
High-throughput phenotyping reveals expansive genetic and 
structural underpinnings of immune variation

A full list of authors and affiliations appears at the end of the article.
# These authors contributed equally to this work.

Abstract

By developing a high-density murine immunophenotyping platform compatible with high-

throughput genetic screening, we have established profound contributions of genetics and structure 

19co-corresponding authors. 
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3i BM IMPC: FR-FCM-ZYXQ
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to immune variation (www.immunophenotype.org). Specifically, high-throughput phenotyping of 

530 unique mouse gene knockouts identified 140 monogenic “hits”, of which most had no 

previous immunological association. Furthermore, hits were collectively enriched in genes for 

which humans show poor tolerance to loss-of-function. The immunophenotyping platform also 

exposed dense correlation networks linking immune parameters with one another and with specific 

physiologic traits. Such linkages limit freedom-of-movement for individual immune parameters, 

thereby imposing genetically regulated “immunological structures”, whose integrity was 

associated with immunocompetence. Hence, we provide an expanded genetic resource and 

structural perspective for understanding and monitoring immune variation in health and disease.

The increasing implication of immunology in myriad arenas of pathophysiology emphasises 

the importance of understanding and appropriately measuring inter-individual immune 

variation. Reflecting this are highly informative studies describing human immune system 

dynamics1–4, and investigations of the factors contributing to it5–8. Thus, SNP-based and 

deep sequencing-based Genome-Wide Association Studies (GWAS) and Twin-studies have 

associated defined genetic loci with autoimmunity and/or immunodeficiency9–14. However, 

it can be challenging to link discrete immunophenotypes to specific genes and/or genetic 

variants15. Conversely, Mendelian trait analysis, that is expanding through genome 

sequencing of “rare diseases”16,17, has established concrete links between specific genes and 

immune function. Nonetheless, this approach can be limited by the infrequency and 

uncertain clinical annotation of patients, and by practical limitations on phenotypic assays.

At the same time, sex, age, and environmental factors, including diet and the microbiome, 

make major contributions to human immune variation5,6,8, but assessing their full impacts is 

limited by appropriate constraints on interventions, and by human genetic diversity. In sum, 

immunoregulatory factors seem so numerous and diverse that resolving their individual 

contributions can seem intractable.

In this regard, animal model studies offer unique opportunities. Specifically, use of an inbred 

strain limits genetic variation; co-housing reduces microbiome and dietary variation; and 

age-matching limits physiologic variation. Thus, their study can establish a frame-of-

reference for the nature and sources of variation in the “baseline immune system”. That 

frame-of-reference can aid myriad investigations of rodent immunology, and guide the 

design and interpretation of human immunological studies. Indeed, despite their limitations, 

gene knockout mouse studies have usefully modelled several human immunopathologies and 

the actions of many of the most widely prescribed medicines18. Superimposed upon this, the 

use of co-housed, age-matched mice for a genetic screen could offer insight into the fraction 

and nature of genes whose loss-of-function perturbs the immune system.

To achieve these goals at scale, we have developed a robust, broadly transferrable, high-

density, high-throughput Infection and Immunity Immunophenotyping (“3i”) platform that 

has facilitated analysis of the baseline immune system and its response to challenge in aged-

matched, co-housed, isogenic mouse strains collectively mutated in 530 genes 

(www.immunophenotype.org). Additionally, by integrating 3i into the International Mouse 

Phenotyping Consortium (IMPC) pipeline (www.mousephenotype.org), immune variation 

could be related to measures of general physiology. The expansive outputs (>1million data-
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points) have provided many discrete insights and data-rich resources that collectively build a 

revised frame-of-reference for viewing immune variation. Moreover, of 530 genes screened, 

the baseline immunophenotype and/or responses to challenge were affected by mutations in 

140 genes (>25% hit-rate), most of which (57%) were never hitherto associated with 

immunobiology, but which were strikingly enriched in genes for which humans show little 

tolerance to loss-of-function.

Results

Immunophenotyping of mutant mice at scale

The IMPC aims to obtain and publicly disseminate phenotyping data for mice with targeted 

disruptions in each of ~18,000 annotated protein-coding genes, generated using either 

embryonic stem cells generated by the International Knockout Mouse Consortium19 or 

CRISPR technology. Although full-gene knockouts do not model most forms of human 

genetic variation, they can irrefutably implicate defined molecular processes in 

immunophenotypes, and those phenotypes may be directly related to biallelic human loss-

of-function variants, revealed by studies of communities with parental relatedness20.

Contributing to IMPC, the Wellcome Trust Sanger Institute (WTSI) generated ~3 mutant 

lines per week. Given this scale, immunological assays were limited to peripheral blood 

lymphocytometry and responses to Salmonella and Citrobacter infection21 (Fig 1a; 

Supplementary Fig. 1a), potentially missing many immunoregulatory genes. We therefore 

developed a high-density infection and immunity immunophenotyping platform (3i) 

compatible with the IMPC high-throughput screen (HTS), that permitted us to assess the 

proportion and types of genes that may underpin immune variation. Moreover, by integration 

into IMPC, 3i could relate immunophenotypes to general physiological traits.

At homeostasis, the baseline immune system is simultaneously poised to respond to 

infectious or toxic challenges and regulated to limit immunopathology. Hence, inter-

individual baseline variation is likely manifest in differential immunocompetence and 

susceptibilities to autoimmune diseases. To capture this, 3i featured high-content flow 

cytometry analysis of lymphoid and myeloid cells and their activation states in spleen (SPL), 

mesenteric lymph nodes (MLN), bone marrow (BM) and peripheral blood (PB) at steady-

state (Fig 1a; panels in Supplementary Table 1; populations quantitated in Supplementary 

Table 2; illustrative gating strategy for MLN T, NKT, and NK cell subsets shown in 

Supplementary Fig 1b; for other gating, see materials and methods). To sample an extra-

lymphoid immune system, quantitative object-based imaging was applied to intraepidermal 

lymphoid and myeloid cells in situ (Supplementary Fig 1c). Anti-nuclear antibodies (ANA) 

were quantitated, since they commonly reflect impaired immunological tolerance 

(Supplementary Fig 1d), while effector potential was gauged by measuring SPL CD8 T cell-

mediated cytolysis.

All observational assays requiring sacrifice were conducted at the IMPC termination-point 

of 16 weeks so that they neither diverted tissue from, nor operationally interfered with the 

basic phenotyping programme. Measuring absolute numbers of cells was largely precluded 

by IMPC requirements on organ usage, although the focus on percentage representation 
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reflects common practice in immune monitoring2,3,5. In parallel, mice were assayed for 

responses to infection by a parasite (Trichuris muris), a virus (influenza), and a bacterium 

(Salmonella typhimurium), and to sodium dextran sulphate (DSS) that causes gut epithelial 

erosion and microbial translocation (Fig 1a; Supplementary Fig 1e). For each 3i component, 

experimental standard-operating procedures were established and stringently quality-

controlled; instruments were well calibrated; and data reproducibility monitored 

longitudinally, with automated analysis minimizing any temporal variation (Supplementary 

Fig 1f). Additionally, and to comply with time and budgetary constraints typical of an HTS, 

we chose minimum numbers of data-points required to establish significance following 

application of bespoke statistical analyses (Fig 1a; Supplementary Table 3).

This study represents a five-year phase in which 3i phenotyped knockout strains for 530 

genes (Supplementary Table 4). Most strains were nulls or severe hypomorphs of protein-

coding genes, whereas 1.8% were lncRNA or miRNA mutants. For ~30% of genes, 

heterozygotes were screened because homozygotes were embryonically lethal or sub-viable. 

Of genes selected, 9% had been identified in GWAS screens for inflammatory bowel disease 

(IBD) or were linked to infection; some others had GWAS associations to non-

immunological traits; and the majority were poorly understood genes, thereby maximising 

the potential for discovery. Panther Biological Process Gene Ontology showed that relative 

to the whole genome, the selected genes were neither enriched nor depleted in categories 

with immunological annotations, a point illustrated by a GO-Slim analysis in which the only 

categories with low but significant deviation from the whole genome were reproduction and 

protein modification (Supplementary Fig 1g – indicated by asterisks).

Overall, >1 million data-points were collected from 7 distinct steady-state assay systems 

applied to 2,100 -10,000 mice (Fig 1a), while additional cohorts of mice were subjected to 

challenges. Moreover, minimization of technical variation; fastidious control over batch 

variation, e.g. by spreading phenotyping of each strain over several separate experiments; 

optimization of data collection and analysis22; and innovative data management across 

heterologous platforms permitted 3i to make rigorous assessments of naturally-arising 

variation in the baseline immune system of many hundreds of genetically identical, age-

matched, co-located, adult C57BL/6N mice, thereby creating a precise backdrop for 

analyzing mutants.

