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ABSTRACT

Reliable identification of near-native poses of docked protein–protein complexes is still an unsolved problem. The intrinsic

heterogeneity of protein–protein interactions is challenging for traditional biophysical or knowledge based potentials and

the identification of many false positive binding sites is not unusual. Often, ranking protocols are based on initial clustering

of docked poses followed by the application of an energy function to rank each cluster according to its lowest energy mem-

ber. Here, we present an approach of cluster ranking based not only on one molecular descriptor (e.g., an energy function)

but also employing a large number of descriptors that are integrated in a machine learning model, whereby, an extremely

randomized tree classifier based on 109 molecular descriptors is trained. The protocol is based on first locally enriching

clusters with additional poses, the clusters are then characterized using features describing the distribution of molecular

descriptors within the cluster, which are combined into a pairwise cluster comparison model to discriminate near-native

from incorrect clusters. The results show that our approach is able to identify clusters containing near-native protein–pro-

tein complexes. In addition, we present an analysis of the descriptors with respect to their power to discriminate near native

from incorrect clusters and how data transformations and recursive feature elimination can improve the ranking

performance.
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INTRODCUTION

Specific protein–protein interactions are key to most

cellular functions, ranging from effective signal transduc-

tion of environmental conditions to the nucleus to mod-

ulation of cell-cell interactions and efficient regulation of

metabolic processes.1–3

Experimental determination of such interactions at the

atomic level has improved our knowledge of these cellu-

lar processes but there are still many protein–protein

interactions for which atomic level information is not

available. Given the relatively slow accumulation of

experimental data, computational protein docking is seen

as the method of choice to complete the protein interac-

tion space.4 However, there are two intertwined prob-

lems to solve before these methods can be routinely

employed. The first is to develop methods to efficiently

sample the conformational space of the interacting pro-

teins,5,6 perhaps aided by experimental data.7 The sec-

ond is to be able to effectively rank docked poses, from

typically thousands generated by current docking

algorithms,8 to identify docking ensembles (clusters), or

single docked poses that resemble native-like binding.

Here we focus on the latter problem and develop a

machine learning protocol to rank clustered docked poses

in order locate the cluster, if present, that most likely rep-

resents the bound state. Compared to approaches in

which single structures are ranked, this cluster-centric

approach better reflects the interaction as an ensemble of

conformational arrangements which, in some cases, are so

Additional Supporting Information may be found in the online version of this

article.

Grant sponsor: Francis Crick Institute; Grant sponsor: Cancer Research UK; Grant

number: FC001003; Grant sponsor: UK Medical Research Council; Grant number:

FC001003; Grant sponsor: Wellcome Trust; Grant number: FC001003; Grant spon-

sor: BBSRC Future Leader Fellowship; Grant number: BB/N011600/1.

*Correspondence to: Paul A. Bates, Biomolecular Modelling Laboratory, The

Francis Crick Institute, London NW1 1AT, UK. E-mail: paul.bates@crick.ac.uk

Received 25 July 2016; Revised 14 November 2016; Accepted 21 November 2016

Published online 9 December 2016 in Wiley Online Library (wileyonlinelibrary.

com). DOI: 10.1002/prot.25218

528 PROTEINS VVC 2016 THE AUTHORS PROTEINS: STRUCTURE, FUNCTION, AND BIOINFORMATICS PUBLISHED BY WILEY PERIODICALS, INC.

This is an open access article under the terms of the Creative Commons Attribu-

tion License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

The copyright line for this article was changed on 30 March 2017 after original

online publication.

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


diffuse that no single crystal structure snapshot gives a

reliable representation of the bound state.9

The importance of a cluster based ranking method

with high accuracy for its top ranked solutions is espe-

cially significant when association and disassociation

rates are computed for the binding mode represented in

each cluster. Highly accurate methods use extensive

molecular dynamics (MD) simulations and often require

ns to converge10,11 and therefore a reduced solution

space to test is the only tractable approach. In addition,

computationally expensive refinement or relaxation

methods based on conformational sampling from MD

simulations12 also benefits from a reduced solution

space. These are often required to correctly model con-

formational transitions from unbound to bound.13

Even though there have been a number of individual

potentials developed for the identification of protein–

protein interactions all of them suffer from false positive

identifications of binding modes whereby incorrect solu-

tions are ranked highly.

Here we present a novel method that combines a sta-

tistical learning from pairwise cluster comparisons based

on a large number of molecular descriptors important

for protein–protein interaction, with localized cluster

enrichment with SwarmDock,14,15 to discriminate near-

native from incorrect clusters. To the authors knowledge,

this method of ranking clustered docked poses is the first

of its kind. However, machine learning methods, such as

PROCOS,16 which is based on training a support vector

machine, has been applied to classify docked complexes

as native-like or false. Compared to our method, PRO-

COS makes use of a very limited number of molecular

descriptors (i.e., electrostatic energy, van der Waals force

and a knowledge based pair-potential), does not exploit

the information of the cluster environment and a pair-

wise cluster comparison to train a model that is crucial

to our method. Further applications of machine learning

in the field of protein–protein interactions have been

applied to predict binding affinities such as DG17–19

and disassociation rates such as koff.20,21

The benchmark of our method is based on the score_-

set decoy set of docked protein–protein complexes.22

This set of decoys originates from Critical Assessment of

Prediction of Interactions (CAPRI) experiment where

protein–protein docking and ranking methods are evalu-

ated in blind predictions.23,24

In the following sections, we first outline the challenge

for a machine learning protocol for ranking clusters of

docked poses and explain the unique properties and

advantage of our solution. Furthermore, we present an

analysis of the 109 molecular descriptors with respect to

their power to discriminate near native from incorrect

clusters and their co-linearity. We then show that a

reduced set of features based on these 109 molecular

descriptors is beneficial for ranking performance and

that dimensionality reduction and feature space

transformations with methods such as principal compo-

nent analysis (PCA) or factor analysis (FA) can improve

the top 1 and top 5 ranking. Overall, our best approach

based on a reduced set of features was able to rank the

near-native cluster that contains the model with the low-

est ligand root mean square deviation (LRMSD), with an

average rank of 3.5.

