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Infectious disease is often the major selective agent in nature, and we cannot understand how populations 
evolve without understanding their pathogenic microbes. Beyond host immunity, an important factor deter-
mining the ability of pathogens to invade and proliferate in a host is the resident microbiota, but we are only 
beginning to glimpse its multifarious impacts. We know even less about interactions among pathogenic mi-
crobes themselves. Any effort to explain how pathogen communities, or pathobiota, develop within a host 
requires knowledge about the extent to which pathogens engage in competition, commensalism and cooper-
ation, both with other pathogens and the rest of the microbiota. To date, studies of plant-pathogen interactions 
in the lab and descriptive work in the field have focused on pairwise interactions between one plant host and 
one pathogen, leaving a large gap in our understanding of how different types of interactions between mi-
crobes, and especially pathogens, determine the outcome of host-pathogen interactions in the real world. 
In PATHOCOM, we will implement a program that integrates large-scale field observations of microbes in 
the plant Arabidopsis thaliana with ultra-high-throughput experimental tests of host-dependent interac-
tions among microbes, allowing experiment-informed modeling of pathogenic microbe-microbe interac-
tions. These models, which will be improved through an iterative process of data collection with synthetic 
communities, will illuminate how interactions, from pairwise to higher-order, shape microbial community 
composition and structure. In the final step, the resulting models will be tested against and refined with field 
data. Together, these efforts will transform the study of plant pathogens by applying deep analyses of microbial 
interactions in an ecological context to explain patterns in nature. Ultimately, PATHOCOM will play an 
essential role in refashioning plant-pathogen-microbiome studies into a predictive science. 
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Part B2: The Project Proposal 
 

Section a. State of the art and objective 

Motivation and goals of PATHOCOM 
Infectious disease is often the major selective agent in nature, and we cannot understand how natural popu-
lations evolve without understanding their pathogenic microbes. Much less is known about pathogens in nat-
ural compared to agricultural environments, but it is generally thought that the two are very different: wild 
plants are genetically and developmentally less uniform, they typically occur interspersed with other species, 
and they suffer from noticeable disease more rarely1–3. Despite these differences, diverse pathogen commu-
nities seem to be common in both settings4–11, reminiscent of mutualistic interactions between pathogens in 
human disease6,12–14.  

In wild plant pathosystems, even very recent invasions harbor genetically distinct invaders15–17. Genetic 
diversity is also seen in more established plant-pathosystems18–22, where the severity of epidemics is associated 
with higher levels of co-infection7,23. Such a picture is emerging for the plant Arabidopsis thaliana, a model 
for evolutionary and ecological genetics and genomics. In this host, diversity in the pathogenic microbiota, 
or pathobiota, is apparent within local host populations, within individual plants, and within individual path-
ogen taxa24,25. Importantly, we have found that the fraction of pathogenic isolates in A. thaliana leaves is cor-
related with the diversity of co-infecting isolates25. In other words, as pathogens overtake a community, they 
often appear to do so as a group9,26,27. A related observation is that genetically diverse sublineages of a single 
Pseudomonas lineage have co-occurred for hundreds of thousands of years24 and jointly dominate A. thaliana 
bacterial communities in the Southwest of Germany. These results suggest a paradigm in plants where one of 
the greatest risks for severe disease results from reciprocal help among pathogens.  

Such recent findings suggest new opportunities for intervention during early phases of host infection, for 
example, by interfering with cooperative interactions among pathogens. As a first step towards such a long-
term goal, we aim to understand the nature of pathogen-pathogen interactions within realistic community 
contexts. Our overarching goal is to reveal the ecological and genetic principles enabling particular pathogens 
to invade a microbial community, notably by assessing how pathogen-pathogen interactions change as a 
function of habitat qualities, genetic diversity of co-occurring commensal bacterial species, and host ge-
netic diversity in different geographical locations. 

Arabidopsis thaliana and its leaf microbes are particularly well suited for such an endeavor because natural 
populations are readily accessible, infections are easily carried out in the lab, and many molecular mechanisms 
of plant-microbe interactions are known in exquisite detail. We will decipher the forces that shape the patho-
biota, within the leaves (known as the phyllosphere) of A. thaliana by combining extensive field observa-
tions–determining patterns of co-occurrence among microbial species and pathogenic strains in the real world–
with systematic laboratory studies–focusing on high throughput phenotyping of microbe-microbe interac-
tions–to inform models that can produce expected patterns in pathogen communities.  