Immunophenotypic variation among controls

Most steady-state immune cell subsets in adult C57BL/6N controls showed low coefficients 

of variation (CV), which were further reduced by dynamic automated gating of flow 

cytometry data, particularly for numerically small cell subsets whose reproducible 

quantitation can be challenging (Supplementary Fig 1h). Hence, automated gating was 

adopted screen-wide to obtain the population sizes and CVs described in Fig 1b (see also 

Materials and Methods)22. The screen revealed greater variation for some cell types, 

including germinal centre (GC) B cells and various αβ and γδ T cell subsets expressing an 

activation marker, KLRG1 (Fig 1b; bottom-most panel). Activation-driven variation of 

adaptive subsets was anticipated since non-heritable, antigen receptor gene rearrangements 

dictate that syngeneic individuals respond differently to shared environments. Nonetheless, 
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effects were highly selective, as evidenced by low CVs of KLRG1+ CD4 T helper cells and 

of KLRG1+ regulatory T cells (Treg cells) compared to a comparably-sized subset of 

KLRG1+ CD8 T cells (Fig 1b, compare top and bottom-most panels for subsets denoted 

with blue arrows).

Compared to most innate immune cell subsets, SPL and PB neutrophils showed relatively 

high CVs, particularly in males. Indeed, sex was a consistent source of variation for ~50% of 

PB, SPL, BM, and MLN cell subsets, reflected either in significantly different variance for 

female (F) and male (M) mice, e.g. for PB neutrophils (Fig 1c; left panel) and displayed 

broadly in Fig 1b (bottom panel - CVF, blue circles; CVM, orange circles), and/or in sexually 

dimorphic mean-values, e.g. for BM B cell progenitors (Fig 1c; right panel), and displayed 

broadly in Fig 1b (middle panel; meanF/meanM log2-transformed). Considered at scale, the 

impact of sex was such that principal component analysis (PCA) of 60 aggregated SPL, 

MLN, BM, and PBL flow cytometry parameters sex-segregated 451 mice with >99% 

accuracy, with the first two principal components explaining 34% of total variation (Fig 1d).

Several properties of Vγ5+ dendritic epidermal T cells (DETC) and Langerhans Cells (LC) 

were also sexually dimorphic, as were ANA outputs, evoking frequent gender imbalances in 

human autoimmunity (Supplementary Fig 1i)23. Conversely, DSS outputs did not segregate 

by sex, evoking gender-neutral incidences of IBD (Supplementary Fig 1i)24. In sum, 

widespread but highly selective sexual dimorphism characterizes the baseline immune 

system of adult C57BL/6N mice. As a practical response to this, all statistical tests of 3i data 

accounted for sex.

Significant correlations of discrete immune parameters

Although the immune system is multi-component, the inter-connectedness of its constituent 

cell populations is poorly understood. In this regard, the 3i analysis of >650 age-matched, 

co-located, genetically identical control mice identified significant positive (red) and 

negative (blue) correlations, as illustrated for 46 steady-state SPL parameters in male and 

female mice (Fig 2a; Supplementary Fig 2): note, all correlations shown exclude contingent 

relationships reflecting nested or directly paired technical measurements (see Supplementary 

Fig 1b; Materials and Methods). Conversely, the strong, negative, steady-state relationship of 

effector CD44+CD62L-CD8+ T cells to naive CD44-CD62L+CD8+ T cells is not contingent, 

since there is a variable population of resting CD44+CD62L+CD8+ T cells.

As illustrated by male and female SPL data-sets (Fig 2a, Supplementary Fig 2), correlations 

included a “lymphoid activation-cluster” embracing effector CD4+, CD8+, NK and γδ T 

cells; Treg cells; conventional DC; and plasma cells (Fig 2a, Supplementary Fig 2; central 

red core). While some such correlations were anticipated, e.g. effector Th with effector Treg 

cells, others were not, e.g. effector CD8+T cells correlated positively with plasma cells (Fig 

2a, 27 down, 23 across) but negatively with effector NK cells (Fig 2a, 27 down, 9 across). 

Such relationships may inform the design and monitoring of vaccines aimed at eliciting 

discrete effector responses.

Other correlations were related to immune homeostasis: thus, higher NK cell representation 

reflected increases in mature NK cells (Fig 2a, 5 down, 9 across), whereas higher CD8+ T 
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cell representation reflected increases in resting but not effector CD8+ T cells (Fig 2a, 45 

down versus 46 across or 27 across). Finally, some correlations seemed wholly unexplained; 

e.g. monocytes positively correlated with B1 B cells, and memory B cells positively 

correlated with γδ T cells (Fig 2a, 34 down, 20 across; 18 down, 16 across).

Many correlations were comparable in male and female mice (Fig 2a; Supplementary Fig 2; 

Fig 2b, colorless circles along the 45° axis), but some were sexually dimorphic, with R 

values and/or regression slopes being stronger in females (e.g. macrophages versus resting 

NK) or males (e.g. monocytes versus neutrophils) (Fig 2b, purple and orange circles, 

respectively). Whereas the spleen matrices shown are intra-organ, there were also many 

inter-organ correlations, collectively revealing that the baseline immune system of adult 

C57BL/6N mice is underpinned by dense, sexually dimorphic networks of >1000 

correlations. These may reflect robust intercellular circuitry, such as exists for macrophages 

and fibroblasts25.

Integrating immunology with physiology

By coupling 3i to the IMPC, all animals in the observational screen were subject to measures 

of general physiology (see Fig 1a; Supplementary Fig 1a). As is well established, many 

physiologic traits are correlated with one another. By limiting the freedom-of-movement of 

individual parameters, those correlations impose phenotypic structures for female and male 

mice, reflecting sex-specific physiologies (Supplementary Fig 3a,b). Of note, the correlation 

network appeared much less dense in females, possibly because its full elucidation was 

masked by additional variation arising from sex-specific components, notably oestrous that 

cycles every 4-5 days26. This notwithstanding, core relationships were clearly conserved in 

females and males, e.g. positive correlations spanning cholesterol (Chol), HDL-cholesterol 

(HDL), insulin (Ins), and body-weight (Wght), and the relationship of total protein (Tp) to 

fructosamine (Fruct) which reflects blood protein glycation. Likewise, glucose (Gluc) 

correlated negatively with chloride (Cl) and sodium (Na). From a practical standpoint, the 

relatively low inter-individual variability of Na emphasised that prominent correlations did 

not merely reflect high dynamic ranges of specific parameters.

The more consistent variation of non-immunological parameters in males versus females 

allowed us to identify many highly significant correlations between those parameters and 

specific immunological parameters, with Chol, HDL, and Na being prominent (Fig 3). 

Although immunoregulatory roles for metabolic products and processes are well 

documented27,28, identified correlations were conspicuously selective, with, for example, no 

overt immunophenotypic correlations with triglycerides, creatinine, or calcium, but many 

with red blood cell distribution width (RDW), a common marker of anaemia29, frequently 

associated with chronic immune activation30, and recently shown to predict all-cause 

mortality in humans31.

Clearly, significant correlations of immune parameters one with another and with discrete 

non-immunological traits will limit the freedom-to-vary of any single immune parameter, 

thereby imposing an immunological structure, as shown for males (Fig 3a). Immunological 

structure may reflect a balance of immune and non-immunological components that delivers 

immunocompetence while limiting immunopathology. For females, the sparse correlation 
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network of non-immunological parameters (Supplementary Fig 3b) dictated that the 

immunological structure was also more sparse, although HDL, RDW and Na were again 

prominent within it (Fig 3b).

Many diverse genes affect the immunophenotype

The establishment of robust ranges for myriad immune parameters across age-matched, co-

located, wild-type mice, coupled with the application of bespoke statistical tests (see Fig 1a; 

Supplementary Fig 1f; Supplementary Table 3; Materials and Methods) facilitated high-

throughput screening of knockout lines collectively mutated in 530 genes. For steady-state 

immune parameters, “phenodeviants” (“hits”) which exerted monogenic dysregulation of the 

immunophenotype were called when ≥60% of samples from a strain located outside the 95th 

percentiles of the wild-type distribution for that parameter.

To further limit batch effects, each mutant strain was assayed on at least two separate 

occasions, with hits called in a supervised manner; i.e. no data-points were discarded from 

the dataset, but those possibly attributable to batch effects would not be scored as hits. 

Effects of temporal data drift in flow-cytometric data were avoided by comparing each 

knockout mouse to the 70 wild-type mice examined closest in time for any given parameter 

(Supplementary Table 3). Additionally, there was expert review of raw data for all hits and 

borderline candidates identified by the statistical pipeline.

False positive rates (FPRs) for each parameter were estimated by randomly sampling sets of 

wild-type controls in accordance with the real work flow so as to mimic 10,000 different 

mutant strains, and then assessing their phenodeviance (Supplementary Fig 4a-d). Resulting 

FPRs were far below observed hit-rates that collectively identified 140 phenodeviants, an 

overall hit-rate of >25% for genes that a priori showed no collective enrichment of 

immunological GO-annotation (Fig 4; Supplementary Fig 4; see Supplementary Fig 1g). 