METHODS

Overview

The method presented here for ranking a set of clusters

of docked protein–protein complexes is summarized in

Figure 1. This method combines localized enrichment of

clusters with additional solutions and training a super-

vised learning algorithm to distinguish near native from

incorrect clusters. The classifier learns from a set of 1092

features of pairwise cluster comparison examples that

describing the two clusters. The classifier is optimized to

predict whether the LRMSD(clustern)< LRMSD(clusterm).

Applying this classifier exhaustively to all possible pairwise

combinations of clusters produces a ranking where the

best cluster has the highest number of predicted

LRMSD(clustern)< LRMSD(clusterm) occurrences and the

worst cluster the least number.

Data set

The machine learning protocol for cluster ranking was

trained and tested on previous CAPRI targets as compiled

in the score_set dataset. Decoys from the following 13 tar-

gets were used: T29, T30, T32, T35, T37, T39, T40, T41,

T46, T47, T50, T53, and T54. Targets T36 and T38 were

omitted because of the absence of acceptable, medium or

high quality models according to the CAPRI assessment

standard. The crystal structure of target T40 (PDB: 3E8L)

reports two interfaces. We denote the ligand binding posi-

tion observed in chain C as T40a and for chain B as T40b.

Furthermore, targets T37 and T50 were randomly chosen

as a hold-out set to test ranking performance only. Thus,

data from these two targets was not used for training. Table

I provides an overview of the number of models for all tar-

gets. This data-set makes it possible to test the cluster rank-

ing method on a set of decoys from a large variety of

different protein–protein docking programs.

Models with steric-clashes as assigned in the score_set

dataset were removed, missing side-chain atoms were mod-

eled with SCWRL25 and receptor/ligand chains were truncat-

ed to remove residues not shared by all models in a target.

Model assessment measures

The model quality is quantified by computing the

fraction of native contacts (FNAT), interface root mean

square deviation (IRMSD) and the carbon-alpha (Ca)

ligand root mean square deviation (LRMSD). For details
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of the computation of the FNAT and IRMSD please see

Refs. 26,27. The LRMSD is computed by superimposing

the receptor chains to their equivalent Ca atoms, fol-

lowed by an LRMSD calculation based on the ligand Ca

atoms. This LRMSD calculation differs from the standard

CAPRI procedure where backbone atoms are used for

both super-imposition and the calculation of backbone

deviation. The model quality (i.e., incorrect, acceptable,

medium or high) annotations are taken from the assign-

ments in the score_set dataset and are based on back-

bone LRMSD, IRMSD, and FNAT as described in

reference.22

Clustering

The models for each target were clustered with the GRO-

MOS28 clustering algorithm with a 10 Å LRMSD cutoff

which is implemented in the GROMACS software pack-

age.29 This produces clusters where all members of a

cluster are within 10 Å from the centroid. Table I gives an

overview of the number of clusters per target. Initially,

two other clustering algorithms were tested, namely sin-

gle-linkage30 and Jarvis-Patrick clustering.31 These two

clustering algorithms produced unfavorable extended

ligand-clusters that are spread over large areas of the

receptor surface for some targets. Hence, these two meth-

ods were rejected as viable alternatives to GROMOS.

The aim of this work is to reliably locate true-positive

binding regions. To this end we imposed a cutoff on the

size of clusters to contain> 5 solutions since, in general,

if the docking community is likely to find the true-

positive region it is likely to be populated by more than

one or just a few solutions. However, for the two targets

T35 and T39 the cluster size for near-native solutions

was 3 and 5, respectively. To be still able to perform a

ranking of the near-native cluster, and have more data

for training/testing/cross-validation, these were included

into the set regardless of our initial cutoff.

Figure 1
Schematic overview of the method. In a first step (a) decoys are clustered with a 10 Å cutoff and clusters are enriched with additional solutions

with localized SwarmDock runs. Green and orange spheres around the receptor (grey) represent the center of mass of ligand positions before and
after enrichment, respectively. (b) For each model of a cluster 109 molecular descriptors are computed and grouped by cluster to quantify the pro-

tein–protein interaction. These distributions are characterized by min, Q1, median, Q3 and max that represent the features for a supervised learn-
ing algorithm. Finally, a matrix is generated which compares all possible combinations of clusters for each target to train a binary classifier where

LRMSDn< LRMSDm produces label 1 otherwise 0. (c) To rank clusters for a new target the classifier is applied to all possible cluster comparisons.

Counted is the number of times a cluster was predicted to have a lower LRMSD compared to another cluster. Ranking is based on descending
order where the cluster with the highest number is ranked first and the cluster with the lowest number is ranked last.
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Table I
CAPRI-Targets Overview

Clusters Clusters> 5

Target Total High Medium Acceptable Incorrect Count Count Min. Med. Max.