Central to our approach is the hypothesis that an understanding of community level processes will enable 
prediction from smaller to larger scales, both at the level of individual plants and plant communities. Thus, at 
the core of our strategy are models to be developed through an iterative process including validation based on 
strategically designed synthetic communities. These models will ultimately be used to generate broad, qual-
itative patterns in natural conditions that can be used to make sense of observational data.  

PATHOCOM addresses several gaps in our understanding of microbe interactions within hosts. In partic-
ular, previous work in plants has typically focused on either single microbial strains (alone or in pairwise 
combinations28), or has used complex synthetic communities29,30, with poorly understood intra-community in-
teractions. In addition, previous lab work has been largely, if not entirely, disconnected from patterns ob-
served in natural populations. With the rich set of experiments that we will perform, we will pioneer a 
mechanistic understanding of observed patterns of pathogen-pathogen associations in nature across spa-
tial and temporal scales. PATHOCOM’s specific goals are to: 

• Characterize A. thaliana and its associated (patho)microbiota in a large, hierarchically structured 
sample in the native and introduced range, across multiple seasons and years. 

• Determine the spectrum of interactions among large isolate collections from three pathogenic bacte-
ria and the most frequent commensal species, and identify genes underlying these interactions.  
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• Determine how environment, plant genetics, and microbiota genetics affect pathogen-pathogen in-
teractions, and identify specific genes from both host and microbe that impact these interactions.  

• Integrate the experimental and genetic data and develop a model that enables the testing of key 
ecological and genetic drivers of pathobiota community structure. 

• Compare output from our experiment-based model with patterns of association in natural condi-
tions as functions of microbial interactions, microbial genetics, plant genetics and the environment, 
and use this information to improve the model. 

In the following, we will introduce our host-microbiota system; discuss experimental evidence for pathogen-
pathogen cooperation in planta; introduce a recent model allowing us to predict coexistence in communities; 
provide background on plant control of microbes; and illustrate the power of Genome-Wide Association 
(GWA) mapping for disentangling the genetic basis of host-pathobiota-microbiota interactions. As appropri-
ate, we will focus on our own past research that has laid the foundation for PATHOCOM. 
The Arabidopsis thaliana – microbiota system 
Arabidopsis thaliana and its associated microbes serve as an outstanding model system for this work. This 
wild plant occurs naturally throughout much of Europe, Asia and Africa, where it has maintained persistent 
populations in both pristine and disturbed habitats for tens of thousands of years31–34. In contrast, A. thaliana 
invaded North America only ~400 years ago, and there it is restricted to highly disturbed habitats and depau-
perate in genetic variation35. The three Principal Investigators have extensive experience working with A. tha-
liana in the lab, in field experiments and in situ, including leading the A. thaliana 1001 Genomes Project32,33,36 
and developing and applying GWA mapping methods in this species37–47. We have also generated extensive 
collections of and information about microbes that colonize A. thaliana24,25,43,48–53, including 1000s of samples, 
collected from Germany, France and the US, that provide ample material to start experiments immediately. 
We have learned that although Sphingomonas sp. do not seem to include pathogens, they nevertheless com-
prise a dominant group (often >20%) within the bacterial microbiome of A. thaliana leaves. The three most 
abundant pathogenic species (~75% of the pathobiota) in A. thaliana leaves 
are the Pseudomonas syringae complex (including the pathogenic species P. 
syringae and P. viridiflava)24, Xanthomonas campestris and Pantoea ag-
glomerans25 (although not all strains of all three species are necessarily ex-
pected to be pathogenic). Fungi and oomycetes can be found within the mi-
crobiota of A. thaliana43,54–56, but we have chosen here to focus on bacteria 
due to (i) their dominance in A. thaliana microbiota by number and bio-
mass56,57, (ii) disease symptoms in natural populations of A. thaliana mainly 
resulting from pathogenic bacteria25, and (iii) their genetic tractability, 
which will be essential for our ultra-high-throughput infection tests. We will, 
however, obtain information on eukaryotic microbes in our field sampling 
and can include such information in our models 
Detecting positive pairwise and higher-order microbial interactions 
Similar to the microbiome in animals and humans, background microbiota 
can diminish the ability of plant pathogens to cause disease, and research on 
such biocontrol agents has a long history in plants54,58–64. At the same time, 
there is growing appreciation of synergistic, positive pathogen-pathogen 
interactions27, including taxa that occur frequently on A. thaliana8,65,66. How-
ever, with very few exceptions30,54, there have not been systematic studies of 
the genetic basis of isolate-isolate interactions, and none in planta. 

