

Figure 4: The Feynman path
integral is obtained when
the quantities m and n of
slices (t1, t2, . . . , tm) and
(xi,1, xi,2, . . . , xi,n) are increased
to infinity

Theorem 10 (Extended path integral). We will now derive the extended
path integral using the formalism of universal statistical physics.

Proof. We take a complete multivector of G4(R):

g[p] = e
1
2 r[p] exp

(
1
2
(θ[p]I + X[p] + F[p] + V[p])

)
(215)

Then we define a eigen-partition function for each eigenvalues
of the matrix representation of g[p], which we note as the functions
λa[p], λb[p], λc[p], λd[p]. Each lambda function is a map from P, a
countable set, to a continuous but countable set, such as the rationals
or preferably the computable reals. In the infinite extension of the
case shown in Figure 4, the probability amplitude of B given A, and
for each eigenvalues, is given as follows:
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Ka = ∑
p1∈P1

∑
p2∈P2

· · · ∑
pn∈Pn

e−k̃λa [p1]e−k̃λa [p2] . . . e−k̃λa [pn ] (216)

Kb = ∑
p1∈P1

∑
p2∈P2

· · · ∑
pn∈Pn

e−k̃λb [p1]e−k̃λb [p2] . . . e−k̃λb [pn ] (217)

Kc = ∑
p1∈P1

∑
p2∈P2

· · · ∑
pn∈Pn

e−k̃λc [p1]e−k̃λc [p2] . . . e−k̃λc [pn ] (218)

Kd = ∑
p1∈P1

∑
p2∈P2

· · · ∑
pn∈Pn

e−k̃λd [p1]e−k̃λd [p2] . . . e−k̃λd [pn ] (219)

where k̃ is the Lagrange multiplier. Then the probability is given
by:

P = KaKbKcKd (220)

This is a version of the Path integral which does not rely under an
assumption of space-time. One can perhaps understand it as a "path
integral" in a purely logical space. We can derive the path integral
in the continuous form we are familiar with, but to do so we have to
create a map x : P → R that attributes a spatial coordinates to each
experiment. Since, P is countably infinite, we can map to a continu-
ous countable subset of the reals such as the rationals, or preferably
the computable reals. One then performs the convolution of x[p] with
each of the eigenvalue functions, and get these replacements:

λa[p]→ λa[x[p]] (221)

λb[p]→ λb[x[p]] (222)

λc[p]→ λc[x[p]] (223)

λd[p]→ λd[x[p]] (224)

The lambdas are now functions from the reals to the real, and
represent a density evaluated at a point x[p]. Finally, making the
dependence on p implicit, one can then define the path integral with
the familiar notation:

Ka =
∫

D[λa[x]]e−k̃
∫

λa [x]dx (225)

Kb =
∫

D[λb[x]]e−k̃
∫

λb [x]dx (226)

Kc =
∫

D[λc[x]]e−k̃
∫

λc [x]dx (227)

Kd =
∫

D[λd[x]]e−k̃
∫

λd [x]dx (228)

The probability is this case is still P = KaKbKcKd
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We note that in the case of the path integral, the limitation of 4

space-time dimensions produced by the no-go theorem takes all of
its sense. The laws of physics normally associated to the Lagrangian
here takes the form of an eigenvalue. Since the roots of polynomials
of degree 5 of higher have no solutions in radicals, and their ex-
pression can vary based on the numeral value of the entries of the
matrix, then the loss of structure prevents any invariance within the
Lagrangian, for the general case of the extended Born rule.

6.9 Quartic Hilbert spaces

First, we limit the domain of the universal norm to a) the reals and b)
to the exponential map of multivectors:

‖·‖ : exp
(
G4(R)

)
→ R (229)

Limiting the norm only to exponentials of multi-vectors renders
it positive-definite. We then use it to define a ’quartic’ Hilbert space
which maps the set of transformations to a normalizable probability
distribution, via the extended Born rule. Specifically, the normaliza-
tion conditions over a domain of integration [D], and for a wavefunc-
tion ψ[x] is:

∫
[D]
bψ�ψc3,4ψ�ψ dx < ∞ (230)

This definition is the geometric-algebra equivalent of the matrix
representation:

∫
[D]

det exp M[u[x]]dx < ∞ (231)

6.10 Octic Hilbert spaces

If we now want a probability norm with map:

‖·‖ : exp
(
G4(C)

)
→ R (232)

such that exponential map over the complexification of the space-
time algebra, representing the general liner group of transformations,
the GL(4, C) group, is obtained by taking the square modulos of the
universal norm:

∥∥ψ
∥∥ =

(
bψ�ψc3,4ψ�ψ

) (
bψ�ψc3,4ψ�ψ

)∗
(233)



an attempt to prove physics by making reality indubitable 72

To maintain the group isomorphism of the geometric algebra to
its matrix representation, the octic Hilbert space can be embedded
into the ’nearest-higher-dimensional’ algebra that shares said group
isomorphism, which is G6(C) ∼= M(8, C). The physical interpretation
and consequences implied by the octic Hilbert space and its embed-
ding into a six-dimensional normalization space will be explored in a
future paper.