Approximately ~20% of hits were heterozygotes, that collectively accounted for ~30% of 

the strains analyzed. The relevant code is available at: https://github.com/AnnaLorenc/

3i_heatmapping; note that precise hit counts for genes with borderline read-outs may be 

subject to minor adjustment, based on ongoing analyses and expert review.

Unsurprisingly, hit-rates varied among the assays (Supplementary Fig 5a), and the 

importance of assaying the same cell populations in different organs was emphasized by the 

fact that ~50% of flow cytometry hits showed no peripheral blood phenotype (hence would 

not have scored in IMPC), and of those 36% were unique to spleen, and 39% unique to 

MLN (Supplementary Fig 5b). Likewise, two thirds of challenge phenodeviants were unique 

to one pathogen (Supplementary Fig 5b).

Because most phenodeviants scored in only one or few assays, and because overall 3i hit-

calling was conservative (Supplementary Table 3), a 25% hit-rate for monogenic effects may 

have under-estimated the contribution of genetics to immune variation. In short, 3i might 

have identified more hits if more immunological assays had been performed. For example, 

no direct assessments of immunological memory were made, and the steady-state gut was 

not analysed because of interference with IMPC phenotyping. Additionally, although 

sexually dimorphic trends were apparent for some hits, e.g. TCRαβ+ CD8 T cell 
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percentages in Arpc1b–/– mice; TCRαβ+ Treg cell percentages in Setd5–/– mice; and low 

TCRαβ+CD44+CD62L– effector CD4 cell percentages in male IL-27p28 deficient mice (see 

www.immunophenotype.org), some sexually dimorphic phenodeviants might not have 

scored because, other than for PB cytometry and ANA, too few mutant mice were examined. 

Furthermore, no thorough analysis was made of the genetic impact of non-coding regions.

These considerations notwithstanding, it was conspicuous that the overall hit-rate was 

largely comparable irrespective of how well-studied genes were, as assessed by PubMed. 

Specifically, the hit-rate for genes in the lowest quartile of citations (from 0-26) was 23.3%, 

with the rates for the 3rd, 2nd, and 1st quartiles being 22.5%, 25% and 34%, respectively. 

This observation, combined with the fact that the genes screened collectively lacked a priori 
enrichment in any immunological annotations, permitted 3i to identify monogenic impacts 

on the C57BL/6N immune system of 80 genes never hitherto implicated in 

immunoregulation. Four case-studies, briefly considered below, illustrate the diversity of 

impacts of different phenodeviants (Figs 5, 6), while all phenodeviants are described at 

www.immunophenotype.org.

Different classes of genetically regulated immune variation

Nacc2 (Nucleus accumbens-associated protein 2) is a little-studied gene32 which specifically 

affected Vγ5+ DETC numbers (Fig 5a,b), a phenotype hitherto limited to mice mutant for 

Vγ5 or for Skint genes that encode poorly understood, epithelial DETC-selecting 

elements33,34. Thus, the 3i screen identified a novel immune regulator with potential to 

inform how a prototypic tissue-resident T cell compartment is selected and/or maintained in 

adulthood. In this regard, occasional mice scored as harboring wild-type DETC numbers, 

but those cells had low TCR expression, consistent with incomplete selection33.

Dph6–/– mice displayed an immune-specific but broad phenotype, with several innate and 

adaptive cell lineages differing significantly from wild-type (Fig 5a,c). Dph6 is ubiquitously 

expressed, encoding one of seven enzymes required for synthesizing diphthamide, a 

modified histidine residue incorporated into eukaryotic elongation factor 235. However, 

whereas Dph1, Dph3 or Dph4 deficiencies are embryonically lethal36,37, the 3i phenotype 

suggested an immune cell-specific, Dph6-dependent protein translation system of 

differential importance in different leukocyte subsets. This evokes growing evidence for 

immunoregulation by cell type-specific translation38.

In the third case, the broad phenotypic perturbation of several physiologic traits in 

Duoxa2–/– mice (Fig 6a) was unsurprising, since Duoxa2 contributes critically to iodine 

utilisation in thyroid hormone synthesis39. By contrast, the significant expansions of specific 

immune cell subsets, particularly CD4+ T cells, neutrophils and eosinophils, and the 

decreased representation of blood Ly6C–monocytes and KLRG1+ NK cells in Duoxa2–/– 

mice (Fig 6b) were unanticipated given little prior implication of the gene in 

immunobiology. Thus, 3i identified a potential immunoregulatory role of Duoxa2-dependent 

endocrine biology.

Finally, Bach2–/– mice illustrated how 3i could offer broader insights into a well-established, 

disease-related gene. BACH2 deficiencies have been associated with autoimmunity, 
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inflammation, and allergy, commonly attributed to increased effector CD4+ and CD8+ T 

cells, as reported in Bach2–/– mice40–44. However, 3i also identified a greatly expanded 

range of innate and adaptive immune phenotypes of Bach2–/– mice (orange bars in Fig 6c), 

of which the most significant was a >10-fold increase in KLRG1+CD4–NK cells. Thus, 

some components of Bach2-dependent disease may reflect precocious innate immune cell 

activation. Moreover, Bach2–/– CD8+ T cells showed abnormally high cytolytic activity, and 

most Bach2–/– mice were high susceptibility to DSS-colitis (Fig 6d,e).

Genetic regulators of challenge responses

Of 86 phenodeviants affecting steady-state PB, SPL, MLN, BM, CTL, ANA or epidermal 

phenotypes, ~25% also affected responses to challenges, as judged against wild-type 

controls assayed contemporaneously (Fig 7a; Supplementary Fig 5b). Once more, those hits 

included several sparsely-studied genes (Fig 7a, green circles in upper-right quadrant). The 

fraction of phenodeviants affecting steady-state responses that also affected challenge 

responses might have been higher if 3i had employed additional challenges and/or assays of 

response. However, given the breadth of challenges utilized, and the biologically significant 

post-challenge outcome metrics, including survival and weight-loss, our findings most 

probably point to greater genetic redundancy in immune function than in baseline 

immunophenotypes. Indeed, genes affecting challenge outcomes were enriched in those 

perturbing more than one steady-state parameter (Fig 7a; larger circles are relatively 

enriched in upper-right vs lower-right quadrant). High functional redundancy might ensure 

that immunocompetence would be resilient to wide-ranging inter-individual variation in 

baseline immune cell subsets, as characterises humans1–3. Finally, some phenodeviants, 

including many sparsely-studied genes, affected functional responses but not steady-state 

immune parameters (Fig 7a, upper-left quadrant; Supplementary Fig 5b), possibly because 

they affect baseline immune parameter(s) not assayed by 3i and/or are expressed by non-

immune cells which regulate challenge responses via non-immunological mechanisms such 

as barrier protection.

Given that 57% of the 3i “hits” (80/140) had never hitherto been implicated in 

immunobiology, and that the others included many little-studied genes, it was striking that 

hits were collectively enriched in genes for which humans show poor tolerance to “loss-of-

function” (LoF). For all human genes assessed by the Genome Aggregation Database 

(gnomAD) (n=16307), tolerance to LoF is illustrated by “LOEUF”: loss-of-function 

observed/expected upper bound fraction, for which 0 indicates no tolerance of loss-of-

function and 2 indicates high tolerance to loss of function (Fig 7b; left panel, red line)45,46. 

We then compared this distribution with that for human orthologues of 3i hits, but first 

excluded genes with prior GWAS or OMIM classifications that might bias toward low 

LOEUF values. This notwithstanding, the residual 3i hits (n=77) (Fig 7b; left panel, purple 

line) showed a significantly different distribution, with conspicuous enrichment for genes 

with lower LOEUF. This outcome was even more striking when contrasted with human 

orthologues of 3i genes without immune phenotypes (n=334) which collectively showed no 

enrichment for LoF intolerance (Fig 7b; left panel, blue line).
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It might be argued that immune hits were biased toward low LOEUF values by genes scored 

as heterozygotes because the strains were sub-viable. Indeed, LOEUF values were 

conspicuously low when only heterozygotes were scored for human orthologues of all 3i 

hits, or for 3i hits minus the OMIM/GWAS genes (as above) (Fig 7b, middle panel, green 

and purple lines, respectively). Nonetheless, those low-LOEUF-value distributions were 

significantly displaced from that of human orthologues of 3i heterozygotes that were not 

immune hits (Fig 7b; middle panel, blue line), strongly arguing that the low LOEUF scores 

for hits assessed as heterozygotes were not attributable solely to sub-viability but probably 

also to their immune phenodeviance.