We have developed ultra-high-throughput tools to quantify interactions between bacterial isolates in 
leaves of gnotobiotic A. thaliana. 
For a proof of concept, we co-inoc-
ulated A. thaliana with two P. vi-
ridiflava strains expressing lucifer-
ase and 60 randomly chosen strains 
from the P. syringae complex (Fig. 
1). Luciferase activity was meas-
ured after 36 hours to quantify 
abundance of the focal strains. 
Two key results reveal that co-in-
fection strongly impacts pathogen 
performance in A. thaliana: (i) the 
mean growth of the focal strain 
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Figure 1. Pairwise co-infections of 
luciferase-tagged P. viridiflava 
strains isolated from A. thaliana and 
60 other isolates whose phyloge-
netic relationship is shown on the 
left. Abundances of the focal strains 
in co-infections are expressed 
relative to single infections.
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Figure 2. Three-way co-infection reveals a positive impact of a Sphingomonas sp. strain 
(indicated in brown) on the performance of competitively inferior P. viridiflava isolates 
(green) during intra-specific competition. The generality of this phenomenon remains to 
be tested.
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can differ by two orders of magnitude between the most and least favorable coinfection combinations; (ii) 
there are both costs and benefits of co-infection–in more than a third of pairwise coinfections, the focal strain 
grew to a higher abundance than when singly inoculated, whereas it decreased in abundance in many of the 
other combinations. Importantly, these effects are highly consistent, dwarfing experimental noise. The iden-
tity of the co-infecting strains explained over 70% of the variance in focal strain abundance. This under-
scores the importance of accounting for microbe genotype x microbe genotype interactions, as we propose 
to do, when predicting infection outcomes. We have furthermore found that, in two distinct sets of strains, the 
presence of Sphingomonas reduces the strength of competition between P. viridiflava isolates (Fig. 2). 
Predicting coexistence in communities 
Determining how populations interact, and predicting how ecological systems evolve over time or after per-
turbations, is a main goal of ecology. Historically, methods to parameterize models of population dynamics 
have been developed using time-series data67–69. But when dealing with experimental communities in labora-
tory conditions, other approaches are possible70. Our Chicago co-investigator Allesina has recently developed 
a method to parameterize ecological interactions using measured abundances in a handful of communities71. 
Briefly, the goal is to predict whether a community S consisting of k strains (out of a pool of n) will coexist 
when co-cultured, and if so to predict the abundance of all coexisting strains. One can write a set of equations 
relating the abundance of strain i with all the other strains in the community S of size n: 

									𝑥#
(%) = 𝑎# + * 𝑏#,𝑥,

(%)

,∈%;,/#

	

where xi
(S) is the abundance of strain i 

when grown in community S, ai the av-
erage abundance of strain i when grown 
alone, and bij the average effect of strain 
j, if present, on strain i. Importantly, one 
can write a similar equation for each of 
the n strains in S, and for each commu-
nity S that is observed experimentally. 
This means that (i) if one is able to ob-
serve a sufficiently large number of 
communities, all n2 parameters can be 
fit, and (ii) larger communities pro-
vide more information (i.e., allow 
more equations to be written) than 
smaller communities. Exploiting this 
idea, Allesina showed that large com-
munities can be parameterized using a 
small number of experiments, provided 
that each experiment probes a different 
community71. Under these conditions, 
approximately 2n experiments are suffi-
cient to parameterize the model when n 
strains are considered.  