7 Discussion

Now that we have derived the (extended) Born rule from first princi-
ple, can we use this insight to solve both the measurement problem,
and the interpretation of quantum mechanics problem? Was deriving
the mathematical origin of said rule the missing ingredient? We note
that we also have a mathematical description of the observer, and a
definition of reality. These are new tools, not previously available,
and long suspected to be key to uncover this mystery.

7.1 Click-first, wavefunction-second interpretation

Universal statistical physics on the one hand inherits its interpreta-
tion from ordinary statistical physics, and on the other it is a superset
of quantum mechanics, therefore it bequeaths an interpretation to
quantum physics consistent with statistical physics. I note that my
framework shares very strong similarities to the statistical ensemble
interpretation48, but it is actually more than just an interpretation, 48 Leslie E Ballentine. The statistical

interpretation of quantum mechanics.
Reviews of Modern Physics, 42(4):358,
1970

because it derives the wavefunction, rather than simply postulating
it as is the case with interpretations. It is therefore more accurate to
state that it is an explanation of quantum mechanics, rather than an
interpretation.

In ordinary statistical physics, one assumes the existence of mea-
suring instruments, such as a thermometer or a barometer. Such
instruments are used to gather finitely many individual measure-
ments. One assumes that, in the limit, these measurement converges
to an average value, called the constraint. Finally, under the principle
of maximum entropy and under said constraints, one recovers the
Gibbs measure.

In the case of quantum mechanics, a similar interpretation is found
in universal statistical physics, but instead of measuring temper-
ature or pressure, our detector registers clicks. Clicks have more
structure than simple scalar quantities, but otherwise, have the same
assumptions as those of ordinary statistical physics. This extra struc-
ture, along with a click-first wavefunction-second foundation, allows
us to define all problematic quantum effects in a remarkably non-
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problematic manner. This even includes the problematic quantum
measurement problem:

For instance, a detector may measure a given electron’s spin as:
up, up, up, up, up, up, ... If we then consider these clicks to be the
foundation of an statistical ensemble, then said ensemble is com-
prised of a single microstate. Maximizing the entropy of such a sys-
tem using ordinary statistical physics produces a Gibbs measure with
100% probability of this single state, whereas doing the same with
universal statistical physics will produce a collapsed wavefunction.

To obtain a plurality of microstates rather than just one, one will
have to measure a plurality of similarly prepared electrons, such that
the detector reports multiple measurement values, and finally, to
maximize the entropy of such an ensemble in order to get a probabil-
ity measure over multiple states. Like for ordinary statistical physics,
we consider that measuring many clicks obtained under copies of a
similarly prepared systems will converge towards a fixed finite value
which we will call a constraint. Remarkably, the probability measure
resulting from maximizing the entropy under the constraint of clicks
is the relativistic wavefunction in lieu of the Gibbs measure. We re-
state for emphasis: The relativistic wavefunction is —simply—- the
generalization of the Gibbs measure to clicks. From the click-first
wavefunction-second direction, the gamut of ’unintuitive’ quantum
behaviour is transposed to the empirically-undeniable set of all pos-
sible sequences of clicks. Each sequence of clicks is responsible for
defining an ensemble for which it is possible to derive a wavefunc-
tion of the appropriate structure. Clicks that repeat the same value
implies a probability measure describing a collapsed wavefunction,
and clicks that produce different random values implies a probability
measure describing a multi-state non-collapsed wavefunction.

The interpretation of quantum mechanics continues within this
setup by referencing the concepts of microstates and macrostates
and how they relate. In ordinary statistical physics, for instance
in an ideal gas, each possible distribution of air molecules is a mi-
crostate. The observer is assumed to rest somewhere out of sight and
to take notes of the (macroscopic) temperature and pressure measure-
ments perhaps using pen and paper. However, in universal statistical
physics, the terms microstate and macrostate are somewhat mislead-
ing because we are not necessarily dealing with difference in sizes as
we typically do in ordinary statistical physics.

