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Abstract

Motivation: Resistance co-occurrence within first-line anti-tuberculosis (TB) drugs is a common

phenomenon. Existing methods based on genetic data analysis of Mycobacterium tuberculosis

(MTB) have been able to predict resistance of MTB to individual drugs, but have not considered the

resistance co-occurrence and cannot capture latent structure of genomic data that corresponds to

lineages.

Results: We used a large cohort of TB patients from 16 countries across six continents where

whole-genome sequences for each isolate and associated phenotype to anti-TB drugs were

obtained using drug susceptibility testing recommended by the World Health Organization. We

then proposed an end-to-end multi-task model with deep denoising auto-encoder (DeepAMR) for

multiple drug classification and developed DeepAMR_cluster, a clustering variant based on

DeepAMR, for learning clusters in latent space of the data. The results showed that DeepAMR out-

performed baseline model and four machine learning models with mean AUROC from 94.4% to

98.7% for predicting resistance to four first-line drugs [i.e. isoniazid (INH), ethambutol (EMB), rifam-

picin (RIF), pyrazinamide (PZA)], multi-drug resistant TB (MDR-TB) and pan-susceptible TB (PANS-

TB: MTB that is susceptible to all four first-line anti-TB drugs). In the case of INH, EMB, PZA and

MDR-TB, DeepAMR achieved its best mean sensitivity of 94.3%, 91.5%, 87.3% and 96.3%, respect-

ively. While in the case of RIF and PANS-TB, it generated 94.2% and 92.2% sensitivity, which were

lower than baseline model by 0.7% and 1.9%, respectively. t-SNE visualization shows that

DeepAMR_cluster captures lineage-related clusters in the latent space.

Availability and implementation: The details of source code are provided at http://www.robots.ox.

ac.uk/�davidc/code.php.
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1 Introduction

Tuberculosis (TB) is one of the top 10 causes of death worldwide

(WHO, 2018); and cases that are resistant to the main antibiotics

that are normally used to treat the disease are increasing. The

phenotypic drug susceptibility test (DST) that determines which

antibiotics can cure particular TB infections is slow, labour-

intensive and expensive. Given the potential for onward transmis-

sion of untreated TB, it is thus urgent to speed up the process that

prescribes the best drug to individual patients in order to reduce the

risk of the infection spreading. Whole-genome sequencing of

Mycobacterium tuberculosis (MTB), the bacterium causing TB, pro-

vides a faster alternative for identifying drug-resistant TB (Quan

et al., 2018). A number of single nucleotide polymorphisms (SNPs)

have been identified as associated with resistance to individual

drugs. Traditionally, the MTB resistance to a specified drug is deter-

mined by any one of these resistance markers, i.e. single drug resist-

ance determinants. However, because of the universal use of a

common first-line treatment and resistance accumulation, resistance

co-occurrence is quite common between the antibiotics, especially

between the first-line drugs: isoniazid (INH), rifampicin (RIF), eth-

ambutol (EMB) and pyrazinamide (PZA) (WHO, 2010). For ex-

ample, the RIF-resistant MTB is often resistant to INH. Two types

of resistant MTB are specifically monitored by the World Health

Organization (WHO): () multi-drug resistant TB (MDR-TB),

defined as MTB that is resistant to at least INH and RIF and (ii) ex-

tensively drug-resistant tuberculosis (XDR-TB) involves resistance

to the two most powerful anti-TB drugs, INH and RIF, in addition

to resistance to any of the fluoroquinolones (such as levofloxacin or

moxifloxacin) and to at least one of the three injectable second-line

drugs (amikacin, capreomycin or kanamycin). The SNP variants

previously identified for single drugs are often jointly used for

detecting M/XDR-TB. However, the evolution of poly-resistant

MTB strains (isolates that are resistant to two or more drugs but do

not meet the definition of MDR-TB) is a complex dynamic process

that will have been influenced by interactions between genes and

drug-resistant phenotype. For example, not all SNP variants are

equally important for determining poly-resistance. Van Rie et al.

(2001) used three codons (rpoB531, rpoB526 and katG315) to iden-

tify 90% of the MDR-TB cases in a cohort of 61 patients. Hazbón

et al. (2006) studied 608 INH-susceptible and 403 INH-resistant

MTB, and found the mutations in katG315 were more common in

the MDR isolates, while the mutations in the inhA promoter were

more common in INH mono-resistant isolates. Moreover, the pres-

ence of SNP variants in a resistant strain may be also related to sus-

ceptibility. Sintchenko et al. (1999) studied 36 MTB isolates in

Australia and concluded that amino acid substitutions at Asp516

and Ser522 in the rpoB gene in RIF-resistant MTB predicted rifabu-

tin susceptibility for MDR-TB. Walker et al. (2015) studied 23 can-

didate genes of 2099 MTB isolates, where 120 mutations were

characterized as resistance determining and 772 as benign.

In this study, we propose a multi-task model with deep denoising

auto-encoder (DeepAMR) to predict resistance of four first-line anti-

TB drugs simultaneously and develop DeepAMR_AMR, a clustering

variant based on the DeepAMR, to learn clusters in latent space of

the data. Our data include 8388 isolates with phenotypic DST for

these four drugs. We compared the proposed method to the resistant

SNP association-based method (baseline model), random forest and

support vector machine for single-label learning, multi-label K-nearest

neighbours (MLKNN) and ensemble classification chains (ECC) for

multi-label learning. An advantage of the proposed model over

the examined machine learning models is that it integrated both

non-linear dimension reduction and multi-label learning into an end-

to-end model, so the high-level abstract of data and multi-label classi-

fication can be learned jointly. The results showed that the

DeepAMR outperformed the baseline model and the other machine

learning model in AUROC for all case and obtained the best sensitiv-

ity except for predicting RIF resistance and MDR-TB.

Meanwhile, visualization using t-distributed stochastic neigh-

bour embedding (t-SNE) to the latent space generated by DeepAMR

reveals that the clusters in latent space are associated to lineage.

