Portals for interactive steering of HPC workflows

SC19 Workshop on Interactive High Performance Computing

Robert Settlage^{*1} and Srijith Rajamohan^{*1} Kevin Lahmers², Alan Chalker³, Eric Franz³, Steve Gallo⁴, David Hudak³

*presenting
¹Advanced Research Computing at Virginia Tech,
²Virginia Maryland College of Veterinary Medicine,
³Ohio Supercomputer Center,
⁴Center for Computational Research, University of Buffalo

Supported by National Science Foundation grant 1835725.

Introduction

- Today's goals
- iHPC vs Gateway vs HiL

2 Project 1: enabling non-traditional HPC users

- Herd health monitoring via DNA sequencing
- Barriers to use of HPC resources
- Open OnDemand as an enabling tool

Project 2: Visualizing Ideology using Weakly-Supervised Learning

Show case work at Virginia Tech where HPC, human interaction and portals/gateways have converged to enable interesting science.

Project 1: enabling complex workflows with Open OnDemand

Herd health monitoring via DNA sequencing.

Project 2: iHPC workflow for Weakly-Supervised Learning

Visualizing Ideology using Weakly-Supervised Learning.

In this discussion, we are really combining three concepts: interactive computing, gateways, and human-in-loop computing.

iHPC

Combination of HPC and human interaction to influence computational workflows.

Gateway

Portal of entry to compute resources.

HiL

Computation requiring human interaction integral to computation.

Detection and genotyping of veterinary viral pathogens

Genome sequencing is more accessible, portable, and becoming the go-to for screening. Here we are enabling vets by building tools for HPC from the edge.

Porcine Reproductive and Respiratory Syndrome virus in Pigs

- Annual losses in US of \$760M
- Genotyping important for animal movement and treatment decisions

Infectious Bronchitis virus in Chickens

• Similar to PRRSv in variability and vaccination efficacy

Equine Herpesvirus-1 in Horses

- Highly contagious
- Quarantine released based on genotype identification

High Performance Computing Barriers

Availability of hardware is not an (immediate) issue.

Access and use barriers are largely self-imposed.

- System access: ssh
- Software: no root access, modules
- Data (in/out): ftp, scp, rsync, etc
- Compute configuration, script writing: vi, emacs, etc
- Compute execution: job scheduling

Open, interactive HPC via the web.

Provides easy to use and extend, web-based access to HPC.

Features:

- Plugin-free web experience
- Easy file management
- Command-line shell environment
- Job Management and monitoring
- Graphical desktop environments and applications

Open OnDemand Features | Out of the Box

Users come with a modern web browser and HPC credentials.

Open OnDemand provides zero-install and single sign-on solution.

- Landing page
- Files App
- Job Composer App
- Job Monitor

Open OnDemand Features | Extensibility

OnDemand uses a plug-in style wrapper to facilitate app development.

Users and sites can develop and share custom apps.

Occased for an ended with the left of the descent of the descent of the left of the descent of the left of the descent of the left of the descent of the descent

- Jupyter Notebooks
- Matlab
- Rstudio
- ParaView, Comsol, etc

OnDemand Pathogen detector workflow

© ,Robert Settlage *1 and Srijith Rajamohan *1 , Kevin Lahmers², Alan Chalker³, Eric Franz³, Steve Gallo⁴, David Hudak³

Job form abstracts away all unessential scheduler settings.

WIP – add estimates for time to first results and project completion based on queue parameters, job characteristics and current queue jobload.

- keep form to basics
- inform choice of queues
 - GPU queue gives faster time per job
 - CPU queue may be faster to complete full project
- end result is submission of job
 - watcher for waiting for data upload
 - viewer for real time viewing of results as completed
- typical sequencing run gives 300-1000 sequencing files taking 1 min (GPU) to 10 min (CPU) to process

setive Appn	DNAmonitor
altra	Differinging
DMSOL Multiphysics	This app will create a project directory, start the characteris pipeline watcher, and start a result viewer.
eyter Nataboak	Allocation
eyler Netabook (Julia erabited)	andemand?
ATLAB	SLURM allocation to use for this job.
and/on	Reservation
amote Deaktop	
nado	(Leave blank if you are not targeting a particular reservation.)
rabath	Project name
Sknonter	ter, ana
pyter Natabook	This will be where data will get stored will add timestamp for uniqueness
ATLAB	Gappy calling parameters
mode Desklop	- opu_threads_par_paller 2 - num_callers 8 - Neucal FLD MINTEP - Ht SQK LSH10
riada	defaultcpu, threads, per, caller 2rum, callers 6flowcell FLO-MINIST
dery	4K 0GA-COA 109
pyter Netabook	Ran Centrifuge
	p_compressed-h-v
	Choose from available databases found in /groups/Lahmers_Jab/databases

MinION sequencing results in many small fast5 files.

