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SUMMARY

Gene expression studies suggest that aging of the
human brain is determined by a complex interplay
of molecular events, although both its region- and
cell-type-specific consequences remain poorly un-
derstood. Here, we extensively characterized ag-
ing-altered gene expression changes across ten
human brain regions from 480 individuals ranging
in age from 16 to 106 years. We show that
astrocyte- and oligodendrocyte-specific genes, but
not neuron-specific genes, shift their regional
expression patterns upon aging, particularly in the
hippocampus and substantia nigra, while the ex-
pression of microglia- and endothelial-specific
genes increase in all brain regions. In line with
these changes, high-resolution immunohistochem-
istry demonstrated decreased numbers of oligoden-
drocytes and of neuronal subpopulations in the aging
brain cortex. Finally, glial-specific genes predict age
with greater precision than neuron-specific genes,
thus highlighting the need for greater mechanistic
understanding of neuron-glia interactions in aging
and late-life diseases.

INTRODUCTION

Aging, an inevitable time-dependent functional decline, is pre-

sent in all living organisms. The intimate relationship between

aging and neurodegeneration raises the possibility of shared

transcriptional and post-transcriptional gene regulation pro-

grams; however, we still lack a comprehensive transcriptome-
Cell
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wide picture of the effects of aging across different human brain

regions and cell types (De Strooper and Karran, 2016). RNA

expression profiling of the aging brain has been studied histori-

cally using a limited number of brain regions in animal models

or human post-mortem tissues. A major unrealized goal there-

fore remains a comprehensive characterization of the transcrip-

tional landscape across multiple human brain regions in a

physiological age range, which may provide insights into the

cellular architecture and molecular pathways of aging.

The unparalleled complexity of the human brain is a function of

its structural and functional cellular diversity, which arises from

tightly regulated transcriptional programs. Limited availability

to human post-mortem samples has hampered comprehensive

transcriptomic analysis of the brain, particularly of region- and

cell-type-specific diversity. However, through international

collaboration, a comprehensive atlas of the brain’s transcrip-

tome based on samples from two individuals (the Allen Brain

Atlas) has been achieved. This study illustrated how transcripts

of genes involved in different pathways are expressed across

the brain, but the potential effect of age on the regional differ-

ences was not examined.

By current consensus, astrocyte (AC) and neuronal numbers

appear generally preserved in aging (Fabricius et al., 2013; Mat-

arin et al., 2015; Pelvig et al., 2008). It is clear, however, that

Alzheimer’s disease (AD) and other neurodegenerative diseases

for which age is a major risk factor are associated with inflamma-

tory changes mediated by microglia (MG) (Cribbs et al., 2012;

Frank et al., 2008). Brain aging includes accumulation of senes-

cent MG, altered signaling, and pro-inflammatory phenotypes

(Mosher and Wyss-Coray, 2014), and it was shown that MG

display regional sensitivity to aging (Streit and Xue, 2010). Im-

mune-related changes were also strongly associated with aging

in mouse models of amyloid pathology (Matarin et al., 2015).

Nevertheless, animal models and human tissue have reported
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Figure 1. Analyzed Samples and Datasets

(A) The samples of the UKBEC and NABEC datasets were divided into three

age groups each (young: 16–44, middle: 45–74, old: R75). (i) The main

analyzed dataset (UKBEC) is composed of 1,231 brain samples interrogated

by exon microarrays, from brain samples of 134 individuals from 16 to

102 years old and up to ten brain regions each. The brain regions included both

cortical and sub-cortical regions, specifically: the frontal cortex (FCTX), tem-

poral cortex (TCTX), occipital cortex (OCTX), intralobular whitematter (WHMT),

cerebellum (CRBL), substantia nigra (SNIG), putamen (PUTM), thalamus

(THAL), hippocampus (HIPP), and medulla (MEDU) for UKBEC and the FCTX

and CRBL for NABEC. (ii) The independent (NABEC) dataset of brain samples

from FCTX and CRBL 307 individuals (16–101 years old). (iii) In addition, seven

cell types were identified based on analysis of available RNA-seq data from

mice cortex (http://web.stanford.edu/group/barres_lab/brain_rnaseq.html).

(iv) A summary of all expression data used in this study. The total number of

samples described in (i)–(iii) is listed, as well as the human RNA-seq analysis

of 24 CNS human cell types (Table S7) (http://web.stanford.edu/group/

barres_lab/brainseqMariko/brainseq2.html).

(B) High-resolution immunohistochemical imaging dataset was produced from

samples of young and three old FCTX from the UKBEC cohort, following

staining by OLIG2 antibody and computational analysis for the quantification

of the OLG cell population. Staining by NeuN of FCTX sections from the same

brain samples followed by targeted computational analysis was conducted for
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variable and apparently contrasting alterations in ACs (reactivity

or atrophy) and MG (MHC class II antigen increase or atrophy)

(Cerbai et al., 2012; Streit and Xue, 2010; Tremblay et al.,

2012). Accumulation of oligodendrocytes (OLGs) was previously

reported in aging monkey cortex (Peters and Sethares, 2004),

while stereological quantification of glia in neocortical regions

of old brains has suggested a reduction in the number of

OLGs, as evident by a >3-fold greater atrophy of the sub-cortical

white matter (WHMT) compared to cortical regions and an age-

determined loss of myelin (Head et al., 2004; Vernooij et al.,

2008). Furthermore, MG-mediated neuroinflammation has

been described as a common hallmark of both AD and Parkin-

son’s disease (PD) and is believed to be mechanistically impor-

tant in driving pathogenesis (Orre et al., 2013; Perry and Teeling,

2013). Collectively, these findings suggest that the field stands to

benefit from systematic and comprehensive analysis of aging-

related changes in the cellular and molecular composition of

the human brain.