2 Materials and methods

2.1 Specimen and laboratory phenotyping
Our dataset includes 8388 isolates with DST for all the four first-

line drugs, which is a subset of >13 000 isolates that were tested

with up to 11 drugs. For isolates in this study, the DST was per-

formed on each drug through an initial screening of resistance in a li-

quid culture, then confirmed using Lowenstein Jensen methods. In

our dataset, lineage of 3000 isolates are unknown, 2200, 1300 and

1200 isolates belong to lineages of European, CentralAsia and

EastAsia, respectively, while relatively fewer isolates belong to line-

ages of WestAfrica1, WestAfrica2 and Animal. The lineage distribu-

tion of our data is shown in Supplement A.

2.2 DNA sequencing and pre-processing
The details of DNA sequencing are provided in Walker et al. (2015).

Nucleotide bases were called using standard filters on sequencing

and alignment quality, as well as the number of reads for each base.

After filtering, the nucleotide bases at certain positions that could

not be called with confidence were denoted as null calls and were

not used in our analysis. We applied the same pre-processing

method as described in Yang et al. (2017).

2.3 DeepAMR and DeepAMR_cluster
The resistance prediction for the MTB is essentially a multi-label learn-

ing problem, where each isolate is resistant to a subset of the examined

drugs. The input is mutations for individual isolates, such that the pres-

ence of a SNP variable is denoted as one and zero otherwise. On the

one hand, DeepAMR integrates deep denoising auto-encoder and

multi-label classification into an end-to-end model, so the output is

phenotypes of all examined drugs. Two objectives of DeepAMR are to

minimize reconstruction error and classification error. On the other

hand, DeepAMR_cluster integrates deep denoising auto-encoder and

clustering into an end-to-end model, where two objectives are to mini-

mize unsupervised clustering and reconstruction error. In DeepAMR_

cluster, the augmented cluster layer referred to a Github project of

‘Keras_Deep_Clustering’ (https://github.com/Tony607/Keras_Deep_

Clustering.) and the number of clusters was determined between 4 and

10 by maximizing adjusted rand index. The evaluation metrics for clas-

sification include sensitivity, specificity, F1 score and AUROC. The

architecture of both DeepAMR and DeepAMR_cluster are provided in

Supplement C. To ensure the robustness of our model, we performed

hyperparameters selection and the selected hyperparameters were then

used across all bootstrap experiments. The details of hyperparameters

and implementation are listed in Supplement G.

2.4 MLKNN and ECC
Multi-label K-nearest neighbour (MLKNN) (Zhang and Zhou,

2007) is derived from traditional K-nearest neighbour algorithm.

For each new instance, its K-nearest neighbours are firstly identified,

and then its label are determined based on the label sets of these
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neighbouring instances using maximum a posteriori (MAP) principle.

We applied internal cross-validation to search hyperparameters of

MLKNN for every training dataset. A vanilla classifier chain method

learns multiple binary classifiers linked along a chain, and each time

extending the feature space by all previous labels in the chain. To ad-

dress the difficulty in selecting an optimal order, ensemble classifier

chain (ECC) (Read et al., 2011) combines the predictions of different

random orders and, moreover, uses a different sample of the training

data to train each member of the ensemble. An advantage of ECC is

that aggregating predicted relevance sets of the individual chains effect-

ively improves prediction performance. We applied logistic regression

models as base classifiers of ECC and tested the number of chains by

10, 20, 30, 40 and 50. As the number of chains increased, the predic-

tion improvement increased at the scale of 0.1%. Thus, we selected 20

chains across all evaluation to balance trade-ff between computational

efficiency and performance improvement.

2.5 Training and testing
In every experiment, 30% data were hold out for testing purpose.

Table 1 reported average results of 100 bootstrap samples. All ma-

chine learning models tuned hyperparameters by an internal cross-

validation on training dataset of every experiment except for ECC

and DeepAMR. The optimal hyperparameters of ECC and

DeepAMR were chosen by minimizing hamming loss and used for

all bootstrap experiments. All results were reported on hold-out test

dataset. In all models, the threshold for prediction scores were

determined based on the optimal cutoff point on the receiving oper-

ating curve (ROC) using the whole training dataset. In the testing

stage, the trained model was used to predict the labels of testing

data, where the MDR-TB was determined by the joint presence of

predicted resistance for INH and RIF, and PANS-TB was deter-

mined by predicted susceptibility for all of the four first-line drugs.

For SVM and RF, the class weight for individual labels was ratio of

resistant to susceptible isolates in the training set. The DA method

does not require training, so it was directly applied to the testing set.

During the training stage, the deep denoising auto-encoders of both

DeepAMR and DeepAMR_cluster were pre-trained using unlabelled

data, then the each model was fine-tuned. All Batch Normalisation

and Dropout layers were only used in the training stage to avoid

over-fitting. The training process was stopped when the validation

loss stopped improving after 5 epochs.

2.6 Permutation feature importance
Permutation feature importance (https://docs.microsoft.com/en-us/

azure/machine-learning/studio-module-reference/permutation-fea

ture-importance) computes importance scores for each of the feature

variables, where the importance measures are determined by com-

puting the sensitivity variation of a model to random permutations

of feature values. The importance score is defined here as the un-

scaled sensitivity reduction in performance after shuffling the feature

values.

Table 1. Comparing performance on F1 feature set for prediction of INH, EMB, RIF, PZA, MDR-TB as defined by WHO and PANS-TB