Allesina applied the method to three data sets from the literature, all from natural systems (albeit not mi-
crobial), with excellent fit71. An additional example, for bacterial communities, is given in Fig. 3, where we 
used experimental data from a published paper72 to fit our model. The parameters of the model were organized 
in a matrix that summarizes the relationships between the abundance of the strains in all combinations. The fit 
was also excellent. Crucially, the matrix can be used to predict the coexistence and abundance of communities 
that were not used to fit the model–and in turn these predictions can be tested experimentally.  
Host control of the phyllosphere 
Microbes can be found both on leaf surfaces and inside leaves; together, the epiphytic and endophytic com-
partments constitute the phyllosphere. The endophytic compartment is more favorable, as microbes are pro-
tected from UV and can more easily access nutrients from the host. Microbes including pathogens can enter 
the endophytic compartment either by mechanical means, or through stomata (the leaf valves for air exchange) 
and hydathodes (water secreting pores in leaf blade or margin). While microbes can manipulate their hosts to 
gain entry, there is strong evidence that A. thaliana consistently filters microbes from the soil, a major source 
of phyllosphere microbes73. We have furthermore found strong differentiation among microbiomes resident in 
leaves, fruits, roots and stems–another indication that the host influences the microbes that reside within it. 
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Figure 3. Application of our model71 to published data from ref. 72. Different 
combinations of Enterobacter aerogenes (Ea), Pseudomonas aurantiaca (Pa), P. 
putida (Pp), and P. veronii (Pv) were cultured in batch cultures with serial dilutions 
(here, 1000x dilution). (A) Average colony count, a proxy for abundance, for each 
experiment. (B) The data from (A) data were fit using our method71, producing the 
matrix of parameters shown here, encoding the outcomes of all possible experi-
ments. (C) The predictednumber of colonies for all experiments closely matched 
the observed data. Note that the model also makes predictions for experiments 
that were not used to fit the model. For example, the model predicts that Ea and 
Pa cannot coexist, a prediction that agrees with the experimental data66. 
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While it is clear that the host leaf environment affects phyllosphere composition, the relative importance 
of A. thaliana genetics in shaping natural variation in microbial communities has been a matter of debate74. 
Although host genetics was first considered of minor importance in shaping natural variation in microbial 
communities in A. thaliana75,76, we recently found high heritability estimates for the success of individual 
members of the phyllosphere microbiota as well as for microbial community traits43,77,78. Finally, it is well 
established that variation in host disease resistance genes has very clear effects on serious pathogen infection 
in crops79,80. While selection is almost certainly a stronger force acting on specialized pathogens attacking 
crops grown in monoculture than on the generalists common on A. thaliana, these findings nonetheless suggest 
that host genetics shapes the phyllosphere (patho)microbiota.  
Mapping genetic factors shaping microbial communities 
Genome-Wide Association (GWA) is a powerful tool for discovering genomic regions associated with natural 
variation of disease resistance in both wild and cultivated plants81. Our team has pioneered the successful 
application of GWA studies in A. thaliana by (i) developing mapping populations at various geographical 
scales31–33,38,45; (ii) developing new statistical methods of GWA mapping including one for simultaneous GWA 
mapping on two interacting species41,47,53; (iii) 
fine-mapping genomic regions associated with 
disease resistance in both growth cham-
ber/greenhouse and field condi-
tions37,38,41,42,46,82,83; and (iv) functionally vali-
dating candidate genes40–42,82–84, thereby reveal-
ing diverse molecular mechanisms underlying 
disease resistance beyond typical NLR immune 
receptors74,85. While informative, most of these 
GWA studies have been conducted in the con-
text of ‘one host–one pathogen strain’, which 
ignores the fact that plants simultaneously inter-
act with many microbes.  

We recently found that the genetic architecture of disease resistance differs when plants are co-infected 
with multiple pathogens instead of a single pathogen. In one specific case, the plant response to co-infection 
could not be accurately predicted from the response to infection by each of two single X. campestris strains, 
and fewer than 50% of the top SNPs identified with the mono-infections were shared with those found after 
co-infection. In another example, when we characterized the bacterial pathobiota of 168 natural strains of A. 
thaliana from near Toulouse25, we detected well defined association peaks for pathobiota richness in leaves, 
but not for individual pathogens, supporting the importance of co-infection in shaping genetically encoded 
host responses (Fig. 4).  