Apart from the study of region-dependent microglial response

to aging, the importance of both region- and cell-type-specific

changes in the aging brain remains poorly understood. Studies

have been hampered by the limited availability of cross-regional

post-mortem tissue across a range of ages. To overcome these

limitations, we analyzed gene expression patterns in ten brain re-

gions (including cortical and sub-cortical areas) using more than

1,800 brain samples from two large independent cohorts, repre-

senting the most comprehensive human aging brain gene

expression analysis to date. We report striking changes in cell-

type-specific expression patterns across different brain regions,

which revealed major shifts in glial regional identity upon aging in

the human brain.

RESULTS

In this study, we examined two extensive gene expression data-

sets from post-mortem human samples and sampled multiple

(up to ten) brain regions per individual. The primary dataset

was produced by the UK Brain Expression Consortium (UKBEC)

and included 1,231 tissue samples collected from 134 adult indi-

viduals between 16 and 102 years old, with each contributing

post-mortem samples of up to ten brain regions (Figure 1Ai).

The brain regions included both cortical and sub-cortical re-

gions, specifically the frontal cortex (FCTX), temporal cortex

(TCTX), occipital cortex (OCTX), intralobular white matter

(WHMT), cerebellum (CRBL), substantia nigra (SNIG), putamen

(PUTM), thalamus (THAL), hippocampus (HIPP), and medulla

(MEDU). The second dataset, which allowed independent

external cross-validation, was produced by the North American

Brain Expression Consortium (NABEC) (Gibbs et al., 2010; Ku-

mar et al., 2013), including 307 samples from two brain regions

(age range: 16 to 101 years old; Figure 1Aii). The third dataset

was also used for validation including samples with an age range

of 27 to 106 years old (Lu et al., 2014). None of the brain samples

had neuropathological evidence of diagnosable degenerative
quantification of the neuronal cell population (an example of one of the NeuN

stained sections is shown on the right, in the zoomed-in view of the area

marked on the left-hand side). OLG, oligodendrocyte.

http://web.stanford.edu/group/barres_lab/brain_rnaseq.html
http://web.stanford.edu/group/barres_lab/brainseqMariko/brainseq2.html
http://web.stanford.edu/group/barres_lab/brainseqMariko/brainseq2.html
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Figure 2. Multi-regional Aging-Altered Genes Are Mainly Upregulated

(A) The direction of expression change of the top 100 genes detected as significantly differentially expressed upon aging in each of the studied expression

datasets from ten UKBEC brain regions (ANOVA test significance threshold: FDR < 1e�3; the test compared the three defined age groups).

(B) Age-group based separation of 607 FCTX and CRBL samples (the NABEC cohort) was based on measured expression of the nine cross-regional genes.

(C) A tree map of the number of genes that were altered upon aging, dependent on the number of brain regions where the change is observed.

(D) Fold change of the genes that were altered upon aging, separated into heatmaps dependent on the number of brain regions where the change is observed.

(E) Fold change of the multi-regional genes that were enriched in the Gene Ontology term immune response (standardized Z score; range is as shown for the

heatmaps on the left).

Brain region abbreviations are explained in the legend to Figure 1A. See also Figure S1A for the total number of aging-altered genes per region.
diseases (Table S1). To detect differentially expressed genes, we

assigned each sample to one of three age groups (young: 16–44,

middle: 45–74, old: R75 years old) and applied a collection of

tailored data-mining computational approaches (Figure 1). We

excluded gender-based sample separation to specifically iden-

tify the effects of age on gene expression profiles.

Region-Specific and Global Transcriptional
‘‘Signatures’’ of the Aging Human Brain
We first sought to address whether region-specific differences in

gene expression patterns occur within the brain upon aging.

Both the number of differentially expressed genes (threshold:

false discovery rate [FDR] < 1e�3) (Figure S1) and the direction

of expression change varied in a region-specific manner (Fig-

ure 2A). The general directions of gene expression change

were preserved in the independent NABEC dataset (Figure 2B).

We applied a stringent threshold to enable isolation of global

changes across the UKBEC brain regions. Most changes were

specific for one region (hereafter referred to as ‘‘region specific’’)

or a few regions (hereafter referred to as ‘‘region selective,’’

including genes altered in two to seven regions), while some

genes were altered in eight or more brain regions (hereafter
referred to as ‘‘multi-regional’’), and nine genes were found to

be significantly altered in all ten brain regions upon aging

(FDR < 1e�3, hereafter referred to as ‘‘cross-regional’’) (Fig-

ure 2C; Figure S2). The rates and number of overlapping age-

altered genes varied between pairs of brain regions (Figure S2).

Multi-regional genes predominantly exhibited increased expres-

sion levels upon aging (Figures 2Dviii–2Dix). This group of genes

was enriched in the Gene Ontology (GO) term ‘‘immune

response’’, which had the general trend to be upregulated in ag-

ing (Figure 2E).

Nine Cross-Regional Aging-Altered Genes Accurately
Predict the Age Categories
To assess the ability of different groups of genes to classify the

brain samples in both cohorts by brain region and age group

criteria, we next used a non-linear dimension reduction classifi-

cation method. The expression of regional-selective genes

separated the samples well based on their regional identity (Fig-

ure S2). In addition, genes with aging-altered expression pat-

terns in the CRBL, WHMT, or cortical samples generally have

distinctive regional expression, as evident by sample-to-sample

correlation scores that were computed among each of the 1,231
Cell Reports 18, 557–570, January 10, 2017 559
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brain samples based on their expression signals (Figures 3Ai and

Aii; Figure S1B). The 642 CRBL-altered genes showed high inter-

regional correlation in expression patterns with the cortical re-

gions (including the HIPP), the 265 cortical aging-altered genes

revealed high correlation among the cortical regions and HIPP

samples, and the 801 WHMT-altered genes showed increased

correlation specifically within CRBL and WHMT.

