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During infection with respiratory viruses, disease severity is 
linked to lung epithelial destruction, due to both cytopathic 
viral effects and immune-mediated damage. Epithelial loss 
contributes to acute respiratory distress syndrome, pneumo-
nia, and increased susceptibility to bacterial superinfections. 
Restoration of damaged epithelial tissues is therefore para-
mount in order to maintain lung function and barrier protec-
tion. 

Interferons (IFNs) are key to the antiviral host defense. 
IFN-α/β and IFN-λ are induced upon viral recognition and 
trigger transcription of interferon-stimulated genes with an-
tiviral function in infected and bystander cells. Due to wide-
spread expression of the type I IFN receptor (IFNAR) in 
immune cells, IFN-α/β responses can result in immuno-
pathology during viral infections, including influenza virus 
and severe acute respiratory syndrome coronavirus (SARS-
CoV-1) (1–4). The IFN-λ receptor (IFNLR) is mainly expressed 
at epithelial barriers, and responses are therefore often char-
acterized by their ability to confer localized antiviral protec-
tion at the site of infection, without driving damaging 
proinflammatory responses associated with IFN-α/β. In ad-
dition to antiviral and proinflammatory activity, IFNs exert 
antiproliferative and proapoptotic functions (5). Despite a 
growing understanding of immunopathology in respiratory 
viral infection, it is unknown how IFN responses affect lung 
epithelial repair. 

Influenza virus infection in C57BL/6 (B6) wild-type (WT) 

mice resulted in weight loss, accompanied by significant im-
mune cell infiltration and lung damage (fig. S1, A to D). Re-
covery from infection coincided with the onset of epithelial 
regeneration (fig. S1, C and D). To further investigate the dy-
namics of lung repair following influenza virus infection, ep-
ithelial cell proliferation was analyzed by flow cytometry, 
using the proliferation marker Ki67 (gating strategy in fig. 
S2). During steady-state conditions, type II alveolar epithelial 
cells (AT2; EpCam+MHCII+CD49fllo) (6–8) showed a low rate 
of turnover (Fig. 1A). However, following influenza virus-in-
duced lung damage, AT2 cells underwent rapid proliferation 
starting at days 5-7 post infection, correlating with mouse re-
covery and weight gain (Fig. 1A and fig. S1B). 

To compare the dynamics of epithelial recovery with IFN 
production, we analyzed IFN subtypes (IFN-α, IFN-β, and 
IFN-λ) in bronchoalveolar lavage fluid (BALF) throughout in-
fection. IFNs were produced rapidly, peaking 2 days post in-
fection (Fig. 1B). The magnitude of IFN-λ production was 
significantly greater than that of IFN-α/β, both in duration 
and in length of peak production. Importantly, only IFN-λ 
was detected 7–8 days post infection, coinciding with the on-
set of epithelial recovery (Fig. 1, A and B). Thus, following in-
fluenza virus infection, signaling triggered by IFNs, in 
particular by IFN-λ, overlaps with the onset of lung repair. 

To compare the effects of equipotent amounts of IFN-α, 
IFN-β, and IFN-λ on lung repair, mice were treated during 
recovery from influenza virus infection (7 to 10 days post 
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infection; figs. S3A and S4). To study the effects of IFN treat-
ment specifically on epithelial cells, we generated irradiation 
bone marrow (BM) chimeras in which WT recipients were 
given Ifnar1−/− BM cells, thus restricting IFNAR expression to 
the stromal compartment. 

In chimeric mice, both IFN-α and IFN-β treatments sig-
nificantly reduced the proliferation of AT2 cells on day 11 post 
influenza virus infection (Fig. 1C). Similarly, IFN-λ treatment 
reduced AT2 cell proliferation in WT mice (Fig. 1D). Reduc-
tions in proliferation were independent from changes in viral 
burden (fig. S3, B and C). The IFN-λ-mediated reduction in 
AT2 cell proliferation did not require IFN-λ signaling in neu-
trophils (9–11), as neutrophil depletion in WT mice using an 
anti-Ly6G monoclonal antibody had no effect (fig. S3, D and 
E). A caveat when using inbred mouse strains for influenza 
virus infection is the lack of a functional Mx1 protein, a cru-
cial IFN-inducible influenza virus restriction factor in both 
mice and humans (12). We therefore infected mice expressing 
functional Mx1 alleles (B6-Mx1) with the influenza virus 
strain hvPR8-ΔNS1 for a more clinically relevant influenza 
model. IFN-λ treatment significantly reduced epithelial pro-
liferation in the presence of functional Mx1 as well (Fig. 1E). 

