
Appendix

A Remaining Simulation Results

We include first Table 1, giving a full error comparison of the lasso-random forest baseline,
BART, boosting, random forests, and local linear forests, on Friedman’s data-generating
process: generate X1, . . . , Xn i.i.d. U [0, 1]5 and model Yi from

y = 10 sin(πXi1Xi2) + 20(Xi3 − 0.5)2 + 10Xi4 + 5Xi5 + ε,

Errors are reported on dimension ranging from 10 to 50, σ from 5 to 20, and n = 1000 and
5000, averaged over 50 training runs.

d n σ RF lasso-RF LLF BART XGBoost
10 1000 5 2.33 2.12 2.03 2.49 1.98
10 5000 5 1.90 1.48 1.57 1.51 1.52
30 1000 5 2.82 2.41 2.11 2.60 2.11
30 5000 5 2.08 1.61 1.73 2.03 1.64
50 1000 5 3.00 2.48 2.12 2.84 2.20
50 5000 5 2.18 1.82 1.80 2.11 1.82

10 1000 20 3.19 3.41 3.40 6.45 6.73
10 5000 20 2.43 2.35 2.29 3.85 4.42
30 1000 20 4.17 3.98 3.68 7.60 7.03
30 5000 20 2.97 2.66 2.40 4.78 4.85
50 1000 20 4.25 4.45 3.88 8.05 7.47
50 5000 20 3.16 2.67 2.35 4.95 4.97

Table 1: Root mean square error on Friedman’s function, with dimension d from 10 to 50 predictors
in increments of 20, and consider error standard deviation σ ranging from 1 to 20, for a variety of
signal-to-noise ratios. For this setting, Var(E[Y | X]) ≈ 23.8, as approximated over 10,000 Monte
Carlo repetitions; so letting σ = 1 corresponds to a signal-to-noise ratio of about 23.8, while
letting σ = 20 corresponds to a signal-to-noise ratio of about 0.24. We train on n = 1000 and
n = 5000 points, and report test errors from predicting on 1000 test points. All errors reported
are averaged over 50 runs and the methods are cross-validated as described in the main document.
Minimizing errors are reported in bold.

We include next Table 2, again giving a more complete error comparison of the lasso-
random forest baseline, BART, boosting, random forests, and local linear forests, on the
data-generating process: simulate X1, . . . , Xn i.i.d. Uniform [0, 1]20, with responses

yi = log (1 + exp(6Xi1)) + ε, ε ∼ N (0, 20).

Errors are reported on dimension ranging from 5 to 20, σ from 0.1 to 2, and n = 1000 and
5000, averaged over 50 training runs.

To close this section, we consider some basic linear and polynomial models in low
dimensions, in order to effectively compare local linear forests with local linear regression.
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d n σ RF lasso- RF LLF BART XGBoost

5 1000 0.1 0.10 0.06 0.02 0.27 0.07
5 5000 0.1 0.06 0.02 0.02 0.22 0.06
50 1000 0.1 0.29 0.18 0.11 0.52 0.07
50 5000 0.1 0.18 0.10 0.07 0.62 0.06

5 1000 1 0.21 0.24 0.14 0.47 0.56
5 5000 1 0.15 0.11 0.09 0.26 0.52
50 1000 1 0.41 0.39 0.20 0.82 0.53
50 5000 1 0.23 0.21 0.10 0.57 0.52

5 1000 2 0.31 0.55 0.26 0.69 1.21
5 5000 2 0.25 0.28 0.21 0.40 1.18
50 1000 2 0.47 0.27 0.24 0.89 1.22
50 5000 2 0.33 0.27 0.15 0.70 0.96

Table 2: Root mean square error from simulations on random forests, lasso-random forest, local
linear forests, BART, and boosting. We vary sample size n, error variance σ, and ambient
dimension d, and report test error on 1000 test points. We estimate Var[E[Y | X]] as 3.52 over
10,000 Monte Carlo repetitions, so that signal-to-noise ratio ranges from 352 at σ = 0.1 to 0.88
at σ = 2. All errors are averaged over 50 runs, and minimizing errors are in bold.

We simulate X ∼ U [0, 1]3 and model responses from two models,

yi = 10Xi1 + 5Xi12 +Xi3 + ε (1)

yi = 10Xi1 + 5X2
i2 +X3

i3 + ε, (2)

where ε ∼ N(0, σ2) and σ ∈ {1, 5, 10}. Root mean square error on the truth is reported,
averaged over 50 runs, for lasso, local linear regression, BART, random forests, adaptive
random forests, and local linear forests. In the simple linear case in equation 1, we see
that lasso outperforms the other methods, as we would expect; in the polynomial given in
equation 2, local linear regression performs the best, followed by BART (σ = 1 case) and
local linear forests (σ = 5, 10 cases).