In the case of universal statistical physics, the observer is aware
of the result of a measurement and thus necessarily constitutes the
microscopic description of the system, whereas the macroscopic de-
scription is defined as a particular sequence of clicks. I note that
this somewhat reminds me of Maxwell’s daemon allegedly aware
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the position of the molecule of the gas. The measurement-problem
’industrial complex’ rests upon the assumption that the wavefunc-
tion, rather than the click, is the most fundamental physical object,
then is baffled as to how clicks are caused. However, universal sta-
tistical physics reveals that this assumption is incorrect. Indeed, it
is the wavefunction that is derived from (maximizing the entropy
of) a given sequence of clicks, and thus is the least fundamental ob-
ject of the two. The clicks, by themselves, defines and constrains the
physical reality of the system.

7.2 A brief note on the choice of microstate

In statistical physics, the formalism is generally independent of the
choice of microscopic element. A statistical ensemble can represent
molecules, polymer chains, even black hole entropy, etc. In some
cases, a given ensemble can accommodate multiple candidate for its
microscopic description. For instance we believe that black holes have
an entropy, but what does this entropy represent is up to debate —
does it represent internal degrees of freedom, is it a representation of
the entanglement between inside states and outside states, or is it any
of numerous other suggestions?

So why pick manifests as microscopic states, if other choices could
be conceivable — why not pick, say, a "typical" particle-wave dual
construct? The short answer is that the manifest is the simplest con-
struction which meets the fundamental assumption of science, and
thankfully achieves exactly nothing more. Indeed, using the manifest
as the microscopic description is the minimal and less restrictive de-
scription which restricts the wavefunction to be a computable entity,
while also importing the desirable indubitable foundation of reality,
the definition of the observer and guarantees, by virtue of being in-
dubitable, that no undue physical or logical baggage is inadvertently
injected into the framework. It is therefore the safest possible choice
which grabs all the desirables.

Specifically, I will note that the definition of universal statistical
physics is conceptually similar (to not say ’exactly the same’) as that
of quantum computing49. This is quite interesting and I would argue 49 Richard J Lipton and Kenneth W

Regan. Quantum algorithms via linear
algebra

very revealing. The premise of quantum computing is to produce
a series of unitary transformations such that sufficient expressive
power is recovered to be Turing complete. Then, repeat measure-
ments over copies or re-runs of the computation allows one to build a
statistical average used to establish the result of the computation.
Quantum computer are usually described using non-relativistic
quantum mechanics for practical and applicability reason, but the
concepts must hold in the relativistic regime also since it is a superset
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of the non-relativistic regime. Universal statistical physics, although
it goes straight to the relativistic regime, can easily be seen along the
same line, but formulated in the reverse: we start with a sequence
of clicks, then derive the probability measure, as a unitary evolving
wavefunction, under the additional requirement that it represents
the mathematical work used to verify the reference manifest, itself
a set of programs constructed from a Turing complete set of state-
ments. The requirement that experiments, defined as programs, be
verified under the constraint of nature, produces within the frame-
work of universal statistical physics a unitary evolving wavefunction
capable of general quantum computation, such that the reference
manifest remains verified throughout the evolution of the system.
Furthermore, since the elements of a manifest are computable, one
can predict any experiment by pre-calculation and then compare it
to a real experiment later; thus making the whole of reality subject to
falsification. Without using manifest as the microstates, a subset of
physics would be non-falsifiable by virtue of been non-computable,
and thus the fundamental assumption of science would fail. Attribut-
ing the manifest as the microstate of the ensemble means that we
meet the definition of quantum computing (in the relativistic regime,
and with the Born rule extensions), but that we come at it from the
other side.

7.3 Making reality maximally informative

Rather than taking some arbitrary set of laws as postulates, our
methodology addresses the problem from the other direction by
taking as its sole axiom the existence of the state of affairs referenced
by M̊. To define a probability measure such that the reference man-
ifest is informative, one must extend the domain of reality (given as
the reference manifest) to that of the domain of science. This exten-
sion is a mathematical construction, compatible with, but nonetheless
unsupported by reality solely; the larger domain is constructed to
make knowledge of reality informative to the observer by satisfying
the requirement of the Shannon definition of information regarding
randomly selecting an element from a larger set. Nonetheless, the
laws of physics do require this process lest they cannot be derived as
a predictive theory. This is why the laws of physics are a theorem of
science applied to reality (and not of reality alone). It is consequently
inexact to claim that the laws of physics are the laws of reality: pre-
cisely, they are the laws that govern the random selection of reality
(expressed as a reference manifest) from amongst the set of all possi-
ble realities (all possible manifests).