Interestingly, enrichment for low LOEUF was also apparent for human orthologues of genes 

purely with steady-state flow cytometry phenotypes (p=0.014, Wilcoxon) (Fig 7b; right hand 

panel, orange versus blue lines). Seemingly consistent with this, the 140 immunological 

phenodeviants were strikingly enriched in genes that also had non-immunological 

phenotypes (58/140 [>41%]) relative to the genes that were not hits (91/390 [23%]), with 

almost identical enrichment seen for genes affecting only baseline immune variation (39/86 

[>45%]) versus those that did not (110/444 [25%]) (Fig 7c).

Genetic regulation of correlation networks

The 3i data-sets were next used to ask whether genes affecting one or more steady-state 

immune parameter(s) might segregate according to whether they also disrupted correlations 

connecting immune parameters: i.e. whether they perturbed immunological structure. Fig 8a 

(left panel) schematises hypothetical distribution clouds of data-points for three 

phenodeviants (yellow, pink, green) displaying extreme values for cell population B. Of 

note, whereas gene yellow and gene green maintained proportionality with population A, 

gene pink broke that correlation.

Real examples of this are shown in Fig 8b: Gmds and Arpc1b mutants displayed very few 

NK cells but maintained proportionality with mature NK cells, whereas most Arhgef1–/– and 

Pclaf1–/– mice sat outside the confidence limits of the relationship, displaying 

disproportionately high NK maturation. Likewise, Duxoa2–/– and Dph6–/– mice, whose 

effector CD4+ T cell numbers were atypically low and high, respectively, each preserved an 

inverse relationship of effector CD4+ Th cells and naïve CD8+ T cells, whereas this 

correlation was broken by Gmds and Cog6 deficiencies. Hence, correlations that confer 

structure on the immune system are differentially resilient to genetic perturbation.

Overall, we observed that genes with the potential to affect >10 correlates collectively 

preserved ~75% of intra-organ and inter-organ correlations (Fig 8c; left-hand column, 

‘Total’). Thus, immunological structure was relatively resilient to genetic perturbation of 

discrete immune parameters. Nonetheless, mutations of some genes that affected larger 

numbers of immune parameters disrupted substantially more correlations, as was evident for 

Cog6 and Bach2 (Fig 8c). However, structural perturbation did not simply reflect the greater 

number of immunophenotypes affected by a gene, since Dph6–/– mice displayed a similar 

number of steady-state immunophenotypes (e.g. altered cell subsets) to Cog6–/– mice, but 

preserved most intra-organ and inter-organ correlations (Fig 8d; compare the density of red 

lines (broken correlations) versus blue lines (preserved correlations) in the spleens of the two 
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strains). This argues that specific genes underpin the existence of certain correlations and 

hence shape immunological structure. Added to this, Arpc1b broke many inter-organ 

correlations while preserving most intra-organ correlations (Fig 8c), indicating that different 

genes regulate immune subset relationships in different ways.

Given that many immune parameters also correlated with specific physiologic measures, it 

was appropriate to ask whether genes with non-immunological phenotypes were more likely 

to disrupt immunological structure. Indeed, baseline immunological structure seemed much 

less resilient when discrete physiological traits were perturbed, with such genes collectively 

breaking significantly more correlations (30%) than did genes only affecting immune 

parameters (16%) (Fig 8e). Additionally, genes which affected challenge responses as well 

as the baseline immunophenotype broke significantly more correlations (35%) than genes 

affecting only the baseline immunophenotype (19%) (Fig 8f). By using cluster-robust 

standard errors, the results shown in Fig. 8e and 8f were robust vis-a-vis different genes 

contributing to different numbers of correlations, and correlations being underpinned by 

additional factors not tested for. Moreover, controlling for the influence of non-immune 

traits and challenge responses in the same regression analysis confirmed that non-immune 

and challenge phenotypes made separate contributions. Clearly, the association of defects in 

immunocompetence with compromises in baseline immunological structure makes a 

compelling case for assessing and better understanding immune subset correlations as a 

refined means for monitoring immune variation.

Discussion

3i has provided a community resource in the form of a broadly transferrable, high-

throughput platform by which immunophenotypes can be measured in different settings; e.g. 

comparison of genotypic variants, or pre- and post-treatments. By combining genetic 

screening and immunophenotyping at scale, 3i has affirmed a substantial contribution of 

genetics to immunophenotypic variation, and has considerably expanded the number and 

diversity of genes known to have monogenic impacts on steady-state immune parameters 

and/or challenge responses. Those genes, most of which lacked prior implication in 

immunobiology, likely have disease-relevance given their wholly unanticipated enrichment 

in genes for which humans show poor tolerance to loss-of-function. Moreover, for well-

studied genes such as Bach2, 3i identified hitherto unrealised endophenotypes that may 

contribute to disease mechanisms.

Of comparable value to 3i’s identification of immunoregulatory genes was the functional 

implication of pathways on which those genes lie. Complex, multigenic autoimmune 

pathologies such as systemic lupus erythematosus (SLE) and multiple sclerosis (MS) reflect 

combined dysfunctions in commonly unelucidated pathways. Germane to 3i, the recent 

demonstration that causative dysfunction in SLE and MS could be tracked via discrete 

endophenotyes15 emphasises the value of associating specific genes and pathways to specific 

endophenotypes. Likewise, relative proportions of murine splenic cell types have proved to 

be powerful indicators of autoimmune dysregulation47. Added to this, the web-based 

curation of 3i data-sets, comparing hundreds of single-gene ablations on the C57BL/6N 
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background, one the most-widely used animal models, might help predict the outcomes of 

drug-mediated pathway inhibition18.

The scale, throughput, and robustness of 3i were also sufficient to provide insight into the 

nature and scope of immune variation in C57BL/6N mice. For example, whereas sexual 

dimorphism of immune parameters is well established48,49, 3i established that its impacts 

are highly selective. The analysis of immune variation at scale also revealed dense 

correlation networks of immune parameters with each other and with general physiologic 

traits. De facto, such correlations impose structures constraining immune variation. 

Although structure was more evident in males, it likely exists in females but in practical 

terms may be masked by higher variability in general physiology. This notwithstanding, 

correlations offer insights into physiologic and environmental factors, e.g. diet, that may 

regulate specific immunophenotypes, and may additionally provide practical surrogate 

measures of immune status.

While immune correlations and resulting structures will differ in detail across organs, strains 

and species, they provide a revised framework for viewing immune variation. For example, 

the co-ordination of immune cell subsets reflected by immunologic structure may confer on 

the immune system a critical agility to respond to diverse challenges. Thus, structure metrics 

(e.g. subset ratios versus consensus values) might usefully be included in immune-

monitoring strategies. Supporting this, Bach2, Cog6 and Arpc1b, which were readily scored 

as disrupting correlations, are strongly associated with human disease40–42,50–52. Moreover, 

therapeutic responsiveness to checkpoint blockade was recently associated with a ratio of 

CD8+ T cell subtypes, rather than with individual subsets53. In parallel, the unanticipated 

density of correlation networks revealed by 3i makes the case for investigating their 

biological basis.

Materials and Methods

Contact for Reagent and Resource Sharing

All reagents used are listed in Supplementary Table 5. For additional information about 

reagents and resources, contact Adrian Hayday at adrian.hayday@kcl.ac.uk.

Experimental design

All assays relied on the fastidious application to cells and tissues of intensively piloted, 

robust, optimised Standard Operating Procedures (SOPs) employing high-resolution, 

quantitative protocols, whose high reproducibility was monitored over time (e.g. 

Supplementary Fig 1f).

Mice were randomly allocated to the experimental groups (wt versus ko) by Mendelian 

inheritance. The experimental unit in the study was the individual mouse. For the majority of 

tests, operators were blinded with regard to the genetic identities of mice. Further detailed 

experimental design information is captured by a standardized ontology as described19, and 

is available from the IMPC portal (www.mousephenotype.org). The steady-state screens 

integrated within the HTS followed a multi-batch design, in which a baseline set of control 

data was constantly collected by phenotyping wt mice of both sexes along with mutant mice 
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at least once per week. As soon as mutant mice from the breeding colonies reached 

appropriate ages, they were issued to the pipeline until sufficient number of males and 

females of each genotype were assessed. In this way, animals from each mutant strain were 

tested on two to five days, interspersed throughout experiment duration, rather than within 

one batch. For advantages and robustness of such design in an HTS see 21,54–56. The 

challenge screens implemented a parallel group study design.

Compliant with HTS practice, the numbers of mice examined in each assay were dictated by 

costs, logistics, and power, with bespoke statistical tests (see below) applied to identify 

genes (so-called “hits”) perturbing defined components of the immune system. Two to seven 

homozygote mice of each sex per mutant line were assessed per test. If no homozygotes 

were obtained from >28 offspring of heterozygote intercrosses, the line was deemed 

homozygous lethal. Similarly, if <13% of the pups resulting from intercrossing were 

homozygous, the line was judged as being homozygous subviable. In either case, 

heterozygotes were phenotyped. The numbers and sex of animals tested per genotype and 

assay are summarized in Supplementary Table 3.

