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SUMMARY
Despite key roles in sister chromatid cohesion and chromosome organization, the mechanism by which co-
hesin rings are loaded onto DNA is still unknown. Here we combine biochemical approaches and cryoelec-
tron microscopy (cryo-EM) to visualize a cohesin loading intermediate in which DNA is locked between two
gates that lead into the cohesin ring. Building on this structural framework, we design experiments to estab-
lish the order of events during cohesin loading. In an initial step, DNA traverses an N-terminal kleisin gate that
is first opened upon ATP binding and then closed as the cohesin loader locks the DNA against the ATPase
gate. ATP hydrolysis will lead to ATPase gate opening to complete DNA entry. Whether DNA loading is suc-
cessful or results in loop extrusion might be dictated by a conserved kleisin N-terminal tail that guides the
DNA through the kleisin gate. Our results establish the molecular basis for cohesin loading onto DNA.
INTRODUCTION

The structural maintenance of chromosomes (SMC) protein fam-

ily is conserved from prokaryotic to eukaryotic cells, and their

role in DNAorganization is vital formany aspects of chromosome

function (Hirano, 2016; Jeppsson et al., 2014; Uhlmann, 2016).

Among the SMC complexes, cohesin establishes cohesion be-

tween replicated sister chromatids, which forms the basis for

faithful chromosome segregation during cell division. Additional

roles of cohesin include chromatin domain organization in inter-

phase as well as DNA repair by homologous recombination. A

characteristic feature of cohesin is its ability to bind DNA by to-

pological embrace, which underpins sister chromatid cohesion

(Haering et al., 2008). At the same time, cohesin has been seen

to extrude DNA loops without a need for the ring to topologically

trap DNA (Davidson et al., 2019; Kim et al., 2019). Such a loop

extrusion mechanism has been proposed to underlie interphase

chromatin domain organization. The molecular mechanisms by

which cohesin topologically entraps DNA or extrudes a DNA

loop are not yet understood.

The cohesin ring consists of three core components: two

SMCs and a kleisin subunit. The two SMC subunits, Psm1Smc1

and Psm3Smc3, form long anti-parallel coiled coils that interact
Molecular Cell 79, 917–933, Septem
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at one end at a dimerization motif, called the ‘‘hinge.’’ The

SMC coiled coils show flexibility, pivoting at an ‘‘elbow’’ that is

situated approximately halfway along their length (Anderson

et al., 2002; B€urmann et al., 2019). At the other end of the coiled

coil lie ATP-binding cassette (ABC)-type nucleotide binding do-

mains, known as ‘‘heads.’’ These dimerize following ATP binding

and disengage upon ATP hydrolysis (Hopfner et al., 2000). A klei-

sin subunit, Rad21Scc1, bridges the two ATPase heads to

complete this ring architecture. Elements close to the kleisin N

terminus form a triple helix with the Psm3 ‘‘neck’’ where the

coiled coil joins the Psm3 ATPase head. The kleisin C terminus,

in turn, forms a small winged-helix domain that associates with

the Psm1 head (Gligoris et al., 2014; Haering et al., 2004).

The SMC-kleisin ring is regulated by three additional HEAT

repeat subunits that associate with the unstructured middle re-

gion of the kleisin. The Psc3Scc3/STAG1/2 subunit binds to the cen-

ter of this region and is instrumental for cohesin loading and un-

loading (Hara et al., 2014; Li et al., 2018; Murayama and

Uhlmann, 2014, 2015). Mis4Scc2/NIPBL is known as the cohesin

loader. It binds the kleisin upstream of Psc3Scc3/STAG1/2 and,

together with its Ssl3Scc4/MAU2 binding partner, is essential for

chromosomal cohesin loading. Mis4Scc2/NIPBL by itself is suffi-

cient to promote in vitro cohesin loading onto DNA, whereas
ber 17, 2020 ª 2020 The Author(s). Published by Elsevier Inc. 917
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:alessandro.costa@crick.ac.uk
mailto:frank.uhlmann@crick.ac.uk
https://doi.org/10.1016/j.molcel.2020.07.013
http://crossmark.crossref.org/dialog/?doi=10.1016/j.molcel.2020.07.013&domain=pdf
http://creativecommons.org/licenses/by/4.0/


ll
OPEN ACCESS Article
Ssl3Scc4/MAU2 serves as an in vivo chromatin adaptor (Kikuchi

et al., 2016; Muñoz et al., 2019; Murayama and Uhlmann,

2014). The HEAT subunit Pds5, in turn, competes with

Mis4Scc2/NIPBL for kleisin binding. Pds5 has a dual role in stabiliz-

ing loaded cohesin on DNA as well as recruiting the cohesin un-

loading factor Wapl (Lee et al., 2016; Ouyang et al., 2016).

Recent studies have started to shed light onto the molecular

mechanism of cohesin unloading from DNA, which depends on

ATP hydrolysis and, therefore, likely on dissociation of the

ATPase heads (head gate opening). Pds5 andWapl, in turn, pro-

mote dissociation of the kleisin N terminus from Psm3Smc3 (klei-

sin N-gate opening), consistent with an outward DNA trajectory

through the ATPase head and kleisin N-gates (Beckou€et et al.,

2016; Buheitel and Stemmann, 2013; Chan et al., 2012; Mur-

ayama and Uhlmann, 2015).

How DNA enters the cohesin ring remains controversial. Co-

hesin loading onto DNA also depends on its ATPase and on

two conserved Psm3Smc3 lysine residues (K105 and K106 in

fission yeast) that, together with the cohesin loader, convey

DNA-stimulated ATP hydrolysis (Arumugam et al., 2003; Mur-

ayama and Uhlmann, 2014, 2015; Weitzer et al., 2003). At least

in vitro, Pds5 and Wapl also facilitate topological loading.

Because these requirements are similar to those of cohesin un-

loading, we hypothesized that cohesin loading uses the same

DNA trajectory through ATPase head and kleisin N-gates. The

entry reaction would be facilitated by loader-dependent cohesin

ring folding, exposing the luminal Psm3Smc3 K105 and K106 res-

idues to DNA (Murayama and Uhlmann, 2015). However, in vitro

studies suggest that ATP binding, but not hydrolysis, is required

for topological cohesin binding to DNA, which is hard to recon-

cile with the above model (Çamdere et al., 2018; Minamino

et al., 2018). Furthermore, an alternative model states that DNA

enters the cohesin ring through the hinge (Gruber et al., 2006).

To understand the process of cohesin loading onto DNA, we

used fluorescence resonance energy transfer (FRET) to measure

conformational changes at the SMC heads. This showed that

the SMC heads engage in the presence of DNA, the cohesin

loader, and non-hydrolyzable ATP. We visualized this cohesin

loading intermediate by cryo-electron microscopy (cryo-EM) at

an average resolution of 3.9 Å. DNA is trapped between the kleisin

N-gate and the head gate, whereas the cohesin loader plays a key

structural role in stabilizing this state. The development of DNA-

protein crosslink mass spectrometry (DPC-MS) allows us to trace

the DNA trajectory, leading to amodel where DNApasses through

the kleisin N-gate before reaching the engaged SMC heads. DNA

and the loader will trigger ATP hydrolysis and head disengage-

ment to complete DNA entry into the cohesin ring.

RESULTS

Cohesin ATPase Engagement with the Loader, DNA,
and ATP
To understand howATPase head engagement by cohesin is regu-

lated, wemonitored head proximity of fission yeast cohesin using

FRET. We used a tetramer complex consisting of Psm1, Psm3,

Rad21,andPsc3 (MurayamaandUhlmann,2014), includingC-ter-

minal SNAP and CLIP tags on Psm1 and Psm3, respectively, that

could be specifically labeled with Dy547 and Alexa 647 fluoro-
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phores as a FRET pair (Figures 1A and S1A). The labeled cohesin

displayed wild-type levels of Mis4-dependent DNA loading (Fig-

ure S1B). In the absence of ATP and DNA, cohesin exhibited

measurable FRET, suggesting relative proximity between the

two ATPase heads. Addition of ATP slightly increased FRET effi-

ciency, consistent with ATP-dependent head engagement (Fig-

ure S1C). Combination of ATP with a 3-kb circular plasmid DNA

and loaderdid not further augment the FRETsignal, althoughaddi-

tion of theMis4-Ssl3 cohesin loader alone or in pairwise combina-

tions with ATP or DNA reproducibly reduced FRET efficiency.

Cycles of head engagement and disengagement following

ATP hydrolysis might dampen any bulk FRET changes. To pre-

vent ATPase cycling, we purified ATP hydrolysis-deficient

Walker B motif mutant cohesin (EQ-cohesin; Figure 1A). FRET

changes were indeed augmented when using EQ-cohesin. Addi-

tion of Mis4-Ssl3 with or without DNA again resulted in FRET

loss, suggesting that the cohesin loader has a tendency to sepa-

rate the ATPase heads (Figure 1B). Strikingly, the presence of all

three components—the loader, DNA, and ATP—resulted in a

marked FRET increase. This suggests that head engagement

is reached when all loading components come together. We

observed this state only using ATP hydrolysis-deficient cohesin,

indicating that head engagement is usually transient. A further

implication of this observation is that, most times, the ATPase

heads of wild-type cohesin are in proximity but not engaged.

To further explore the requirements for head engagement, we

compared theMis4-Ssl3 cohesin loader complex withMis4 lack-

ing its N-terminal Ssl3-interacting region (Mis4-N191; Chao

et al., 2015). Mis4-N191 is competent in in vitro cohesin loading

and was equally proficient in promoting head engagement (Fig-

ure S1D). On the contrary, Pds5-Wapl did not promote head

engagement, revealing a mechanistic difference between loader

and unloader (Figure S1E). Head engagement was equally

promoted by linear or circular double-stranded DNA (dsDNA)

or single-stranded DNA (ssDNA) (Figure S1F).

Head engagement could also be reached bywild-type cohesin

in the presence of the loader, DNA, and non-hydrolyzable ATP

analogs. A FRET increase was elicited by ADP and BeF3
�, an

ATP ground state mimic, or AlFx (comprising a mixture of the

AlF3 ground state and AlF4
� transition state mimics) but not the

VO4
3� transition state mimic (Figure 1C). These observations

suggest that SMC head engagement is reached following ATP

binding in its ground state.
Head Engagement Leads to a DNA ‘‘Gripping’’ State
While performing the above experiments, we noticed unusually

tight cohesin binding to linear DNA in the presence of the loader

and non-hydrolyzable ATP. When using linear bead-bound DNA

as a substrate for cohesin loading, little cohesin is retained

following incubation with the loader and ATP and awash at phys-

iological salt concentration (135 mM NaCl). However, when we

used ADP$BeF3
� as the nucleotide, cohesin and the loader

were efficiently retained on DNA (Figure 1D). Tight DNA binding

was reproduced using EQ-cohesin and ATP, albeit with some-

what lower efficiency compared with wild-type cohesin and

ADP$BeF3
�, maybe because of residual ATP hydrolysis by EQ

mutant cohesin (Figure S1G). Mis4-N191, but not Pds5-Wapl,
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Figure 1. Cohesin ATPase Head Engagement Leads to a DNA Gripping State

(A) Schematic of purification and labeling of wild-type (WT) and Walker B mutant (EQ) cohesin to measure FRET between the Psm1 and Psm3 ATPase heads.

Purified complexes were analyzed by SDS-polyacrylamide gel electrophoresis (PAGE) followed by Coomassie blue (CBB) staining or in-gel fluorescence

detection.

(B) Head FRET efficiencies of EQ-cohesin with the indicated additions were calculated by dividing the Alexa 647 intensity at its emission peak by the sum of Alexa

647 and Dy547 intensities. Results from three independent repeats of the experiment and their means and standard deviations are shown.

(C) Head FRET efficiencies of WT cohesin in the presence of the Mis4-Ssl3 loader, a 3-kb circular plasmid DNA and the indicated nucleotides and phosphate

analogs. Results from four independent repeats of the experiment and their means and standard deviations are shown.

(D) Schematic of the DNA gripping experiment. Following incubation and washes, bound protein was analyzed by SDS-PAGE and immunoblotting, and the DNA

was visualized by agarose gel electrophoresis.

(E) Salt sensitivity of cohesin-DNA complexes following assembly with hydrolyzable or non-hydrolyzable ATP on linear DNA and DNA loops. Following incubation

and washes, the products were analyzed as in (D).

See Figure S1 for further characterization of cohesin’s DNA gripping state.
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also generated this tight DNA binding (Figure S1H), which we

refer to hereafter as ‘‘DNA gripping.’’

Although the gripping state tolerated physiological salt

washes, it was sensitive toward higher salt concentrations

(500 mM NaCl), suggesting that it arises from electrostatic inter-

actions. Such a high-salt wash removed gripped cohesin from

linear DNA but not from DNA loops with both ends tethered to

the beads (Figure 1E). This suggests that, in addition to high-

salt-sensitive gripping, cohesin retains a high-salt-resistant to-

pological association with DNA, corresponding to the previously
observed topological cohesin binding using non-hydrolyzable

ATP (Çamdere et al., 2018; Minamino et al., 2018).