Models

Drugs DA SVM RF MLKNN ECC DeepAMR

INH Sen 93:560:8 92:6�60:9 92:3�61:0 80:9�64:6 92:4�60:9 94:3�60:9

Spec 98:860:2 98:660:3 98:360:3 97:4�62:3 99:0�60:2 95:7�60:7

AUROC 96:260:4 96:4�60:9 96:7�61:5 91:3�61:1 95:8�60:5 97:7�60:4

F1 95:260:5 94:5�60:6 94:0�60:6 86:4�61:4 94:8�60:5 92:1�60:8

EMB Sen 86:861:5 85:6�61:8 84:7�63:0 69:8�68:9 79:8�62:2 91:5�61:6

Spec 93:960:4 93:9�60:5 94:0�60:8 95:7�61:5 96:3�60:4 93:4�60:6

AUROC 90:460:8 92:1�62:5 92:6�63:4 88:2�61:6 88:5�61:0 96:8�60:4

F1 76:561:5 75:8�61:5 75:6�61:6 70:2�63:2 78:2�61:3 77:8�61:4

RIF Sen 94:960:7 93:2�61:0 90:9�61:5 83:0�63:7 91:8�61:0 94:2�61:0

Spec 98:760:2 98:9�60:3 97:9�60:4 96:4�61:4 99:3�60:2 95:8�60:5

AUROC 96:860:4 97:1�61:1 96:4�62:0 91:3�60:8 95:7�60:5 98:2�60:3

F1 95:160:5 94:6�60:7 91:7�61:0 84:9�61:4 94:4�60:6 90:1�60:9

PZA Sen 47:962:4 78:6�62:4 70:467:5 62:1�69:3 72:7�62:7 87:3�62:1

Spec 98:260:2 94:460:5 95:561:2 96:1�61:8 96:1�60:5 90:9�60:9

AUROC 73:061:2 89:5�63:1 87:965:6 84:1�61:4 85:1�61:2 94:4�60:7

F1 59:562:1 72:1�61:7 69:362:8 65:3�63:2 72:7�61:7 69:1�61:9

MDR Sen 85:761:6 86:1�61:9 85:7�63:0 70:2�68:4 81:0�62:3 96:3�60:8

Spec 94:060:4 94:160:5 94:1�60:8 95:9�61:3 96:3�60:4 95:0�60:5

AUROC 89:960:9 90:1�61:0 89:9�61:3 83:0�63:6 88:6�61:1 98:7�60:3

F1 76:061:6 76:5�61:5 76:1�61:6 70:8�63:2 78:6�61:3 89:5�60:9

PANS Sen 94:160:7 92:5�60:9 90:5�61:0 81:6�63:2 90:7�60:9 92:2�60:9

Spec 97:960:3 97:9�60:4 98:1�60:5 95:9�62:0 99:1�60:2 96:7�60:6

AUROC 96:060:4 95:2�60:4 94:3�60:5 88:8�61:1 94:9�60:4 97:2�60:4

F1 94:860:4 94:0�60:5 93:0�60:7 85:8�61:3 94:2�60:5 92:6�60:6

Note: Sensitivity (sens), specificity (spec), area under receiving operating characteristic (AUROC) and F1 score are reported as mean and SD across 100 boot-

strap samples. The P-value of performance measurement of the examined classifier compared to DA was obtained by Wilcoxon signed-rank test. *represents a

P-value <0.05.
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2.7 T-distributed stochastic neighbour embedding
T-distributed stochastic neighbour embedding (t-SNE) (Maaten,

2008) is a non-linear dimensionality reduction technique suitable

for embedding high-dimensional data for visualization in a low-

dimensional space of two or three dimensions. Assuming that close

objects in high dimension are also closed in low-dimensional space,

the t-SNE includes two main stages: (i) it constructs a probability

distribution over pairs of high-dimensional objects so that similar

objects have a high probability of being picked, while dissimilar

points have a small probability of being picked and (ii) it defines a

similar probability distribution over the points in the low-

dimensional map, and minimizes Kullback–Leibler divergence be-

tween the two distributions with respect to the locations of the

points in the map. For t-SNE in this article, the perplexity of

60, Barnes-Hut approximations and 800 steps were applied. In

Figure 1(a) and (c), the samples are coloured by the label of lineage,

while the samples are coloured by the DST results and predicted

cluster labels in (b) and (d), respectively.

2.8 Iterative stratified cross-validation
To evaluate the proposed model and compare it with other methods,

we split the dataset into training, validation and testing sets. We per-

formed multi-label iterative stratified cross-validation (https://github.

com/trent-b/iterative-stratification.) 100 times and report the average

performance for testing dataset. It aims to ensure that the proportion

of the two classes for every label are approximately the same in each

fold. Given the imbalance of classes for each label and uneven label co-

occurrence, e.g. the resistance of INH and RIF is highly related while

the relationship between the resistance to other drugs is unknown, it

cannot guarantee that the data of each fold are balanced. In each of

the 100 bootstrap experiments, 30% testing data were hold out.

2.9 Related works
Machine learning algorithms are promising in the rapid prediction

of mono-resistance to a single drug, although only a few have been

specifically useful for analysing cross-resistance of MTB. Zhang

et al. (2013) sequenced 161 MTB isolates with 94 MDR and 23

XDR cases and applied logistic regression to estimate the strength of

association between the identified resistance-associated gene and

intergenic regions and resistance to each drug. Farhat et al. (2016)

adopted the random forest to predict both mono-resistance and

MDR-TB cases. Resistance co-occurrence, i.e. cross-resistance, has

been also addressed in other pathogens, e.g. viruses (Heider et al.,

2013; Riemenschneider et al., 2016), where they addressed cross-

resistance with multi-label approaches, ensemble classification

chains (ECC). The ECC has been shown to outperform other multi-

label models, including multi-label K-nearest neighbours (Cheng

et al., 2010).

We consider supervised non-linear Dimensionality Reduction

(DR) in order to capture the discriminative latent space. Yu et al.

(2005, 2006) proposed a Multi-label Informed latent Semantic

Indexing (MLSI) model for supervised multi-label DR. It obtains the

mapping matrix by solving an optimization problem, where the cost

function is the trade-off between the reconstruction errors of both

the input and output. Zhang and Zhou (2010) proposed dependence

maximization (MDDM) for multi-label DR. The goal was to iden-

tify a lower-dimensional space by maximizing the Hilbert-Schmidt

Independence Criterion between the original feature description and

the labels in the subspace. Comparatively, the MLSI model consid-

ered label interaction based on matrix factorization of the output,

while MDDM assumes the labels to be independent; both of them

are solved by eigenvalue decomposition. Lin et al. (2014) proposed

conditional principal label space dimensionality reduction by mini-

mizing an upper bound of the Hamming loss, a trade-off between

the prediction error and encoding error; the minimization was still

implemented using singular value decomposition. Statically, Gönen

et al. (2014) proposed a Bayesian Supervised Multi-label Learning

(BSMLL) model coupled with DR and Multi-label Learning (MLL).

The BSMLL model assumes linear projection and learns the projec-

tion model using variational approximation of posterior probability.