Ethical compliance

Mouse use in this study was justified based on their facilitating a large variety of phenotypic 

tests to be carried out on a sufficient number of individuals in a controlled environment. The 

care and use of mice in the study was conducted in accordance with UK Home Office 

regulations, UK Animals (Scientific Procedures) Act of 2013 under two UK Home Office 

licenses which approved this work (80/2076 and 80/2485) which were reviewed regularly by 

the WTSI Animal Welfare and Ethical Review Board.

All efforts were made to minimize suffering by considerate housing and husbandry, the 

details of which are available at the IMPC portal: http://www.mousephenotype.org/about-

impc/arrive-guidelines. Animal welfare was assessed routinely for all mice involved. Adult 

mice were killed by terminal anaesthesia followed by exsanguination, and death was 

confirmed by either cervical dislocation or cessation of circulation.

Animals

Mice were maintained in a specific pathogen-free unit under a 12-hour light, 12-hour dark 

cycle with water and food ad libitum (Mouse Breeders Diet (LabDiets 5021-3, IPS, 

Richmond, USA), unless stated otherwise. Mice where housed in Tecniplast Sealsafe 1284L 

(overall dimensions of caging (L × W × H): 365 × 207 × 140 mm; floor area = 530 cm2) at a 

density of 3-5 animals per cage, and provided with a sterilized aspen bedding substrate and 

cardboard tubes and nestlets for environmental enrichment.

Mutant mouse production

Mice carrying knockout first conditional-ready alleles were generated on a C57BL/6N 

background using the EUCOMM/KOMP Embryonic Stem (ES) cell resource, with ES 

quality control and molecular characterization of mutant mouse strains performed as 

described previously 57. Upon completion of phenotyping, genotyping was repeated and data 

were only accepted from mice for which the second genotype was concordant with the 
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original. The knock-in first strategy first generates mice that still possess the full sequence of 

the targeted gene, interrupted in a crucial exon by the inserted cassette. These tm1a alleles 

result in functional knockout lines in most cases, but can carry residual expression of the 

targeted gene. These tm1a alleles can be converted into unequivocal full knockout tm1b 

alleles by excising the inserted cassette with the targeted essential exon. Details of alleles 

used can be found in Skarnes et al19. All lines are available from www.knockoutmouse.org 

or mouseinterest@sanger.ac.uk.

Non-immune phenotyping

Non-immune phenotyping (summarized in Supplementary Fig 1a) was conducted as 

described 21. Screening for phenotypes in Citrobacter infection was replaced by the 3i 

challenges.

Immunological steady-state phenotyping

Tests conducted in the steady-state (PBL, SPL, MLN, BM, ear epidermis, antinuclear 

antibodies, cytotoxic T lymphocytes function) were conducted on the same 16-week-old 

mice that were subject to broad non-immunological phenotyping procedures21. Non-fasted 

mice were terminally anaesthetised using Ketamine (100 mg/kg)/Xylazine (10 mg/kg) 

injection. Organs were harvested and either analysed directly (PBL) or shipped in HBSS at 

4°C for analysis on the same day off-site. Readouts of the respective tests and numbers of 

mice used are summarized in Supplementary Fig 1 and Supplementary Table 3.

Single cell preparation of immune cells from spleen—After removing the fat, 

spleens were transferred into Miltenyi C-tubes with 3 ml of enzyme buffer (PBS Ca2+/Mg2+, 

2% FCS (v/v), 10 mM HEPES, Collagenase (1 mg/ml), and DNAse (0.1 mg/ml). Samples 

were then processed using a Miltenyi Gentle MACS dissociator (SPL program 01) and 

incubated at 37°C for 30 minutes. After the incubation, samples were processed again in the 

Miltenyi Gentle MACS dissociator (SPL program 02) and the enzyme reaction was stopped 

adding 300 μl of stop buffer (PBS, 0.1 M EDTA). Samples were filtered through 30 μm 

filters and centrifuged for 5 minutes at 400 x g at 8°C. The pellet was resuspended in FACS 

buffer (PBS, Ca2-/Mg2-, 0.5% FCS, EDTA 2mM), incubated for 60 seconds in RBC lysis 

buffer and then washed with FACS buffer. Samples were transferred to 96-well V bottom 

plates and incubated in 50 μl of RBC lysis buffer (eBioscience) for 1 minute prior to 

antibody staining.

Single cell preparation of immune cells from mesenteric lymph nodes (MLN)—
After removing the fat, MLN were transferred into 1.7 ml microfuge tubes with 200 μl of 

buffer (PBS Ca2+/Mg2+, 2% FCS (v/v), 10 mM HEPES) and ruptured using small plastic 

pestles. 400 μl enzyme buffer (PBS Ca2+/Mg2+, 2% FCS (v/v), 10 mM HEPES), 

Collagenase (1 mg/ml), and DNAse (0.1 mg/ml) were and samples were incubated for 15 

minutes at 37°C. The reaction was stopped by adding 60 μl stop buffer (PBS 0.1 M EDTA) 

and samples filtered through 50 μm filters and centrifuged for 5 minutes at 400 x g at 8°C. 

The cell pellet was resuspended in FACS buffer (PBS Ca2-/Mg2-, 0.5% FCS, EDTA 2 mM) 

and transferred to 96-well V bottom plates for antibody staining.
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Single cell preparation of immune cells from bone marrow (BM)—The tibia was 

cleared of muscle tissue and cut below the knee and above the ankle. The open bone was 

placed into a cut pipette tip placed into a microfuge tube, thereby keeping the bone away 

from the bottom of the tube and allowing the bone marrow to be centrifuged out of the bone 

at 1000 × g for 1 minute. The bone was discarded and the pellet resuspended in 50 μl RBC 

lysis buffer at room temperature for 1 minute. Cells were washed in 200 μl FACS buffer and 

again centrifuged at 1000 × g for 1 minute. Cells were resuspended in 400 μl FACS buffer 

and transferred to 96-well V bottom plates for antibody staining.

Blood preparation—Blood was collected into EDTA coated tubes (peripheral blood 

leukocytes assay) via the retro-orbital sinus. Whole blood for peripheral blood leukocyte 

assays was stained with two titrated cocktails of antibodies (Supplementary Table 1). Using 

the white blood cell count obtained from the haematological analysis, absolute cell counts 

were derived for each population and reported as cells/μl.

Immunophenotyping by flow cytometry

Single cell suspensions were incubated with Fc-block for 10 minutes at room temperature, 

washed four times, first with FACS buffer and then with PBS, and then incubated with live/

dead ZiR dye (BioLegend) for 10 minutes at room temperature. Samples were washed again 

with FACS buffer and incubated with antibody cocktails (see Supplementary Table 1) at 4°C 

for 20 minutes. Samples were washed twice with FACS buffer and measured on a BD 

Fortessa X-20 equipped with 405 nm, 488 nm 561 nm and 644 nm lasers (see 

Supplementary Table 1). Full details of instrument setup are available at 

www.immunophenotyping.org. Panels were modified slightly in summer 2014 in order to 

better correspond to the IMPC panels (T cell panel: 9th June 2014, B cell panel: 15th 

September 2014). Data before and after this data split were analysed separately. Data were 

analysed with FACSDiva and Flowjo software. FCS files are available from 

flowrepository.org.

Flow cytometry quantification (SPL, MLN and BM)—Additionally to the manual 

gating performed at the time of data acquisition, collected flow cytometry data for SPL, 

MLN and BM were gated computationally using flowClean, UFO, and flowDensity22,58. 