Finally, we needed to know whether the gripping state is

equivalent to fully topologically loaded cohesin following ATP hy-

drolysis. In both cases, cohesin is retained on topologically

closed DNA following high-salt washes that are usually per-

formed on ice. However, when we incubated cohesin-DNA com-

plexes in a high-salt buffer at 32�C for 60 min, only cohesin that

was loaded by ATP hydrolysis was retained on DNA. Cohesin in

the gripping state was lost following this incubation (Figure S1I).
Molecular Cell 79, 917–933, September 17, 2020 919



Figure 2. Overview Structure of Cohesin during Its Loading onto DNA

(A) Schematic of EM sample preparation. The DNA gripping was separated by sucrose gradient centrifugation. The protein and DNA composition of each fraction

were analyzed by SDS-PAGE followed by silver staining and agarose gel electrophoresis. Fractions 7 and 8 were used for EM analysis.

(B) Superposed image of the negative staining 3D reconstruction and cryo-EM map of the cohesin core complex.

(C) Two views of the 3.9-Å resolution cryo-EM map of the core complex with a transparent surface containing the atomic model (center) and a solid surface

rendering (right). Three examples of secondary structure elements with resolved amino acidic side chains are shown.

See also Figure S2, which documents the negative staining and cryo-EM data collection and image processing.
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Together, these data suggest that the cohesin gripping state in-

cludes topological DNA embrace but that it is biochemically

distinct from and less stable than fully topologically loaded

cohesin.

Cryo-EM Structure of Cohesin in the Gripping State
To understand the molecular architecture of the gripping state,

we visualized this cohesin-DNA-loader complex by EM. We

assembled cohesin onto a linear 125-bp dsDNA substrate in

the presence of Mis4-Ssl3 and ADP$BeF3
– and separated the

gripping reaction by sucrose gradient centrifugation (Figure 2A).

The cohesin tetramer, loader, and DNA co-fractionated, and the

peak fractions were applied to EM grids and stained with uranyl
920 Molecular Cell 79, 917–933, September 17, 2020
acetate. Particles were homogeneously distributed, and 2D av-

erages revealed a Y-shaped complex (Figures S2A and S2B).

A 3D reconstruction revealed two extended protrusions, bean-

and rod-shaped, which asymmetrically depart from the core

complex (Figures 2B and S2C–S2E). A U-shaped density was

apparent as part of the core, reminiscent of the Scc2 cohesin

loader subunit (Chao et al., 2017; Kikuchi et al., 2016). Other co-

hesin components and the DNA were harder to assign.

To visualize the cohesin-DNA complex at higher resolution, we

recorded cryo-EM images of the same preparation. 2D averages

revealed fine details in the core complex, whereas the protruding

densities observed in the negative-stain averages were less

defined. Following 3D classification and local refinement, we



(legend on next page)
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obtained a first 3.9-Å resolution map of this core (Figures 2C and

S2F– S2L). At this resolution, secondary structure elements and

large amino acid side chains became discernible, allowing us to

build an atomic model, starting from docked homology models

derived from available crystal structures (Gligoris et al., 2014;

Haering et al., 2004; Kikuchi et al., 2016). The model covers

the Psm1 head and proximal coiled coil bound to the Rad21 C

terminus, the Psm3 head and neck bound by the Rad21 N-termi-

nal domain, as well as Mis4 and 32 bp of DNA.

The DNA lies on top of the engaged ATPase heads, which are

nucleotide bound and in a configuration competent for ATP hy-

drolysis. Mis4 clamps the DNA onto the ATPase heads, making

widespread contacts with Psm1 and Psm3. This cryo-EM vol-

ume could be docked into the negative-stain map, indicating

that the core of the complex overall maintains the same

configuration in the room temperature-fixed sample and in the

frozen-hydrated state (Figure 2B). From overlaying the two re-

constructions, we see that the bean and rod in the negative-stain

map contact N-terminal Mis4 and the Psm3 coiled-coil region.

The Molecular Action of the Cohesin Loader
Inspection of our atomic model reveals two contact regions be-

tween Mis4 and cohesin. The U-shaped Mis4 hook binds the

engaged Psm1-Psm3ATPase heads, whereas theMis4N-termi-

nal handle contacts the Psm3 neck region (Figure 2C). Mis4 and

Psm3 together form a protein ring that topologically encircles the

DNA (Figure 3A). The lumen of the ring is lined with positive

charges mainly clustered on the Mis4 surface. A protein ring,

partly formed by Mis4 in the gripping state, is unexpected and

distinct from the well-established cohesin ring. Our structure ex-

plains why ATP binding and not hydrolysis is sufficient for topo-

logical DNA binding (Çamdere et al., 2018; Minamino et al.,

2018). Thus, two distinct topological interactions are formed be-

tween protein and DNA during cohesin loading. One interaction

is a loading intermediate, which directly involves the Mis4 loader

and depends on ATP head engagement, shown here. The sec-

ond interaction is the end result of the cohesin-loading reaction

(Haering et al., 2008), which involves the topological entrapment

in the main SMC ring and requires ATP hydrolysis.

In addition to topologically entrapping DNA,Mis4 is involved in

multiple DNA contacts. Regions where theMis4 cryo-EM density

is connected with DNA include R487 and R874, where the N-ter-

minal handle and the C-terminal hook clamp the double helix

(Figure 3B). Two conserved positively charged residues, K873

and K877, map in close proximity and are required for cohesin

loading onto chromosomes in S. cerevisiae (Chao et al., 2017).
Figure 3. Molecular Mechanism of the Cohesin Loader

(A) Psm3 andMis4 topologically embrace DNA in the gripping state. Shown are an

as Coulombic surface coloring for the protein component. Blue represents posit

(B) Positively charged residues on theMis4 surface, colored black, line the DNA pa

made by R487 and R874 with the DNA. K873 and K877 are highlighted in gold.

(C) Atomic model and cryo-EM map surrounding Psm3 K105 and K106 acetyl ac

(D) DNA gripping experiment comparing salt resistance of WT and acetyl accept

(E) Comparison of CLMS contacts between initial binding and the DNA gripping s

Rad21 (red lines) weremapped onto an expanded atomicmodel of the DNA grippin

(F) Hypothetical sequence of ATP hydrolysis-controlled Mis4 conformational cha

terminus is explored in Figure 7.

See Figure S3 for additional analyses of the DNA gripping state.
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The engaged SMC heads provide an additional, composite

DNA binding surface lined with conserved positively charged

residues (Figure S3A). These extensive DNA contacts likely un-

derlie the electrostatic binding of linear DNA in the gripping state.

When we superimpose the engaged DNA-bound SMC heads

in our structure with the equivalent domains of Rad50 from the

Rad50-Mre11-DNA complex, we find a striking overlap between

the ATP-bound ATPase heads as well as the DNA (Figure S3A;

Liu et al., 2016; Sch€uler and Sjögren, 2016). Furthermore, posi-

tively charged residues that make electrostatic contact with

DNA are spatially conserved on the ATPase surface despite

the limited sequence conservation between Rad50 and Psm1-

Psm3. This suggests fundamental similarities in the DNA binding

mechanisms of these distant SMC family relatives.

Among residues that make direct contact with the DNA is

Psm3 K106, one of the two conserved acetyl acceptor lysines

(Figure 3C). The second, K105, does not make obvious DNA

contact. Rather, cryo-EM density inspection indicates that

K105 is oriented toward a conserved acidic surface loop on

Mis4 (Figures 3C and S3B). Thus, K105 and K106 emerge as a

signaling node where DNA and the cohesin loader converge.

This arrangement explains why ATPase stimulation of cohesin

depends on the presence of DNA and the cohesin loader (Mur-

ayama and Uhlmann, 2014). To investigate the contribution of

the two lysines to the gripping state formation, we mutated

both residues to asparagine. Although DNA gripping was still

observed with this KKQQ mutant at low salt concentration

(50 mM NaCl), contact was lost at an intermediate salt concen-

tration (100 mM), where wild-type cohesin retains tight DNA

binding (Figure 3D). This observation confirms an important

contribution of K105 and K106 to gripping state formation.

To further explore the Mis4-cohesin interactions, we per-

formed protein-protein crosslinking mass spectrometry (CLMS)

using a bifunctional, UV-activated (N-hydroxysuccinimide

[NHS]-diazirine) crosslinker (Figure S3C). We compared the

loader-cohesin contacts in the absence and presence of nucle-

otide, recapitulating an ‘‘initial state’’ before head engagement

and the gripping state described in our structure. Most (97.5%)

crosslinks within subunits of the cohesin core map within 25 Å

when projected onto our cryo-EM atomic model, the length of

the crosslinker, validating our approach (Figure S3D). Looking

at intermolecular crosslinks, the Mis4 hook displayed numerous

contacts with the Psm3 head in both states, although the identity

of the involved amino acids changed between the two conditions

(Figures 3E). We detect contacts between the Psm3 head and

both flanks of the Mis4 hook, including crosslinks with a
atomic model of Psm3, Mis4, and DNA built into the cryo-EMmap (left) as well

ively and red negatively charged amino acids.

th. The inset displays the cryo-EMmap and atomic model to illustrate contacts

ceptor lysines, their orientation with respect to DNA, and a Mis4 acidic patch.

or lysine mutant (K105Q/K106Q) cohesin in the presence of ADP$BeF3
�.

tate. Crosslinks between Mis4 and Psm3 (golden lines) and between Mis4 and

g state. Insets show crosslinks between Rad21 and the Psm3 neck (blue lines).

nges before and after gripping state formation. The behavior of the Rad21 N
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characteristic, conserved ‘‘hook insertion loop’’ that emerges

from the C-terminal Mis4 flank and crosses the hook crevice to

the N-terminal flank before looping backward (Figures 3E, S3B,

and S3E). Proximity between Psm3 K105 and the Mis4 acidic

patch was also confirmed in this crosslinking experiment.

In contrast to these prevalent hook interactions, CLMS con-

tacts of the Mis4 handle with the Psm3 neck were scarce in

the initial state but became prominent in the gripping state (Fig-

ure 3E). Conserved Mis4 handle residues (Figure S3B) make

crosslinks with the Rad21 N-terminal domain in the gripping

state that were absent in the initial state. We can rule out that

lack of Mis4 handle-Rad21 interactions reflect an absence of

Rad21 because Rad21-Psm3 neck crosslinks were detected in

both states. These observations open the possibility that Mis4

hook engagement with the Psm3 head is created in the initial

state, whereas Mis4 interactions with the Psm3 neck and

Rad21 are stabilized upon ATP-dependent DNA gripping.

In our cryo-EM structure of the gripping state, Mis4 shows a

striking conformational change compared with the crystal struc-

ture of freeC. thermophilum Scc2 (Kikuchi et al., 2016). Although

the U-shaped Mis4 hook can be superimposed with a root-

mean-square deviation (RMSD) of only 1.0 Å, the angle at which

the N-terminal handle emerges is tilted by 40� (Figure S3F). If we

superpose Mis4 via the U-shaped hook domain in the X-ray form

to our gripping-state structure, then the N-terminal handle be-

comes disengaged from the Psm3 neck and N-terminal Rad21,

opening up a corridor for DNA to access the ATPase (Figure 3F,

left). Given that the Mis4 N-terminal handle engages the double

helix in our structure, we speculate that DNA entry itself contrib-

utes to rearranging the handle en route to gripping-state forma-

tion (Figure 3F, center). To facilitate Mis4 engagement, the Psm3

coiled coil rotates by 25� with respect to its ATPase head

compared with other available structures of cohesin SMCs that

were captured with engaged ATPase heads (Gligoris et al.,

2014; Muir et al., 2020; Figure S3G).

Mis4 and DNA contact with Psm3 K105 and K106 in the grip-

ping state should trigger ATP hydrolysis. To create a model for

head disengagement, we first defined Psm3 with the N-terminal

Mis4 handle and Psm1 with the C-terminal Mis4 hook as two

separate rigid bodies. We then modeled a Mis4 reconfiguration

from the gripping state back to its extended X-ray form. This

pushes the ATPase heads apart, opening a path for DNA pas-

sage through the SMC head gate (Figure 3F, right). The tendency

of Mis4 to increase the Psm1-Psm3 head distance in the

absence of nucleotide (Figure 1B) is consistent with this

scenario.

A Hybrid Model of the Complete Cohesin Complex
To understand how loader-facilitated DNA passage through the

SMC head gate contributes to topological cohesin loading, we

need to place this reaction into the context of the complete co-

hesin complex.