T29 2083 (1773) 2 (2) 78 (72) 87 (70) 1916 (1629) 925 (802) 61 (49) 6 (6) 9 (9) 147 (136)
T30 1343 (1106) 0 (0) 0 (0) 2 (2) 1341 (1104) 741 (639) 26 (24) 6 (6) 8.5 (7) 50 (50)
T32 599 (572) 0 (0) 3 (3) 12 (12) 584 (557) 224 (217) 12 (12) 6 (6) 9.5 (9) 168 (166)
T35 499 (467) 0 (0) 0 (0) 3 (2) 496 (465) 198 (193) 14 (12) 4 (3) 8 (7) 131 (128)
T37 1500 (1112) 11 (8) 46 (34) 42 (34) 1401 (1036) 629 (500) 55 (41) 6 (6) 9 (8) 35 (27)
T39 1400 (1261) 0 (0) 3 (3) 1 (1) 1396 (1257) 465 (440) 50 (44) 6 (5) 9 (8) 94 (94)
T40(a/b) 2180 (1886) 193 (176) 206 (163) 189 (149) 1592 (1398) 479 (451) 68 (57) 6 (6) 12 (10) 373 (333)
T41 1200 (1029) 2 (2) 120 (99) 249 (198) 829 (729) 141 (139) 27 (25) 6 (6) 15 (13) 343 (271)
T46 1699 (1321) 0 (0) 0 (0) 24 (24) 1675 (1297) 754 (611) 49 (35) 6 (6) 9 (8) 43 (43)
T47 1051 (988) 278 (278) 307 (301) 26 (20) 440 (389) 84 (82) 24 (20) 6 (6) 15 (10) 607 (595)
T50 1451 (1265) 0 (0) 36 (35) 97 (89) 1318 (1141) 306 (284) 41 (35) 6 (6) 11 (10) 148 (138)
T53 1400 (1191) 0 (0) 17 (9) 113 (92) 1270 (1092) 277 (260) 45 (42) 6 (6) 10.5 (10) 164 (150)
T54 1400 (1215) 0 (0) 1 (1) 18 (18) 1381 (1196) 301 (285) 55 (49) 6 (6) 12 (12) 92 (92)

The total number of clusters and models with high, medium, acceptable and incorrect quality in the score_set dataset are shown. For the cluster-size cutoff> 5, the

minimum, median and maximum number of models in a cluster are shown. Numbers in brackets indicate the number of models or clusters after removing solutions

with steric clashes.

Figure 2
Comparison of score_set (SS) models vs. SwarmDock (SD) local enrichment for (a) LRMSD, (b) IRMSD and (c) FNAT.

Ranking clusters of docked protein-protein complexes

PROTEINS 531



Cluster enrichment

The number of models contained in a cluster can vary

significantly. To balance this information deficit, localized

SwarmDock runs, to generate additional solutions for

each cluster and populate the binding funnel, were per-

formed. A total of 250 particles were optimized in the

swarming for each cluster, with starting positions for

each particle being within the 10 Å LRMSD limit of each

cluster. The ligand-receptor starting conformation select-

ed for swarming was taken from the unbound state of

each target. To encourage additional sampling within the

environment of each cluster SwarmDock was not allowed

to fully converge. Therefore, the final ensemble of

SwarmDock derived docking poses for each cluster was

typically <10 Å but not under 3 Å. To minimize the

occurrence of clashes, structures generated with Swarm-

Dock were energy-minimized employing the steepest

decent algorithm implemented in CHARMM.32 If struc-

tures with steric clashes between the receptor-ligand

atoms are still present after this step, they were removed

from the set. Where a steric clash is defined as two

atoms overlapping by their van der Waals radii. This

clash criterion is more stringent than the CAPRI defini-

tion for clashes where a clash between two heavy atoms

is defined by a distance below 3 Å.

This methodology not only allows a higher density

sampling within the bounds of each cluster but also ena-

bles a deeper descent of the true binding funnel, should

a cluster represent such a funnel.

To make the computation of molecular descriptors

tractable the additional solutions for each swarmed clus-

ter were sub-clustered again, using a 3 Å cutoff, with the

GROMOS algorithm. These sub-clusters were ranked

according to size. For each of the top ten clusters the

model closest to the sub-cluster centroid was taken. This

resulted in 10 additional models, if 10 or more clusters

were present. This enrichment data is used for the subse-

quent computation of molecular descriptors with the

aim to gain a better estimate of the local energy but are

not explicitly used as model poses that may be improve-

ments over the original score_set models.

Computation of molecular descriptors and
feature construction

A total of 109 molecular descriptors from the

CCharPPI server33 were computed for each model from

the CAPRI decoy set and the cluster enrichment. These

include residue contact and distance dependent poten-

tials (rc), atomic contact and distance dependent poten-

tials (ac), constituent terms of statistical potentials (sp),

composite scoring functions (cs), solvation energy func-

tions (se), and van der Waals and electrostatic potentials

(ve). Table II provides an overview of the number of

descriptors for each category. A detailed list of all molec-

ular descriptors is provided online on the CCharPPI

server website (https://life.bsc.es/pid/ccharppi/info/help_

descriptors).

Descriptors are standardized by scaling the data points

to zero mean and unit variance for each complex. Final-

ly, the values are aggregated by cluster, providing 109

distributions [see Fig. 1(b)]. The cluster distributions are

characterized by five points: minimum (MIN), 1st quar-

tile (Q1), median (AVG), 3rd quartile (Q3), and maxi-

mum (MAX). In addition to these descriptors the cluster

size was added as a feature. This results in 546 features

describing a cluster. As an example, the feature with the

name C2_Q1_N_CP_TB denotes a feature calculated for

the second cluster (C2) in a comparison and represents

the 1st quartile (Q1) of a normalized distribution (N)

for the TOBI potential (CP_TB).