FlowClean was used to perform acquisition-based quality checking to remove anomalous 

events. Files with fewer than 20,000 events were then removed from further analysis. UFO 

was used to identify outlier samples (e.g., batch effects). FlowDensity was used to 

enumerate cell populations by automating a predefined gating approach using sequential, 

supervised bivariate gating analysis to set the best cut-off for an individual marker using 

characteristics of the density distribution. The parameters for each individual cell population 

were pre-defined once for all files. The automated analysis data was validated against 

matched manually analysed data. Gating strategies are outlined in Supplementary Fig 1b and 

in Supplementary Fig 6). Assessment of absolute cell counts were not compatible with the 

high-throughput workflow employed in the study for SPL, MLN and BM. All cell subset 

frequencies are presented as a percentages of a relevant parent populations.
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Ear epidermis immunophenotyping

Epidermal sheets from mouse ears were treated with hair removal cream (Nair) for 4 

minutes at room temperature. After removing the cream by extensive washing in PBS, ears 

were split into dorsal and ventral sides and incubated dermal side down for 35 minutes at 

37°C in 0.5 M ammonium thiocyanate (Sigma-Aldrich). Epidermal sheets were gently 

peeled from the dermis in PBS, and fixed in cold acetone for 20 minutes at -20°C. After 

washing in PBS, epidermal sheets were incubated for 1 hour at room temperature with 5% 

(wt/vol) FCS in PBS and were stained for 1 hour at 37°C with Vγ5 TCR-FITC (clone 536; 

BD), MHCII-AF647 (I-A/IE; BioLegend) and CD45-eFluor450 (eBioscience). Epidermal 

sheets were washed extensively in PBS and mounted on slides with ProLong Gold antifade 

medium (Life Signalling Technologies). Leica SP2 or SP5 confocal microscopes equipped 

with 40 x 1.25 NA oil immersion lens and 405 nm, 488 nm and 633 nm lasers were used to 

record 1024 x 1024 pixel confocal z-stacks with Leica Acquisition Software. The confocal 

records were processed and quantified with Definiens Developer XDR software using a 

custom-made automated protocol where images were smoothed with a sliding window 

Gaussian pixel filter, segmented by an automated Otsu’s method and then filtered based on 

object size and morphology parameters to detect cells in each fluorescence channel. Further, 

in order to quantify the number and length of dendrites, the detected cells were skeletonised 

in 3D to determine the points where dendrites start to branch out of the cell body. Mean of 3 

vision fields was used for quantification.

Antinuclear Antibody Immunophenotyping

Murine serum samples were obtained and stored at -20°C prior to analysis (after dilution 

1:100 in PBS) by incubating on commercially-sourced substrate slides (A. Menarini 

Diagnostics Ltd.) coated with HEp-2 cells for 30 minutes at room temperature in a 

humidifying tray. Samples were removed and slides were washed twice with PBS for 5 

minutes and once with water for 5 seconds. Slides were incubated with FITC-conjugated 

goat anti-mouse IgG, diluted 1:500 and incubated for 20 minutes at room temperature in a 

humidifying tray in the dark. The secondary antibody was removed and slides washed twice 

with PBS for 5 minutes and once with water for 5 seconds, both in the dark. Slides were 

mounted in medium and stored at 4°C prior to imaging for 400 ms at 20 x magnification in 

the GFP channel on a Nikon wide-field TE2000U Microscope or a Deltavision Elite 

widefield system based on an Olympus microscope. Images were subject to multi-parametric 

analysis in Fiji. Samples were scored from 0-4 according to intensity based on control 

samples and commercially sourced FITC QC beads. Samples scored ≥2 were marked as 

ANA positive. All sera flagged by automated image analysis as putative positives vis-à-vis a 

contemporaneous standard were manually cross-checked for bona fide nuclear localization 

before scoring.

Cytotoxic T Lymphocyte Immunophenotyping

Mouse splenocytes were isolated using 70 μM cell strainers (BD Plastipak) and cultured in T 

cell media (TCM: 500 ml RPMI, 500 μl B-ME, 5 ml NaPyr, 5 ml pen/strep, 5 ml L-glut, 50 

ml 10% heat inactivated FCS and 100 μl IL-2) on 6-well plates pre-coated with 0.5 μg/ml 

anti-CD3ε antibody and 1 μg/ml anti-CD28 antibody (1.7×106cells/well) for 48 hours. 
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Plates were washed and cells where cultured for a further 8 days with daily passage prior 

CTL assay.

Cytotoxicity assays were performed using a CytoTox96 Non-Radioactive Cytotoxicity 

Assay kit (Promega UK Ltd). Cells were washed and re-suspended in killing assay media 

(KAM: 500 ml RPMI-phenol red, 10 ml 10% heat inactivated FCS and 5ml pen/strep), with 

CTLs at a concentration of 0.1 × 106 and P815 target cells at a concentration of 0.1 × 106. 

Purified hamster anti-mouse CD3ε antibody was added to P815 target cells.

P815 cells were added to a serial dilution of CTL samples and incubated for 3 hours. Lysis 

buffer (Promega UK Ltd.) was added to control samples and incubated for 45 minutes. 

Supernatants were harvested and substrate mix (Promega UK Ltd) was added prior to a 30-

minute incubation in the dark. Stop solution (Promega Corporation UK Ltd) was added to 

halt the reaction and results acquired using a spectrophotometer (VersaMax, molecular 

devices).

Flow cytometric analysis was performed to assess the percentage of CD4+ and CD8+ cells 

within the cell culture. The cell suspension was washed in FACS buffer and the cell pellet re-

suspended in a staining master mix (FACS buffer solution + 1:200 anti-CD8α APC and 

1:200 anti-CD4 PE). Tubes were then incubated in the dark for 7 minutes at room 

temperature before the antibody was washed off and cells resuspended in FACS buffer. 

Results were acquired on a FACS Calibur machine and analysed using FlowJo 10 software.

Challenge screens

Challenge screens were conducted on separate cohorts of mice from the same breeding 

colony used for the steady-state screens.

DSS colitis challenge—Colitis was induced by adding 1.5% (w/v) DSS (Affymetrix, 

Inc.) to drinking water for 7 days, followed by 3 days with regular drinking water, in animals 

aged between 5 and 18 weeks (mean age 9 weeks). Mice were weighed every day and culled 

if weight loss reached 20% of starting weight.

For histological assessment of intestinal inflammation, mice were sacrificed at day 10 by 

cervical dislocation, and samples from mid and distal colon taken. Tissue sections were 

fixed in buffered 10% formalin; paraffin-embedded; cut; and stained with haematoxylin and 

eosin. Colon histopathology was blind-graded semi-quantitatively on a scale from zero to 

three, for four criteria: (1) degree of epithelial hyperplasia/damage and goblet cell depletion, 

(2) leukocyte infiltration in lamina propria, (3) area of tissue affected, and (4) presence of 

markers of severe inflammation, including crypt abscesses, submucosal inflammation, and 

oedema. Scores for individual criteria were added for an overall inflammation score of 

between zero and twelve for each sample. Scores from mid and distal colon were then 

averaged to obtain inflammation scores for each mouse colon.

Salmonella typhimurium challenge—Groups of 8 mutant and 8 C57BL/6N wild type 

mice were challenged intravenously with 5 x 105 colony forming units (cfu) Salmonella 
typhimurium M525 :: TetC, (Fragment C of tetanus toxin, to act as an antigen for subsequent 
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antibody quantification), and followed for 28 days. On day 14 post-infection (pi), four 

mutant and four wt mice were sacrificed by cervical dislocation and organs (spleen, liver and 

caecum) removed. A small piece of spleen and liver was fixed in 4% formalin and then later 

processed to paraffin blocks as an infected tissue biobank. The rest of the organs were 

weighed then homogenized, serially diluted and plated to determine viable bacterial load. At 

day 28 pi, the remaining four mice were culled by cardiac puncture under terminal 

anesthesia and organs removed and processed, as above. The blood was allowed to clot, then 

centrifuged, serum collected and used to detect TetC antigen specific antibodies by enzyme-

linked immunosorbent assay (ELISA). Mice were weighed and monitored daily for signs of 

pathophysiology.

Influenza challenge—Mutant and wt mice (5-21 weeks of age) were lightly anesthetised 

and intranasally inoculated with 171 or 227 p.f.u. of A/X-31 (H3N2) influenza in 50 μl of 

sterile PBS. Mouse weight was recorded daily and the percent reduction was calculated from 

their weight on day 0. Mice were sacrificed by cervical dislocation on day 10 pi, and the 

area under the curve from day 0 to 9 pi was calculated. Mice exceeding 25% total weight 

loss were culled in accordance with UK Home Office guidelines.

Trichuris muris challenge—The Edinburgh (E) strain of Trichuris muris was used in all 

experiments. Female mice (6-12 weeks old) were orally infected with 400 embryonated 

eggs. Mice were culled by cervical dislocation at day 32 pi, blood was collected by cardiac 

puncture for serum recovery, and caecum/proximal colon was dissected to inspect for worm 

presence by stereomicroscope. Levels of parasite-specific serum IgG1 and IgG2a Ab were 

by ELISA: briefly, ELISA plates were coated with T. muris excretory/secretory (E/S) 

antigen at 5 μg/ml. Serum was diluted 1/40, and parasite-specific IgG1, IgG2a and IgE 

detected with biotinylated anti-mouse IgG1 (Biorad), biotinylated anti-mouse IgG2a (BD 

PharMingen), and anti-mouse IgE (BioLegend), respectively. To generate T. muris E/S 

antigen, live adult worms were incubated at 37°C for 24 hours in RPMI-1640 medium 

(Gibco, UK) supplemented with 500 U/ml penicillin, 500 μg/ml streptomycin and 2 mM L-

glutamine (all Gibco, UK). Supernatants were removed, centrifuged at 2000 x g for 15 

minutes, filtered through a 0.22 μm filter (Millipore, UK), concentrated using a 10 kD 

molecular weight cut off Centriprep concentrator (Amicon, UK) and dialysed against PBS 

over a 24-hour period. The supernatant was subsequently filtered again and protein 

concentration determined before use.