Bymultibody refinement usingmasks for the cohesin core and

a peripheral, Mis4-contacting density feature, we could identify a

distinct rigid body. Although only resolved to ~10 Å, this feature

unambiguously matches a Psc3 homology model based on the

S. cerevisiae Scc3 crystal structure (Li et al., 2018; Figures 4A

and S4A). The degree of flexibility, derived from the multibody
refinement, implies a loose association with the cohesin core,

at least in the state captured in our structure. In agreement

with our assignment, several crosslinks in our CLMS dataset

can be observed between Psc3 and Mis4 and the Psm3 head

(Figures 4B and S4B). The negative-stain 3D reconstruction con-

tains a bean-shaped feature also mapping in proximity to the

Psm3-Mis4 channel (Figure 4A). Should this feature also corre-

spond to Psc3, it would appear further tilted, suggesting a large

degree of flexibility relative to the cohesin core.

The small Ssl3 subunit of the cohesin loader was part of our

preparation but remained invisible in the EM structure, probably

because it remains loosely tethered to the core complex.

Nevertheless, our CLMS analysis revealed numerous crosslinks

involving this subunit (Figures 4B and S4B). As expected, Ssl3

efficiently crosslinks with the Mis4 N terminus it encapsulates

(Chao et al., 2015; Hinshaw et al., 2015). Further Ssl3 crosslinks

were detected with Mis4, Psc3, and Psm3, consistent with a

flexible position of Ssl3 on the posterior face of the cohesin

core. Given the low resolution, we cannot exclude that the

bean-shaped feature corresponds to Ssl3, not Psc3, in our

negative-stain reconstruction. The implications of this posi-

tioning for interactions with chromatin receptors and the in vivo

mechanism of cohesin loading remain to be explored in the

future.

A feature unique to the negative-stain reconstruction is a

prominent rod that projects from between the Mis4 handle and

the bean-shaped feature. Its dimensions are well compatible

with a model of the cohesin hinge connected to the SMC coiled

coils. Atomic docking indicates that the Psm3 hinge makes

direct contact with Mis4. Crosslinks detected between the hinge

and Mis4 and Psc3 support this assignment (Figures 4A, 4B,

and S4B).

The hinge is connected with the ATPase heads via long

stretches of coiled coil. Numerous intramolecular crosslinks in

our CLMS dataset reflect coiled-coil formation (Figures 4C and

S4C). Intermolecular crosslinks between Psm1 and Psm3 sug-

gest that both arms extend in parallel from the hinge and, in

the gripping state, interact with each other up to about two-thirds

of their length. However, numerous intra- and intermolecular

crosslinks cannot be simply explained by an extended coiled-

coil configuration because the distance between crosslinked

residues largely exceeds the linker length. The distance con-

straints can be fulfilled if the coiled coil turns back on itself with

an inflection point at its predicted elbow (B€urmann et al., 2019;

Figures 4C, S4C, and S4D). Consistent with folding at the elbow,

we also observed crosslinks where the hinge is expected to

touch down on the coiled coil. These crosslinks all emanate

from the same hinge face, suggesting that folding is directional.

Based on these constraints, we can model a folded Psm3 coiled

coil, showing good agreement with the negative-stain envelope

(Figure 4A). We did not observe continuous EM density for the

Psm1 coiled coil, whose path, therefore, remains tentative. A sin-

gle coiled-coil feature is likely too thin to be visualized by nega-

tive-stain EM. In addition, SMCcoiled coils are flexible and adopt

a wide range of conformations (Anderson et al., 2002; Eeftens

et al., 2016). Hence, our structural model reflects the observed

positioning but does not suggest a fixed orientation for the coiled

coil in the gripping state.
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Figure 4. A Hybrid Structural Model of the Cohesin Complex in the Gripping State

(A) Atomic model of the cohesin core docked into the negative-stain EM envelope. An atomic model of the hinge and coiled coil is placed into the rod-shaped

extension. The overall density accommodates a large portion of the Psm3 coiled coil, whereas parts of Psm1 remained invisible (dashed lines). The structure of

Psc3 derived frommultibody refinement of the cryo-EM structure is shown, and its variable positions are indicated. The likely position of Ssl3 bound to theMis4 N

terminus is indicated.

(B) Protein crosslinks between the atomic models in the gripping state, supporting the assignments in (A).

(C) Comparison of protein crosslinks within and between the SMC coiled coils in the initial binding and gripping state.

See Figure S4 for supporting analyses of the hybrid structural model.
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When nucleotide was omitted in the initial state, coiled-coil

and hinge crosslinks were also indicative of elbow inflection.

Intermolecular Psm1-Psm3 crosslinks in the initial state

extended farther along the coiled coil and toward the heads (Fig-

ure 4C). This observation could indicate a defined state where

the Psm1-Psm3 necks come in closer proximity. Alternatively,

these Psm1-Psm3 crosslinks could report on an enhanced

structural flexibility in the absence of nucleotide. In support of

the latter scenario, nucleotide-dependent head engagement in
924 Molecular Cell 79, 917–933, September 17, 2020
the gripping state forces the Psm1 and Psm3 necks in a diver-

gent configuration, precluding coiled-coil interactions proximal

to the heads.

The Kleisin Path in the Gripping State
A crucial component of cohesin is its kleisin subunit Rad21,

which bridges the ATPase heads. Although we can see the klei-

sin N terminus engaged with the Psm3 neck as well as the C-ter-

minal winged helix domain bound to the Psm1 head (Figure 2C),



Figure 5. The Kleisin Path in the Gripping State

(A) Crosslinks of Rad21withMis4 and Psc3 in the gripping statemapped onto their atomicmodels. Rad21 amino acids 360–431 aremodeled based on the crystal

structure of human SA2 bound to Rad21 (PDB: 4PK7).

(B) Crosslinks from (A) mapped onto the structures of gripping state complex components, suggesting a likely kleisin path (red line).

(C) Schematic of the kleisin circularization experiment. A gripping reaction was performed with Rad21 carrying N- and C-terminal CLIP and SNAP tags using a

DNA loop substrate on beads. The CLIP and SNAP tags were covalently crosslinked by SC-Cy5.

(D) In-gel Cy5 detection of the experiment in (C). SC-Cy5was added to the input proteins or following gripping state assembly on theDNA beads. Beadswere then

washedwith buffer or SDS (left). After the SDSwash, DNA beads were treated with PstI restriction endonuclease (center) or TEV protease (right), and bead-bound

and supernatant fractions were analyzed.

See Figure S5 for supporting information regarding the kleisin path.
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the kleisin middle region is not resolved in our structure, as ex-

pected from the paucity of predicted secondary structure ele-

ments. To trace the kleisin path, we again turned to our CLMS

dataset, which contained sequential crosslinks between Rad21

and the two HEAT subunits Mis4 and Psc3 (Figure 5A). As ex-

pected (Hara et al., 2014; Kikuchi et al., 2016; Li et al., 2018),

Rad21 amino acids 77–221 line the Mis4 handle before crossing

over to the C-terminal flank of the Mis4 hook. The central amino

acids 356–443, in turn, follow the Psc3 body in an N- to C-termi-

nal direction. When we project this kleisin path onto our hybrid

model of the cohesin complex, this trajectory suggests that the

kleisin has encircled the DNA in cohesin’s gripping state

(Figure 5B).

To probe this suggested kleisin topology with respect to the

DNA, we designed an experiment to covalently join the kleisin

N and C termini, fused to CLIP and SNAP tags, respectively, in

the gripping state. This should result in topological DNA entrap-

ment by the kleisin (Figure 5C). To covalently link the two tags,
we chemically synthesized a crosslinker in which a SNAP

substrate is linked to a CLIP substrate via a Cy5 dye moiety

(SC-Cy5; Figures 5C and S5A). The combined length of these

components is sufficient to bridge the kleisin N and C termini

along the shortest distance to enclose the DNA but insufficient

to entrap the DNA using alternative topologies (Figure S5B).

We then carried out a DNA gripping reaction using a DNA loop

substrate attached tomagnetic beads. Following the gripping re-

action, we added SC-Cy5. This resulted in approximately equal

proportions of linear Rad21, labeled at one or both ends, and

circularized Rad21. The latter was identified by its retarded gel

mobility. Following denaturation in buffer containing SDS, circu-

larized Rad21, but not linear Rad21 or Psm3, remained bound to

the DNA beads (Figures 5D and S5C). The topological nature of

circularized Rad21 binding to the DNA was confirmed by

cleaving the DNA using a restriction endonuclease or Rad21

cleavage at an engineered tobacco etch virus (TEV) protease

recognition site, both of which resulted in Rad21 elution from
Molecular Cell 79, 917–933, September 17, 2020 925
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the beads (Figure 5D). This result confirms that the kleisin indeed

encircles the DNA in the gripping state. We used a similar

approach with two pairs of SNAP and CLIP tags to covalently

close the SMC heads and hinge simultaneously, which revealed

that DNA is not yet entrapped within the circularized SMC ring

(Figures S5D–S5F).

The DNA Trajectory into the Cohesin Ring
Taking account of the kleisin path established above, our cryo-

EM structure describes the double helix entrapped between

the kleisin and ATPase head gate. However, the structure does

not discriminate between two possible DNA access routes.

Does the DNA enter from the bottom of the ATPase, having

passed through the head gate, or, rather, from the top of the

ATPase and through the kleisin N-gate? By inspecting our struc-

ture alone, we can also not rule out that a short duplex DNA

segment occupying the Mis4-Psm3 cavity is an in vitro artifact.

To explore how DNA reaches the gripping state, we developed

a protocol for DPC-MS (Figure 6A).

To mark the DNA binding site on a protein, we designed a

photo-crosslinkable DNA probe. First, amine-deoxyuridine

triphosphate (amine-dUTP) is incorporated in place of deoxythy-

midine triphosphate during DNA synthesis. The amino groups

are then decorated with a bifunctional succinimidyl-SS-diazirine

(SDAD) crosslinker. Nucleoprotein complexes are assembled

with this probe and UV-irradiated to induce DPC. Proteins are

then digested using the Lys-C endopeptidase, and the DNA

covalently linked to peptide fragments is isolated by biotin affin-

ity pull-down. Finally, the disulfide bond within the SDAD cross-

linker is cleaved under reducing conditions to elute the recov-

ered peptides. These proteolytic fragments retain a

characteristic mass tag of +159u at the crosslink position that

can be identified by liquid chromatography-tandem MS (LC-

MS/MS), mapping next to a diagnostic 159u peak that stems

from loss of the mass tag upon peptide fragmentation

(Figure 6B).

We first performed DPC-MS analysis using a derivatized 125-

bp linear DNA probe based on our cryo-EM structure. The

observed DPCs identified surface-exposed amino acids that

map in proximity to the double helix in our structure along

Mis4, Psm3, Psm1, as well as Psc3 (Figures 6C and S6A).

Next we repeated the DPC-MS analysis of the gripping state

with a 3-kb covalently closed circular dsDNA as the substrate.

Comparison with the short linear DNA revealed a near-identical

range of DPCs (Figures 6C and S6A). We conclude that the

DNA position observed in our cryo-EM structure is a fair reflec-
Figure 6. The DNA Trajectory into the Cohesin Ring

(A) Schematic of the DPC-MS workflow. See the main text for details.

(B) A representative mass spectrum of a peptide containing a diazirine mass tag

(C) DNA crosslinks of a 125-bp linear DNA in the gripping state, shown on the surfa

kb circular plasmid DNA (medium blue). Crosslinks in common are shown in dar

(D) DNA crosslinks in the initial DNA binding state (light blue) are compared with

blue. Arrowheads highlight crosslinks along the SMC coiled coils and hinge.

(E) A model of the DNA trajectory from initial binding toward the gripping state, b

(F) DNA gripping experiment using head-head crosslinked cohesin. Psm1-SNAP P

gripping reaction. DNA-bound proteins were analyzed by immunoblotting and in

See Figure S6 for additional DPC-MS results.
tion of that reached by a topologically closed DNA that reflects

a more natural substrate. Additional DNA contacts were

observed with long circular DNA involving the Psm1 and Psm3

coiled coil. These contacts inform us regarding a likely path a

longer DNA takes in the gripping state (see below).

To understand the trajectory taken by DNA to reach the grip-

ping state, we compared DPCs in the initial binding state where

ATP is omitted and the nucleotide-bound gripping state. To

ensure that DNA remains in a true initial state and does not reach

an undesired post-hydrolysis state, we used the long circular

DNA substrate in this assay. Unique DNA crosslinks were identi-

fied in the no-nucleotide state that map above the ATPase head,

whereas the ATPase heads are a major DNA interaction site in

the gripping state (Figures 6D and S6B). On Mis4, initial state

crosslinks map on top of the handle, whereas the gripping state

crosslinks line the hook. These observations suggest that DNA

reaches the gripping state by approaching Mis4 and the

ATPase heads from the top.

We also recorded several DNA contacts along the SMC coiled

coils and hinge in the initial and the gripping state. All hinge cross-

links map on a solvent-exposed hinge surface opposite to that

engaged inprotein-protein contactswith thecohesin core (Figures

6D). These interactions further support a likelyDNAentrypath from

the top of the ATPase (depicted schematically in Figure 6E).