We next used Ifnar1−/− and Ifnlr1−/− mice to determine the 
role of endogenous IFNs during lung repair. AT2 cells were 
analyzed on day 8 post influenza virus infection, the time 
when IFN signaling and epithelial cell proliferation over-
lapped (Fig. 1, A and B). Both Ifnar1−/− and Ifnlr1−/− mice had 
improved AT2 cell proliferation, compared to WT controls 
(Fig. 1, F and G). This was dependent on IFN signaling spe-
cifically through the epithelium, as receptor deficiency in the 
stromal compartment alone was sufficient to increase lung 
epithelial cell proliferation (Fig. 1H). Improved proliferation 
was independent of major changes in viral burden (fig. S5A). 
Viral control in individual IFN receptor-knockout mice was 
likely unaffected due to redundancy between type I and III 
IFN antiviral responses in epithelial cells (13, 14). Despite 
type I and III IFN redundancy in viral control (fig. S5A), the 
lack of redundancy in antiproliferative IFN responses, with 
both Ifnar1−/− and Ifnlr1−/− mice displaying enhanced epithe-
lial proliferation (Fig. 1, F to H), led us to further interrogate 
the phenotype. IFNAR signaling has previously been shown 
to be important for the production of IFN-λ during influenza 
virus infection (15, 16). Consistently, we observed a significant 
reduction in IFN-λ (and indeed IFN-α/β) production in If-
nar1−/− mice compared to WT, yet we saw little change in IFN-
α/β levels in Ifnlr1−/− mice (fig. S5B). Thus, the improved epi-
thelial proliferation in Ifnar1−/− mice may result from reduced 
IFN-λ. IFN production defects in Ifnar1−/− mice are linked to 
reduced steady-state priming in the absence of tonic IFNAR 
activation in immune cells (17). To circumvent this, we ad-
ministered an anti-IFNAR monoclonal antibody (MAR1-5A3) 
only from the onset of influenza virus infection. Anti-IFNAR 

treatment maintained steady-state priming required for IFN-
λ production (fig. S5C), despite blocking IFN-α/β signaling 
through IFNAR (fig. S5D). Importantly, anti-IFNAR treat-
ment from day 0 or day 3 post infection had no effect on lung 
epithelial cell proliferation (fig. S5E). Thus, in murine influ-
enza virus infection, endogenous IFN-λ responses are most 
effective in disrupting epithelial regeneration during influ-
enza recovery, through direct effects on epithelial cells. 

To understand mechanistically how IFNs exert the ob-
served antiproliferative effects, we set up primary murine air-
way epithelial cell (AEC) cultures. AECs undergo rapid 
proliferation and differentiation upon exposure to an air-liq-
uid interface (ALI), recapitulating lung repair processes ob-
served in vivo (18, 19). IFNs used for in vitro assays were 
titrated on AEC cultures, to compare IFN subtypes at equiva-
lent biological potency (fig. S6). All three IFN subtypes signif-
icantly impaired the growth of AEC cultures, with IFN-β and 
IFN-λ having the most significant effects (Fig. 2, A to C, and 
fig. S7A). Similar effects were observed when primary human 
AEC cultures were treated with equivalent doses of IFN sub-
types (Fig. 2D). Growth inhibitory effects were dependent on 
the presence of the respective IFN receptor (fig. S7B). IFN-β 
or IFN-λ treatment increased the frequency of apoptotic or 
necrotic cells (Annexin V+/TO-PRO-3+) (fig. S7, C and D). 
However, the growth inhibitory effects of IFNs were only ob-
served in actively dividing cultures (fig. S7, E to G). Thus, the 
increase in apoptosis observed may occur as a result of failed 
progression through the cell cycle following IFN treatment, 
as seen previously (20). 