Table II
Categories of Molecular Descriptors Used in this Work

Category Abbreviation
Nb. Molecular

Descriptors Description

Residue contact and distance potential rc 34 Corse-grained residue potentials between intermo-
lecular residues.

Atomic contact and distance potential ac 21 Fine grained atomic potential between intermolecu-
lar atoms.

Statistical potential constitute terms sp 18 Knowledge based potential terms from34

Composite scoring functions cs 11 Scoring functions composed of different weighted
additive terms.

Solvation energy functions se 5 Functions describing the effect of desolvation upon
protein–protein complex formation.

Hydrogen bonding hb 3 Intermolecular hydrogen bonding
Van der Waals and electrostatic ve 6 Contribution of intermolecular van der Waals and

electrostatics forces such as attractive and
repulsive terms.

Miscellaneous mi 11 Functions describing amino acid propensity, inter-
face packing and change in rotational and trans-
lational entropy
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Training, testing and ranking

A pairwise cluster comparison matrix is constructed

which compares all possible binary cluster combinations

for each target where every comparison occurs only once

in the matrix. Each row contains the 546 features of a

cluster m and n resulting in 1092 features in total per

training example [see Fig. 1(b)]. This matrix is used to

train an extremely randomized tree classifier (ERT) from

the scikit-learn machine learning library35 to assign the

label 1 if min(LRMSDn)<min(LRMSDm) otherwise 0.

The ERT classifier was trained with 3000 trees where

samples are bootstrapped and the gini impurity criterion

is used to decide on the quality of splits when building

trees. Out-of-bag samples were used to estimate the gen-

eralization error. Individual trees use
ffiffiffiffiffiffiffiffiffiffi

1092
p

features (33

features) at once and have a maximum depth of 100

where the minimum sample size per leave is 1. These

numbers represent empirical good values for classifica-

tion tasks for tree-based classifiers.36,37

Leave-Complex-Out Cross-Validation (LCO-CV) was

used to test the performance of the classifier. Where

every fold uses the data for n 2 1 targets for training and

leaves out all training examples for the target it is being

tested on, yielding 11 cross-validations.

Employing the above classifier, cluster ranking is based

on the number of times a cluster was predicted to have a

lower LRMSD than another, where the cluster with the

highest number is ranked first and the cluster with the

least assignments is ranked last [see Fig. 1(c)]. The rank-

ing performance is benchmarked by its ability to rank

the cluster that contains the model with the lowest

LRMSD solution from the score_set model. We refer to

these clusters as lowest LRMSD cluster or best near

native cluster. The results are compared to a base-line

ranking protocol where the same clusters containing

score_set and enrichment models are ranked with a

DIFRE based potential for protein–protein complexes

known as DCOMPLEX38; here clusters are ranked

according to the model with the lowest energy within

each cluster. The DCOMPLEX function is a statistical

potential optimized to produce low energies for single

near-native models and was not explicitly trained to rank

clusters.

Molecular descriptor, feature and classifier
performance measures

The importance of the molecular descriptors with

respect to their power to discriminate between near-

native and incorrect clusters was assessed using the

Mann-Whitney U test. In addition, the correlation of

two molecular descriptors is calculated with the Pearson’s

Product Momentum Correlation Coefficient (PPMCC).

The relative importance of features for classification is

computed by the internal ERT feature importance func-

tion, the expected fraction of samples upon which a

feature will have bearing, a function of feature occur-

rence in trees and its position in the tree.

The classification performance of the ERT classifiers is

measured by the following metrics:

Recall :
TP

TP1FN

Precision :
TP

TP 1 FP

F1-Score :
23precision3recall

precision3recall

Accuracy :
TP1TN

TP1FP1FN1TN

Feature space reduction and transformation

The dimensionality of the feature space was reduced

with three different methods to test its effect on the per-

formance of the classifier, namely: factor analysis (FA),

PCA, and kernel PCA with a radial basis function

(KPCA). The dimensionality of the feature-space was

incrementally reduced from 1092 dimensions (maximum

number of features) to 2 in steps of 10 dimensions. For

each step the transformer was fitted using training data,

the fitted model was then applied to transform the test

data. The selection of training and test split was per-

formed with LCO-CV resulting in 11 splits. The ERT

classifier was trained with the transformed data of each

split and dimension and performance metrics such as

recall, precision, F1-score and accuracy were calculated.

The ranking performance of the ERT classifier that has

the best average F1-score from the LCO-CV was tested.

Thus, three models are generated: ERT 1 PCA (i.e., ERT

classifier trained and tested on transformed data with

PCA), ERT 1 FA (i.e., ERT classifier trained and tested

on transformed data with FA) and ERT 1 KPCA (i.e.,

ERT classifier trained and tested on transformed data

with KPCA).

Recursive feature elimination

The goal of the recursive feature elimination (RFE) is

to reduce the initial number of features (1092) by recur-

sively removing the least important features. Initially, the

ERT classifier is trained on the full set of features and

weights are assigned to each one of them according to

their relative feature importance computed from the ERT

classifier. Features whose absolute weights are smallest

are then removed from the current set. Feature pruning

is done in increments of 10 features in each round and

the weights are based on average feature importance

from each target of the LCO-CV. The ERT performance

for each subset of features is assessed based on average
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accuracy, precision, recall and F1 scores. The ERT classi-

fier with the best F1 performance is selected for bench-

marking the ranking performance and denoted as

ERT 1 RFE in the following sections. Additionally, fea-

ture space transformation with FA was tested again on

the reduced set and we refer to this model as

ERT 1 RFE 1 FA.