In contrast to region-specific aging-altered genes, expression

patterns of these cross-regional genes were correlated among

samples only based on age, rather than brain region (Figure 3Aiii).

Eight of the pan-regional genes were upregulated, and one

(HIST1H4C) was downregulated upon aging (Figure 3B; Table

S5). The cross-regional genes successfully discriminated the

samples based on age group in most UKBEC cases (130 of

134) (Figure 3B). One of these genes was a non-coding RNA

(DLGAP1-AS1) that is antisense to the protein-coding gene

(DLGAP1). We identified a robust, reciprocal relationship in

expression between DLGAP1 and DLGAP1-AS1 upon aging.

DLGAP1 is highly brain-specific, while DLGAP1-AS1 and

DLGAP1-AS2 are normally expressed in internal organs and

the bone marrow (Gene Cards database) (Harel et al., 2009).

We find that in contrast to upregulation of DLGAP1-AS, expres-

sion of DLGAP1 shows an aging-altered decrease across brain

regions, despite not reaching statistical significance in each

region (Figure 3B). This demonstrates coupling between the

age-dependent decrease in the expression of the brain-specific

protein-coding gene DLGAP1 and the increase of its antisense

RNA, which is otherwise only expressed outside of the brain.

As a sign of the validity of the cross-regional genes, they

were efficient in classifying samples of the independent NABEC

dataset based on age, even though the NABEC data were

not used to identify these genes (Figure 3C). Moreover, a

non-linear classification based on these genes separated sam-

ples belonging to young, middle-age, and old groups in the

UKBEC, the NABEC, and an additional independent FCTX brain

expression cohort (Lu et al., 2014) (Figure 3D; Figure S3C). This

model also verified the prediction of age group based on

expression levels in the NABEC cohort (Figure S3A). To exclude

the effects of other variables, we show that the UKBEC sam-

ples were not classified by gender (Figure S3B). The cross-

regional genes also correctly classified samples by age group

in an additional independent dataset of cortical samples (Lu

et al., 2014; Figure S3) and did not classify the UKBEC dataset

by gender (Figure S3).
Figure 3. The Nine Cross-Regional Genes Discriminate Samples Base

(A) Correlation scores were calculated between each pair of brain samples amo

Spearman correlation. (i) Correlation scores based on CRBL aging-altered gene

scores based on cross-regional aging-altered genes. See Figure S1B for correla

(B) Hierarchical classification of the UKBEC cohort based on the expression signa

columns, samples. Age group is denoted in blue (young: 16–44 years), green (m

Euclidian distance measured for both rows and columns. Right color bar, stan

expression in aging, and blue denotes decrease).

(C) Hierarchical classification of the NABEC expression dataset based on the pr

(D) Non-linear dimensionality reduction by t-distributed stochastic neighbor embe

the x axis showing t-SNE1 and the y axis showing t-SNE2. Either the ten UKBEC b

marked in the plots. (i) Each sample is colored based on its corresponding tissue (

age group (colors are marked on the top).

Brain region abbreviations are explained in the legend to Figure 1A.
Major Shifts in Region-Specific Expression Profiles of
Glia-Specific Genes in the Aging Brain
To investigate the biological relevance of the age-related gene

expression changes, we first examined the expression profiles

of the cross-regional genes in recently produced RNA

sequencing (RNA-seq) data from seven purified mouse brain

cell types (Zhang et al., 2014). All cross-regional genes were ex-

pressed in a cell-type-specific manner, in particular within glial

cells and mainly in MG and OLGs (Figure S4A). We therefore

further examined the cell-type-specific expression patterns of

all aging-altered genes. For this, we calculated genome-wide

expression scores to identify genes specific for each cell type

(Table S3). We then examined whether expression of cell-type-

specific genes was altered upon aging. For three cell types (neu-

rons, ACs, and OLGs), enrichment data previously generated by

microarrays was also available (Cahoy et al., 2008). We selected

genes that were demonstrated to be specific by both our defined

cell-specific lists found by analysis of RNA-seq data (Zhang

et al., 2014) and the published microarray cell-specific lists

from mice (Cahoy et al., 2008), in addition to being altered in ag-

ing. In agreement with the great diversity of neuronal cell types

across different brain regions, neuron-specific genes were

most enriched among the regional aging-altered genes (Fig-

ure S4B). In contrast, glia-specific genes were most enriched

among the multi- and cross-regional altered genes, and this

was most pronounced for OLG precursors andMG (Figure S4B).

We first sought to investigate the changes in expression of

MG-specific genes, because these cells have been most exten-

sively linked to aging so far (Erraji-Benchekroun et al., 2005;

Sibille, 2013). Consistent with previous studies (Erraji-Benchek-

roun et al., 2005; Sibille, 2013), most MG-specific aging-altered

genes had low expression in brain samples from the young group

but strongly increased their expression in all regions in the old

group samples (Figure S5A). Our study extends these findings

to a multi-regional phenomenon. Moreover, we find that a small

number of MG-specific genes have high absolute expression in

the young group but decreased expression upon aging in all re-

gions. This suggests that the change in expression not only re-

flects an increased number of MG but most likely also includes

a dramatic change in the MG gene expression program.