These models are essentially matrix factorization. Although pro-

posed as linear projection, they are able to extend to kernel projec-

tion. In comparison to DR and MLL successively, the model that

(a) (b)

(c) (d)

Fig. 1. Illustration of latent structure using t-SNE: (a) lineage distribution resulted from DeepAMR; (b) phenotype distribution resulted from DeepAMR; (c) lineage

distribution resulted from DeepAMR_cluster and (d) predicted clusters resulted from DeepAMR_cluster

DeepAMR for predicting resistance co-occurrence of Mycobacterium tuberculosis 3243

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/18/3240/5303535 by guest on 26 O
ctober 2020

Deleted Text: 4
Deleted Text:  L
Deleted Text: nonlinear
Deleted Text: 1
Deleted Text: st
Deleted Text: ,
Deleted Text: 2
Deleted Text: paper
Deleted Text: 2 
Deleted Text: 4
Deleted Text: Stratified Cross
Deleted Text: ,
Deleted Text: validation 2
https://github.com/trent-b/iterative-stratification
https://github.com/trent-b/iterative-stratification
Deleted Text: .,
Deleted Text: is
Deleted Text: was
Deleted Text: 4
Deleted Text: (Zhang etal., 
Deleted Text: (Farhat etal., 
Deleted Text: .,
Deleted Text: .,
Deleted Text: ,
Deleted Text: nonlinear
Deleted Text: .
Deleted Text: Yu etal., 
Deleted Text: Zhang and Zhou, 
Deleted Text: s
Deleted Text: Chen and Lin (
Deleted Text: ., 
Deleted Text: s
Deleted Text: s
Deleted Text: .[
Deleted Text: G&ouml;nen, 
Deleted Text: s


jointly learns these two tasks could provide a more predictive sub-

space and improve prediction performance. Lacoste-Julien et al.

(2009) proposed DiscLDA by extending the LDA model. DiscLDA

and BSMLL are the same in assuming that the subspace is obtained

by linear projection, although the former assumes that data follow

the Dirichlet-Multinomial conjugate distribution while the latter

assumes the Gamma-Gaussian conjugate distribution.

From the perspective of neural networks, Zhang and Zhou (2006)

proposed backpropagation for multi-label learning with fully con-

nected layers in order to minimize the global error function, i.e. the

pair-wise difference of multiple labels. However, training a deep

architecture was unsuccessful until unsupervised pre-training was

proposed (Erhan et al., 2009). Huang et al. (2013) proposed a Multi-

task Deep Neural Network (MT-DNN) consisting of a five-layer

model, where the three hidden layers were pre-trained as Gaussian

Restricted Boltzmann Machine (RBM) and binary RBM by mini-

mizing contrastive divergence. After pre-training, the MT-DNN was

fine-tuned with labelled data by backpropagating the label assign-

ment error. It is worth noting that the number of nodes in the three

hidden layers was gradually increased. Qi et al. (2007) developed a

correlative multi-label framework to learn correlation between video

concepts. Huang et al. (2015) proposed multi-label conditional

restricted Boltzmann machine for multi-label classification and label

co-occurrence learning within a multi-task learning framework. Such

model can be learned in a similar way as deep belief nets. Training

RBM and auto-encoder works essentially to minimize the approxima-

tion of the log-likelihood of the generative model. Kiros and

Szepesvári (2012) developed a hierarchical representation learning

module with convolutional extraction and pooling, which can be

stacked to form a deep model, followed by an auto-encoder with a

single hidden layer, then exploited existing TagProp for image auto-

annotation. Wicker et al. (2016) proposed multi-label classification

using stacked auto-encoders (MANIAC), which applied stacked auto-

encoders for non-linear label compression and then decomposed

multi-label learning into multiple independent single-label problems

using base classifiers. Among different variants of auto-encoders,

DAE is more robust in its performance. It is at least as good as RBM

when it is stacked into a deep supervised architecture (Vincent et al.,

2008). The stacked_DAE has been widely applied in various research

areas for learning high-level representation of data, but there are a

few works that are related to ours in the field of genetic data analysis.

Zamparo and Zhang (2015) used stacked_DAE on cell images to

reason cell biology or genetics, aiming to identify those cells which

show interesting phenotypes and their sub-clusters. By using the gen-

etic variation data (e.g. SNPs), similar to our study, Xie et al. (2016)

applied a regression model of multilayer perceptron and stacked DAE

with dropout to predict gene expression. Liang et al. (2015) adopted

stacked DAE to cluster a combination of genotype, drug dosage and

adverse drug event with the purpose of learning the relationship

between the genetic polymorphism and adverse drug reactions.

To the best of our knowledge, multi-task architecture integrated with

stacked DAE has not yet been investigated for genome sequencing

data.

3 Results

3.1 Phenotypes
Figure 2 summarizes the phenotypes of the 13 403 MTB strains

available for analysis. Figure 2(a) plots resistance and susceptibility

from the phenotypic DST for isolates tested for individual drugs. Of

13 403 isolates, at least 80% were tested for INH, EMB, RIF and

PZA, nearly 50% were tested for SM, less than a quarter for ofloxa-

cin, capreomycin, amikacin, kanamicin and moxifloxacin, and only

0.5% for ciprofloxacin (the detailed numbers are provided in

Supplement A). Most isolates were tested for EMB, where 10 892

(87%) were susceptible and 1558 (13%) were resistant. The 3393

INH-resistant isolates accounted for 30% of total isolates tested for

INH. Among the first-line drugs, PZA had the fewest resistant iso-

lates [1147 (11%)]. For the other second-line drugs, the percentage

of resistant isolates ranged between 8% and 17%, although a

smaller number of isolates had these drugs tested (Supplement A).