Not only is host genetics im-
portant in shaping microbial com-
munities, but microbial genetics 
plays a role as well. GWA map-
ping in bacteria is gaining popular-
ity81, as it provides a rapid means 
of identifying genes important in 
adaptation. We are particularly in-
terested in genes underlying mi-
crobe-microbe interactions within 
and between Sphingomonas sp., 
Pantoea agglomerans, the Pseu-
domonas syringae complex and 
Xanthomonas campestris. We 
have therefore analyzed 87 to 483 whole genome sequences per group to calculate the extent of linkage dise-
quilibrium (LD), an important determinant of the power of GWA. In all cases, LD decays to r² = 0.2 within an 
average of 1 kb, which will easily support fine mapping of genes. In an initial mapping experiment, we sought 
genes underlying the impact of 220 P. viridiflava strains on a focal P. viridiflava strain. A variety of strong 
candidate genes could be identified, of which two are shown in Fig. 5. 

The next step 
Altogether, our previous work puts us in a strong position to identify and understand the ecological and genetic 
mechanisms that determine how microbial pathogens interact when infecting plants in natural conditions. 
Over the last 25 years, we have learned much about the molecular machinery with which plants can detect 

-.2

0

effect on
log

10 (focal strain)

Figure 5. GWA for the effect of co-infection on the growth of a focal (luciferase-labelled) 
P. viridiflava isolate. Note that the candidate encoding a DNA helicase is associated with 
a strong phylogenetic signal, but the other candidate is not. Purple indicates presence of 
each of the candidate genes in the genomes of strains from the phylogeny at the top.
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Figure 4. GWA for pathobiota richness in leaves of 168 A. thaliana 
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pathogens, and about the downstream defense reactions plants mount in response. At the same time, we have 
obtained a deep understanding of a subset of the pathogen molecules (from a few species) that trigger these 
defenses, as well as the molecules that pathogens use to suppress host responses. This body of work provides 
rich context for investigating indirect interactions among microbes that are mediated by the host. In parallel, 
we have found that microbial isolates interact strongly within A. thaliana, with both positive and negative 
outcomes. Furthermore, there is evidence for pairwise, three-way, and likely even higher-order interactions.  

Progress on multiple fronts notwithstanding, there are important gaps in our knowledge of plant-pathogen 
interactions, especially with endemic pathogens. We not only have limited insight into how molecules iden-
tified in the lab are deployed in natural conditions, but we also do not understand well how different types of 
interactions between pathogens determine the outcomes of infection in the real world. 16S rDNA and similar 
amplicon surveys of background microbiota have mostly led to the conclusion that “things are complicated”. 
Here, we propose to fill these gaps in our understanding of real-world plant-pathogen interactions, in an am-
bitious program with the following Specific Aims: 

1. Geographically structured characterization of A. thaliana and its complex (patho)microbiota 
2. Experimental characterization of a spectrum of simplified pathogen-pathogen interactions in planta 
3. Building a model of persistent communities from empirical pathogen-pathogen interactions 
4. Experimental characterization of (a)biotic factors modulating pathogen-pathogen interactions 
5. Applying the model in an ecological genomics framework 
PATHOCOM relies on an integration of large-scale field observations; ultra-high-throughput exper-

imental tests of interactions among microbes; experiment-informed modeling of (microbe)n-host interac-
tions; and comparing the output of these models with real-world data. Importantly, this integration will be 
conducted at both ecological and genetic levels. Together, our efforts will transform the field by transitioning 
from the study of small-scale networks to deeper analysis of higher-order interactions, and by extrapolating 
from local interactions to broad community-level patterns. We envision that PATHOCOM will ultimately 
become a catalyst for refashioning plant-pathogen-microbiome studies into a predictive science. 