RESULTS AND DISCUSSION

The aim of this work is to establish a machine learn-

ing protocol which is able to rank near native clusters of

docked protein–protein complexes over incorrect ones by

using a wide set of currently available molecular descrip-

tors important for protein–protein interactions. The

method makes use of localized re-sampling of clusters

[see Fig. 1(a)], uses features based on the distribution of

molecular descriptor values and uses a pairwise cluster

comparison representation to learn how to distinguish

near native from incorrect clusters [Fig. 1(b,c)].

In summary, the best classifier based on ERT 1 RFE

was able to rank near-native clusters in the top 10 in all

targets if such a cluster was present with the cluster-size

cutoff> 5. However, for targets T35 and T39 this near

native cluster was excluded. For 5 targets the near-native

cluster was ranked in the top 1 and for 9 targets the best

cluster was ranked in the top 5. Table III provides a

summary of each individual rank for the lowest LRMSD

near native clusters for all targets.

In this section the method and training strategy and

its implications are discussed. An analysis is presented on

how enrichment of clusters with localized SwarmDock

affects the accuracy of LRMSD, IRMSD and FNAT. Final-

ly, a discussion of the performance of the different

molecular descriptors, how feature space transformation

with FA, PCA and KPCA is affecting the prediction accu-

racy, and how feature elimination can help to build a

simpler model without losing accuracy, is presented.

Ranking with statistical learning

The motivation behind cluster based ranking instead

of focusing on single model ranking is founded in the

observation that protein–protein complex formation is

initiated by so called encounter complexes that differ in

conformation, rotation and translation from the final

docked pose observed in the crystal structure but play an

important role in the recognition process. Furthermore,

this is supported by the good performance of ensemble

and cluster-based scoring schemes in previous CAPRI

rounds.39,40 Ranking protocols that made use of mini-

mum cluster energies from a scoring function such as

DCOMPLEX (that is, used in SwarmDock) usually per-

formed better than non-cluster based approaches.

Furthermore, with the method presented here a

solution is provided which addresses the problems of

cluster-size imbalance and class-bias of training examples

that is a marked problem for many machine-learning

problems.41

The clustering of docked protein–protein complexes

by LRMSD results in a power law distribution of cluster

size where only a few clusters have large number of mod-

els and most clusters have few models (see Supporting

Information Figs. S3–S15). This underrepresentation of

solutions for many clusters can be a problem when con-

clusions are derived from distribution points such as

median, first quartile, third quartile, minimum and max-

imum. To address the problem of cluster size imbalance,

and hence an information bias, a localized enrichment of

clusters with SwarmDock is performed. By applying

enrichment to clusters additional ligand models with

translational, rotational and conformational variance are

created thus resulting in more accurate estimates of

median, first quartile and third quartile across the mini-

ma in the local energy landscape.

The second problem of class bias occurs when one

class is proportionally under-represented compared to

another during supervised learning. A classifier trained

on a class-biased set of examples and optimized for accu-

racy will result in a classifier with poor sensitivity toward

the under-represented class. This class-bias is the case for

decoy sets of protein–protein complexes, where the num-

ber of models for the two classes of near-native (i.e.,

acceptable, medium and high quality models) and incor-

rect solutions has a large difference. In the score_set

dataset used here, only 11% of the decoys have near

native solutions. Hence, a training approach where a

classifier is trained based on an assignment of near native

or incorrect labels would have this class bias problem.

Instead the training strategy presented here focuses on

learning from pairwise cluster comparisons [see Fig.

1(b)]. In this approach every possible combination of

two clusters n and m are compared based on 1092 fea-

tures (i.e., 546 features describing each cluster) for each

comparison. The supervised learning task is now to pre-

dict which of the two clusters has the lower LRMSD

(i.e., two class prediction). This strategy has three advan-

tages, namely i) this allows the training of a classifier

from a limited number of protein–protein complexes;

constructing a cluster comparison matrix enables the

gain of 7248 training examples (i.e., the number of all

possible pairwise comparisons), ii) the class bias problem

is resolved which initially appeared from a small fraction

of near native solutions in the decoy set and iii) this

method not only provides a ranking of clusters but

implicitly learns to rank according to LRMSD too.

Clustering and the effect of localized
enrichment on near native clusters

The clustering produces clusters with up to 10 Å

LRMSD difference to the centroid where the best near
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native cluster in the test set is highly populated with sol-

utions of acceptable or better quality with only few

incorrect models (see Table III). In general, the localized

enrichment with SwarmDock produced additional solu-

tions within a limited range of values for LRMSD,

IRMSD and FNAT [see Fig. 2].

This method has a modest success in improving the

quality of the models in near native clusters. The

LRMSD improved for 4 out of 11 targets (T30, T32,

T39, T53). The largest improvement was observed for

T30 where the LRMSD dropped by 2.95 Å. Similar

improvements are seen for IRMSD, here again 4 out of

11 target improved (T30, T39, T46, T53) where the larg-

est improvement was observed for target T30 with an

improvement of 1.94 Å. Finally, the FNAT was only mar-

ginally improved for target T30 by 0.045.

As the results indicate, improving the quality of near

native-clusters is a hard problem. One reason is the

already good quality of models in near-native clusters

within score_set: a total of 4 out of the 11 targets have

models with high quality (T29, T40, T41, T47) and a

further 4 targets have near-native clusters with medium

quality models (T32, T39, T53, T54). Only 3 targets,

namely T30, T35, and T46 have near-native clusters with

only acceptable models.