Figure 2(b) shows the pair-wise resistance co-occurrence (off-di-

agonal) and mono-resistance (diagonal). A mono-resistant isolate is

defined as an MTB that was resistant to only one drug and suscep-

tible to the other drugs. The numbers of the mono-resistant and

two-drug resistant MTB in this map are normalized by the number

of isolates that were resistant to at least any one of the examined

drugs (n¼4038). It shows that the cross-resistance of INH and RIF

is most frequent. The INH-streptomycin cross-resistance is ranked

as the second most common cross-resistance. Less than 1% of iso-

lates were mono-resistant to one drugs, except for INH where the

proportion was 14%. The INH-EMB cross-resistance was similar to

RIF-EMB accounting for 35% of resistant MTB. The proportion of

Fig. 2. Overview of phenotype of the examined 13 403 MTB isolates. (a) Histogram showing the phenotype of the MTB isolates for each individual anti-TB drug

obtained by the drug susceptibility test (up to 11 anti-TB drugs were tested for all isolates). For each drug, the isolates with missing phenotype were excluded. (b)

Heatmap visualizing the proportion of pair-wise resistance co-occurrence (non-diagonal) and mono-resistance (diagonal) across anti-TB drugs. The non-diagonal

elements correspond to poly-resistant isolates that were resistant to at least two anti-TB drugs. The co-occurrence matrix is symmetric so the upper right half of

the graph shows all pair-wise co-occurrence cases
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INH-PZA cross-resistance was similar to that of RIF-PZA and

EMB-streptomycin (22% to 24%). For the other drugs, there are far

fewer cross-resistant and mono-resistant cases. Since there were few

MTB strains with resistance co-occurrence for second-line drugs, we

selected those MTB isolates with complete phenotypes for the four

first-line drugs (n¼8388), for which all models were examined. The

details of the cross-resistance are given in Table 2 of Supplement B.

Meanwhile, Phi coefficients between first-line anti-TB drugs are

shown in Table 3 of Supplement B, where positive Phi correlation

across different drugs.

3.2 Direct association
The baseline method considered in this study aims to classify drug

resistance based on the presence of any resistance determinant from

a library of such determinants that has been assembled from the lit-

erature; we term this method ‘direct association’ (DA) using the re-

sistance SNP catalog described in an existing study (Walker et al.,

2015), although we note that the method formally evaluated in this

study also exploited ‘susceptible’ SNPs and had a third prediction

class for novel mutations where the method classified samples as not

being predictable. To classify resistance against a given drug in this

study, we applied an ‘OR’ rule: if any of the mutations associated

with a given drug in the library were present for a given isolate, then

the isolate was labelled as being resistant to that drug, otherwise it

was labelled as being susceptible. Moreover, an isolate with at least

one resistance determinant for both INH and RIF was labelled as

MDR-TB. On the other hand, an MTB without any resistance for

all four first-line drugs was considered to be PANS-TB, which refers

to isolate that is susceptible to all four first-line drugs. The DA

method does not need to be trained because it uses a previously iden-

tified SNP catalogs, so it is robust to any issues with training set

imbalance.

3.3 Comparison between baseline and machine

learning models
In this section, totally six methods are evaluated, including the base-

line model (DA), Random Forest (RF), Support Vector Machine

(SVM), Multi-label K-nearest Neighbors (MLKNN) and Ensemble

Classification Chain (ECC). The metrics for evaluating performance

of classification include sensitivity, specificity, area under receiving

operating characteristics (AUROC) and F1 scores (the harmonic

mean of precision and recall).

The whole feature set (F1) includes 5919 SNPs found across all

isolates, i.e. every isolate is represented by a vector with 5919

dimensions where every entry of the vector is binary. Table 1 lists

the resulting metrics obtained by all examined models for the predic-

tion of four first-line drugs, MDR-TB and PANS-TB using the whole

feature set. For predicting INH, EMB and PZA resistance,

DeepAMR achieved the highest mean sensitivity of 94.3%, 91.5%

and 87.3%, respectively, and obtained the best AUROC of 97.7%,

96.8% and 94.4%, respectively. DA resulted in highest F1 score of

95.2% for INH and best specificity of 98.2% for PZA, followed by

the SVM with sensitivity of 92.6%, 85.6% and 78.6%, with

AUROC of 96.4%, 92.1% and 89.5%, respectively. RF performed

similar to SVM in the case of INH and EMB but worse than the lat-

ter for PZA resistance prediction. ECC outperformed MLKNN and

achieved the highest specificity of 99.0% and 96.3% for INH and

EMB, and resulted the highest F1 score of 78.2% and 72.7% for

EMB and PZA, respectively. Specially, DeepAMR improved the sen-

sitivity and AUROC by 40% and 20% for PZA comparing to DA,

respectively. With regards to RIF and PANS-TB, DA achieved its

best sensitivity of 94.9% and 94.1%, and best F1 score of 95.1%

and 94.8%, respectively. DeepAMR obtained the highest AUROC

of 98.2% and 97.2%, respectively, followed by SVM with sensitiv-

ity of 93.2% and AUROC of 97.1% for RIF, and 92.5% and 95.2%

for PANS-TB, respectively. For MDR-TB, DeepAMR produced the

best sensitivity, AUROC and F1 score of 96.3%, 98.7% and 89.5%,

respectively, while ECC generated the highest specificity of 96.3%.

SVM had the second best sensitivity of 86.1% and AUROC of

90.1%. In aggregate, DeepAMR outperformed others approaches

with the best AUROC for all drugs. It also had the highest sensitivity

for all drugs except RIF and PAN-TB. The highest sensitivity for RIF

was achieved using the DA method, but DeepAMR was ranked the

best approach among the machine learning methods. In the case of

MDR, DeepAMR achieved the best sensitivity, specificity and F1

score. After parameter optimization, SVM ranked the second best

machine learning model, while MLKNN performed the worst.

Ensemble classification chains (ECC) shows the best specificity in all

cases except for PZA. The baseline method, DA, performed well for

RIF and PANS by obtaining the best sensitivity and F1 score.

Moreover, all models were evaluated on a feature subsets (F2)

where the previously identified SNPs were removed from the whole

feature set, except for the DA, which was not able to predict resist-

ance when the known SNPs were absent. For the sake of space, the

results listed in Supplement D. DeepAMR obtained the best sensitiv-

ity except for PANS-TB, and it also had the best AUROC except for

INH and RIF. Compared to results with feature set F1 in Table 1,

the sensitivities of DeepAMR reduced to 76% for INH and PANS-

TB, and it remained at least 80% for the other drugs. Meanwhile,

the AUROC of DeepAMR with feature subset F2 were between

86% and 92% for all drugs. The F1 scores of all examined models

were reduced by 5% to 20% for all drugs. Similar to results with

feature F1, MLKNN and ECC still produced the best specificity.