Our proposed model for DNA entry makes the prediction that

DNA would not traverse the head gate on its way to the gripping

state. To test this prediction, we prepared cohesin with SNAP

and CLIP tags fused to the Psm3 and Psm1 C termini, respec-

tively. SC-Cy5 addition yielded covalent head gate closure in

approximately half of the cohesin population (Figure S6C). This

mixture was employed in a DNA gripping reaction using a DNA

loop substrate on magnetic beads. The efficiency of DNA

engagement remained unchanged irrespective of whether the

SMC head gate was open or closed (Figure 6F). This observation

suggests that the DNA does not need to traverse the SMC head

gate to reach the DNA gripping state, further supporting DNA ac-

cess from the top of the ATPase.

ATP-Dependent Kleisin N-gate Opening
If DNA accesses the ATPase from the top, then the kleisin N-gate

must open to let the DNA enter before the kleisin can encircle

DNA in the gripping state. To understand how the kleisin N-

gate is regulated, we performed FRET measurements between

donor and acceptor fluorophore-labeled CLIP and SNAP tags

attached to the Psm3 and Rad21 N-termini (Figures 7A and

S7A). A cohesin tetramer in the incubation buffer displayed
. The diagnostic 159u ion is highlighted.

ce of the hybrid model (light blue), comparedwith crosslinks observedwith a 3-

k blue.

those in the gripping state (medium blue); those in common are shown in dark

ased on the observed DNA contacts.

sm3-CLIP cohesin was treated with SC-Cy5 to close the head gate before the

-gel Cy5 detection.
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measurable FRET, consistent with proximity. Addition of ATP

with or without DNA and the loader led to FRET loss, suggestive

of kleisin N-gate opening. In contrast, addition of DNA or the

loader in the absence of ATP did not induce a FRET change.

Only during gripping state formation in the presence of the

loader, DNA, and non-hydrolyzable ATP did we observe a

distinct FRET increase, consistent with kleisin N-gate closure

in this state. These observations suggest that ATP binding pro-

motes kleisin N-gate opening and confirm that the gate is closed

again in the gripping state.

To evaluate how ATP opens the kleisin N-gate, we asked

whether ATPase head engagement or ATP hydrolysis is required

in this process. To this end, we repeated the FRET experiment

using signature motif mutant cohesin, defective in head engage-

ment (Hopfner et al., 2000). This mutant maintained FRET even

following ATP addition (Figure S7B). On the other hand, EQ-co-

hesin, defective in ATP hydrolysis, displayed reduced FRET and

recapitulated ATP-dependent kleisin N-gate opening. These

observations suggest that ATPase head engagement triggers

kleisin N-gate opening but that the gate closes again when the

loader clamps DNA upon gripping state formation.

A Kleisin N-tail Guides DNA into the Cohesin Ring
The evidence acquired so far indicates that DNA must diffuse

through the kleisin N-gate before reaching the gripping state.

However, merely based on our structure, it is unclear what pre-

vents DNA from reaching the gripping state without traversing

the kleisin N-gate (Figure S7C). Our attention was drawn to the

extreme N-terminal 12 amino acids of Rad21 that precede the

a helix that forms the kleisin N-gate. This N-tail was crosslinked

with DNA in our DPC-MS experiments in the initial as well as in

the gripping state (Figure 7B). The N-tail is conserved among

kleisins throughout evolution, including a series of positively

charged residues (Figure S7D). The cryo-EM map was of suffi-

cient quality to build amino acids 5–12 of the Rad21 N-tail, form-

ing a loop wedged between the Psm3 ATPase head and the

DNA. Two conserved lysines, 10 and 11, point toward the

DNA. Although their distance is too far to maintain direct DNA

contact in the gripping state, lysine 10 is among the residues

crosslinked with the DNA (Figure 7C, left). Another conserved

positive residue following the triple helix, lysine 25, directly en-
Figure 7. A Kleisin N-terminal Tail Guides DNA into the Cohesin Ring

(A) Schematic of the kleisin N-gate FRET construct. FRET efficiencies at the kleis

DNA as a substrate. ADP$BeF3
� was used in the gripping incubation. Results

are shown.

(B) Sequence alignment of the cohesin N-tail. Positions of DNA crosslinking in th

(C) Atomic model of the Rad21 N-tail (left), showing the conserved K10 and K11 r

including the cryo-EM density.

(D) Comparison of WT and N17-cohesin in a DNA gripping experiment. Follow

associated proteins and DNA were analyzed by immunoblotting and gel electrop

(E) Comparison of ATP hydrolysis by WT and N17-cohesin in the presence of the l

from three independent experiments.

(F) Loading of WT and N17-cohesin onto a 3-kb plasmid DNA. Following the loa

taining 750 mM NaCl, and recovered DNA was analyzed by agarose gel electroph

experiments.

(G) A model for DNA entry into the cohesin ring. The kleisin N-tail guides DNA thro

and passage through the head gate completes DNA entry.

See Figure S7 for further analyses of the kleisin N-tail and Video S1 for an anima
gages DNA in our structure (Figure 7C, right). The N-tail is held

in place by an extended loop projecting from the Psm3

ATPase head that is specific to Psm3 and much shorter in

Psm1 (Figure S7E).

If the kleisin N-tail binds DNA when the kleisin N-gate opens

and maintains DNA contact at least until the Rad21-Psm3 triple

helix structure starts to reform, this will have guided the DNA

through the kleisin gate on its way to the gripping state. To

analyze the contribution of the kleisin N-tail to cohesin function,

we purified a cohesin complex lacking Rad21 amino acids 1–17

(N17-cohesin; Figure S7F). When we included N17-cohesin in a

DNA gripping experiment, this complex bound DNA similarly

tightly compared with wild-type cohesin (Figure 7D). Likewise,

the levels of DNA and loader-stimulated ATP hydrolysis were

equal when usingwild-type or N17-cohesin (Figure 7E). This sug-

gests that the kleisin N-tail affects neither the tight DNA binding

associated with gripping-state formation nor following ATP

hydrolysis.

We then investigated the contribution of the kleisin N-tail to to-

pological cohesin loading onto DNA. Following incubation in the

presence of loader and ATP, we recovered cohesin by immuno-

precipitation and assessed topological, high-salt-resistant DNA

binding. N17-cohesin showed a substantially reduced ability to

retain DNA compared with wild-type cohesin, indicating that to-

pological cohesin loading onto DNA was unsuccessful (Fig-

ure 7F). From these results, we conclude that the Rad21 N-tail

has a crucial role in guiding DNA to successful DNA entry into

the cohesin ring (Figure 7G; Video S1).

DISCUSSION

We used a combination of biochemical and structural ap-

proaches to learn how DNA enters into the cohesin ring. FRET

measurements at the cohesin ATPase heads led us to discover

a DNA gripping intermediate that forms when cohesin comes

together with the loader, DNA, and non-hydrolyzable ATP. The

gripping complex proved to be a suitable target for cryo-EM im-

aging and allowed us to generate an atomic model of key ele-

ments of this cohesin loading intermediate. To understandwhere

this intermediate lies during the cohesin loading reaction onto

DNA, we utilized additional biochemical tools, including DPC-
in N-gate were recorded under the indicated conditions using a 3-kb plasmid

from three independent repeats and their means and standard deviations

e initial binding and the DNA gripping state are indicated.

esidues relative to the DNA. A magnified view around K25 is also shown (right),

ing reaction with a bead-bound DNA loop substrate and washes, the bead-

horesis.

oader and a 3-kb plasmid DNA. Shown are the means and standard deviations

ding reaction, cohesin was immunoprecipitated and washed with buffer con-

oresis. Shown are the means and standard deviations from three independent

ugh the kleisin N-gate before DNA reaches the ATPase heads. ATP hydrolysis

ted model of DNA entry into the cohesin ring.
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MS. These approaches allowed us to trace the DNA trajectory.

We also identified previously uncharacterized functional ele-

ments of cohesin that are important for successful topological

entry. Among these, the kleisin N-tail opens up a dichotomy of

the DNA entry reaction thatmight be important for understanding

cohesin’s alternative role in loop extrusion.

The DNA Trajectory into the Cohesin Ring
In the gripping state, we find the DNA trapped between two

gates that lead into the cohesin ring: the kleisin N-gate and the

ATPase head gate. Given this topology, the DNA must have

passed one of the two gates but not yet the other. Numerous

lines of evidence indicate that the DNA arrived from the top of

the ATPase and that it passed the kleisin N-gate. Subsequent

passage through the head gate is then required to complete to-

pological entry. Although we have not yet directly observed this

step, the ATPase heads in the gripping state are ATP bound and

appear to be competent for ATP hydrolysis, which is expected to

trigger head gate opening.

Using a FRET-based assay, we established that kleisin N-gate

opening is the consequence of ATP-dependent SMC head

engagement, consistent with recent structural observations of

engaged cohesin and condensin ATPase heads with an open

N-gate (Hassler et al., 2019; Muir et al., 2020). Our cryo-EM

structure indicates that, by the time DNA reaches the gripping

state, the kleisin N-gate is closed again. In this configuration,

the DNA itself contributes to keeping the gate shut by directly

contacting the kleisin N-terminal domain and locking it into the

triple helix with the Psm3Smc3 neck. ATP hydrolysis can then

open the ATPase head gate, whereas the kleisin N-gate remains

shut. This structural model provides an explanation for two inter-

locking gates through which DNA enters the cohesin ring, only

one of which can be open at any one time. We hypothesized pre-

viously that DNA enters the cohesin ring through interlocking

kleisin N- and head gates (Murayama and Uhlmann, 2015). Our

molecular knowledge now allows us to establish the correct or-

der of events that lead to DNA entry (Figure 7G; Video S1). The

ability of ssDNA to promote head engagement opens the possi-

bility that ssDNA-directed second DNA capture follows a similar

trajectory (Murayama et al., 2018).

An alternativemodel for DNA loading states that DNApasses a

hinge gate (Buheitel and Stemmann, 2013; Gruber et al., 2006).

This model is based on two observations. First, DNA entry into

the cohesin ring is blocked by ligand-induced dimerization of

ectopic hinge insertions, which has been interpreted to demon-

strate DNA passage through the hinge. Our structure opens up

an alternative explanation. The hinge makes extensive contact

with Mis4Scc2/NIPBL, Psc3Scc3/STAG1/2, as well as the coiled-coil

arms. If the dimerized hinge insertions interfered with one or

more of these interactions, then this could compromise coiled-

coil folding, which, in turn, is crucial for DNA entry via the kleisin

N-gate. A second result is, at first sight, incompatible with DNA

entry through the kleisin N-gate. An Smc3-kleisin fusion protein,

in which the two subunits cannot separate, remains able to load

onto chromosomes (Buheitel and Stemmann, 2013; Gruber

et al., 2006). However, the Smc3-kleisin fusion in itself will not

block operation of the kleisin N-gate or subsequent DNA pas-

sage through the head gate. Indeed, a functional kleisin N-gate
930 Molecular Cell 79, 917–933, September 17, 2020
remains required for the viability of Smc3-kleisin fusion strains

(Guacci et al., 2019). We therefore suggest that the fusion does

not impede the loading reaction but, rather, results in a loading

product in which the linker sequence between Smc3 and the

kleisin adds an additional DNA embrace. Future experiments

are required to clarify the topology of the DNA loading products

obtained with an Smc3-kleisin fusion protein.

The Role of the Cohesin Loader and of Other HEAT
Repeat Subunits
Our structure shows how the Mis4Scc2/NIPBL cohesin loader aids

the topological loading reaction in several ways. Compared with

its previously reported extended conformation, the loader in the

gripping state has undergone a striking conformational change,

contributing to the topological enclosure that holds DNA locked

against the ATPase heads. Together with the DNA, the loader

also engages the Psm3Smc3 acetyl acceptor lysines to trigger

ATP hydrolysis and SMC head gate opening. Following ATP hy-

drolysis, we propose that the loader returns to its extended form,

promoting head separation and DNA passage through the head

gate. Despite these multiple ways in which the loader facilitates

DNA entry, cohesin retains basal topological loading potential

without the loader (Murayama and Uhlmann, 2014). Indeed,

our FRET results indicate that Kleisin N-gate opening by head

engagement is independent of the loader. In this scenario, arrival

of the DNA alone might be sufficient to close the N-gate before

ATP hydrolysis completes DNA entry at a reduced rate.

In addition to the Mis4Scc2/NIPBL loader, the Psc3Scc3/STAG1/2

subunit is instrumental for cohesin loading onto DNA in vivo and

in vitro (Murayama and Uhlmann, 2014; Tóth et al., 1999). Our

structure shows that Psc3Scc3/STAG1/2 is positioned behind the

loader in the gripping state. Furthermore, we observe DNA cross-

links consistent with a crystallographically observed DNA interac-

tion (Li et al., 2018) in the initial DNA binding aswell as the gripping

state. Based on this positioning, we propose that Psc3Scc3/STAG1/2

plays a role in attracting and positioning the DNA as it approaches

between the coiled-coil arms and moves toward the ATPase (Fig-

ure 6E). ThemolecularmechanismbywhichPsc3Scc3/STAG1/2 con-

tributes to cohesin function remains to be explored further.