MinION -> HPC storage -> Guppy -> Centrifuge -> additional steps.

- status for project metrics
- link to Pavian viewer
- add logic for additional steps
 - blast
 - send data to db
 - kill all??
 - more ...

report of factors and project dir of report of factors many frameworked area.	vt.edu/groups/labora_lab///	I 186	Z
Clickham for Florian viewer			
Family Genus Species			
aano Lehenberheisene	1940	counts	winguectice
kennonariareas	1460		
Vibrionacese	641	4	
Maliprace	806	1	
	325	1	
Altaromonadaceae			
Altaromonadaceae Balomonadaceae	31256	1	
Alteromenadaceae Nalemenadaceae FETERE and quality	3036	3 Utt nad leigh	
Alteromonadaceae Ratomonadaceae RETERE and quality	3056 P.0	3 URI nod largh	

Open OnDemand Pavian results viewer

Pavian is a Shiny App (R).

VT-ARC enables R-Shiny through Singularity.

- Pavian results viewer
- results inform treatment
- results determine next steps

nicrebiuta c	olumns being a se	parate-category from t	he reg.	ger and internation	THEY'R A BUILD MIT, CAME	INVESTIGATION	21 ENV LAS 63608		aven ov serve	augery, was o
classificat	ice sammary	Raw read numbers								
Show 13 years	CEV Piers C	apy Column visibility							Search:	
Harse (Number of raw reads	Classified reads	Churdate reads	Artificial reads	Unclassified reads	Microbial reads	Bacterial reads	Viral reads	Fungal reads	Protectan
PT1	12,022,20	4 99.4%	93.5%	5.86%	0.586%	0.814946	8.0129%	0%	0.080607%	0.808225
PT2	8,294,00	99.9%	99.2%	0.749%	0.149%	0.00567%	8.0017%	0%	2%	0
PT3	17,669,54	4 99.7%	96.2%	3.45%	0.339%	0,5462%	8.0388%	E-00001776	0.080329%	0.080822
PT4	29,333,77	99.8%	97,8%	2%	0.318%	0.00525%	0.00376%	0%	0.0000515%	0.080812
P15	26,919,96	98.2%	96.2%	2.52%	0.156%	0.054%	8.0200%	E-0332%	0.000000%	0.000825
P16	27,361,78	99.4%	97,8%	1.81%	0.878%	0.8111	4.0329%	0.0000624%	0.0000009%	0.00003
PTT	19,065,57	4 98.2%	70.8%	28.6%	0.772%	0.5477%	0.0452%	£.000388%	0.0000632%	0.80802
P78-51	14,857,13	98.8%	97.9%	1.88%	0.318%	0.000388%	0.00012%	1.00000649%	6.8080400%	0.000066
PT8-52	13,990,25	20.5%	29.7%	0.05559%	0.294%	0.000372%	8.000357%	8.00000715%	0.00000715%	
P19	26,500,81	4 98.7%	98.8%	0.851%	0.299%	P0313.0	0.007749	£.00000377%	0.00096%	
1710	21,319,27	1 21.52	25.52	1.01%	0.351%	0.0048378	0.00257%	0.0000938%	0.00084495	

• Natural Language Understanding

• Bidirectional LSTMs with static and contextual embeddings

Augmented Intelligence

• Human-in-the-loop: Results of DNNs used to create projections that assist humans in classifying documents

• Interpretable

• Self-attention gives insight into the decision-making process of a DNN

• Evaluation of visualization techniques

• tSNE, PCA, MDS, Isomap

https://arxiv.org/abs/1908.02282

- Pytorch code that runs on GPUs
- Run on a Dell C4140 with 4 Volta GPUs with 16GB per-GPU memory
- Workflow automated with Airflow
- Hyperparameter optimization done with Comet.ml
- Group Python packages into conda environments to mitigate conflicts

- Gather social media posts related to certain political hashtags, along with user metadata
- Use PySpark/Spacy to clean and normalize data
- Create 2D projections of document affiliation using the DNN
- Interactive web application that displays the projections to help correctly label this weakly-supervised corpus
- A type of Active Learning
- Evaluate visualization/cognitive efficiencies of various visualization types

Attention for Interpretability

	i	used	to	provide
care		folks	in	the
icu	now		volunteer	to
	care	for	wild	critters
	the	pnw	theresistance	kamala2020
actblue	resist	PAD	PAD	PAD

Figure: Heatmap of Attention weights

© ,Robert Settlage *1 and Srijith Rajamohan *1 , Kevin Lahmers², Alan Chalker³, Eric Franz³, Steve Gallo⁴, David Hudak³

Figure: tSNE

Figure: PCA

Metrics

Figure: F1 scores for different embeddings

23

Questions?