This analysis verifies that the machine learning models have poten-

tial for predicting resistance when the previously identified SNPs are

absent. It can be explained that co-occurred mutation pattern associ-

ated to phenotype are used by machine learning models for resist-

ance prediction.

3.4 Latent structure
In order to investigate relationship between lineage, phenotype and

clusters of latent space, we considered both DeepAMR and its vari-

ant, DeepAMR_cluster. The former is a deep denoising auto-

encoder augmented by multi-task classifiers, while the latter is aug-

mented by a clustering layer. Please refer to Supplement C for the

detailed structures of these two models. Figure 1 illustrates the latent

structures at the bottleneck of the auto-encoder obtained by t-SNE

for DeepAMR and DeepAMR_cluster, respectively. With regard to

visualization for latent space of DeepAMR (as shown in Figure 1a

and b), almost all lineages are scattered into different visual clusters

except that the lineages of CentralAsia and IndianOceant dominant

the bottom left cluster in green and the right cluster in dark grey, re-

spectively. In terms of phenotype, resistant samples are more closed

and separated from susceptible ones, although the subtypes of cross-

resistance cannot be distinguished from each other (as shown in

Figure 1b). It is observed that lineage and phenotype distribution of

MBT are not related in latent space. On the other hand, the visual-

ization for latent space of DeepAMR_cluster shows that several

well-separated clusters corresponds to lineages, especially the line-

ages of EastAsia (purple dots) and CentralAsia (green dots) are dis-

tinct from others (as shown in Figure 1c). In Figure 1(d), the visual

clusters are well-separated and consistent with the predicted clusters

DeepAMR for predicting resistance co-occurrence of Mycobacterium tuberculosis 3245
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obtained by unsupervised clustering. Moreover, the clusters of 4, 5

and 7 correspond to the lineage of EastAsia, CentralAsia and

IndianOcean, respectively. The rest clusters are also well-separated

and correspond the same lineage of European as shown in Figure

1(c). The heat-map of confusion matrix between lineage and clusters

obtained by the DeepAMR_cluster is provided in Supplement F.

Comparing the latent structures resulted from DeepAMR with that

of DeepAMR_cluster, it is implied that DeepAMR distorts the latent

structure to better separate susceptible and resistant classes, yet

DeepAMR_cluster captures the lineage-related clusters in latent

space. Moreover, the visualization for the original input is also pro-

vided in Supplement E, where the t-SNE shows that the visual clus-

ters are related to lineages, but the unsupervised clustering results

shows that five of eight predicted clusters are mixed up.

3.5 Ranking of SNPs
The SNPs ranking was obtained by DeepAMR based on permutation

feature importance, where the metric was evaluated for every SNPs by

permuting the order of one feature column at one time. The metric is

sensitivity decrease after permutation. Figure 3 plots the ranked SNPs

with respect to INH, EMB, RIF and PZA, respectively. For the sake of

space, we only plotted top 20 SNPs with metric >0. On the one hand,

the top three SNPs with respect to INH (as shown in Figure 3a), katG

S315T, fabG1 C-15T and fabG1 G-17T, are previously identified INH-

resistance determinants. On the other hand, shuffling the rest SNPs kept

the sensitivity almost unchanged, where inhA S94A and katG S315N

are associated to INH resistance, embC V981L and rpoB C-61T are

lineage-related; rpoB C-61T is associated to Central Asian sub-lineage.

Specially, inhA S94A and fabG1 T-8A are previously uncharacterized.

According to Figure 3(b), the top SNP, rpoB S450L, with respect

to EMB is actually identified to be related to RIF resistance, while

the next three SNPs, embB M306I, embB M306V and embB

Q497R, are previously recognized to be associated to EMB resist-

ance. Among the rest SNPs that changed the sensitivity minimally,

embB G406S and embB C-16T are previously identified to be

related to EMB resistance, rpoB H445C, rpoB D435Y, rpoB I491F

and rpoB D435V are known to have a strong association with RIF,

fabG1 G-17T is one of the most frequently seen INH mutation,

while embA C-16T was considered as ‘benign’ (Walker et al. 2015).

In the case of RIF (as shown in Figure 3c), there are nine SNPs

among top 11 SNPs known as RIF-resistance determinants; one of

the other two is INH-resistance determinant, katG S315T. Among

the rest SNPs, rpoB 1427 delTGGCCC and embB M306V are

known as RIF and EMB resistance determinants, respectively, embC

T270I was considered to define lineage.

With regard to PZA (as shown in Figure 3d), all top three SNPs,

manB D152N, rpoB C-61T and embC R738Q, are associated with

the sub-lineage of Central Asian. In the rest SNPs, pncA A-11G and

pncA L4S are known to be strongly related with PZA resistance,

rpoB S450L, rpoB H445Y, rpoB H445C and rpoB D435Y are

known as RIF-resistance determinants, embB G406S is EMB-

resistance determinant, rpsL K43R is known to be related to a

second-line drug, streptomycin (SM). In addition, iniA S501W and

embC V981L were identified as ‘benign’ and lineage-related,

respectively.

4 Discussion

4.1 Discussion of results
The detailed description of hyperparameters optimization for all

machine learning models is provided in Supplement H. For SVM,

RF and MLKNN, the optimal hyperparameters were obtained with

internal cross-validation in every bootstrap experiment.

Hyperparameters of ECC and DeepAMR were chosen as those

which provided the minimum hamming loss. The chosen hyperpara-

meters are sub-optimal because there is trade-off between computa-

tional efficiency and performance improvement.