Cohesin’s third HEAT repeat subunit, Pds5, is thought to

replace Mis4Scc2/NIPBL following loading (Murayama and Uhl-

mann, 2015; Petela et al., 2018). Pds5 has a similar overall shape

as Mis4 (Lee et al., 2016; Ouyang et al., 2016). The conserved

Psm3-contacting residues in Mis4’s handle are also found in

Pds5 (Figure S3B), suggesting that aspects of its cohesin engage-

ment are likely conserved. However, unlike the loader, Pds5 does

not stimulate ATP hydrolysis by cohesin (Murayama and Uhl-

mann, 2015), and our FRET results indicate that Pds5 fails to pro-

mote ATPase head engagement in the presence of DNA and non-

hydrolyzable ATP. Instead, we speculate that Pds5 might block

head engagement, preventing spontaneous kleisin N-gate open-

ing. If kleisin N-gate opening through head engagement is no

longer possible in the presence of Pds5, then an alternative way

to operate the gate becomes necessary. This could be the role

of Wapl that is recruited by Pds5. This scenario provides a ratio-

nale for how Pds5 could stabilize cohesin on chromosomes as

well as render it competent for Wapl-regulated unloading, which

could follow a similar trajectory through sequential kleisin N-
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and head gates. How Pds5 differs from the Mis4Scc2/NIPBL loader

and how their alternating association with the cohesin complex is

controlled remains to be investigated.

The Kleisin N-tail and Its Implication for Successful
DNA Entry
While performing DNA-protein crosslink experiments, we

noticed crosslinks with a conserved kleisin N-tail that has previ-

ously received little attention. This tail lies in proximity of the

Psm3 headwhen the kleisin N-gate closes. If the N-tail maintains

DNA contact during the transition from an open to a shut kleisin

N-gate, then the tail will have guided the DNA through the kleisin

gate. In support of this notion, we find that theN-tail is key to suc-

cessful DNA entry into the cohesin ring. A sister chromatid cohe-

sion defect observed in Drosophila melanogaster cells carrying

an N-tail mutation is consistent with such a role (Ribeiro

et al., 2016).

Why is a kleisin N-tail required to guide DNA through the kleisin

N-gate? The structured components of the DNA gripping state

have no obvious mechanism for sensing whether DNA has

passed the kleisin N-gate (Figure S7C). Only our kleisin circular-

ization experiment revealed that the DNA has, in fact, traversed

the gate. We therefore speculate that, under certain conditions,

DNA might reach the gripping state without having passed the

kleisin N-gate. In this case, acetyl acceptor lysine engagement

by DNA and the loader still triggers ATP hydrolysis, but the

outcome of head disengagement will be diametrically different;

without having passed the kleisin N-gate first, DNA cannot enter

the cohesin ring. Following ATP hydrolysis, the loader would

revert to its extended configuration, which might alter hinge in-

teractions with the cohesin core and favor a transition from

bent to straight SMC coiled coils. Provided that Psc3 retains as-

sociation with the hinge and DNA during this process, cohesin

would nucleate a DNA loop (Figure S7C). Were such abortive

DNA entry reactions to repeat, this could lead to expansion

and extrusion of the loop. DNAwould not have passed any cohe-

sin gate, consistent with experimental observations of loop

extrusion by cohesin (Davidson et al., 2019). Whether DNA can

reach the gripping state without passing the N-gate under phys-

iological conditions remains an important question to explore.

While our study was under review, a structure of the human

cohesin complex with its NIPBL loader was reported in a similar

DNA gripping state (Shi et al., 2020). The human gripping state

structure includes a conformational change of the loader relative

to its previously observed crystal structure form, similar to what

we observed for the fission yeast cohesin complex. While it went

unnoticed by the authors, this observation opens the possibility

that the molecular mechanism of DNA entry into the cohesin ring

is conserved between fission yeast and human. Real-time struc-

tural and biophysical observations of cohesin during DNA entry

will further elucidate this crucial process for genome stability.
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of MukBEF and cohesin. Nat. Struct. Mol. Biol. 26, 227–236.
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Antibodies

Mouse monoclonal anti-V5 Bio-Rad Cat# MCA1360

Mouse monoclonal anti-HA (12CA5) Sigma-Aldrich Cat# 11583816001

Mouse monoclonal anti-E2a (5E11) Abcam Cat# ab977

Rabbit polyclonal anti-Rad21 (fission yeast) BioAcademia Cat# 63-139

Anti-rabbit IgG (HRP-conjugated) GE Healthcare Cat# NA934-1ML

Anti-mouse IgG (HRP-conjugated) GE Healthcare Cat# NA931

Chemicals, Peptides, and Recombinant Proteins

Phenylmethylsulfonyl fluoride (PMSF) Sigma-Aldrich Cat# 11359061001

cOmplete EDTA-Free Protease Inhibitor

Cocktail

Sigma-Aldrich Cat# 11873580001

CLIP-Surface 547 New England BioLabs Cat# S9233S

SNAP-Surface Alexa Fluor 647 New England BioLabs Cat# S9136S

BC-NH2 New England BioLabs Cat# S9236S

BG-NH2 New England BioLabs Cat# S9148S

DTT Sigma-Aldrich Cat# 43815-5G

BSA ThermoFisher Cat# AM2616

poly-dIdC:dIdC Sigma-Aldrich Cat# P4929-10UN

biotin Sigma-Aldrich Cat# B4501-1G

ATP Sigma-Aldrich Cat# A2383

ADP Sigma-Aldrich Cat# A2754

Beryllium sulrate tetrahydrate VWR international LTD Cat# 16104.14

Sodium fluoride 0.5 M Solution Sigma-Aldrich Cat# 67414-1ML-F

Aluminum chloride Sigma-Aldrich Cat# 449598-5G

Sodium Orthovanadate New England BioLabs Cat# P0758S

InstantBlue Sigma-Aldrich Cat# ISB1L-1L

SYBR Gold Nucleic Acid Gel Stain ThermoFisher Cat# S11494

Protease K TaKaRa Cat# 9034

AcTEV protease ThermoFisher Cat# 12575015

PstI-HF New England BioLabs Cat# R3140S

T7 DNA polymerase New England BioLabs Cat# M0274S

CloneAmp HiFi PCR Premix TaKaRa Cat# 639298

GoTaq Taq G2 DNA Polymerase Promega Cat# M7845

Deoxynucleotide Set Sigma-Aldrich Cat# DNTP100-1KT

Aminoallyl-dUTP Stratech Scientific Ltd Cat# NU-803S-JEN-10ul

SDAD (NHS-SS-Diazirine) ThermoFisher Cat# 26169

SDA (NHS-Diazirine) ThermoFisher Cat# 26167

Lysyl EndopeptidaseR (Lys-C) FUJIFILM Cat# 129-02541

Ammonium bicarbonate Sigma-Aldrich Cat# 09830-500G

Fission yeast cohesin (Psm1-Psm3-

Rad21-Psc3)

Murayama and Uhlmann, 2014 N/A

Fission yeast EQ-cohesin (Psm1E1161Q-

Psm3E1128Q- Rad21-Psc3)

Murayama and Uhlmann, 2015 N/A
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Fission yeast KKQQ cohesin (Psm1-

Psm3K105Q/K106Q- Rad21-Psc3)

Murayama and Uhlmann, 2015 N/A

Fission yeast Mis4-Ssl3 Murayama and Uhlmann, 2014 N/A

Fission yeast Mis4 N-191 Chao et al., 2015 N/A

Fission yeast Pds5 Murayama and Uhlmann, 2015 N/A

Fission yeast Wapl Murayama and Uhlmann, 2015 N/A

Critical Commercial Assays

SilverQuest Silver Staining Kit ThermoFisher Cat# LC6070

InFusion HD cloning kit TaKaRa Cat# 638910

Human IgG-Agarose Sigma-Aldrich Cat# A6284-5ML

Glutathione Sepharose 4B GE Healthcare Cat# 17075601

Ni-NTA Superflow (25 ml) QIAGEN Cat# 30410

HiTrap Heparin HP 1 ml GE Healthcare Cat# 17040601

Superdex 200 Increase 10/300 GL GE Healthcare Cat# 28990944

Superdex 75 Increase 10/300GL GE Healthcare Cat# 29148721

Superose 6, 10/300 GL GE Healthcare Cat# 17517201

Amicon Ultra-4 centrifuge filter unit Sigma-Aldrich Cat# UFC810096

Slide-A-Lyzer MINI Dialysis Devices,

20K MWCO

ThermoFisher Cat# 69555

Dynabeads M-280 Streptavidin ThermoFisher Cat#11206D

Dynabeads Protein A ThermoFisher Cat#10002D

ECL Prime Western Blotting Detection

Regent

GE Healthcare Cat# RPN2232

Zeba Spin Desalting Columns, 7K

MWCO, 0.5 mL

ThermoFisher Cat# 89882

MICROSPIN S-400 HR, 50 COLUMNS GE Healthcare Cat#GE27-5140-01

TLC PEI Cellulose F Merck Cat#105725

Experimental Models: Organisms/Strains

All yeast strains used in this study are listed

in Table S1.

Lab stock and this study N/A

Escherichia coli: BL21 (DE3) codonPlus

RIPL chemical competent cells

Agilent Technologies Cat#230280

Oligonucleotides

TH1:[bioteg]agcgcagcgagtcagtgagcgagg Sigma-Aldrich N/A

TH2:cggtcgttcggctgcggcgagcgg Sigma-Aldrich N/A

TH3: [bioteg]cggtcgttcggctgcggcgagcgg Sigma-Aldrich N/A

TH4:agcgcagcgagtcagtgagcgagg Sigma-Aldrich N/A

TH5:cctttttacggttcctggcc Sigma-Aldrich N/A

Recombinant DNA

pBluescript II KS(+) Murayama and Uhlmann, 2014, 2015,

Murayama et al., 2018

N/A

ssDNA of pBluescript II KS(+) Murayama et al., 2018 N/A

M13KO7 Helper Phage New England BioLabs Cat# N0315S

JM109 competent cells New England BioLabs Cat#E4107

Plasmid: pMis4-PA Murayama and Uhlmann, 2014 N/A

Plasmid: pMis4-N191-PA Chao et al., 2015 N/A

Plasmid: pSsl3 Murayama and Uhlmann, 2014 N/A

(Continued on next page)
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Plasmid: pGEX-Wapl Murayama and Uhlmann, 2015 N/A

Software and Algorithms

Fiji ImageJ open source https://imagej.net/Fiji

UCSF ChimeraX Resource for Biocomputing Visualization,

and Informatics

https://www.cgl.ucsf.edu/chimerax/

PyMOL Schrodinger https://pymol.org/2/

PEAKS X+ Bioinfomatics Solutions Inc. https://www.bioinfor.com/peaks-studio-

x-plus/

xiVIEW Rappsilber lab https://xiview.org/xiNET_website/

index.php

CCBuilder 2.0 open source http://coiledcoils.chm.bris.ac.uk/

ccbuilder2/builder

Clustal Omega open source https://www.ebi.ac.uk/Tools/msa/clustalo/

Deposited Data

Protein-protein crosslink mass

spectrometry (CLMS) data

PRIDE PXD018608

DNA-protein crosslink mass spectrometry

(DPC-MS)

PRIDE PXD018600

Negative stain EM map EMDB EMD-10870

cryo-EM map EMDB EMD-10930

cryo-EM atomic coordinates PDB 6YUF

Unprocessed gel images presented in this

manuscript can be found at https://data.

mendeley.com/datasets/9bddfnc7wb/

draft?a=41d6ea5b-4cba-4f3e-b9f3-

a42dfb09eff4

N/A N/A
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Lead Contact
Further information for resources and requests should be directed to and will be fulfilled by the Lead Contact, Frank Uhlmann (frank.

uhlmann@crick.ac.uk).

Materials Availability
All reagents generated in this study are available from the Lead Contact without restriction.

Data and Code Availability
The negative stain map is available in EMDB, entry EMD-10870. The cryo-EM map and atomic coordinates are available in EMDB,

entry EMD-10930 and PDB, entry 6YUF, respectively.

The CLMS data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset iden-

tifier PXD018608.

The DPC-MS data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset

identifier PXD018600.