Statistical analysis

Sample sizes for each experimental group are included in the figure legends and 

Supplementary Table 3. Measures were taken from distinct animals in almost all 

experiments. Exceptions are body weight, where the weight of the same animal was 

recorded repeatedly during the course of the experiment and the CTL assay, in which T cells 

from the same culture were used for different effector : target ratios. Tests for all assays are 

listed in Supplementary Table 3. Reference-range tests which require no assumptions were 

used for most assays. Adjustments for multiple comparisons were not made unless stated in 

test description, as individual comparisons were not independent (e.g. percentages for 

different cell types determined by flow cytometry are often nested and dependent on each 
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other). Low false positive rates were instead ensured by using conservative reference range 

cut-offs and monitoring false positive rates by simulation (Supplementary Fig 4). All tests 

used were two-sided. Co-variates were included in the analysis indirectly, by dividing 

animals into sex-specific groups or matching ko and wt by assay date/weight/age (MMR 

analysis described below) and in the analysis presented in figures 8e and 8f where covariates 

tested are described in the text. A description of statistical parameters is included into the 

figure legends. Effect sizes are given when fold change between sexes was analysed. All 

significant calls and borderline candidates were manually reviewed by biological experts.

Experimental batch effects were minimised by the experimental design, the statistical 

analysis and by expert review. Experimental set-up: Mice were phenotyped on at least two 

different days and typically three to four different days. Statistical analysis: Stringent 

reference range hit calling required >60% of samples to be in the upper 2.5% or lower 2.5% 

of the wt distribution. The influence of temporal drift in flowcytometric data was minimized 

by using as controls only the 70 wt mice that were closest in time for any given parameter. 

Reference ranges have been shown by the WTSI team to be stable for >60 mice. Expert 

review: Experts reviewed all hits and borderline candidates and excluded candidates that 

suffered from batch effects despite the measures taken above.

Coefficient of variation (CV) was estimated as a ratio of the standard deviation of the wt 

population to its mean (for both sexes together, unless indicated otherwise). Note that since a 

data-set is expressed as frequency of parent, it is bound and CV estimates are less accurate 

close to the boundary.

Sexual dimorphism—Significance of sex as a source of variation in wt animals was 

tested in a mixed model (sex as explanatory variable, assay date as a random effect) by 

examining the contribution of sex to the model and whether the variance was homogeneous 

between sexes59. The effect of multiple testing was managed with Bonferroni correction to 

control the family-wise error rate to 5%. For Principal Component Analysis and Linear 

discriminant analysis (LDA), only wt samples with a complete set of flow parameters were 

used. Data was scaled. Accuracy of classification by sex in LDA was checked with leave-

one-out cross-validation.

Estimation of false positive rates—A mutant mouse line was mimicked by randomly 

selecting N wt animals (N depending on the screen) and assessed whether it would be called 

a hit using the RR approach. To reflect the data structure and address the potentially 

confounding batch effect of test days, the number of experimental days from which animals 

were drawn and their sex was set according to the distributions observed across all tested 

mutant lines. For example, in the lab, bone marrow was collected on five different days in 

36% of mouse strains; in 38% on four different dates; in 11% from three different days, etc. 

When strains were tested on four assay days, in 78% of cases females were tested on two 

days, etc. The same data structure was imposed on the draws for the false positive rates. 

Thereupon, the same rubric used for calling hits from real data was applied, except that the 

expert data review step (see above) was replaced by filtering out samples from the days 

when the median of wt animals and non-significant mutant strain samples was further than 

two median absolute deviations (MADs) from the overall median in wt animals. 10,000 
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draws were performed for each parameter to determine the rate at which false positives 

would occur.

Correlation analysis—Pearson correlations between parameters in the flow cytometry 

screens as well as between the flow cytometry screens and non-immune screens were 

identified in wt mice for pairwise complete observations, accumulated throughout whole 

duration of the experiment. Correlations with parent and sister populations were excluded 

from the dataset. Correlations with R>0.33 and p<0.0001 were considered significant.

Comparison of correlations between male and female mice—R values of all 

significant correlations were compared with a t-test after Fisher z-transformation. Difference 

in dependence between parameters between sexes (slope of regression line) was tested by 

fitting a linear regression model to correlated parameters and assessing significance of 

interaction between sex and predictor variable. P-values were adjusted for multiple testing 

with Bonferroni correction to control the family wise error rate to 5%.

Immunological structure analysis—Starting from parameters that were affected in a 

mutant strain, a list was compiled of other parameters with which the affected parameter was 

ordinarily correlated. The wt C57BL/6N data were then used to predict a value for the 

correlated parameter in the mutant strain by sex-specific linear regression. If ≥60% of mice 

for a given mutant strain had predicted values outside the 95% confidence interval based on 

the wt distribution, the mutant line was defined as breaking this specific parameter 

correlation. Note that a single perturbed parameter could contribute more than one 

correlation to the dataset. For the purpose of this analysis, it was assumed that all 

correlations were equally likely to be broken. To assess if breaking of correlations was 

correlated with other characteristics, such as a non-immune phenotype or a challenge 

phenotype, a multivariate Probit regression analysis was undertaken. The same analysis was 

also used to control for unequal numbers of correlations per gene, allowing for dependencies 

of correlations within a gene by cluster-robust standard errors and for separate contributions 

of all characteristics tested. The analysis was carried out using R, RStudio and R packages 

ggplot2, data.table, dplyr and igraph, org.Mm.eg.db and org.Hs.eg.db.

GnomAD, OMIM and GWAS analyses

If homo-and heterozygotes were analysed from the same strain, only homozygotes were 

included in this analysis. Human orthologues were based on JAX definition (http://

www.informatics.jax.org, accessed 05.05.2016) and only 1:1 human-mouse orthologues 

were used. GnomAD scores were extracted from release 2 (gs://gnomad-public/

release/2.1/ht/constraint/constraint.ht)46.

OMIM annotations were obtained on 31 May 2017, with immune-related OMIM-listed 

genes considered as those implicated in phenotypes of immunodeficiency, recurrent 

infections, autoimmunity.

GWAS associations were obtained from the full NHGRI-EBI GWAS catalog database 78 on 

September 10, 2017 (file gwas_catalog_v1.0.1-associations_e89_r2017-07-31.tsv). In 

GWAS annotation, "immune-related" genes were considered as those mapping to 
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susceptibility to autoimmune disease (systemic lupus erythematosus, psoriasis, rheumatoid 

arthritis, Sjögren syndrome, primary biliary cholangitis, ulcerative colitis, inflammatory 

bowel disease, Crohn's disease, multiple sclerosis, type 1 diabetes, Graves' disease, late-

onset myasthenia gravis); immune response to virus (measured by secreted TNF-alpha); and 

functional units of gut microbiota.

Gene overrepresentation analysis

Enrichment analysis was performed with PANTHER Overrepresentation Test with the tool 

version 14.1 (Released 2019-03-12, www.pantherdb.org)60. We calculated significance of 

over- and underrepresentation of GO-slim Biological Process categories among 466/530 

genes with available GO annotation, by Fisher's Exact test and with FDR multiple testing 

correction. Only categories with more than one gene expected in our dataset and less than 

1000 genes in the mouse genome were included.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Variation in immune cell subset composition with sex as a contributory driver
a. Overview of the tests performed by WTSI as part of IMPC (inner circle) and by 3i and 

WTSI as part of 3i (outer circle).

b. Sexual dimorphism in the immune system: Population sizes as % of CD45 cells (upper 

panel); sexual dimorphism of mean values of population sizes as log2 fold change (middle 

panel, female/male); and % coefficient of variation (lower panel) of immune populations in 

SPL, BM and PB from 16-week old male and female wt C57BL/6N mice (n>500). Blue 

arrows denote cell subsets mentioned in text. Blue and orange circles in bottom panel denote 
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CV values for female and male mice, respectively. Non adjusted p-values from two-sided 

Wilcoxon test.

c. Left: Neutrophils from peripheral blood of 16-week old wt C57BL/6N mice (for females 

n=918 and for males n=913, bars represent means) Right: Hardy fractions A and C from the 

bone marrow of 16-week old WT C57BL/6N mice (for females n=308, for males n=315, bar 

represents mean)

d. PCA of cell type frequencies from four tissues (SPL, MLN, BM, PB), 60 subsets, and 451 

mice; colour denotes sex.
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Figure 2. Correlations exist between immune parameters
a. Heat map represents Pearson correlations of 46 splenic immune cell subsets with each 

other in wt males (n>230) as determined by flow cytometry. Dark red fields denote strong 

positive, dark blue fields strong negative correlations between frequencies of spleen immune 

cell subsets.

b. Correlation differences between males and females. Colour denotes ∆R, the difference 

between the correlation coefficient R for SPL subsets in male and female wt mice. Black 

circumferences mark parameter pairs that are significantly sexually dimorphic (see Materials 
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and Methods). Correlation coefficients for male and female mice were derived from data 

depicted in Fig 2a and Fig S2, respectively.
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Figure 3. Correlations between immune and non-immune parameters form a sex-specific 
network of interactions
Correlations with a Pearson R-value >0.33 and p<0.001 between PBL, SPL, MLN, BM with 

haematological, clinical blood chemistry, and additional parameters (see Supplementary Fig 

3) for males (a) and females (b). Circle colours denote organ assayed; red lines denote 

positive correlations; blue lines, negative correlations (n>180 per sex).
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Figure 4. 140 out of 530 genes perturb the immunophenotype
Red, significantly different from wt; blue, not significantly different from wt; white, not 

performed; grey, insufficient data to make a call. Each cell is coloured red when at least one 

of parameters within an assay is significant. Methods for determining significance of 

parameters are parameter-specific (see Materials and Methods and 

www.immunophenotyping.org).
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Figure 5. Examples of genes with specific impacts on the immune system
a. Overview of two genes that display specific immunophenotypes. Colours as in Fig 4. 