We next examined the effects of IFNs on AEC differentia-
tion. Following acute damage, populations of basal cells and 
Scgb1a1+ secretory cells give rise to secretory and multicili-
ated cell subtypes (21). To study effects of IFNs on AEC dif-
ferentiation, we initiated IFN treatment late during the 
course of AEC growth, during air exposure, when AEC differ-
entiation is induced (fig. S8A). IFN-β and IFN-λ treatment 
significantly reduced the expression of genes pertaining to 
multiciliated (Mcidas and Ccno) and secretory cell (Muc5AC 
and Scb1a1) differentiation (Fig. 2F). Expression of the basal 
cell marker Krt5 remained unchanged, or was increased by 
IFN-λ treatment, suggesting maintenance of stemness (fig. 
S8B). We also found reduced numbers of multiciliated cells 
in AEC cultures (acetylated α-tubulin+) following IFN-λ treat-
ment, but not with IFN-α or IFN-β (Fig. 2G and fig. S8C). In 
vivo, Ifnlr1−/− mice displayed increased multiciliated cells in 
repairing conducting airways on day 10 post influenza virus 
infection (Fig. 2H). Using flow cytometry, we quantified this 
increase in the frequency of differentiated AECs (EpCam-
hiCD49fhiCD24+), composed of multiciliated, goblet, and club 
cells (Fig. 2I and fig. S2) (22). Thus, IFN-λ signaling reduces 
the capacity for basal cell differentiation during recovery 
from influenza virus infection. 
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To understand how IFNs mediate antiproliferative effects, 
we performed RNA-sequencing on IFN-treated AEC cultures 
(Fig. 3A). Principal component analysis (PCA) clustered 4-
hour IFN treated samples together regardless of subtype (Fig. 
3B), confirming equal subtype dosage based on previous ti-
trations (fig. S9A). Five-days of IFN-β or IFN-λ treatment 
clustered AECs together separate from untreated controls on 
both PC1 and PC2 (Fig. 3B). Gene ontology analysis confirmed 
genes contributing to this variance are involved in IFN-
signaling and epithelial cell development (supplementary 
text and fig. S9B). Ingenuity Pathway Analysis revealed in-
duction of pathways regulating cell cycle and cell death fol-
lowing prolonged IFN treatment, most significantly induced 
by IFN-λ across all timepoints (Fig. 3C). Predicted upstream 
transcriptional regulators identified typical regulators of IFN 
function, including STAT and IRF proteins, in addition to cell 
cycle regulators (Fig. 3D). We identified the tumor suppressor 
protein p53 as a top candidate regulating IFN-inducible anti-
proliferative effects. p53 has previously been shown to di-
rectly regulate IFN-α/β antitumor responses (23). Gene set 
enrichment analysis (GSEA) identified IFN-mediated induc-
tion of the p53 pathway (fig. S9C), and we identified induc-
tion of p53-regulated downstream targets in expression data 
(fig. S9D). To confirm the role of p53, we utilized Tp53−/− AEC 
cultures. IFN-mediated reduction in AEC growth, differenti-
ation, and induction of antiproliferative downstream p53 tar-
get genes Gadd45 g and Dusp5 (24, 25) was p53-dependent, 
with no changes observed in Tp53−/− AECs (Fig. 3, E to G, and 
fig. S9E). We next examined whether IFNs regulate p53 activ-
ity in epithelial cells during lung repair in vivo. To study IFN 
effects specifically in the lung epithelium, we once again gen-
erated Ifnar1−/− → WT BM chimeric mice for IFN-α or IFN-β 
treatment, or depleted neutrophils in WT mice with anti-
Ly6G for IFN-λ treatment (fig. S3A). IFN-β and IFN-λ, but 
not IFN-α, significantly up-regulated p53 expression in re-
pairing lung epithelial cells (Fig. 3, H and I). Thus, IFN-β and 
IFN-λ mediate antiproliferative effects in AECs via the induc-
tion of p53. 

Our data supports a key role for IFN signaling, particu-
larly IFN-λ, in the reduction of epithelial proliferation and 
differentiation during lung repair. We therefore tested 
whether IFNs alter the state or barrier function of lung epi-
thelia. RNA-sequencing of sorted lung epithelial cells (Ep-
Cam+CD31−CD45−) from influenza virus-infected WT or 
Ifnlr1−/− mice confirmed an up-regulation of pathways per-
taining to proliferation and multiciliogenesis in Ifnlr1−/− mice 
(Fig. 4A). Improved repair correlated with reduced lung dam-
age, with a reduction in both the total, and red blood cell 
number in the BALF of Ifnlr1−/− mice day 8 post infection (Fig. 
4, B and C, and fig. S10A). Additionally, Ifnlr1−/− mice had 
fewer immune cells infiltrating lung tissue (Fig. 4D). In hu-
mans, influenza virus-induced epithelial damage increases 

susceptibility to infection by opportunistic bacterial patho-
gens, including S. pneumoniae (26). To measure the effects of 
IFN-λ on lung barrier function, we challenged influenza vi-
rus-infected mice with S. pneumoniae. Both full IFNLR 
knockout mice, and mice lacking IFNLR in the stromal com-
partment (WT → Ifnlr1−/−), had improved survival following 
bacterial superinfection (Fig. 4E and fig. S10B). Thus, IFN-λ 
signaling reduces the capacity for epithelial repair, resulting 
in prolonged lung damage, compromised barrier function, 
and increased susceptibility to bacterial superinfection. 