The results show that overall performance of two multi-label

learning models, MLKNN and ECC, are worse than the other two

single-learning models, SVM and RF. This can be explained that the

classification errors in every labels accumulate jointly and then dam-

age more to the two multi-label learning models. MLKNN deter-

mines the labels of a testing sample based on its neighbours using

maximum a posterior principle, however it ignores the relationship

(a) (b)

(c) (d)

Fig. 3. Ranked SNPs based on permutation feature importance resulting in positive metric with respect to INH, EMB, RIF and PZA, respectively
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between labels. ECC determines labels of a test sample by collective-

ly considering multiple vanilla classification chains (CC), which se-

quentially treats each label as a binary classification problem. It

overcomes the dependence to the order of labels in the vanilla CC,

but has to go through all chains before making a decision for test

samples and propagates errors through the chains. These two mod-

els are also limited in high dimensional sparse dataset because they

were designed for low dimensional data. The DeepAMR takes ad-

vantage of high-level abstract of data, non-linear dimensionality

reduction and then jointly learns the labels and reconstructs the data

given the noise. Such nature improves the generalization capability

of the DeepAMR. To sum up, comparing to the baseline model

(DA), DeepAMR improved AUROC by 1.2% to 19% for all cases,

and sensitivity by 1% to 39% for all except RIF and PANS-TB,

whereas DA achieved 0.7% and 2% sensitivity higher than that of

DeepAMR for RIF and PANS-TB, respectively. Compared with the

second best machine learning model, DeepAMR increased AUROC

by 1% to 8.5% for all cases, sensitivity by 1% to 9.7% for all except

for PANS-TB; SVM gained 0.3% sensitivity higher than DeepAMR

for PANS-TB.

In terms of evaluation metrics, both sensitivity and specificity are

clinically important. In an imbalanced dataset with more negative

samples (susceptible isolates), the specificity is generally higher than

sensitivity. In the case when sensitivity (recall) is high but F1 score is

low (e.g. EMB, PZA and MDR-TB), the precision is lower as F1

score is the harmonic mean of precision and recall. It means that

positive samples that are falsely classified into negative group are

more than negative samples falsely classified into positive group.

It means that fewer of resistant isolates are treated as susceptible iso-

lates yet relatively more susceptible ones are treated to be resistance.

This is mainly because that the resistance co-occurrence pattern mis-

led the classification of susceptible samples or there were errors in

phenotype to four first-line drugs.

All models performed relatively worse for predicting EMB, PZA-

resistance. This might be because: (i) the SNP patterns associated

with resistance co-occurrence misled the classification for EMB and

PZA resistance, (ii) the number of isolates that are resistant to EMB

and PZA is relatively fewer than those to the other two drugs,

(iii) genes outside of the considered 23 genes might be related to de-

termine EMB and PZA-resistance and (iv) the resistance to EMB

and PZA depends on a large number of resistance determinants who

might be non-linearly related, which can be the reason why the

DeepAMR improves the most for these two drugs, as well as for pre-

dicting MDR-TB, e.g. the sensitivity improves 5%, 40% and 10%

for EMB, PZA and MDR-TB, respectively.

In all 13 403 isolates, only 8388 isolates have completed pheno-

type of first-line drugs to enable us to investigate cross-resistance in

a supervised way. While the dataset is too small for optimal multi-

class classification, multiple clusters were revealed in the latent

space and learned by the proposed model via t-SNE visualization.

The t-SNE attempts to preserve local structure: in other words,

points that are close in the high-dimensional space remain close in

the new low-dimensional space, which means that the ‘distance’

(affinities) between points in the resulting embedding space only

reveals the neighbourhood relationship of points in the original

high-dimensional manifold. The t-SNE is inefficient for high-

dimensional dataset and its parameters are sensitive to the data. The

resulting structure in embedding space corresponds to lineage and

aligns to major clusters obtained by unsupervised clustering, which

is basically consistent to clusters obtained by PCA in Supplement E.

According the ranked SNPs with regard to individual drugs, it is

observed that INH and RIF resistance determinants dominant

sensitivity variation for the classification of INH and RIF, respect-

ively, while both RIF and EMB resistance determinants are highly

important in sensitivity variation of EMB resistance classification.

On the other hand, lineage associated SNPs contribute the most to

sensitivity variation for PZA resistance classification, meanwhile

RIF, EMB and SM resistance determinants also affect sensitivity

variation of classifying PZA resistance. This is can be explained that

PZA resistance is sensitive to the co-occurrence of resistance to RIF,

EMB, SM and PZA.

4.2 Limitations of this study
The resistance co-occurrence is uneven between different drugs, e.g.

INH and RIF resistance co-occurrence is highly frequent, while that

of EMB and PZA is rarely seen. Assuming such prior knowledge is

unknown, the objective function for every drug is equally weighted

in the fine-tuning of DeepAMR during the training stage. We only

considered cross-resistance between four first-line drugs but ignored

that of second-line drugs because: (i) the inaccurate phenotyping for

second-line drugs would introduce large error in the classification

for first-line drugs and (ii) a small number of resistant isolates would

result in over-fitting easily for such a complex model.

During the training stage, the class weight was computed for all

machine learning classifiers, which might be different in the testing

set, as it could result in increased covariance. Moreover, it is worth

noting that the performance evaluation using sensitivity, specificity

and AUROC might not be the best for evaluating multi-label learn-

ing, although we attempted to compare our model to the baseline

method.

The visual clusters obtained by t-SNE are strongly influenced by

the chosen parameters (such as perplexity, etc.) and could even ap-

pear in non-clustered data, and thus may be false findings. Another

problem with t-SNE is that it does not preserve distances nor density

but to some extent preserves nearest-neighbours. Moreover, t-SNE

however suffers from limitations such as lack of an explicit out-of-

sample extension (it cannot be used for fitting new sample), loss of

information of the inter-cluster relationships), slow computation

time, inability to meaningfully represent very large datasets. To

overcome a shortcoming of t-SNE, kernel t-SNE as a parametric ex-

tension has been introduced in Gisbrecht et al. (2015). Kernel t-SNE

preserves the flexibility of basic t-SNE but enables explicit out-of-

sample extensions. More recently, Uniform Manifold

Approximation and Projection (UMAP) has been proposed by

McInnes and Healy (2018), claiming that it obtains similar results as

t-SNE with a shorter run time and preserves more global data

structure.

The permutation feature importance assumes that the variables

are independent so it fails to recognize relationship between fea-

tures. We acknowledge that permutation importance could intro-

duce errors in SNP ranking. Several rare SNPs are ranked higher

than other resistance determinants, even though all their effects to

decrease sensitivity can be ignored. For example, in the case of INH,

embA L262L ranked higher than katG S315N, yet there are three

isolates contains the former and two of them are resistant to all four

first-line drugs. Comparing with wrapper and filter methods for

selecting features, a better ranking could be obtained by learning the

importance of variables within the model.