Although most brain regions were not strongly separated by

the MG-specific aging-altered genes, the CRBL was distinct

(Figure 4A). This complies with a report of a distinct MG expres-

sion profile in the CRBL of young mice (Grabert et al., 2016).
d on Age

ng the UKBEC samples based on different lists of aging-altered genes using

s. (ii) Correlation scores based on cortical aging-altered genes. (iii) Correlation

tion based on WHMT-altered genes.

ls of the cross-regional altered genes and the DLGAP antisense. Rows, genes;

iddle-age: 45–74 years), or red (old: R75 years). The dendrograms show the

dardized fold change (Z score; range: �3 to 3; orange represents increased

ofiles of the cross-regional genes and the DLGAP antisense.

dding (t-SNE) is based on the expression of the nine cross-regional genes, with

rain regions or the two NABEC brain regions (FCTX andCRBL) are classified, as

colors are marked on the left). (ii) The same samples are colored based on their
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Figure 4. Glia-Specific Genes Show Major Shifts in Regional Identity upon Aging
On the left, heatmaps show the fold change between old and young groups in the expression of the top 100 aging-altered cell-type-specific genes across regions

(the color bar corresponds to the standardized Z score, with blue corresponding to decrease and red to increase in gene expression; range: �1 to +1). On the

right, non-linear dimensionality reduction by t-distributed stochastic neighbor embedding (t-SNE) is used to classify a sample of the ten UKBEC brain regions

based on the expression of the top 20 aging-altered cell-specific genes, with the x axis showing t-SNE1 and the y axis showing t-SNE2. In the first plot, each

sample is colored based on its corresponding tissue (colors are marked on the left of the plot), and in the second plot, the same samples are colored based on

their age group (colors are marked on the top of the plots).

(A) Sample classification based on the aging-altered MG-specific genes.

(B) Sample classification based on the aging-altered AC-specific genes.

(C) Sample classification based on aging-altered myelinating OLG-specific genes.

(D) Sample classification based on the expression signals of aging-altered neuron-specific genes. The SNIG and PUTM samples are marked by rectangles as an

example of the loss of region-specific expression upon aging for OLG- and AC-specific genes.

Brain region abbreviations are explained in the legend to Figure 1A. MG, microglia; AC, astrocyte; OLG, oligodendrocyte. See Figure S2 for sample classification

based on region-specific genes compared with multi-regional genes and Figure S6 for heatmaps and classification plots based on the three cell-type microarray

gene markers.
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Apart from the CRBL samples that formed a separate cluster,

samples from the old group clustered together for all other re-

gions and separately from younger samples, indicating that

MG-specific gene expression is more defined by age than by

regional identity (Figure 4A). The aging-altered endothelial-spe-

cific genes showed a similar pattern of changes as the MG-spe-

cific genes, with a general upregulation across all brain regions

and a notable age group separation and lack of clear regional

identity (Figure S5D).

Next, we examined the expression profiles of genes specific

for either ACs or OLGs. In young samples, we observed much

higher absolute expression of AC-specific genes in the midbrain

regions compared to cortex and HIPP (Figure S5). However, AC-

specific genes increase their expression within cortical regions

and exhibit decreased expression in basal ganglia (BG) upon ag-

ing (Figure 4B); therefore, their absolute expression signals

become more similar across regions in the aging brain (Fig-

ure S5A). SNIG and THAL, which show the highest expression

of AC-specific genes in the young brain, have a generic decrease

of AC-specific genes upon aging (Figure 4B). In contrast, the AC-

specific genes with the lowest expression in the young group in-

crease their expression upon aging in all regions except SNIG

and THAL. This leads to remarkable shifts in the regional patterns

of AC-specific gene expression. Although expression of AC-spe-

cific genes clusteredmost brain regions separately for the young

group, only four regional clusters remained in the old group, two

of which were the CRBL and the cortical regions (Figure 4B). The

most pronounced change is seen for HIPP and SNIG. For

example, HIPP clusters close to cortex in the young group but

shifts toward the WHMT and PUTM in the samples from the

old group (Figure 4B).

The aging-altered genes that are specific for all stages of OLG

differentiation, including OLG precursors, newly formed OLGs,

and myelinating OLG generally show a trend toward decreased

expression in all regions upon aging (Figures S5A–S5C). More-

over, OLG-specific genes show a shift of region-specific gene

expression upon aging, with the strongest change of regional

identity seen in HIPP and SNIG. In the samples from the young

group, HIPP clusters close to cortical samples and SNIG clus-

ters close to MEDU and THAL, whereas in the samples from

the old group, HIPP and SNIG cluster closer to each other

(Figure 4C).

Similar to the OLG-specific genes, the aging-altered neuron-

specific genes showed predominant downregulation in all brain

regions upon aging (Figure D; Figure S5B), in agreement with

previous studies that observed decreased expression of

neuron-specific genes in the cortex (Erraji-Benchekroun et al.,

2005), but with the added insight that this occurs in a brain-

widemanner. Classification based on aging-altered neuron-spe-

cific genes yielded a striking separation of samples based on

their regional identity (Figure 4D), and the old group samples re-

mained clustered closest to the young samples of the same brain

region (Figure 4D). Thus, neuron-specific gene expression is

more defined by regional identity than by age. This agrees with

the finding that the downregulated genes, which are often

neuron specific, are also generally region-specific, while the up-

regulated genes, which are often MG specific, are generally

multi-regional (Figure 2D; Figure S5B).
Specific Neuronal Subpopulations and
Oligodendrocytes Are Decreased in the Aging Brain
To examine how gene expression changes may relate to

changes in brain cell populations, we developed an efficient

pipeline for analysis of high-resolution image tiles of immunola-

beled sections of FCTX.We developed a targeted computational

pipeline for detection and quantification of the stained cells

based on the scanned images, which consists of big data detec-

tion, segmentation, and quantification pipeline using threshold-

ing, filtering, and object detection.