B Proof of Theorem 1

Throughout this proof, we use the notation Mλ established in (19), and shorthand Yi =
µ(Xi) + εi. Define the diameter (and corresponding radius) of a tree leaf as the length of
the longest line segment that can fit completely inside of the leaf. Thanks to our assumed
uniform bound on the second derivative of µ(·), a Taylor expansion of around µ(x) around
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Setup σ lasso LLR BART RF LLF

Equation 1 1 0.12 0.15 0.48 0.73 0.22
5 0.39 0.92 1.27 1.25 0.96
10 0.70 1.70 2.37 1.76 1.56

Equation 2 1 1.55 0.22 0.50 0.86 0.69
5 1.55 0.92 1.31 1.32 1.28
10 1.66 1.44 1.83 1.70 1.68

Table 3: Root Mean Square Error from simulations on equations 1 and 2 on lasso, local linear
regression (LLR), BART, random forests, adaptive random forests, and local linear forests. We
vary error variance σ from 1 to 10 and fix n = 600, d = 3. All errors are averaged over 50 runs,
and minimizing errors are in bold.

x0 yields the following decomposition starting from (5):

µ̂(x0) = eT1M
−1
λ

n∑
i=1

(
1

Xi − x0

)
αi(x0)Yi = µ(x0) + γ̂n(x0) +Q(x0) +O

(
R̄2
)
,

γ̂n(x0) = eT1M
−1
λ

n∑
i=1

(
1

Xi − x0

)
αi(x0)εi,

Q(x0) = eT1M
−1
λ

n∑
i=1

(
1

Xi − x0

)
αi(x0) (∇µ(x0) · (Xi − x0)) ,

(3)

where R̄2 is the average squared radius of leaves Tb in the forest. In other words, we have
decomposed our forest into a variance term γ̂n(x0), a regularization bias term Q(x0), and
a curvature bias term that’s bounded on the order of R̄2. Our main goal is to show that
we can approximate γ̂n(x0) via an (infeasible) regression forest, while the remaining terms
are lower order. For simplicity, moving forward we will write αi(x0) = αi, dropping the
written dependence on x0.

Curvature bias To control the curvature bias, we need to control the radius RTb of a
typical leaf containing x0. To do so, we use the following bound. Recall that X1, . . . , Xs ∼
U([0, 1]d) independently, and that Tb is a regular, random-split tree. By Lemma 2 of Wager
and Athey [2018], we then see that for any 0 < η < 1 and for large enough s,

P

diamj(L(x0)) ≥
(

s

2k − 1

)− 0.99(1−η) log((1−ω)−1)

log(ω−1)
π
d

 ≤ ( s

2k − 1

)− η2
2

1
log(ω−1)

π
d

, (4)

where k is (fixed) the tree-depth parameter from Assumption 1. We start by applying (4)
with η = 0.49, and note that 0.99(1 − 49) > 0.5 and 0.492/2/ log(1/0.8) > 0.53, meaning
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that for all ω ≤ 0.2,

P (diamj(L(x0)) ≥ rs) ≤ r1.06s , rs = s
− 1

2
log((1−ω)−1)

log(ω−1)
π
d . (5)

This suggests that most leaves should have radius bounded on the order of rs. To get a
useful bound on the second moment of leaf radii via R̄2, though, we need to use chaining:
Setting η = 0.71, we find that

P
(
diamj(L(x0)) ≥ r0.57s

)
≤ r2.2s .

Then, applying Markov’s inequality twice, we see that R̄2 = Op(r
2
s).

Regularization bias The term Q(x0) in (3) has more intricate behavior. We note that,
if we had no regularization at all, then the local linear correction would perfectly adjust
for the slope of µ(·) and x0, and so we would have Q(x0) = 0; unfortunately, however,
we need positive regularization in other parts of the proof so we cannot directly use this
fact. Conversely, as λ→∞, the local linear forest becomes a regression forest, and Q(x0)
becomes a bias term on the order of R̄; and this was the dominant bias term in the analysis
of Wager and Athey [2018].