5 Conclusion

Aiming to reduce dimensionality and classify multiple labels simul-

taneously, we proposed an end-to-end deep learning model,
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DeepAMR, by taking genomic data as inputs to classify drug resist-

ance of MTB given resistance co-occurrence. The comparison results

showed that DeepAMR outperformed the other models with best

AUROC for all four first-line drugs, as well as MDR-TB and PANS-

TB. It also achieved the highest sensitivity for all drugs except RIF.

According to the visualization of the embedding space, DeepAMR

distorts the latent structure of input data to better separate suscep-

tible and resistant classes, while DeepAMR_cluster captures the

lineage-related clusters in latent space of genetic data. In addition, it

is observed that INH and RIF resistance determinants dominant sen-

sitivity variation for the classification of INH and RIF, respectively,

while cross-resistance pattern highly influences the prediction of

EMB and PZA.
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Kiros,R. and Szepesvári,C. (2012) Deep representations and codes for image

auto-annotation. In: Advances in Neural Information Processing Systems,

pp. 908–916.

Lacoste-Julien,S. et al. (2009) Disclda: discriminative learning for dimension-

ality reduction and classification. In: Advances in Neural Information

Processing Systems, pp. 897–904.

Liang,Z. et al. (2015) Discovery of the relations between genetic polymorph-

ism and adverse drug reactions. In: 2015 IEEE International Conference on

Bioinformatics and Biomedicine (BIBM), pp. 543–548. IEEE, Washingtom

D.C., USA.

Lin,Z. et al. (2014) Multi-label classification via feature-aware implicit label

space encoding. In: International Conference on Machine Learning, pp.

325–333.

Maaten L,H.G. (2008) Visualizing data using t-SNE[j]. journal of machine

learning research. J. Mach. Learn. Res., 9, 2579–2605.

McInnes,L. and Healy,J. (2018) Umap: Uniform manifold approximation and

projection for dimension reduction. arXiv preprint arXiv: 1802.03426.

Qi,G.-J. et al. (2007) Correlative multi-label video annotation. In: Proceedings

of the 15th ACM International Conference on Multimedia, pp. 17–26. ACM,

Augsberg, Germany.

3248 Y.Yang et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/18/3240/5303535 by guest on 26 O
ctober 2020

Deleted Text: .[


Quan,T. et al. (2018) Evaluation of whole-genome sequencing for mycobac-

terial species identification and drug susceptibility testing in a clinical set-

ting: a large-scale prospective assessment of performance against line probe

assays and phenotyping. J. Clin. Microbiol., 56, e01480–e01417.

Read,J. et al. (2011) Classifier chains for multi-label classification. Mach.

Learn., 85, 333.

Riemenschneider,M. et al. (2016) Exploiting HIV-1 protease and reverse tran-

scriptase cross-resistance information for improved drug resistance predic-

tion by means of multi-label classification. BioData Mining, 9, 10.

Sintchenko,V. et al. (1999) Mutations in rpoB gene and rifabutin susceptibility

of multidrug-resistant Mycobacterium tuberculosis strains isolated in

Australia. Pathology, 31, 257–260.

Van Rie,A. et al. (2001) Analysis for a limited number of gene codons can pre-

dict drug resistance of Mycobacterium tuberculosis in a high-incidence com-

munity. J. Clin. Microbiol., 39, 636–641.

Vincent,P. et al. (2008) Extracting and composing robust features with denois-

ing autoencoders. In: Proceedings of the 25th International Conference on

Machine Learning, pp. 1096–1103. ACM, Helsinki, Finland.

Walker,T.M. et al. (2015) Whole-genome sequencing for prediction of

Mycobacterium tuberculosis drug susceptibility and resistance: a retrospect-

ive cohort study. Lancet Infect. Dis., 15, 1193–1202.

WHO (2010) Treatment of Tuberculosis Guidelines. World Health

Organization, Geneva.

WHO (2018) Global Tuberculosis Report 2018. World Health Organization.

Wicker,J. et al. (2016) A nonlinear label compression and transformation

method for multi-label classification using autoencoders. In: Bailey,J. et al.

(eds) Pacific-Asia Conference on Knowledge Discovery and Data Mining,

PAKDD 2016, Lecture Notes in Computer Science. Vol. 9651, Springer,

Cham, pp. 328–340.

Xie,R. et al. (2016) A predictive model of gene expression using a deep learn-

ing framework. In: 2016 IEEE International Conference on Bioinformatics

and Biomedicine (BIBM), pp. 676–681. IEEE, Shenzhen, China.

Yang,Y. et al. (2017) Machine learning for classifying tuberculosis

drug-resistance from DNA sequencing data. Bioinformatics, 34,

1666–1671.

Yu,K. et al. (2005) Multi-label informed latent semantic indexing. In:

Proceedings of the 28th Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval, pp. 258–265. ACM,

Salvafor, Brazil.

Yu,S. et al. (2006) Multi-output regularized feature projection. IEEE Trans.

Knowledge Data Eng., 18, 1600–1613.

Zamparo,L. and Zhang,Z. (2015) Deep autoencoders for dimensionality

reduction of high-content screening data. arXiv Preprint arXiv:

1501.01348.

Zhang,H. et al. (2013) Genome sequencing of 161 Mycobacterium tubercu-

losis isolates from china identifies genes and intergenic regions associated

with drug resistance. Nat. Genet., 45, 1255.

Zhang,M.-L. and Zhou,Z.-H. (2006) Multilabel neural networks with appli-

cations to functional genomics and text categorization. IEEE Trans.

Knowledge Data Eng., 18, 1338–1351.

Zhang,M.-L. and Zhou,Z.-H. (2007) ML-KNN: a lazy learning approach to

multi-label learning. Pattern Recognit., 40, 2038–2048.

Zhang,Y. and Zhou,Z.-H. (2010) Multilabel dimensionality reduction via de-

pendence maximization. ACM Trans. Knowledge Discov. Data, 4, 1.

DeepAMR for predicting resistance co-occurrence of Mycobacterium tuberculosis 3249

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/18/3240/5303535 by guest on 26 O
ctober 2020


	btz067-TF1