Noting the trend for decreased expression of OLG-specific

genes in the frontal cortex (Figure 4D), we examined serial sec-

tions immunolabeled with OLIG2 antibody from the tissue blocks

from the same brain samples that were used for the microarray

study. We selected three young and three old cases based on

their microarray profiles, such that it was representative for their

age (see Supplemental Experimental Procedures). Approxi-

mately 50,000 image tiles were analyzed from the three young

and three old FCTX sections (Figure 5A). We counted the number

of OLIG2-positive cells compared to the total number of cell

nuclei in each tile. Statistics was calculated on two classes of

tile density, likely corresponding to local variations in the propor-

tion of white matter (low density of nuclei) and gray matter (high

density of nuclei), in addition to all densities combined (all tiles).

The number of OLIG2-positive cells decreased in all classes of

tiles in the aging FCTX, with the largest decrease in the low-den-

sity tiles in old compared to young cases (Figure 5C, middle

panel). In contrast, the number of other cells significantly

increased low-density tiles (Figure 5C, lower panel), in agree-

ment with the slight increase in the total number of cells in the

same tiles (Figure 5C, upper panel). This analysis demonstrates

that the decreased expression of OLG-specific genes might

partly reflect a decrease in three cortical OLG cell population.

The aging RNA expression signatures also revealed downre-

gulation of neuron-specific genes (Figure 4B); therefore, we

analyzed high-resolution images produced from the three young

and three old FCTX sections stained with NeuN antibody tomark

the neurons. This antibody detects the neuron-specific RNA-

binding protein RBFOX3, which is predominantly nuclear, but

is also present in the cytoplasm of the cell body (Kim et al.,

2009) (Figure 6A). We used the tissue samples from the same

cases aswere used for OLIG2 quantification, thus allowing direct

comparison of the two cell types. To capture the large diversity of

both shape and size of cell bodies in the neuronal populations,

we used a large tile size (10,000 3 10,000 pixels each) (Fig-

ure 6Bi). This allowed us to extract information from almost all

layers of the neocortex in each slide of gray matter. A preliminary

quality control analysis flagged one image from a young

individual as a technical outlier, and this sample was therefore

omitted from further analysis, although we provide access to

its data (https://figshare.com/s/f2675361af1242f3565f). We

processed 1,044 image tiles using our cell detection pipeline

and applied an information exclusion criterion (entropy > 5) to

contain the most meaningful slides (n = 641). In an attempt to

enrich the regions of gray matter with the highest information

content, we further focused on the 184 tiles with the highest

density of nuclei. A total of 371,096 neurons were identified.

We further segregated cells into four bins of total area of cell
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Figure 5. Decreased Counts of Oligodendrocytes in the Frontal Cortex upon Aging

Six FCTX brain sections were stained and imaged (from three old and three young post-mortem brain samples). Each sample contains thousands of equal-size

slides each 1,600 3 1,200 pixels, as captured by a Zeiss AxioScan slide scanner following staining with the Olig2 antibody.

(A) An example of a BA9-Olig2 slide shown in a full-resolution pyramid, with gradual zooming into two typical cells: one stained brown (OLG cells) and one stained

blue (other cells).

(B) General computational pipeline for the analysis of high-resolution immunohistochemical high-dimensional imaging data allowed us to quantify both OLG and

other cells in each FCTX slide.

(C) Comparison of OLG counts that asks if the number of cells of interest is different in young samples compared to old (i.e., red bar shifted to the right means

increased count in young samples). In each panel, the histogram represents the null distribution of t values calculated using two-tailed Student’s t test over slide

cell counts randomly sampled from the entire population of the six samples, using 100 random iterations over 500 permutations where the true-label t statistics is

depicted with a red bar, and the remaining distribution was calculated based on shuffled labels. The analysis was done on overall 8,766 young and 10,922 old

group slides (left). From a total of 2,612 young and 1,828 old group high-density slides, the 50 slides with the highest density were selected per case for

quantification. Similarly, from 1,154 young and 1,277 old group low-density slides, the 50 slideswith the lowest density were chosen per sample for quantification.

(D) Cell counts in samples from old (red) and young (blue) groups, with significance calculated with t statistics as described in (C). The star marks bars with a

p value < 0.05 and the mean T statistic, p value and SD of the permutation test are reported on top of the graphs.
body (small: 500–3,000 pixels, n = 92,947; medium: 3,000–6,000

pixels, n = 202,239; large: 6,000–9,000 pixels, n = 60,314; very

large: >9,000 pixels, n = 15,596). In agreement with the previous
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study (Kim et al., 2009), the intensity of cytoplasmic NeuN

signal was strongest in the largest cells (Figure 6C). To account

for the imbalance of tiles across samples, significance in the
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Figure 6. Decreased Counts of Specific Neuronal Populations in the Frontal Cortex upon Aging

(A) An image of one NeuN-stained FCTX section, with re-defined tiles demonstrated by black rectangles (file size = 37.4 GB).

(B) (i) Enlargement of a single tile of 10,0003 10,000 pixels (size = 225MB). (ii) Enlargement of a 2,5003 2,500 pixel section. (iii) Three cells as observed in the red

channel (top, shown in light blue) and blue channel (middle), and intersection of the two channels (bottom) differentiates between neuronal cells (stained by NeuN

in brown on the original slides) and other cells (stained by Heamotoxylin in blue in the middle plot). (iv) The x axis represents the color frequency distribution of the

red and blue channels across an intensity range of 256 gray levels, while the y axis represents the frequency of pixel intensity in the image tile depicted in (iii).