Unprocessed gel images presented in this manuscript can be found at https://data.mendeley.com/datasets/9bddfnc7wb/draft?

a=41d6ea5b-4cba-4f3e-b9f3-a42dfb09eff4

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Yeast Strains
All fission yeast cohesin tetramer complexes and Pds5 were expressed in W303 background budding yeast strains. Strains were

cultured at 30�C in YP medium (2% peptone and 1% yeast extract) containing 2% raffinose until the optical density at 600 nm

reached 1.0. Protein expression was induced by addition of 2% galactose for 4 h. Fission yeast Mis4-Ssl3 protein or Mis4-N191
e3 Molecular Cell 79, 917–933.e1–e9, September 17, 2020

mailto:frank.uhlmann@crick.ac.uk
mailto:frank.uhlmann@crick.ac.uk
https://data.mendeley.com/datasets/9bddfnc7wb/draft?a=41d6ea5b-4cba-4f3e-b9f3-a42dfb09eff4
https://data.mendeley.com/datasets/9bddfnc7wb/draft?a=41d6ea5b-4cba-4f3e-b9f3-a42dfb09eff4
https://imagej.net/Fiji
https://www.cgl.ucsf.edu/chimerax/
https://pymol.org/2/
https://www.bioinfor.com/peaks-studio-x-plus/
https://www.bioinfor.com/peaks-studio-x-plus/
https://xiview.org/xiNET_website/index.php
https://xiview.org/xiNET_website/index.php
http://coiledcoils.chm.bris.ac.uk/ccbuilder2/builder
http://coiledcoils.chm.bris.ac.uk/ccbuilder2/builder
https://www.ebi.ac.uk/Tools/msa/clustalo/
https://data.mendeley.com/datasets/9bddfnc7wb/draft?a=41d6ea5b-4cba-4f3e-b9f3-a42dfb09eff4
https://data.mendeley.com/datasets/9bddfnc7wb/draft?a=41d6ea5b-4cba-4f3e-b9f3-a42dfb09eff4
https://data.mendeley.com/datasets/9bddfnc7wb/draft?a=41d6ea5b-4cba-4f3e-b9f3-a42dfb09eff4
https://data.mendeley.com/datasets/9bddfnc7wb/draft?a=41d6ea5b-4cba-4f3e-b9f3-a42dfb09eff4


ll
OPEN ACCESSArticle
protein was expressed in fission yeast strains. Fission yeast cells were cultured in EMM minimal medium supplemented with 30 mM

thiamine at 30�Cuntil the optical density at 595 nm reached 1.5, and protein expression was induced in EMMminimalmedium lacking

thiamine for 15 h. Genotypes of all strains used are listed in Table S1.

Bacteria
Fission yeast Wapl was expressed in the E. coli strain BL21-CodonPlus (DE3)-RIPL (Agilent Technologies). The genotype is: E. coli B

F- ompT hsdS(rB- mB-) dcm+ Tetr gal l(DE3) endA Hte [argU proL Camr] [argU ileY leuW Strep/Specr].

METHOD DETAILS

Cloning of cohesin and its variants for protein purification
For construction of Head FRET wild-type and EQ-cohesin, SNAP-tag and CLIP-tag encoding sequences were fused to Psm1 C

terminus and Psm3 C terminus in the shuttle vector YIplac211-Psm1/Psm3 or YIplac211-Psm1E1161Q /Psm3E1128Q that were con-

structed previously (Murayama and Uhlmann, 2014, 2015). The YIplac211-Psm1-SNAP/Psm3-CLIP vector and a YIplac128-

Rad21/Psc3 expression vector were sequentially integrated into budding yeast at the URA3 and LEU2 loci, respectively.

For construction of the Kleisin-N FRET cohesin complex, SNAP-tag and CLIP-tag sequences were fused to Rad21 N terminus in

the YIplac128-Rad21-Psc3 integration vector and Psm3 N terminus in the YIplac211-Psm1-Psm3 vector. Both vectors were inte-

grated into budding yeast genome as before. Kleisin-N FRETWalker Bmotif mutant (EQ) and signature motif mutant (SQ) complexes

were generated by site-directed mutagenesis on the YIplac211-Psm1/CLIP-Psm3 vector.

For construction of the kleisin circle construct, SNAP and CLIP-tag sequences were fused to Rad21 C terminus and N terminus in

the YIplac128-Rad21-Psc3 integration vector. The first of the two separase recognition sequence in Rad21 was replaced with a to-

bacco etch virus (TEV) protease-recognition sequence. The YIplac128-CLIP-Rad21-SNAP/Psc3 expression vector was integrated

into budding yeast harboring YIplac211-Psm1/Psm3.

For construction of SMC circle construct, SNAP-tag sequences were integrated into the Psm1 hinge region (between R593 and

G594) and the Psm3 C terminus. CLIP-tag sequences were integrated into the Psm3 hinge region (between S631 and N632) and

fused to the Psm1 C terminus in the YIplac211-Psm1/Psm3 vector. The expression vector was integrated into budding yeast

harboring YIplac128-Rad21/Psc3.

For construction of N-terminally truncated N17-Rad21, a partial coding sequence (amino acids 18-646) was amplified by PCR,

which replaced the full-length Rad21 gene in the YIplac128-Rad21/Psc3 vector by In-Fusion cloning. The YIplac128-N17-Rad21/

Psc3 and YIplac211-Psm1-Psm3 vectors were integrated into budding yeast.

Protein expression, purification, labeling, and crosslinking
Fission yeast cohesin tetramer complexes including wild-type, walker B mutant (Psm1 E1161Q, Psm3 E1128Q, denoted as EQ-co-

hesin), Psm3 acetyl-acceptor site mutant, Rad21 N-terminal truncated mutant (Rad21 amino acids 18-646, denoted N17-cohesin),

Kleisin-circle complex, SMC circle complex, Mis4-Ssl3, Mis4- N191(amino acids 192-1587), Pds5 and Wapl were expressed and

purified following previously described methods (Chao et al., 2015; Murayama and Uhlmann, 2014, 2015)

All fission yeast cohesin complexes for FRET measurement (Head FRET wild-type and EQ-cohesin, Kleisin-N FRET wild-type, EQ

and SG cohesin) were expressed and purified by sequential steps on IgG-Sepharose and heparin columns as described (Murayama

and Uhlmann, 2014). The peak fractions from the heparin elution in R buffer (20 mM Tris/HCl, pH 7.5, 0.5 mM TCEP, 10% (v/v) glyc-

erol) containing approximately 600mMNaCl were concentrated to 500 ml by ultrafiltration. Cohesinwas supplementedwith 2 mMBG-

surface Alexa 647, 1mMDTT and 0.003% Tween20 and incubated at 25�C for 1 h. Now the labeling reaction was supplemented with

4 mMBC-surface Dy547 and incubated at 4�C for 16 h to complete the labeling. The labeled cohesin was applied to a Superose 6 10/

300 GL gel filtration column that was developed in R buffer containing 200 mMNaCl and 0.003% Tween20. The peak fractions were

concentrated to 500 ml by ultrafiltration.

To prepare head-crosslinked cohesin, Head FRET wild-type cohesin was expressed and purified by IgG-Sepharose chromatog-

raphy as described above. Once loaded onto the heparin column, R buffer containing 100 mM NaCl and 4 mM SC-Cy5 crosslinker

was injected and incubated at 25�C for 1 h, resulting mainly in SNAP tag coupling. After this incubation, the columnwaswashed clear

of crosslinker and heparin-bound cohesin was eluted and further incubated overnight at 4�C to allow CLIP tag coupling with SC-Cy5.

The peak fractions of heparin purification step were concentrated to 500 mL by ultrafiltration and applied to a Superose 6 10/300 GL

gel filtration column that was developed in R buffer containing 200 mM NaCl. The peak fractions were concentrated to 500 mL by

ultrafiltration.

Topological cohesin loading assay
Topological cohesin loading onto DNA was performed in standard reactions (15 ml final volume) as previously described (Murayama

and Uhlmann, 2014) with minor modifications. Cohesin (100 nM), Mis4-Ssl3 (100 nM) and pBluescript dsDNA were mixed on ice in

reaction buffer (35 mM Tris-HCl pH 7.5, 0.5 mM TCEP, 25 mM NaCl, 1 mMMgCl2, 15% (w/v) glycerol and 0.003% (w/v) Tween 20).

The reactions were initiated by addition of 0.5 mMATP and incubated at 32�C for 120min. The reactions were terminated by addition

of 500 mL of ice-chilled Washing buffer A (35 mM Tris-HCl pH 7.5, 0.5 mM TCEP, 750 mM NaCl, 0.35% (w/v) Triton X-100. Anti-Pk
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antibody adsorbed to protein A conjugatedmagnetic beads was added to the terminated reactions and rocked at 4�C overnight. The

beads were one time washed with Washing buffer A and three times with Washing buffer B (35 mM Tris-HCl pH 7.5, 0.5 mM TCEP,

500 mMNaCl and 0.1% (w/v) Triton X-100) and once with Washing buffer C (35 mM Tris-HCl pH 7.5, 0.5 mM TCEP, 50 mMNaCl and

0.1% (w/v) Triton X-100). The cohesin-bound DNA was eluted in 15 ml of elution buffer (10 mM Tris-HCl pH 7.5, 1 mM EDTA, 50 mM

NaCl, 0.75%SDS and 1mg/ml protease K) by incubation at 50�C for 20min. The recovered DNAwas separated by 0.8% agarose gel

electrophoresis in TAE buffer and stainedwith SYBR gold. Gel imageswere captured using a Typhoon FLA 9500 biomolecular imager

and band intensities quantified using ImageJ.

Bulk FRET measurement
All fluorescence measurements were carried out at room temperature in reaction buffer (35 mM Tris-HCl pH 7.5, 0.5 mM TCEP,

25 mM NaCl, 1 mM MgCl2, 15% (w/v) glycerol and 0.003% (w/v) Tween 20). 40 mL of reaction mixtures containing 10 nM Dy547

and Alexa 647-labeled cohesin, 100 nM Mis4-Ssl3 and 3 nM DNA substrate were mixed and the reaction was started by addition

of 0.5 mM ATP. Alternatively, 0.5 mM ADP or 0.5 mM ADP and 0.5 mM BeF2, 0.5 mM BeSO4 + 10 mM NaF, 0.5 mM AlCl3 +

10 mM NaF, or 0.5 mM Na3VO4 were included instead of ATP. The reactions were incubated at 32�C for 20 min. The samples

were applied to a 384-well plate and fluorescence spectra of the cohesin complex were collected on a CLARIOstar high performance

plate reader. Samples were excited at 525 nm and emitted light was recorded between 560 - 700 nm in 0.5 nm increments. To eval-

uate FRET changes caused by cohesin’s conformational changes across different experimental conditions, we report relative FRET

efficiency, IA/(ID + IA), where ID is the donor emission signal intensity at 565 nm resulting from donor excitation at 525 nm and IA is the

acceptor emission signal intensity at 665 nm resulting from donor excitation at 525 nm.

DNA gripping experiments
For DNA gripping analyses, we immobilized DNA onmagnetic beads. A 3 kb linear DNA substrate was prepared by PCR amplification

with 50-biotinylated oligonucleotide TH1 and unmodified TH2 using pBluescript dsDNA as the template. The 3 kb DNA loop substrate

was made by PCR amplification with a pair of both 50-biotinylated oligonucleotides TH1 and TH3 using pBluescript dsDNA as the

template. Streptavidin conjugated magnetic beads were washed with DNA binding buffer, DBB (10 mM Tris-HCl pH 7.5, 2 M

NaCl, 1 mM EDTA, 0.03% Tween20) and resuspended in 2 volumes of DBB. 100 ng biotin-labeled DNA was mixed with 20 mL beads

and incubated at room temperature for 1 h. Beads were washed 3 times with reaction buffer (35 mM Tris-HCl pH 7.5, 0.5 mM TCEP,

25 mM NaCl, 1 mM MgCl2, 15% (w/v) glycerol and 0.003% (w/v) Tween 20) and resuspended in reaction buffer supplemented with

1 mg/ml BSA and 2.5 mU poly-dIdC:dIdC. After 30 min incubation, DNA-beads were washed 3 times with reaction buffer. The stan-

dard reaction volumewas 15 ml, containing 100 nMcohesin, 100 nMMis4-Ssl3, 100 nMMis4-N191, 100 nMPds5 and 100 nMWapl in

reaction buffer. The reaction mixture was added to the DNA beads (containing 3.3 nM dsDNA molecules) on ice. The reactions were

started by addition of 0.5 mM ATP, or 0.5 mM ADP and 0.5 mM BeSO4 + 10 mM NaF, and incubated at 32�C for 20 min. After the

incubation, beads were washed three times withWashing buffer C (35mMTris-HCl pH 7.5, 0.5 mMTCEP, 50mMNaCl and 0.1% (w/

v) Triton X-100) orWashing buffer D (35mMTris-HCl pH 7.5, 0.5mMTCEP, 135mMNaCl and 0.1% (w/v) Triton X-100) and once with

Washing buffer C. The beads were divided into two for detection of protein and DNA. Protein samples were eluted with SDS-sample

buffer (50mMTris-HCl pH 6.8, 2%SDS, 10%Glycerol, 50mMDTT, 0.02%Bromophenol Blue) and boiled for 5min. The DNA sample

was eluted in buffer containing 3 mM biotin and incubated overnight at room temperature. DNA-bound proteins were separated by

SDS-PAGE and analyzed by immunoblotting using the indicated antibodies. The recovered DNA was analyzed by 0.8% agarose gel

electrophoresis as described above.