These results suggest that the normal modes generated

for receptor-ligand conformations with SwarmDock are

often not able to find the conformational transitions nec-

essary to improve LRMSD, IRMSD or FNAT for this par-

ticular test set.

Molecular descriptors, discriminative power
and cross-correlation

The analysis of all 109 molecular descriptors with

respect to their power to distinguish between near-native

and incorrect clusters, based on P-values from a U test

shows that 99 out of 109 molecular descriptors are able

to produce significant difference with a P values< 0.01.

Figure 3a shows the distribution of values for the top 10

molecular descriptors with a P values< 0.0001 (all other

molecular descriptors are shown in Supporting Informa-

tion Fig. S1). Although 99 have a significant difference

between the two groups near-native and incorrect, their

value range heavily overlaps. The best descriptor

N_CP_TB (TOBI potential42), for example, has good

discrimination at the 25% to 75% level (first quartile to

third quartile); however, the high number of low energy

outliers in the incorrect clusters make a clear separation

of the two groups hard.

This is a common theme for all descriptors where the

high number of outliers makes it impossible to get a reli-

able separation of near-native and incorrect clusters.

To test the unique information value of a molecular

descriptor the PPMCC was calculated for all possible

pairs. A PPMCC> 0.6 indicates a strong positive

correlation and a PPMCC<20.6 indicates a strong neg-

ative correlation of two pairs.

The heat-map in Supporting Information Fig. S2

shows correlations between all possible pairs and the

number of highly correlated molecular descriptors

[|PPMCC|> 0.6; see Fig. 3(b)]. The data shows that 11

descriptors have a high correlation with> 30 other

descriptors. The two highest correlated descriptors,

N_DDG_V and N_AP_calRWp is a microscopic surface

energy model43 and the calRWplus orientation-

dependent atomic potential described in Ref. 44. The

other descriptors in the top 11 are either reside-contact/

distance potentials or atomic-contact/distance potentials

and have a high correlation to descriptors in both men-

tioned categories. The exception here is N_CP_PIE (PIE

score45). Interestingly, The TOBI potential (N_CP_TB),

one of the highest discriminative descriptors has only

high correlation with two other descriptors (N_CP_PIE

and N_CP_TSC46), hence, has high non-redundant

information value. Low correlation is also observed for

the 10 descriptors with no statistically significant dis-

criminative power between near-native and incorrect

clusters [see Fig. 3(b)].

Ranking and feature performance of the ERT
classifier

First, the performance of the ERT classifier with all

1092 features was tested for each individual target from

score_set (see Table III). In summary, this method is able

to rank the lowest LRMSD near-native clusters in the top

1 for 4 targets, in the top 5 for 9 targets and the top 10

for 12 targets with an average rank of 4.6 (4.4 for T40b)

with a relative improvement of 35% (39% for T40b) com-

pared to DCOMPLEX. Figure 4a shows the cluster rank-

ing for T29 where a good correlation coefficient of 0.663

compared to the actual values is achieved. Here it can be

seen that the best cluster with a minimum LRMSD of 3.0

Å was ranked first. Furthermore, 9 out of the top 10

ranked clusters are in close proximity to the best near-

native cluster [see Fig. 4(b), information for other targets

can be found in Supporting Information Fig. S16].

An analysis of the feature importance for the ERT

classifier shows a drop of the relative importance after

the first 20 features [see Fig. 5(a)], which is an expected

behavior of a random-tree based classifier.48 However,

no feature is dominant with respect to their relative

importance and ranges from 0.0030 to 0.0007 for all

1092 features used. Furthermore, the most important

molecular descriptor categories are rc, cs, and se, where

the top eight features alone are rc.

Comparing the fraction of features used versus rank

[see Fig. 5(b,c)] a clear pattern emerges where features

from the categories cs, se, rc, and sp have a high domi-

nance. Values of 42% for cs, 30% for se, 21% for sp and

20% for rc when counting the fraction of features used
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from rank 1 to rank 200 for each category are observed.

The plot in Figure 5(b,c) also shows that features of the

category hb and ve are consistently under-employed and

fall behind the other 6 categories by a large margin.

Features from these two categories are first observed at

rank 420 and 150, respectively.

A detailed look at the top 20 features [see Fig. 5(d)]

shows that the minimum TOBI potential (rc) of the first

Figure 3
(a) The top 10 molecular descriptors comparing the distribution of values for near-native clusters (COR) versus clusters containing only incorrect

solutions (INC). Stars indicate P values for U test between groups COR and INC (***: P values< 0.0001, **: P values< 0.001 and *: P values

<0.01). (b) Number of highly correlated molecular descriptors with a |PPMCC|> 0.6 colored by category.
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cluster in a pairwise-comparison (C1_MIN_N_CP_TB) is

ranked first. Additionally, the TOBI potential based fea-

tures C2_MIN_N_CP_TB, C1_Q1_N_CP_TB and

C2_Q1_N_CP_TB rank 3,4, and 7, respectively. Another

molecular descriptor with high occurrence in the top 20

is the DECK residue level distance-dependent potential49

(N_CP_D1, rc). Features based on this descriptor have 6

occurrences in the top 20 namely C2_Q1_N_CP_D1

(rank 2), C2_AVG_N_CP_D1 (rank 5), C2_MIN_N_CP_

D1 (rank 6), C1_MIN_N_CP_D1 (rank 8), C2_Q3_N_

CP_D1 (rank 12), C1_Q1_N_CP_D1 (rank 20). Other

molecular descriptors in the top 20 are optimal docking

area (N_ODA, se),34 PIE score (N_CP_PIE, cs), SIPPER

(N_SIPPER, cs),50 w_local Z-score C_beta potential

(N_CP_ZLOCAL_CB, sp),51 FireDock energy (N_FIRE-

DOCK, cs)52 and the PISA score (N_AP_PISA, cs).53

This data suggests that coarse grain potentials based

on residue contacts such as the TOBI potential or the

DECK scoring function are better at distinguishing near-

native from incorrect clusters compared to atomic poten-

tials such as DCOMPLEX.