Maximizing the entropy associated to the selection of the refer-
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ence manifest from the domain of science releases the constraints
imposed by a sole reference manifest, so as to facilitate formulating
the broadest possible pattern about nature, such that the pattern sur-
vives all possible rearrangements of experiments or permutations
of manifests. If we restrict the domain of a theory to that of reality,
then we obtain a set of Turing machine — which we call ’manifest
theories’. If instead, the domain of the laws of physics is the domain
of science but conditional upon one manifest to be actual, then all of
a sudden the laws of physics become a universal pattern that survive
any transformations of the reference manifest. However, one cannot
form a pattern from a single existing candidate (the reference man-
ifest), unless one invents hypothetical alternatives (in this case, the
set of all manifests). For example, one can say "I am a physicist, but
I could have been a doctor instead", or one could say "I measured
the spin up, but it could have been down". Although neither violates
the laws of physics, in reality, one happened and the other didn’t.
It is precisely because one maximizes the entropy to produce the
laws of physics that the claim ’both alternatives (even the one that
didn’t happen) are compatible with the laws of physics’ can be made.
Unavoidably, the laws of physics will recover both alternatives as
possible solutions, but would be unable to determine which of the
two occurred without access to the information which was erased by
maximizing the entropy. Consider if one would have instead said:
"I am a physicist, but I could have been a magician". How credible
is that claim? Supposedly, we may admit that being a magician vio-
lates the laws of physics, whereas being a doctor doesn’t. Do we then
want our laws of physics to rule out the magician, but not the doctor,
even though in reality we got the physicist? A manifest theory rules
out the doctor, but remarkably physics doesn’t. We want our laws of
physics to permit not only the reference manifest but also all other
possible manifests, whilst ruling out only what would be considered
’truly’ impossible. If manifest theories (whose domain is that of real-
ity) are ’mathematically-ideal’ scientific theories, then physics (whose
domain is science and its subject matter is the random selection of
reality from said domain) is revealed to be a meta-scientific theory.

In universal statistical physics there is no collapse (thus the Copen-
hagen interpretation is rejected), and also the reality is never in a
superposition of many-worlds (thus the many-world interpretation is
also rejected). Via the syllogisms, universal statistical physics limits
the quantity of available mathematical work to allow for precisely
the verification of a single reference manifest (defined as the set of all
verified experiments). It then follows that all alternative manifests are
mathematical creations used to facilitate the formulation of the laws
of physics as a probability measure, and thus, have no ontological
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properties. Hypothetical manifest are comprised of experiments that
are in principle verifiable but are unverified.

7.4 Why does the universe exist?

In the present formalism, we make the distinction between reality
and the universe. Reality, defined as the reference manifest, is the
axiomatic foundation from which the existence of the universe can
be derived from. Specifically, the universe is derivable, but reality
isn’t. Reality is comprised exclusively of indubitable statements and
as such it comprises an indubitable ’mathematical rock bottom’.
Consequently, building a more fundamental basis for it is impossible.
It must be accepted as-is. The follow-up question: why do we exist
as beings capable of doing this verification... the framework cannot
answer. You were born, you opened your eyes, both you and reality
were there — its the given. Then, by inspecting reality, you were able
over time to develop the concepts of object persistence, and further
an understanding that objects are distributed in space and so on, as
patterns that stands out from your experience of reality. Eventually,
you reached the limit of your evolutionary-produced senses, but you
were able to complement them with precision instruments which
revealed new microscopic patterns. But, why is it these patterns that
stand out - what’s special about them?

The whole point of my framework is to formalise this "experience"
to the highest possible degree, such that physics stands out as the
ultimate pattern. First, let me note that the set of all indubitable state-
ments is mathematically universal, consequently it is necessarily suf-
ficiently expressive to describe reality to any level of detail required
and is on par with any other Turing complete theory or language,
which is the highest level of completeness known to mathematics.
Then the key is that we can claim, by referencing the syllogisms of
this manuscript, that the mathematical work required to verify reality
also exists indubitably. Essentially, the indubitable property of the
elements of a manifest cascades to everything it is contingent upon.
We find, by the syllogisms, that reality is contingent on computing
work.

Physics is a meta-scientific theory that survives any transforma-
tions or rearrangements of the reference manifest constrained by the
contingent mathematical work which we call nature. Contrary to a
manifest theory which enumerates a subset of the reference manifest,
physics assigns a probability measure to each manifest. Using univer-
sal statistical physics, we are able to the derive relativistic wavefunc-
tion as the analog to the Gibbs measure, a process self-limited to four
dimensions. We discover that re-arrangement of the reference man-
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ifest, such that the computational work requirements are changed,
corresponds to a sequence of click, and that the computational work
is performed by unitary evolution akin to quantum computing. It
turns out that this probability measure is simply the one with the
richest structure allowed by universal statistical physics and this is
the fundamental structure, along with its computational entailment
with the reference manifest, of what we perceive as the material uni-
verse. The universe is the way it is simply because this happens to be
the richest informational structure one can formulate — it is an in-
formational maximum. Consequently, those whose goal it is to make
reality maximally informative ought to eventually converge towards
such a description.
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