(C) Examples of detected neurons that contain small, medium, medium to large (E), or large cell body (F) with size given in pixels. Underneath each image is the

histogram that asks if the number of cells of interest is different in young samples compared to old (i.e., red bar shifted to the right means increased count in young

samples). The histogram shows the null distribution of t values, calculated using two-tailed Student’s t test over slide counts using 100,000 random permutations

from the entire population of the six samples (black bars), while the mean of the true-label t statistics is depicted with a red bar. The right graph shows the cell

counts in samples from old (red) and young (blue) groups, with significance calculated with t statistics based on 10,000 randompermutations. The starmarks bars

with a p value < 0.05, and the mean t statistics, p value, and SD of the permutation test are reported on top of the graphs.
age-dependent decrease in each neuronal population was

tested with right-tailed two-sample t test. We observed no

change in the number of neurons with small or medium-size

cell bodies, which represent 80% of detected neurons. In

contrast, the number of neurons with large or very large cell
bodies is significantly decreased (p = 0.029 and p = 0.007,

accordingly; right-tailed two-sample t test) Figure 6C).

Altogether, it is likely that changes in gene expression

observed in our study reflect a combination of changes in

expression profiles and changes in quantity of specific cell types.
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Figure 7. Glial-Specific Genes Are Most Capable of Predicting Bio-

logical Age

(A–D) Analysis of the accuracy of cell-type-specific genes in predicting the

biological age of UKBEC brain samples: (A) MG-specific genes (R2 = 0.58), (B)

AC-specific genes (R2 = 0.58), (C) neuron-specific genes (R2 = 0.35), (D) OLG

precursor-specific genes (R2 = 0.48).

In all plots, the y axis denotes the actual age and the x axis denotes the pre-

dicted age. MG, microglia; AC, astrocytes; OLG, oligodendrocytes. See Fig-
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While most neuron-specific genes are predominantly downregu-

lated, the extent of this downregulation varies among brain re-

gions. All other cell types have a more complex pattern of

changes. These changes appear most pronounced in HIPP

and SNIG, which show the strongest shifts in the regional

expression pattern of AC- and OLG-specific genes upon aging.

MG- and Endothelial-Specific Genes Are the Best
Predictors of Biological Age
Given our aforementioned findings, we next sought to gain

insight into whether glial genes can predict age category with

more fidelity than neurons and sought to understand the precise

nature of gene expression changes driving this. Having estab-

lished cross-regional and cell-type-specific gene expression

relationships upon aging, we next asked which cell-type expres-

sion patterns within the brain are most associated with age. We

applied a stepwise regression to construct an age-associative

model based on the expression signals of cell-type-specific

genes to compare them (Figure 7; Figure S4; Supplemental

Experimental Procedures). We accounted for both the brain

bank source and the cause of death. Application of the model

uncovered defined groups of the highest age-relevant genes

for each cell type. In a few cases, interaction between two genes

was found to be age predictive (Table S3). Several multi-regional

genes were also detected as age-predictive cell-type-specific

genes, including CP, SGPP1, and VWF, which were detected

as OLG or endothelial specific (Table S4). MG-, AC-, and endo-

thelial-specific genes were most highly associated with biolog-

ical age, while the smallest number of age-predictive genes

was found among the neuron-specific genes (Figure 6). Alto-

gether, our data implicate expression of glial-specific genes,

rather than neuronal-specific genes, as the most reliable predic-

tor of biological age in the human brain.

Functional Enrichment Analysis of Multi-regional and
Region-Specific Aging-Altered Genes
To gain further insight into the functional nature of aging-altered

genes, we performed enrichment analysis of Gene Ontology

(GO) terms of these genes (Edgar et al., 2013). The upregulated

multi-regional genes were enriched in the following functional

terms: ‘‘MG cell development’’, ‘‘interleukin-1 (IL-1) receptor

activity’’, and ‘‘immune response’’. Supporting these observa-

tions, neuroinflammation is known to be involved in aging, with

evidence implicating the interferon type I response in aging-

associated cognitive decline (Baruch et al., 2014). Conversely,

downregulated multi-regional genes were enriched in the pro-

cesses of ‘‘protein transport and localization’’, and aging-altered

expression of these genes led to shifts in regional identity (Fig-

ure S2B). Moreover, 244 of a total of 253 genes annotated to

the ‘‘protein transport’’ category were detected as altered

upon aging in at least one brain region. These genes separated

the CRBL from the other regions and maintained their regional

sub-classification (Figure S5Bi). In addition, the CRBL samples

of the old group remained clearly separated from the rest
ure S4C for age association plots of endothelial, OLG precursor, and newly

formed OLG cell-specific genes.



(Figure S5Bii). Most aging-altered genes annotated to this cate-

gory were downregulated in eight regions, apart from the CRBL

and WHMT, which showed greater expression variability (Fig-

ure S5Biii). The WHMT aging-altered genes were functionally

enriched in ‘‘regulation of cell adhesion’’, ‘‘regulation of cell

development’’, ‘‘metabolic processes’’, and ‘‘cognition’’ (Fig-

ure S6A). Conversely, among the top functional terms that

were enriched in aging-altered genes in the FCTX were immune

functions including ‘‘T cell differentiation’’, ‘‘T cells’’, and ‘‘leuko-

cyte and lymphocyte activation’’ (Table S2). Among the CRBL-

enriched functions were ‘‘cell adhesion’’, ‘‘regulation of cell

motion and migration’’, and ‘‘neuron projection morphogen-

esis’’. These results imply a region-specific functional heteroge-

neity of the brain aging process.

Analysis of the cell-type-specific aging-altered genes revealed

enrichment of further functional pathways. ‘‘Synaptosome’’,

‘‘regulation of programmed cell death’’, and ‘‘metal ion trans-

porter’’ were enriched in downregulated neuron-specific genes.

‘‘Regulation of adaptive immune response’’, ‘‘natural killer cell-

mediated cytotoxicity’’, and ‘‘cell adhesion and motion’’ were

enriched in MG-specific upregulated genes (Table S2). ‘‘Myeli-

nation’’, ‘‘oxidoreductase’’, and ‘‘RAS protein signal transduc-

tion’’ were enriched in upregulated OLG-specific genes.