EM sample preparation of cohesin in the gripping state
For EM sample preparation, we used a 125 bp linear dsDNA substrate that was generated by PCR amplification with a pair of oligo-

nucleotides TH1 and TH5 using pBluescript dsDNA as the template. 200 nM cohesin, 200 nMMis4-Ssl3, 200 nM 125bp dsDNAwere

mixed in reaction buffer on ice. The reaction was started by addition of 0.5 mM ADP and 0.5 mMBeSO4 + 10 mMNaF and incubated

at 32�C for 20 min. After incubation, an equal volume of 2 x Washing buffer D (35 mM Tris-HCl pH 7.5, 0.5 mM TCEP, 135 mM NaCl

and 0.1% (w/v) Triton X-100) was added for further incubation at 4�C for 10 min. The reaction mixture of a total volume of 50 mL was

loaded onto 20–50% (weight/volume) linear sucrose gradients prepared in EM buffer (20 mM HEPES-KOH pH 7.5, 25 mM NaCl,

0.5 mM TCEP). Centrifugation was in a MLS-50 rotor (Beckman) at 37,000 rpm for 16 h at 4�C. 50 mL fractions were collected

from top to bottom and protein and DNA in each fraction were analyzed by SDS-PAGE followed by silver-staining or agarose gel

electrophoresis to identify peak fractions containing the cohesin-loader-DNA complex. Sucrose in the peak fractions was removed

by passing three times through spin desalting columns before application to EM grids.

Negative stain EM data acquisition and image processing
A 300-mesh, continuous carbon copper grid (EM Resolutions, C300Cu100) was glow-discharged at 45 mA for 30 s. A 4 mL sample

was applied and incubated for 1 min, followed by blotting of excess volume and grid staining in four 50 mL droplets of 2% uranyl ac-

etate for 5, 10, 15, 20 s respectively. The grid was subsequently blotted dry. Micrographs were collected at x30,000 nominal magni-

fication (3.45 Å pixel size) with a defocus range of�0.5 to�2.5 mmusing a FEI Tecnai LaB6G2 Spirit electronmicroscope operated at

120 kV and equipped with a 2K x 2K GATAN UltraScan 1000 CCD camera.
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Contrast transfer function parameters were estimated using Gctf v1.06 (Zhang, 2016) and particles were picked semi-automati-

cally with e2boxer in EMAN2 v2.07 (Tang et al., 2007). Subsequent image processing was performed in RELION v3.0.4 (Zivanov

et al., 2018). Particles were initially extracted with a box size of 128 pixels and sorted by reference-free 2D classification with

CTF-correction using the additional argument –only_flip_phases. To allow visualization of extended Psm1-Psm3 coiled coils,

selected cohesin particles were re-extracted with a box size of 192 pixels and processed through one additional round of 2D clas-

sification. A reference-free initial 3Dmodel was also created in RELION and used as an input for 3D refinement using particles with the

larger box size.

Cryo-EM data acquisition and image processing
A 400-mesh lacey copper grid with a layer of ultra-thin carbon (Agar Scientific) was glow-discharged at 45 mA for 1 min. A 4 mL sam-

ple was applied and incubated for 2 min, followed by blotting of excess volume for 0.5 s using a Vitrobot Mark IV (FEI ThermoFisher)

operated at room temperature and 100% humidity. To increase particle concentration, two additional 4 mL samples were applied to

the grid for 2 min each, with 0.5 s blotting in between. After a final blot of 3 s the grid was plunge-frozen into liquid ethane. High-res-

olution cryo-EM data were acquired on a FEI Titan Krios electron microscope operated at 300 kV and equipped with Falcon 3EC

Direct Electron Detector. Micrographs were collected at x75,000 nominal magnification (1.09 Å pixel size) as 30-frame movies

with a total electron dose of 33.8 e-/Å2 and a defocus range of �2.0 to �4.0 mm. A second dataset was collected with a phase plate

using a GATAN K2 Summit direct electron detector operated in counting mode. Micrographs were collected at x130,000 nominal

magnification (1.09 Å pixel size) as 40-frame movies with a total electron dose of 49 e-/Å2 and �0.5 mm defocus.

For the first dataset (no phase-plate), 30-frame movies were corrected for beam-induced movement using 53 5 patch alignment

with all frames in MotionCor2 (Zheng et al., 2017). Contrast transfer function parameters were estimated on non-dose-weighted

micrographs using Gctf v1.06 and particles were picked with crYOLO (Wagner et al., 2019). Subsequent image processing was per-

formed in RELION v3.0.4 and cryoSPARC v2.14.2. Initially 883,184 particles were extracted from 12,085 micrographs in RELION us-

ing a box size of 360 pixels. After reference-free 2D classification in cryoSPARC 792,173 cohesin particles were selected and utilized

to reconstruct an ab-initio 3D model, which was subsequently used as a starting model for non-uniform refinement. Following 3D

refinement in RELION the particle subset was subjected to two rounds of 3D classification using a mask encompassing the cohesin

core only. Ultimately 255,148 particles were selected and refined in cryoSPARC using non-uniform refinement followed by local non-

uniform refinement of the cohesin core, resulting in a structure at 3.9 Å resolution. The final half-maps were used to produce a density

modified map using the Phenix’s tool ResolveCryoEM (Terwilliger et al., 2020). This map showed significant improvements in side

chain density and overall interpretability.

For the second dataset (phase-plate), 40-frame movies were corrected for beam-induced movement using 53 5 patch alignment

using all frames in MotionCor2. Contrast transfer function parameters were estimated on non-dose-weighted micrographs using

CTFFIND v4.1.10 (Rohou and Grigorieff, 2015) and particles were picked with crYOLO. Subsequent image processing was per-

formed in RELION v3.0.4 and cryoSPARC v2.14.2. Initially 330,024 binned-by-2 particles were extracted from 5,972 micrographs

in RELION using a box size of 276 pixels (2.18 Å/pixel). After reference-free 2D classification in cryoSPARC 227,159 cohesin particles

were selected and utilized to reconstruct an ab-initio 3D model, which was subsequently used as a starting model for non-uniform

refinement. The particles were re-extracted with a smaller box size of 180 pixels (2.18 Å/pixel) and 3D refined in RELION, which re-

vealed a flexible element connected to the cohesin core. To further characterize this peripheral element, particles were 3D-classified

without image alignment using a mask encompassing only this density region. 80,325 particles were selected and 3D-autorefined in

RELION without a mask. To increase the resolution of the flexible element and assess the conformational changes sampled in the

cohesin complex, multibody refinement (Nakane et al., 2018) was performed using masks encompassing either the core or the flex-

ible region. The two signal-subtracted particle stacks generated during multibody refinement in RELIONwere then exported for non-

uniform refinement in cryoSPARC. Although the flexible region could not be resolved to subnanometer resolution, a defined, rigid

body could be identified, into which a homology model of Psc3 could be unambiguously docked using the Fit-in map command

in UCSF Chimera (Pettersen et al., 2004). The homology model was generated with SWISS-MODEL (Waterhouse et al., 2018) and

based on PDB entry 6H8Q (Li et al., 2018). See also Table S2 for the image processing workflow for the cryo-EM core structure

as well as the multibody refinement workflow that led to the Identification of a separate rigid body identified as Psc3.

Model building and validation
SWISS-MODEL was used to obtain homology models for Psm1, Psm3, Rad21 (PDB entries 4UX3 and 1W1W) (Gligoris et al., 2014;

Haering et al., 2004), and Mis4, PDB entry 5T8V (Kikuchi et al., 2016). These models were docked into the cryo-EMmap using the Fit

in Map command in USCF Chimera (Pettersen et al., 2004). These models were refined against the map using Namdinator (Kidmose

et al., 2019) and the resulting model was used as a starting point for manual adjustments in Coot (Emsley et al., 2010). The resulting

model was then subjected to an iterative process of real space-refinement using Phenix.real_space_refinement (Adams et al., 2010)

with geometry and secondary structure restraints followed by manual inspection and adjustments in Coot. Residues 552-583 from

Rad21(chain B) and 209-302 from Mis4 (chain D) were docked into the map by rigid-body fitting of the corresponding homology

models. The geometries of the atomic model were evaluated by MolProbity (Williams et al., 2018). Cryo-EM data acquisition, 3D

reconstruction information and atomic model refinement statistics are summarized in Table S3. Figures were prepared with UCSF

Chimera and ChimeraX (Goddard et al., 2018).
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SDA-based protein-protein crosslink mass spectrometry (CLMS) analysis
Sample preparation

Protein crosslinking of the cohesin complex was performed in two conditions. An initial state contained all components except

nucleotide. The DNA gripping state was achieved by addition of ADP and BeSO4 + NaF. All materials (cohesin, loader and DNA)

were dialyzed in SDA crosslinking buffer (35 mM HEPES-KOH pH 7.5, 0.5 mM TCEP, 25 mM NaCl, 1 mM MgCl2, 15% (w/v)

glycerol and 0.003% (w/v) Tween 20) at 4�C for 3 h. Cohesin (200 nM), Mis4-Ssl3 (200 nM) and 125 bp dsDNA (200 nM)

were mixed on ice in SDA crosslinking buffer. The reaction in each condition was started in the absence of nucleotide or in

the presence of 0.5 mM ADP and 0.5 mM BeSO4 + 10 mM NaF at 32�C. After 20 min incubation, SDA was added to 50 mg

of the cohesin complex at increasing crosslinker weight ratios. (Protein: SDA = 1:1.3, 1:1.9 and 1: 3.8). The diazirine group

in SDA was photo-activated using UV irradiation at 365 nm from an ultraviolet crosslinker (Spectrum). Samples were mounted

in a 96-well plate, placed on ice at a distance of 5 cm from the UV-A lamp and irradiated for 20 min. After UV irradiation, the

sample was further incubated on ice for 2 h to allow further time for NHS crosslinking. The reaction mixtures from the three

protein: crosslinker ratios were combined and quenched with 50 mM ammonium bicarbonate. 4 sample volumes of cold

acetone were added and incubated at �20�C for 1 h. Precipitated proteins were collected by centrifugation and dried in a vac-

uum concentrator.

CLMS sample analysis

Both samples were resolubilized in 100 ml digestion buffer (8M urea in 100 mM ammonium bicarbonate) to an estimated protein con-

centration of 1 mg/ml. Dissolved protein sample was reduced by addition of 0.5 mL 1M dithiothreitol (DTT) at room temperature for

30 min. The free sulfhydryl groups in the sample were then alkylated by adding 3 ml 500 mM iodoacetamide and incubation at room

temperature for 20 min in the dark. After alkylation, 0.5 mL 1M DTT was added to quench excess of iodoacetamide. Next, protein

samples were digested with LysC (at a 50:1 (m/m) protein to protease ratio) at room temperature for four h. The sample was then

diluted with 100 mM ammonium bicarbonate to reach a urea concentration of 1.5 M. Trypsin was added at a 50:1 (m/m) protein

to protease ratio to further digest proteins overnight (~15 h) at room temperature. Resulting peptides were desalted using C18 Stage-

Tips (Rappsilber et al., 2007).

For each sample, resulting peptides were fractionated using size exclusion chromatography in order to enrich for crosslinked

peptides (Leitner et al., 2014). Peptides were separated using a Superdex Peptide 3.2/300 column (GE Healthcare) at a flow rate

of 10 ml/minute. The mobile phase consisted of 30% (v/v) acetonitrile and 0.1% trifluoroacetic acid. The earliest six peptide-contain-

ing fractions (50 mL each) were collected. Solvent was removed using a vacuum concentrator. The fractions were then analyzed by

LC-MS/MS.

LC-MS/MS analysis was performed using an Orbitrap Fusion Lumos Tribrid mass spectrometer (Thermo Fisher Scientific), con-

nected to an Ultimate 3000 RSLCnano system (Thermo Fisher Scientific). Each size exclusion chromatography fraction was resus-

pended in 1.6% v/v acetonitrile 0.1% v/v formic acid and analyzed with replicated LC-MS/MS acquisitions. Peptides were injected

onto a 50 cm EASY-Spray C18 LC column (Thermo Scientific) that is operated at 50�C column temperature. Mobile phase A consists

of water, 0.1% v/v formic acid and mobile phase B consists of 80% v/v acetonitrile and 0.1% v/v formic acid. Peptides were loaded

and separated at a flowrate of 0.3 ml/min. Peptides were separated by applying a gradient ranging from 2% to 45%Bover 90min. The

gradient was optimized for each fraction. Following the separating gradient, the content of B was ramped to 55% and 95% within

2.5 min each. Eluted peptides were ionized by an EASY-Spray source (Thermo Scientific) and introduced directly into the mass

spectrometer.