The Need for Synergy 

The idea for an ERC Synergy grant was born from the exemplary complementarity of the three main partners: 
Bergelson trained as an ecologist and later on moved into plant genetics. She pioneered the study of A. thali-
ana-microbe interactions in the field, especially with the use of organisms designed to test the genetic basis of 
species interactions. Roux trained as an evolutionary and quantitative geneticist. He has pioneered GWA 
experiments in semi-natural and natural conditions (which often produced very different results in terms of 
causal genes and genetic architecture than comparable indoor experiments). He contributes a strong commu-
nity ecology emphasis to this proposal, an aspect that has largely been ignored by conventional microbiome 
studies. Weigel trained as a molecular geneticist. He has greatly advanced the plant genetics field through his 
increasingly detailed efforts to describe and understand the causes and consequences of genomic variation in 
A. thaliana. Weigel’s efforts in turn have been the basis for the innovative microbiome GWA approaches 
developed by Bergelson and Roux. We are united by our interests in natural host-microbe interactions, 
coming either from the host/microbiome (Bergelson), the community/microbiome (Roux), or the pathogen/mi-
crobiome (Weigel) side. Starting from different avenues, we have converged on similar questions that cannot 
be answered by a conventional research team alone because of the required scale and integration of ef-
forts. Central to this is the comparative approach, studying different geographic regions and different sets of 
microbes, an approach that is urgently needed to overcome a major weakness of much of the plant microbiome 
field, which has almost always focused on temporally and spatially limited data, making it impossible to arrive 
at generalizable conclusions. 

PATHOCOM is not only of a scale that goes beyond the capability of an individual research group, but it 
also requires integration of a team that combines diverse expertise with access to specialized facilities and 
well-understood field sites. A key element is the effort to link diversity of important foliar microbes with 
diversity of their plant host and associated ecological variables in three distinct geographic regions, near each 
of the Principal Investigator’s home institutions in France, Germany and the US. We have established net-
works of natural sites with A. thaliana populations, some of which we have followed for over 20 years. 
Through this foundational work, the three Principal Investigators have extensive experience with the behavior 
of A. thaliana in the field in different years and seasons. To obtain field data that are comparable between sites, 
all populations have to be closely monitored; to do this for several seasons would be infeasible at sites that are 
not within easy driving distance of the involved labs.  

The Principal Investigators have also established large microbe collections from local A. thaliana popu-
lations, with an emphasis on sites with well-understood host genetics; these efforts set our work apart from 
others in the plant microbiome field. The microbial interaction data that will be generated are of a scale that 
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is beyond the capability of any single academic group. To ensure that data generated in a distributed fashion 
are directly comparable and thus suitable for extensive mathematical modeling, it is essential that experi-
mental methods and sampling strategies are applied in an identical manner in the three groups, which can 
only be achieved by tight integration of experimental practices via multiple mutual, extended visits and se-
condments of students and postdocs over substantial periods of time.  

Finally, it needs to be emphasized that the proposed effort would not be possible without integration of the 
US-based Principal Investigator. The US A. thaliana populations play a key role in the project because of 
their unique genetics, and Bergelson has also a dedicated field station in Michigan for true field experiments 
in which genetically modified organisms are grown and microbe infections carried out outdoors, in a habitat 
where naturalized A. thaliana populations occur. Similarly important are Bergelson’s local co-investigators, 
McPeek and Allesina, who are an integral part of our team; they have committed their time and expertise in 
supervising three dedicated postdoctoral fellows, two of whom who will begin work in Chicago and then 
continue in Europe. This strategy provides us with specialized modeling expertise, generating further syn-
ergy. Transfer of such expertise to the European team members provides significant added value.  
 

Section b. Methodology 

At the heart of our project is an ambitious attempt to understand and explain patterns of association among 
diverse pathogens in the phyllosphere of wild plants. Several unique features distinguish our project from 
other efforts in the field. First, we will generate data that provide an exquisitely nuanced picture of the A. 
thaliana pathobiota, across temporal as well as local, regional and continental scales, at a resolution that 
enables us to track not only different species, but also genetic diversity among isolates. We will furthermore 
test hundreds of thousands of interactions, both within and between microbial species, to determine the 
extent of competition and cooperation/facilitation, and the factors favoring either of them. We will also deeply 
probe the importance of higher-order interactions among microbial species. In all of this work, our approach 
will be two-tiered (Fig. 6). First, we will consider ecological drivers of microbial communities. Second, ge-
nome sequences as well as GWA mapping results will allow us to examine the structure of the same microbial 
communities from a genetic perspective. Unifying these two approaches is an overarching goal of our pro-
ject. Finally, the close interplay between model and data collection–as summarized below–will not only help 
us to constantly challenge our understanding of pathobiota interactions, but also enable us to work towards the 
ability to predict community level patterns starting with knowledge of local interactions.  