Here we describe a mechanism by which type I and III 
IFN signaling aggravates lung pathology during respiratory 
viral infection. Although all three IFN subtypes reduced lung 
proliferation following treatment during influenza recovery, 
only endogenous IFN-λ compromised repair. This is likely 
due to increased IFN-λ production during infection com-
bined with greater induction of antiproliferative pathways, 
compared to IFN-α/β. A recent study has shown that IFN-λ 
produced by dendritic cells inhibits lung epithelial repair fol-
lowing viral recognition (27). Influenza virus-infected ma-
caques revealed an elevated IFN signature late during 
infection bronchial tissue (28). Additionally, COVID-19 pa-
tients displayed strong induction of IFN and p53 signaling in 
collected BALF (29). Analysis of lung tissue and BALF from 
respiratory virus infected patients experiencing severe dis-
ease will provide insight into the mechanisms regulating dis-
ease pathogenesis. IFN-λ treatment early during influenza 
virus infection is protective in mice, offering antiviral protec-
tion without the proinflammatory responses associated with 
IFN-α/β (30, 31). By studying specific effects in the respira-
tory epithelium, we identify a mechanism by which IFN ex-
acerbates respiratory virus disease, independent of 
immunomodulation. Our data indicate the need for effective 
regulation of host IFN responses, and the importance of tim-
ing and duration when considering IFNs as therapeutic strat-
egies to treat respiratory virus infections. Optimal protection 
would be achieved by strong induction of IFN-stimulated 
genes early during infection to curb viral replication, fol-
lowed by timely down-regulation of IFN responses, enabling 
efficient lung epithelial repair. 
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Fig. 1. Type I and III IFNs reduce epithelial cell proliferation during lung repair. (A and B) Mice were 
infected with 104 TCID50 X31 (H3N2) influenza virus in 30 μl intranasally. (A) Proliferating (Ki67+) AT2 cells 
(EpCam+MHCII+CD49flo) were measured by flow cytometry (n=5), and (B) type I and III IFN levels were 
detected in BALF (n=4) on indicated days post infection. (C and D) X31-infected mice were administered 
IFNs every 24 hours (on days 7 to 10 post infection). Proliferating (Ki67+) AT2 cells 
(EpCam+MHCII+CD49flo) were measured by flow cytometry on day 11 post infection. (C) Lethally irradiated 
WT mice were injected with Ifnar1−/− bone marrow cells. Following reconstitution, influenza virus-infected 
chimeric mice were treated with PBS control (n=8), IFN-α (n=9), or IFN-β (n=9). Naïve controls are 
uninfected, untreated bone marrow chimeric mice (n=2). (D) Infected WT mice were treated with IFN-λ 
(n = 4) or PBS control (n = 4). Naïve controls are uninfected, untreated WT mice (n = 5). (E) B6-Mx1 mice 
were infected with 2.5×103 TCID50 hvPR8-ΔNS1 (H1N1) and treated with IFN-λ (n = 4) or PBS control (n = 
4) (IFN treatment and lung analysis was performed as for C and D). (F to H) Lungs from X31 infected WT 
(n=4 to 7), (F) Ifnar1−/− (n=4), (G) Ifnlr1−/− (n=7), and (H) BM chimeric mice (n=4 to 5) mice were harvested, 
and proliferating (Ki67+) AT2 cells were measured by flow cytometry on day 8 post infection. All data are 
representative of at least two independent experiments. Data are shown as mean ± SEM and statistical 
significance was assessed by one-way ANOVA with Dunnett’s post-test (C, D and H), or unpaired two-
tailed Student’s t test (E to G). ns, not significant (P>0.05); *P≤0.05, **P≤0.01, ***P≤0.001. 
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Fig. 2. IFN signaling blocks airway epithelial cell growth and differentiation. (A) Murine AECs were seeded 
at a low density (500 cells/transwell) or high density (104 cells/transwell) in the presence of equivalent doses 
of IFN-α, IFN-β, IFN-λ, or media control, and grown for 12 days (n=3 for all conditions). Confluence was 
determined by measuring transepithelial electrical resistance (TEER; >1000 Ω=confluent cultures). (B, D, 
and E) Proliferating murine AEC cultures (2 days prior to exposure to an ALI) were treated for 5 days with 