Furthermore, functions describing the contribution

of hydrogen bonding or VdW/electrostatic forces have

a very low predictive power and consistently underper-

form [see Fig. 5(b)]. This can be explained by the

intrinsic heterogeneity of the score_set data, which

originates from a large number of different protein–

protein docking algorithms. Many of these are rigid-

body (e.g., ZDOCK54 or PIPER55) and are not able to

include conformational transitions from unbound to

bound. Furthermore, large numbers of structures in

the score_set are not locally optimized by energy-

minimization or other refinement methods, which

would optimize for hydrogen bonding and VdW/elec-

trostatic thus making it hard to estimate correct values

for definitive identification of near-native and incorrect

clusters.

The effect of feature space transformation
on prediction accuracy

The application of dimensionality reduction has a

marked, positive impact on the recall of our classifier.

The results in Figure 6 show a maximum increase from

0.72 for the standard ERT classifier to 0.89 (382 dimen-

sions), 0.92 (224 dimensions) and 0.98 (1082 dimen-

sions) for FA, PCA, and KPCA, respectively.

However, results for accuracy, precision and F1 indi-

cate more moderate changes. For FA and KPCA the aver-

age accuracy calculated from all LCO-CV stays at 0.62

(dimensions 92 and 112, respectively) and goes slightly

up to 0.63 (dimension 130) for PCA. Similar results were

observed for precision where the values decrease slightly

to 0.61 for FA and KPCA (dimensions 22 and 112) and

increases slightly to 0.65 (dimension 647) from a base

value of 0.62. The F1 increases for all three methods

almost equally from 0.66 to 0.70 (dimension 92), 0.72

(dimension 130) and 0.71 (dimension 352) for FA, PCA,

and KPCA. This increase in F1 is mainly due to the stark

increase in recall.

The ERT classifier, with feature space transformation

has a positive effect on the top 1 ranking performance in

the benchmark set (see Table III). The relative success to

rank the lowest LRMSD near-native cluster within the

top 1 increases from 31% to 46% for FA, PCA, and

KPCA. When the second interface T40b is considered

this improvement drops to a 38% success rate. However,

the performance in the top 5 from 69% stays unchanged

for PCA and drops to 62% for FA and KPCA. Similar

effect on ranking is observed for the top 10, where the

success rate drops from 92% to 77% for ERT 1 FA and

ERT 1 PCA and to 85% for ERT 1 KPCA. Overall, the

Figure 4
Predictions for T29 based on the standard ERT classifier. (a) the pre-
dicted number of times a cluster is better vs. all other clusters (black

cross) compared to the actual values (gray dots). The LRMSD values

on the x axis are based on the cluster member with the lowest LRMSD.
The bottom panel (b) shows the receptor (dark gray cartoon represen-

tation) and a sphere indicating the center of mass of the centroid mod-
el for each cluster. The top 10 ranked clusters (black: rank 1, gray: rank

2–10) are shown. The transparent cartoon indicates the observed posi-
tion of the ligand from the crystal structure (PDB: 2VDU47).
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average rank for T40a increases from 4.6 to 5.2, 6.4 and

6.5 for ERT 1 FA, ERT 1 PCA and ERT 1 KPCA, respec-

tively. Including the second interface, T40b, an average

rank of 6.5 is observed for models ERT 1 PCA and

ERT 1 KPCA. However, for model ERT 1 FA the rank

for this second interface of T40 is 25 which results in an

Figure 5
Feature importance. The top panel (a) shows the relative importance of all 1092 features colored by category. The bottom panels show the cumula-
tive fraction of use of features for different categories for feature ranks 1 to 1092 (b) and 1 to 100 (c). Panel (d) shows the relative feature impor-

tance of the top 20 features.
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increase in the average rank from 5.2 (T40a) to 7.1

(T40b).

The drop in overall ranking ability for ERT 1 PCA

and ERT 1 KPCA can be attributed to the decrease in

ranking performance for target T35 and T39. For target

T35 the rank for the lowest LRMSD near-native cluster

drops from 9 to 12 for all three transformations. This

change is even more marked for T39 where the initial

rank drops from 12 to 13 (ERT 1 FA), 35 (ERT 1 PCA)

and 39 (ERT 1 KPCA). This decreased ranking perfor-

mance for targets T35, T39, and T40b results in only a

modest relative improvement compared to DCOMPLEX.

Where the models improve by 27% (ERT 1 FA), 11%

(ERT 1 PCA) and 10% (ERT 1 KPCA) considering T40a.

This value drops even further when T40b is considered

where the improvement now resembles 2% (ERT 1 FA),

10% (ERT 1 PCA) and 10% (ERT 1 KPCA).

Optimization of the number of molecular
descriptors

Supporting Information Figure S1 shows that not all

molecular descriptors have a significant predictive power

to distinguish between near-native and incorrect clusters

with a P values< 0.01 and that a large number of descrip-

tors have high co-linearity (see Supporting Information

Fig. S2). And indeed a recursive feature elimination pro-

cedure shows that the number of features could be

decreased from 1092 to 402 and even improves the top 1

and top 10 and average ranking performance. In essence

an ERT classifier trained on the reduced set of features,

referred to as ERT 1 RFE, produces a 100% success rate

to rank the best near-native cluster within the top 10 and

has an average rank of 3.9 or 3.5 considering T40a or

T40b, respectively, down from 4.6 (T40a) or 4.4 (T40b)

compared to an ERT classifier trained on all features.