Statistical methods and sample size differ between parameters – see Materials and Methods 

and www.immunophenotype.org for specific gene/parameter combination of n.

b. Vγ5 DETC in ear epidermis of wt and Nacc2–/–mice. The image represents a z-projection 

of cell outlines produced by image processing in Definiens Developer XD, which were used 

for quantitative object-based image analysis: blue, Langerhans cells (LC); red, Vγ5+ DETC 

contacting LC; green, Vγ5+ DETC not contacting LC. Bottom: cumulative data for Nacc2–/–
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mice (n=4) versus sex-matched wt controls (for females n=330, for males n=340, bar 

represents mean).

c. Phenotypic abnormalities in Dph6–/– mice. Fold change in immune cell subset proportions 

between Dph6–/– and wt mice across multiple tissues (Dph6–/–, n=6 for SPL, MLN, BM and 

n=14 for PBL; wt, n>500 for all parameters).
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Figure 6. Examples of genes that impact upon the immune system and physiology
a. Overview of two genes that exhibit broad immunophenotypes. Colours as in Fig 4. 

Statistical methods and sample size differ between parameters – see Materials and Methods 

and www.immunophenotype.org for specific gene/parameter combination of n.

b. Phenotypic abnormalities PBL in Duoxa2–/– mice. Relative PBL cell subset frequencies 

for Duoxa2–/– (n=11) versus wt mice (n>450 per sex for all parameters). Dark and light blue 

denote wt males and females; red and orange denote Duoxa2–/– males and females.
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c. Effector cell subsets in Bach2–/– mice. Fold-change in SPL cell subset composition in 

mutant mice (n=6) versus wt controls (n=76). Yellow represents significant cellular 

phenotypes not previously reported, as detected by reference range; dark blue represents 

significant cellular phenotypes previously reported; light blue represents non-significant 

differences. KLRG1+CD4- NK cells: 10-fold increase, p=1.1x10-9; reference range 

combined with Fisher’s exact test).

d. Cytotoxic T lymphocytes in Bach2–/– mice (n=4) compared to wt controls (212 female 

and 208 male): grey points represent individual wt mice; red circles represent individual 

Bach2–/– mice.

e. DSS colitis in Bach2–/– mice (n=4) compared to wt controls (n=481 female and 

n=315male): grey points represent individual wt mice; white circles represent wt mean 

values; blue circles represent individual Bach2–/– mice.
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Figure 7. Genes affecting baseline immunophenotypes and challenge responses
a. Effected parameters and Pubmed citations per gene. Each bubble represents one gene; size 

represents the number of immune flow phenotypes detected for that gene; colour represents 

the extent to which each gene has been reported on, determined by number of Pubmed 

citations, as of October 2018. Numbers denote the numbers of genes in quadrants of the 

figure.

b. Tolerance to LOF mutations in human orthologs of 3i genes. Left-hand panel: LOF 

tolerance scores derived from GnomAD for human orthologs of: 3i genes without hits (blue, 
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n=334); 3i genes with hits OMIM/GWAS genes excluded (purple, n=77), and for all 

GnomAD genes (red, n=16037). A score of 0 denotes complete intolerance; a score of 2 

complete tolerance to loss of function. Wilcoxon test: purple versus red p=0.010; purple 

versus blue p=0.009. Deciles of all genes marked with vertical grey broken lines. Middle 

panel: Genes tested in heterozygotes. 3i genes without hits (blue, n=109), 3i genes with hits 

(green, n=31), 3i genes with hits OMIM/GWAS genes excluded (purple, n=19). Wilcoxon 

test: purple versus blue p=0.0029; green versus blue p=0.003. Right-hand panel: Human 

orthologs of all 3i genes without hits (blue, n=334) versus genes with hits in steady state 

flow cytometry phenotypes but without challenge hits (orange, n=34); orange versus blue 

p=0.014, Wilcoxon test.

c. Relationship between immune phenotypes and non-immune phenotypes. Each bubble 

represents one gene; size represents the number of immune flow phenotypes detected for 

that gene; colour indicates non-immune phenotype. Genes with any immune hit and a non-

immune phenotype (orange bubbles among bubbles in top and right bottom quadrants) 

versus not hit genes (orange bubbles among bubbles in left bottom quadrant); p=0.000072, 

Fisher exact test. Genes with baseline phenotype change and a non-immune phenotype 

(orange bubbles among bubbles in right bottom quadrant) versus not hit genes (orange 

bubbles among bubbles in left quadrants); p= p=0.00021, Fisher exact test.
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Figure 8. Phenodeviants preserve or break immunological structures.
a. Schematic illustrating the concept of structural perturbation. The yellow and green genes 

are theoretical hits in both correlated parameters (Pearson’s correlation), and exist as an 

exaggeration of the normal relationship that exists at steady state (grey dots represent wt 

mice). The pink gene is also a hit in both parameters, but breaks the correlation by falling 

outside the blue corridor that represents a 95% prediction confidence interval around the 

correlation line.

Abeler-Dörner et al. Page 38

Nat Immunol. Author manuscript; available in PMC 2020 July 06.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



b. Examples of genes that preserve or disrupt immunological structure. Plotted are data 

frequencies of SPL subsets (indicated on x- and y-axes) as determined by flow cytometry. 

Data from mutant lines with phenotypes are highlighted in different colours; large dots 

represent the x/y centroid (mean) values, small dots represent data points for each mouse. 

Grey data points represent wt mice and mutant mice that are comparable to wt mice for both 

parameters shown. n=4 for Arhgef1–/–, n=5 for Arpc1b–/–, n=5 for Gmds–/–, n=4 for 

Pclaf–/–.

c. Genes differ in their capacity to break or preserve relationships. Stated in red font are the 

number of correlations that each cited gene disrupts and in blue font the residual number of 

correlations that each cited gene preserves, the total being all correlations contributed to by 

the steady-state parameters that the cited gene affects. These are represented as percentages 

in the left-hand graph (correlations across organs) and right-hand graph (correlations within 

the same organ). Only genes affecting parameters which contribute to >10 correlations are 

depicted. Statistical significance was determined by two-sided Fisher’s exact test in 

comparison to the data set average (dotted line). Number of correlations above bars, 

*p<0.05, **p<0.01, ***p<0.001.

d. Examples of genes that either preserve or disrupt many correlations. Plotted are 

parameters (colour-coded according to cell lineage) in BM, SPL, MLN, and PBL, and the 

correlations that link them in wt mice (left panel, grey lines) or in Dph6–/– mice (middle) or 

Cog6–/– mice (right), in which cases blue and red lines denote correlations that are preserved 

or broken, respectively.

e. Comparison of correlation breaking in genes that score in non-immune tests and immune 

tests versus genes that have hits only in immune parameters (Probit regression, 

p=2.74*10-11; p=7.45*10-7 when controlling for unequal numbers of correlations per gene; 

p=0.007 when allowing for any dependencies of correlations within a gene by using cluster-

robust standard errors). Numbers of correlations above bars.

f. Comparison of correlation breaking in genes that score in challenge assays and steady-

state immune tests versus genes that have hits only in steady-state immune parameters 

(Probit regression, p=3.95*10-18; p=9.10*10-16 when controlling for unequal numbers of 

correlations per gene; p=0.021 when allowing for any dependencies of correlations within a 

gene by using cluster-robust standard errors). Numbers of correlations above bars. Separate 

contributions of non-immune and challenge phenotypes: p= 1.56*10-6 for non-immune 

controlling for challenge; p=2.93*10-13 for challenge controlling for non-immune.
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