‘‘Mitochondrial matrix’’, ‘‘phosphate metabolic process’’, and

‘‘Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

AD’’ were enriched in downregulated myelinating OLG-specific

genes. Finally, ‘‘cell morphogenesis’’ and ‘‘cell-cell adhesion’’

were enriched in upregulated AC-specific genes. Some of these

functions have also been identified in a study that examined the

initial cell-type-specific transcriptional changes in a mouse

model of amyotrophic lateral sclerosis (ALS), including synaptic

functions in neurons and membrane signaling defects in OLGs

(Sun et al., 2015).

DISCUSSION

This study presents a comprehensive analysis of RNA expres-

sion in ten regions of the human brain and large-scale cell

quantification in FCTX upon aging. Our findings show that cell-

type-specific genes delineate samples based on both age group

and brain region. Aging was the major determinant of glia-spe-

cific gene expression shifts in regional identity, while such

changes were not evident in neuron-specific genes. Genes spe-

cific for neurons and OLGs generally decreased their expression

upon aging, while MG-specific genes increased their expression

profiles, consistent with the known MG activation in aging (Nor-

den and Godbout, 2013). ACs showed a more complex pattern

of reciprocal regional changes upon aging, with upregulation in

the cortical regions and downregulation in the deeper brain

structures. Among the genes specific for the non-neuronal cell

types, those with the highest absolute expression in the young

group decrease their expression upon aging in most brain re-

gions, while those with the lowest expression in the young group

increase their expression in a subset of regions. This leads to

major shifts in region-specific gene expression, particularly of

AC- and OLG-specific genes, which are most pronounced in

the HIPP and SNIG, the regions that are archetypally affected

in the most common age-related neurodegenerative diseases
(AD and PD, respectively). These findings reinforce a growing

body of evidence implicating glia in aging (Norden and Godbout,

2013).

Age-related degeneration of OLG has been previously

observed in the HIPP of the senescence-accelerated mice, as

well as other animal models (Hayakawa et al., 2007; Hwang

et al., 2006; Shimeda et al., 2005). OLG-specific genes were

also found to have the strongest enrichment among genes with

decreased age-related expression in human TCTX (Tollervey

et al., 2011). We demonstrate that the age-related downregula-

tion of OLG-specific gene expression is accompanied by a

decrease in OLG cell numbers in the FCTX, consistent with pre-

vious observations of decreased OLGs in neocortical regions of

old human brains (Fabricius et al., 2013; Pelvig et al., 2008). The

OLG-specific aging-altered genes includeMBP, a major constit-

uent of the myelin sheath, and LINGO1, a regulator of myelina-

tion (Mi et al., 2005). It is of interest that the low-density tiles

(corresponding to likely white matter) show the largest decrease

in oligodendrocytes and a corresponding increase in other cells

(Figure 5). Given the strongest upregulation of MG-specific

genes in the brain, it appears possible that the increase of other

cells is driven by the increase in MG, but this remains to be

directly examined.

We found increased AC-specific gene expression in human

aging HIPP, which agrees with data from aging mouse models,

in which increased proliferation and activation of ACs are re-

ported (Hayakawa et al., 2007) (Figure 4). An examination of

three sub-regions ofmouseHIPP using three AC-specific protein

markers revealed complex, region-specific, and marker-depen-

dent changes (Rodrı́guez et al., 2014). Regionally encoded AC

expression is important for neuronal functions, as was demon-

strated by the loss of ventral spinal cord AC-encoded SEMA3A

gene expression, which leads to selective death of a-motor neu-

rons in mice (Molofsky et al., 2014). We find many regional differ-

ences in expression of AC-specific genes are largely erased in

samples from the old group; for example, these genes cluster

the HIPP and PUTM separately in the young group, but not in

the old group (Figure 4B). This suggests that major changes in

functional heterogeneity of AC take place in the aging brain,

which might have deleterious consequences on the integrity of

neuronal circuits.

A trend toward increased expression of MG-specific genes

was observed in all regions upon aging, with corresponding

upregulation of genes with immune or inflammatory functions.

The upregulated genes include C1Q, which agrees with the

increased C1Q protein levels that were observed in both mouse

and human brains upon aging (Stephan et al., 2013). Another up-

regulated gene is TREM2, which is also upregulated in amyloid-

plaque-associated MG (Frank et al., 2008) and contains variant

alleles that increase AD risk (Guerreiro et al., 2013). Upregulation

of inflammatory functions is in line with evidence implicating the

interferon type I response in age-associated cognitive decline

(Baruch et al., 2014).

In addition to glial changes, we also observed a decreased

number of neurons with large cell bodies, which represent

approximately 20% of neurons in the cortex. Although we did

not attempt to directly identify the neuronal subtypes in the pre-

sent study, neurons with the largest cell bodies are likely to be
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associative pyramidal neurons (Zeba et al., 2008). Furthermore,

these neurons were previously indicated to be most vulnerable

to aging in a study of Rhesus monkeys (Gilman et al., 2016).

While our analysis indicates that the decrease in these pyramidal

neurons may be the primary source of the downregulation of

neuron-specific genes, our findings regarding the cortical

neuronal cells remain speculative due to the limited number of in-

dividuals used for the imaging analyses. Moreover, it remains

possible that the change does not result from loss of these neu-

rons, but rather from downregulation of Rbfox3 protein, or its

loss from the cytoplasm of large neurons. Thus, our current anal-

ysis will need to be verified with the use of additional markers of

specific neuronal cell types and increased sample size, which

will potentially include additional brain regions; ideally, it will

also be compared to the outcomes of cell-type-specific analyses

of RNA sequencing datasets (Lake et al., 2016).