The derivation shows that, given a reasonable amount of regularization 0 < λ <∞, the
term Q(x0) is non-zero but still much smaller than R̄. Recall our notation ∆i denoting a
p + 1-dimensional vector consisting of a 1 stacked with Xi − x0, and let v = (0, ∇µ(x0)).
Then, writing ∆ for the matrix with rows ∆i and plugging in the expression 19 for Mλ, we
see that

Q(x0) = e′1 (∆′A∆ + λJ)
−1

∆′A∆v

= −e′1 (∆′A∆ + λJ)
−1
λJv

= −λe′1 (∆′A∆ + λJ)
−1
v

= λ
(
1− d′α (Sα + λI)−1 dα

)−1
d′α (Sα + λI)−1∇µ(x0),

where the last line followed from the Schur formula, with notation dα =
∑n

i=1 αi(Xi − x0)
and Sα =

∑n
i=1 αi(Xi − x0)⊗2 as used in Assumption 3. We now make some observations.

First, by Assumption 3 (
1− d′α (Sα + λI)−1 dα

)−1
= Op(1)

is of constant order in probability. Second, by Cauchy-Schwarz,

d′α (Sα + λI)−1∇µ(x0) ≤
√
dα (Sα + λI)−1 dα

√
∇µ(x0)′ (Sα + λI)−1∇µ(x0)

≤ λ−1/2 ‖∇µ(x0)‖2 ,

noting that d′αS
−1
α dα ≤ 1 by Jensen’s inequality. Combining all these facts together, we

find that Q(x0) = Op(
√
λ).
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The variance term Finally, we turn to the variance term γ̂n(x0). To do so, our main
task is to couple γ̂n with an approximation γ̃n, defined as

γ̃n(x0) =
n∑
i=1

αiỸi, where Ỹi = eT1E[Mλ]
−1
(

1
Xi − x0

)
εi. (6)

Now, we note that Ỹi is independent of αi conditionally on Xi (because the problematic
associations discussed at the beginning of Section 4 were mediated by Mλ), and so γ̃n(x0)
is just the prediction made by a “regression forest” with outcome Ỹi. Consequently γ̃n can
be characterized via standard tools used to study random forests.

We sketch out an argument below, based on the fact that Mλ concentrates around its
expectation. Following the line of argumentation in Wager and Athey [2018], we see thatMλ

is a U -statistic with kernel size s. Moreover, by (5), we see that the stochastic fluctuations
of the terms forming Mλ are of order r2s . Thus, we can use concentration inequalities for
U -statistics following Hoeffding [1963] to verify that (to use this concentration inequality,
we need to perform several steps of chaining following (5), going up to η = 0.98)

‖Mλ − E[Mλ]‖∞ = Op

(
r2s
√
s/n
)
. (7)

Next, note that
γ̂n(x0)− γ̃n(x0) = e1

(
M−1

λ − E[Mλ]
−1)∆′Aε. (8)

Thus, because ε is independent of all other terms in (8), we see that the discrepancy between
γ̂n(x0) and γ̃n(x0) is bounded on the order of

∥∥e1 (M−1
λ − E[Mλ]

−1)∆′A
∥∥
2
; an application

of the Schur formula together with (7) then implies that

γ̂n(x0)− γ̃n(x0) = Op

(
λ−2r4s s/n

)
(9)

for all λ� r2s
√
s/n.

Wrapping up We are now ready to put everything together. Given everything we’ve
seen so far, we’ve established that

µ̂(x0)− µ(x0) = γ̃(x0) +Op

(
r2s +

√
λ+ λ−2r4s

s

n

)
for all λ� r2s

√
s/n. Thus, setting λ = Θ(r1.98s

4
√
s/n) as in (17), we get

µ̂(x0)− µ(x0) = γ̃(x0) +Op

(
r2s + r0.99s

8
√
s/n+ r0.04s

√
s/n
)
.

Now, recall that we have chose s = nβ for some β ≥ βmin, meaning that

3/8
√
s/n = s

3(1−β−1)
8 ≥ s

− 3×1.3
8

log((1−ω)−1)

log(ω−1)
π
d � r0.99s ,
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and so the above expression simplifies to

µ̂(x0)− µ(x0) = γ̃(x0) + op

(√
s/n
)
. (10)

It remains to show that γ̃(x0) is asymptotically centered and Gaussian with errors on the
scale of

√
s/n, meaning that γ̃(x0) is in fact the dominant error term in µ̂(x0).

But now, recall that γ̃(x0) is simply a regression forest with outcome Ỹi. Thus, Theorem
8 of Wager and Athey [2018] directly implies that there is sequence σn(x0)→ 0 such that

γ̃n(x0)

σn(x0)
⇒ N (0, 1); (11)

here, we used the fact that the εi are all mean-zero conditionally on the tree construction,
and so E[γ̃(x0)] = 0. Finally, from Theorem 5 of Wager and Athey [2018], we see that
σn(x0) =

√
s/n polylog(s), and we note that our above argument in fact established a

polynomial gap between the error term in (10) and
√
s/n. Thus (11) in fact captures the

dominant error term of our estimator.
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