Figure 6
Comparison of FA, PCA, KPCA. Shows the change of accuracy, F1, precision and recall for feature space transformations with FA, PCA and KPCA

with a rbf kernel. The solid black line shows the mean value and the light gray area indicates the standard deviation. The dotted gray line indicates
the performance of the classifier without applied feature space transformation. Spheres indicate the best dimension with the highest value.
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All features based on hydrogen bonding are dropped

and only seven features describing intermolecular electro-

static/van der Waals forces remain. In total the reduced

set consists of features from the categories rc (113), ac

(61), sp (98), cs (64), se (22), hb (0), ve (7) and mi

(36). The distribution of the relative feature importance

on the reduced set is similar to the full set [see Figs. 4(a)

and 7(a)]. Here again features of categories rc, se, and cs

compromise most of the top 50 ranks; the fraction of

features used versus the rank [Fig. 7(b)] makes this clear,

where these three categories make up a high fraction ear-

ly on. Inspection of the top 20 features [Fig. 7(c)] reveals

that features based on the TOBI potential occur 6 times

with the best feature being C1_MIN_N_CP_TB. As in

Figure 7
Analysis of the reduced feature set after RFE. (a) the relative feature importance for all 402 features colored by descriptor category. (b) fraction of
features used from one of the 8 categories versus rank. (c) relative importance of the top 20 features. (d) change of accuracy, F1, precision and

recall of the ERT 1 RFE 1 FA classifier for different dimensions.
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the full feature set, features based on DECK (7), ODA

(4), PISA (1) and SIPPER (3) are present in the reduced

set too.

Dimensionality reduction with FA produced only sig-

nificant improvements for the recall, which had a maxi-

mum increase at 352 dimensions to 0.87 from 0.72.

For accuracy, F1 and precision the value changed from

0.62 to 0.65 (42 dimensions), 0.66 to 0.71 (92 dimen-

sions) and 0.62 to 0.65 (12 dimensions), respectively.

Rankings based on the ERT classifier with a reduced fea-

ture set and FA with 92 dimensions (ERT 1 RFE 1 FA)

improved the top 1 and top 5-success rate slightly from

38% to 46% and 69% to 77%, respectively. However, the

top 10 success rate decreased from 100% to 85%. This

change is due to lost accuracy for targets T35 and T39

where the best near-native cluster was ranked 12 (10) and

33 (4), respectively (see Table III). Rankings for all other

targets improved or remained unchanged.

CONCLUSIONS

We have developed a machine learning protocol to dis-

tinguish near native from incorrect docked pose clusters.

This protocol is based on a set of 1092 features describ-

ing the cluster distribution of 109 molecular descriptors.

The ERT classifier learns from a set of 7248 pairwise-

cluster comparisons generated from 11 CAPRI-targets.

Localized SwarmDock enrichment was employed to over-

come the problem of the power law distribution of clus-

ters, where only a few clusters have a large number of

models and a large number of clusters have few models.

The machine learning protocol was benchmarked in a

LCO-CV fashion and used two targets as hold-outs (i.e.,

T37 and T50). For our best performing model

(ERT 1 RFE) the average rank of the best near-native

cluster is 3.5 and represents a 51% improvement against

a benchmark using DCOMPLEX, a statistical potential

for single model protein–protein complexes, to produce

a ranking according to the model with the lowest energy

within each cluster. However, a user of this methodology

has to be aware of the potential limitations of using a

cluster size cutoff. The current cutoff used in this work,

> 5, did exclude true-positive solutions for targets T35

and T39 and would decrease the 100% success rate to

85% to rank the best near native cluster within the top

10. Unfortunately, using a lower cutoff results in

increased computational overhead for the enrichment

and feature calculation and could possibly affect recall

and precision. Subsequent work will focus on the proper-

ty of this parameter.

Furthermore, the analysis of the molecular descriptor

set has shown that 99 out of the 109 descriptors are able

to distinguish the two groups of near-native and incor-

rect clusters with a P values of 0.01 or lower. However,

outliers in both groups make a clear separation difficult.

Furthermore, a large set of molecular descriptors pos-

sesses high co-linearity (that is, |PPMCC|> 0.6) where

correlations with up to 39 other descriptors from all cat-

egories occurred. Even though tree based classifiers such

as the used ERT are robust against co-linearity a dimen-

sionality reduction with FA, PCA, KPCA or RFE can be

helpful. Indeed, the results show partial success, with

improved recall, top 1 and top 5 success rates for FA,

PCA and KPA. However, we experience a negative effect

for targets T35 and T39 where the predicted rank

decreases. This is especially stark for T39 where the rank

can drop from 4 (ERT 1 RFE) to 33 (ERT 1 RFE 1 FA).

Finally, features based on coarse-grained descriptors

considering residue–residue contacts have been shown to

be better at distinguishing near-native from incorrect clus-

ters compared to features based on atomic contacts,

hydrogen-bonding, electrostatics or van der Waals forces.

The latter features are likely to be more effective in scoring

poses nearer to the bottom of the native binding funnel,

poses that are rarely sampled by current docking methods.

In the future we plan to make our cluster ranking

approach available as an option within the SwarmDock

webserver thereby enabling identification of potential

native docking regions for further refinement.
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