Age is the major risk factor for both AD and PD, the two most

prevalent neurodegenerative diseases. It is becoming clear that

the pre-clinical stage of AD begins decades before clinical mani-

festation (Dubois et al., 2014). This pre-clinical stage has been

termed ‘‘the cellular phase,’’ because it involves changes in

interactions among all cell types in the brain, with the most dra-

matic changes taking place in AC, MG, and vasculature (De

Strooper and Karran, 2016). We find a corrosion of glial region-

specific gene expression in aging, with the genes specific for

AC, MG, and endothelial cells being the best predictors of age.

HIPP and SNIG are affected in the early stages of AD and PD,

respectively, and these are the two regions with major shifts in

their regional expression profiles of AC- and OLG-specific genes

upon aging. Thus, our data may provide insights into the role of

glia in the region-specific vulnerability in these age-related

neurodegenerative diseases.

By simultaneously assessing changes in cell-type-specific

genes across multiple brain areas, our study takes a step toward

providing a comprehensive framework of the molecular and

cellular changes in human aging. While our primary aim was to

deconvolute the cell-type-specific signatures present within

large databases of age-related transcriptional changes, we

also made a step toward interpreting these in light of changes

in counts of OLG and neuronal cells. Integration of further

genome-wide and single-cell data from human tissues samples

and cell and animal models will be required to fully understand

the cellular and molecular mechanisms underlying the observa-

tions in our study. Altogether, our study indicates that the cellular

changes during aging involve a dramatic shift in the regional

identity of glia, and it provides a resource for further studies

of the relationship between aging and the cellular phase of

dementia.

Conclusions
Our study examines brain-wide gene expression patterns in the

aging human brain across a wide physiological age range,

coupled with complementary analysis of cell-type-specific

marker genes and validation by direct cell quantification using

immunohistochemical imaging followed by targeted computa-

tional analysis. In addition to the expected increase in expression

of MG-specific genes and decrease in expression of neuron-

specific genes, our analyses uncovered major changes in the re-
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gion-specific expression of AC- and OLG-specific genes. The

age-associated changes in the regional expression of glial-spe-

cific genes are most dramatic in HIPP and SNIG, the brain re-

gions affected in AD and PD. The age-dependent decrease in

expression of OLG- and neuron-specific genes aligns with the

results of direct cortical cell counting, in which decreased

numbers of OLGs and of neurons with large cell bodies are

demonstrated. We believe that our data and computational ap-

proaches provide a powerful resource for further study of the

cellular and molecular changes taking place during human brain

aging and provide insights into the pre-clinical cellular phase of

dementia.

EXPERIMENTAL PROCEDURES

Ethical Statement

All samples used for this study had fully informed consent for retrieval andwere

authorized for ethically approved scientific investigation (Research Ethics

Committee number 10/H0716/3).

Brain Samples

Post-mortem human brain material was produced under institutional guide-

lines governed by approved protocols. Tissue samples were produced from

99 individuals by the Sudden Death MRC brain bank, 35 individuals by the

Sun Head Institute for the UKBEC, and 305 individuals by the American Brain

Bank (NABEC).

Quality Assessment and Array Pre-processing

For the UKBEC dataset, all quality measurements were extensively described

in a previous publication (Trabzuni et al., 2011). The initial pre-processing of the

microarray data, including application of RMA (robust multi-assay) average

quantile normalization with guanine cytosine (GC) background corrections

(GC-RMA) and expression data were log2 transformed. The gene level signal

estimates were calculated for a total of 26,493 transcripts using the median

signal of each group of probe sets interrogating a transcript.

Expression Data Analysis

A tailored analysis pipeline was developed for all computational analyses and

data visualization of microarray and RNA-seq datasets that were analyzed in

this study (in MATLAB, R2014-2016a). Those include construction of data

structures and statistical significance inference using ANOVA, with false

discovery rate (FDR) thresholding (of corrected p < 1e�3), classification and

clustering (e.g., using t-distributed stochastic neighbor embedding [t-SNE]

and hierarchical clustering), and data visualization.

Cell-type-specific genes were defined by analysis of RNA-seq data from

mouse brain (http://web.stanford.edu/group/barres_lab/brain_rnaseq.html)

and were further used to find age-predictive cell-specific genes. The lists are

under Tables S5 and S6, accordingly. Additional cell-specific lists were based

on a previous microarray data on three of these cell types (Cahoy et al., 2008).

Further details are in the Supplemental Information.

High-Resolution Imaging and Analysis of Immunolabeled Brain

Samples

Post-mortem human brain sections were placed into xylene and rehydrated.

Antigen retrieval was performedwith citric acid. For OLG staining, the samples

were immunolabeled with OLIG2 antibody using the Leica Novolink Polymer

detection kit. We used the Olig2 antibody from Millipore (catalog #AB9610)

at 1/200 dilution. For staining of neurons, the samples were immunolabeled

with NeuN antibody (Acris) and the Leica Bond Epitope Retrieval Solution#1

was used (AR9961 from Leica Biosystems) (AR9961 from Leica Biosystems).

The images for both types of stains were acquired on the Zeiss AxioScan slide

scanner. Details of the cell detection and quantification computational

methods for neurons are given under the Supplemental Experimental Proced-

ures. In addition, all raw jpeg images of the slides can be seen at https://

figshare.com/s/f2675361af1242f3565f. For image analysis, we employed

http://web.stanford.edu/group/barres_lab/brain_rnaseq.html
https://figshare.com/s/f2675361af1242f3565f
https://figshare.com/s/f2675361af1242f3565f


some of the computational methods mentioned by Bjornsson et al. (2008), in

addition to a targeted computational pipeline developed in-house in MATLAB

(see details under Supplemental Experimental Procedures).
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