IFNs (day −2 pre ALI to day 3 post ALI), and effects on growth were determined by cell number (B) (n=9) and 
incorporation of the thymidine analog EdU to measure proliferation (D and E) (n=9). (C) Primary human AEC 
cultures were treated with IFNs for 5 days and cells were counted (n=4 to 6). (F and G) Murine AECs were 
grown to confluence, then exposed to an air–liquid interface (ALI) for 2 days. IFNs were then administrated 
for 6 days during ALI exposure (n = 6 for all conditions). Differentiation was determined by mRNA expression 
of the indicated genes (F) and the level of acetylated α-tubulin staining in cultures (G). (H and I) WT and 
Ifnlr1−/− mice were infected with influenza virus, and lungs were analyzed by immunofluorescence 
(DAPI/acetylated α-tubulin) on day 10 post infection (n=4) (H), and flow cytometry (EpCam+CD49fhiCD24+) 
on day 14 post infection (n=3) (I). All data are representative of at least three independent experiments. Data 
are shown as mean ± SEM and statistical significance was assessed by one-way (B, C, E and G) or two-way 
(F and I) ANOVA with Dunnett’s post-test. Scale bar represents 100 μm (H). ns, not significant (P>0.05); 
*P≤0.05, **P≤0.01, ***P≤0.001, ****P≤0.0001.  
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Fig. 3. Type I and III IFNs activate antiproliferative and cell death pathways in AECs via induction of 
p53. (A) Schematic diagram for IFN treatment of murine AECs for RNA-sequencing analysis. (B) PCA plot 
of RNA-sequencing data from AECs following IFN treatment, and untreated controls. (C) Heatmap for 
significant differences in “Canonical Pathways” for nine pairwise comparisons between indicated IFN 
treatment and the respective mock, at each time point (fold change >1.5, one-way ANOVA with 
Benjamini–Hochberg correction, P<0.05), Gene expression was compared using Ingenuity Pathway 
Comparison Analysis. (D) Predicted upstream transcriptional regulators of differentially expressed genes 
(Ingenuity Pathway Analysis). (E to G) WT and p53−/− murine AECs were treated with IFN subtypes for 5 
days, and measured for growth by cell number (E), CFSE dilution (F), and mRNA expression of indicated 
genes (G) (n=3 for all conditions). (H and I) Ifnar1−/− → WT BM chimeric mice (H) (n=4 to 5) and α-Ly6G 
treated mice (I) (n=4) infected with influenza virus (X31), and treated with IFN every 24 hours 
consecutively for 4 days (days 7 to 10 post infection), before EpCam+MHCII+CD49flo AT2 cells were 
analyzed for p53 mean fluorescence intensity (MFI) on day 11 post infection by flow cytometry. All data 
are representative of at least two independent experiments (E to I). Data are shown as mean ± SEM and 
statistical significance was assessed by two-way (E to G) or one-way (H) ANOVA with Dunnett’s post-
test, or unpaired two-tailed Student’s t test (I). ns, not significant (P>0.05); *P≤0.05, **P≤0.01, 
***P≤0.001, ****P≤0.0001. 
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Fig. 4. Ifnlr1−/− mice have improved lung repair, reduced damage, and improved epithelial barrier 
function. WT and Ifnlr1−/− mice were infected with 104 TCID50 X31 influenza virus (X31). (A) GSEA plots of 
RNA-sequencing datasets from WT or Ifnlr1−/− bulk lung epithelial cells (EpCam+) on day 8 post infection. 
(B and C) Total cell and red blood cell (TER-119+) number in BALF on day 8 post infection (n=4 for both 
WT and Ifnlr1−/− mice). (D) Histopathological analysis of H&E lung sections on day 9 post infection (n=4 
for both WT and Ifnlr1−/− mice). (E) Lethally irradiated WT and Ifnlr1−/− mice were injected with WT bone 
marrow cells. Following reconstitution, chimeric mice were challenged with 2×105 colony-forming units 
(c.f.u.) TIGR4 in 30 μl on day 8 post influenza virus infection (n=8 WT, n=9 Ifnlr1−/−). All data are 
representative of at least two independent experiments (B to E). Data are shown as mean ± SEM and 
statistical significance was assessed by unpaired two-tailed Student’s t test (B), Mann–Whitney U test 
(D), or log-rank (Mantel–Cox) test (E, survival). *P≤0.05, **P≤0.01. 
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