The MS data were acquired in the data-dependent mode with the top-speed option. For each three-second acquisition cycle, the

full scan mass spectrum was recorded in the Orbitrap with a resolution of 120,000. The ions with a charge state from 3+ to 7+ were

isolated and fragmented using higher-energy collisional dissociation (HCD). For each isolated precursor, one of three collision energy

settings (26%, 28% or 30%) was selected for fragmentation using a data-dependent decision tree based on the m/z and charge of

the precursor. The fragmentation spectra were then recorded in the Orbitrap with a resolution of 50,000. Dynamic exclusion was

enabled with single repeat count and 60 s exclusion duration.

MS2 peak lists were generated from the raw mass spectrometric data files using the MSConvert module in ProteoWizard (version

3.0.11729). The default parameters were applied, except that TopMS/MS Peaks per 100 Dawas set to 20 and the denoising function

was enabled. Precursor and fragment m/z values were recalibrated. Identification of crosslinked peptides was carried out using xi-

SEARCH software (https://www.rappsilberlab.org/software/xisearch) (version 1.7.0) (Mendes et al., 2019). The ‘‘initial state’’ and

‘‘gripping state’’ samples were processed separately. For each sample, peak lists from all LC-MS/MS acquisitions were searched

against the sequence and the reversed sequence of cohesin and loader subunits (Psm1, Psm3, Rad21, Psc3, Mis4 and Ssl3).

The following parameters were applied for the search: MS accuracy = 4 ppm; MS2 accuracy = 10 ppm; enzyme = trypsin (with

full tryptic specificity); allowed number of missed cleavages = 2; missing monoisotopic peak = 2; crosslinker = SDA (the reaction

specificity for SDA was assumed to be for lysine, serine, threonine, tyrosine, and protein N-termini on the NHS ester end and any

amino acids for the diazirine end); fixed modifications = carbamidomethylation on cysteine; variable modifications = oxidation on

methionine and SDA loop link. Identified crosslinked peptide candidates were filtered using xiFDR (Fischer and Rappsilber, 2017).

A false discovery rate of 1% on residue-pair level was applied with ‘‘boost between’’ option selected. A list of identified crosslinked

residue pairs is reported in Table S4.
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DNA-protein crosslink mass spectrometry (DPC-MS) analysis
Sample preparation

For DNA-protein crosslinking, we prepared two types of dsDNA probes. A 125 bp linear dsDNA was amplified by PCR with 50-
biotinylated oligonucleotide TH1 and non-modified oligonucleotide TH5 using pBluescript dsDNA as the template. PCR reaction

mixtures contained 5 ng/ml template DNA, 0.3 mM of each primer, 0.2 mM each of dATP, dCTP and dGTP, 0.02 mM dTTP,

0.18 mM aminoallyl-dUTP and 0.025 unit/ml Go-taq DNA polymerase in 1x Go-taq buffer (Promega). A 3 kb circular dsDNA

was prepared by primer extension on single stranded DNA. 50-biotinylated TH1 oligonucleotide primer was annealed to single

strand DNA templates of pBluescript, prepared using M13KO7 helper phage (Murayama et al., 2018). For second strand syn-

thesis, the primer-template mix was incubated in 20 mM Tris-HCl (pH 7.5), 10 mM MgCl2, 1 mM DTT, 0.4 mM each of dATP,

dCTP, dGTP and aminoallyl-dUTP, 0.1 mg/ml BSA and 0.04 unit/ml T7 DNA polymerase (New England Biolabs) at 37�C for 3 h.

After synthesis, the buffer of the DNA samples was exchanged to SDAD crosslinking buffer (100 mM NaHCO3 pH 8.3) using

MicroSpin S400 columns (GE Healthcare). 1 mg of dsDNA was incubated with 2 mM SDAD crosslinker in 25 mL of SDAD cross-

linking buffer at 25�C overnight. The diazirin-decorated dsDNA (SDAD-DNA) probe was dialyzed in DNA dialysis buffer (10 mM

Tris-HCl pH 7.5, 0.1 mM EDTA).

For DNA-protein crosslinking 200 nM cohesin, 200 nM Mis4-Ssl3, 20 ng/ml linear 125 bp or circular 3 kb SDAD-DNA probe

were mixed in reaction buffer, and the DNA gripping reaction was initiated by addition of 0.5 mM ADP and 0.5 mM BeSO4 +

10 mM NaF at 32�C for 30 min. An equal volume of 2 x Washing buffer D (35 mM Tris-HCl pH 7.5, 0.5 mM TCEP, 135 mM

NaCl and 0.1% (w/v) Triton X-100) was added to the reaction mixture and incubated at 4�C for 10 min. The sample was

mounted on a 96-well plate, placed on ice at a distance of 5 cm from the UV-A lamp and irradiated for 10 min, as described

above for SDA protein-protein crosslinking. After UV irradiation, the buffer of the samples was exchanged with Protease buffer

(100 mM ammonium bicarbonate pH 8.0) using MicroSpin S400 columns. Lys-C protease was added (1:20 (m/m) protease to

protein ratio) and incubated at 37�C overnight. To remove non-crosslinked peptide from the DNA, an equal volume of 2 x RIPA

buffer (100 mM Tris-HCl pH 8, 100 mM NaCl, 0.2% SDS) was added to the sample, followed by incubation at 50�C for 30 min.

The DNA with crosslinked peptides was purified by Superdex75 size exclusion chromatography developed with 20 mM Tris-HCl

pH 7.5, 200 mM NaCl. The recovered DNA-peptide complexes in the void fraction were supplemented with NaCl to 1 M final

concentration and 0.1% (w/v) Tween-20. The biotinylated DNA was recovered using streptavidin M280 magnetic beads (Invi-

trogen) at 25�C for 1 h. DNA-beads were washed three times with 1 x RIPA buffer and five times with peptide elution buffer

(20 mM Tris-HCl pH 7.5, 200 mM NaCl). DNA-crosslinked peptides were now eluted by addition of peptide elution buffer con-

taining 25 mM DTT and incubation at 37�C for 30 min.

In the experiment comparing cohesin’s initial binding state and the gripping state, the incubation and crosslinking were performed

as above without or with 0.5 mMBeSO4 + 10mMNaF. After the 32�C incubation, the sample was directly mounted on a 96-well plate

without washing buffer addition and the plate was UV irradiated on ice for 10 min. The irradiated sample was then treated as

described above.

DPC-MS sample analysis

Peptide solutions in the DTT peptide elution buffer were transferred into Total Recovery vials (Waters) for injection without further

clean-up or concentration. Samples were analyzed by online nanoflow LC-MS/MS using an Orbitrap Fusion Lumos mass spectrom-

eter (Thermo Scientific) coupled to an Ultimate 3000 RSLCnano (Thermo Scientific). 15 ml of sample was loaded via autosampler into

a 20 ml sample loop and pre-concentrated onto an Acclaim PepMap 100 75 mmx 2 cm nanoviper trap columnwith loading buffer, 2%

v/v acetonitrile, 0.05% v/v trifluoroacetic acid, 97.95%water (Optima grade, Fisher Scientific) at a flow rate of 7 ml/min for 6min in the

column oven held at 40�C. Peptides were gradient eluted and separated with a C18 75 mmx 50 cm, 2 mmparticle size, 100 Å pore size,

reversed phase EASY-Spray analytical column (Thermo Scientific) at a flow rate of 275 nl/min and with the column temperature held

at 40�C, with a spray voltage of 2100 V using the EASY-Spray Source (Thermo Scientific). Gradient elution buffers were A 0.1% v/v

formic acid, 5% v/v DMSO, 94.9% v/v water and B 0.1% v/v formic acid, 5% v/v DMSO, 20% v/v water, 74.9% v/v acetonitrile (all

Optima grade, Fisher Scientific aside from DMSO, Honeywell Research Chemicals). The gradient elution profile used was 8% B to

40% B over 60 min.

The instrumentmethod used anMS1Orbitrap scan resolution of 120,000 at FWHMm/z 200, quadrupole isolation, mass range 375-

1500 m/z, RF Lens 40%, AGC target 4e5, maximum injection time 50 ms and spectra were acquired in profile. Monoisotopic Peak

Determination was set to the peptide mode, and only precursors with charge states 2-6 were permitted for selection for fragmenta-

tion. Dynamic Exclusion was enabled to exclude after n = 1 times for 20 s with high and low ppm mass tolerances of 10 ppm. MS2

scanswere acquired in the ion trap followingHCD fragmentation with fixed collision energy of 32%andwas performed on all selected

precursor masses using a cycle time based on data-dependent mode of acquisition set to 3 s. The parameters used for the HCDMS2

scan were quadrupole isolation with an isolation window width of 1.2 m/z, first mass 110 m/z, AGC target 2e3, maximum injection

time 300 ms and the scan data were acquired in centroid mode at the rapid scan rate.

A FASTA database containing only the sequences of the six subunits of the cohesin complex and loader was used for the PEAKS

search conducted within PEAKS Studio (Bioinformatics Solutions Inc). A modification corresponding to the diazirine moiety after

reduction (C7H13NOS, 159.07178) was created and considered as a variable modification along with the oxidation of methionine res-

idues. Other parameters of the search were digestion enzyme LysC with a maximum of 2 missed cleavages, peptide mass tolerance

5ppm and fragment mass tolerance 0.6 Da.
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SC-Cy5 crosslinking experiments
The SC-Cy5 crosslinker was synthesized as previously described (Gautier et al., 2009). Using crosslinkable cohesin complexes (klei-

sin-circle or SMC-circle) and a DNA-loop substrate, we performed DNA gripping assay as described above. Following the DNA grip-

ping reaction, DNA-beads were washed 3 times with Washing buffer D (35 mM Tris-HCl pH 7.5, 0.5 mM TCEP, 135 mM NaCl and

0.1% (w/v) Triton X-100), and supplemented with 4 mM SC-Cy5 and 1 mM DTT in Washing buffer D. Crosslinking was carried out

at 32�C for 60 min. DNA-beads were then divided into three parts. One part was immediately eluted with SDS sample buffer contain-

ing 3mMbiotin and served as the input sample. The second sample waswashed 5 timeswithWashing buffer D. The third sample was

washed 5 times with SDS buffer (35mMTris-HCl pH 7.5, 0.5mMTCEP, 100mMNaCl and 0.1%SDS). The second and third samples

were then supplemented with SDS sample buffer containing 3 mM biotin and boiled for 10 min to elute DNA and protein. Samples

were analyzed by SDS-PAGE, followed by in-gel detection of Cy5 or immunoblotting with indicated antibodies.

To further evaluate topological DNA entrapment by the circularized kleisin, beads following SDS washes were divided into two,

equilibrated with DNA digestion buffer (35 mM Tris-HCl pH 7.5, 0.5 mM TCEP, 100 mM NaCl, 10 mM MgCl2, 0.1 mg/ml BSA,

0.1% Triton X-100) and treated without or with 1 U/ml restriction enzyme PstI in DNA digestion buffer. Alternatively, the sample

was equilibrated with TEV digestion buffer (50 mM Tris-HCl pH 8.0, 100 mM NaCl, 0.5 mM EDTA, 1 mM DTT) and treated without

or with 0.25 U/ml TEV protease in TEV digestion buffer. After a 20 min incubation at 32�C, the beads and supernatant fractions

were separated, SDS sample buffer containing 3 mM biotin added to each and samples boiled for 10 min.

ATPase assay
Cohesin (150 nM) andMis4-Ssl3 (100 nM) weremixed with pBluescript dsDNA in reaction buffer (15 mL in final volume). The reactions

were initiated by addition of 0.25 mM ATP, spiked with [g-33P]-ATP, and incubated at 32�C. Aliquots (2 ml) were taken after 0, 15, 30,

and 60 min and terminated by addition of 6 mL of 0.5 M EDTA pH 8.0. The products were separated by thin layer chromatography on

TCL polyethylenimine cellulose F sheets (Merck), developed with 400 mM LiCl in 1 M formic acid. Plates were analyzed using a

Typhoon FLA 9500 Phosphor-imager (GE Healthcare).

QUANTIFICATION AND STATISTICAL ANALYSIS

Bulk FRET analysis
The fluorescent signals of proteins were detected using a CLARIOstar high performance plate reader and the FRET efficiency calcu-

lated as described in Method Details. The experiments were repeated at least three times. The results from all individual experiments

are shown, together with their means and standard deviations.

Cohesin loading and DNA gripping experiments
Immunoblots were developed using ECL reagents (GE Healthcare). The chemiluminescent signals were detected using an Amer-

sham Imager 600 (GE Healthcare) or Amersham Hyperfilm ECL (GE Healthcare). In-gel fluorescent signals of labeled proteins

were detected using a Typhoon FLA9500 imager (GE Healthcare). Recovered DNAs were separated by agarose-gel electrophoresis

and stained by SYBR gold. The DNA signals were also detected by the Typhoon FLA9500 imager and signal intensities were quan-

tified using ImageJ software. The graphs depict means and the error bars represent standard deviations from three independent

experiments.

ATPase Assay
Reaction products containing radioisotope were separated by thin layer chromatography and quantified using the Typhoon FLA9500

imager. The signal intensities were quantified in ImageJ. The graphs depict means and the error bars represent standard deviations

from three independent experiments.
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