In brief, PATHOCOM contains three major elements (Fig. 
6), which we will address with five Specific Aims. First, we will 
characterize natural patterns of (patho)microbiota within a 
structured set of A. thaliana plants from 20 populations each in 
France, Germany and the US across ‘three year x two season’ 
combinations. A wide variety of environmental variables will be 
collected at these locations as well (Aim 1). In parallel, we will 
experimentally study interactions among a diverse range of mi-
crobial isolates, to determine which behave cooperatively ver-
sus competitively using ultra-high-throughput infection as-
says. Because there is much greater power to understand interac-
tion strengths when considering absolute rather than relative 
abundances, we will complete these tests on genetically bar-
coded plants, a major innovation that increases the throughput 
of infection assays by two orders of magnitude (Aim 2). We 
will determine the genetic basis of pairwise microbe-microbe in-
teractions using joint GWA analysis, and confirm candidate microbial genes. This characterization of mi-
crobe-microbe interactions at both the ecological and genetic levels will provide data for the first step in build-
ing a community-scale model of microbial associations in the host (Aim 3), and we will refine the model to 
include appropriate higher-order interactions through a targeted series of experiments using microbial com-
munities of increasing complexity. To quantify the robustness of particular pairwise microbe interactions, 
we will then test the impacts of environmental quality, genetic variation of the A. thaliana host, and genetic 
variation in other microbial associates (Aim 4). In the final step, we will generate the set of persistent 
communities expected under our model assumptions, and compare the model output to field data from Aim 
1. Such a comparison will provide a critical test of our understanding of the key ecological and genetic drivers 
of pathobiota structure (Aim 5). 
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Aim 1: Geographically structured characterization of A. thaliana and its complex (patho)microbiota 

Rationale: Under Aim 1, we will generate foundational data, characterizing the intra- and interspecific di-
versity as well as abundance of pathobiota and commensal microbiota across multiple populations of A. 
thaliana in three different geographic regions, together with information on environmental variables and host 
genotypes. We will do this in sufficient scale and with enough detail that it allows inferences about broad 
patterns, such as presence and absence of large taxonomic groups5,54, as well as interactions between genomic 
variants. Importantly, we will generate information both about absolute microbial load and the presence of 
specific pathogen genes, allowing us to link ecological and genetic drivers of community structure.  

Sampling the intra- and interspecific diversity of A. thaliana (patho)microbiota: A substantial weakness 
of most prior studies on microbiota diversity in crop and wild plants has been their inclusion of only a limited 
number of individuals and/or a limited number of geographic sites, with few exceptions24,25,86,87. Here, we 
will sample A. thaliana metapopulations in three regions that provide geographic and genetic contrasts. 
Near Toulouse, France, there is high genetic diversity in both the host88 and bacterial pathobiota, with Xan-
thomonas, Pseudomonas and Pantoea (closely related to Erwinia89) being common25. The region around Tü-
bingen, Germany, is characterized by an intermediate host genetic diversity and a pathobiota that is dominated 
by Pseudomonas24,90. Finally, in Michigan, USA, A. thaliana was introduced only after the year 1600; there is 
very low host genetic diversity35 and the pathobiota is dominated by Pseudomonas and Xanthomonas48,91.  

We will sample 20 sites in each of the 3 regions over 6 consecutive seasons (fall/spring), recording the 
following environmental parameters: local weather (with data loggers); soil agronomic properties (including 
pH, water holding capacity, concentration of N2 and main mineral nutrients92); density and size variation of 
A. thaliana plants; density and total mass of vegetation; taxonomy of neighboring plants (with a metabar-
coding approach93–95). We will also characterize the microbiome environment by harvesting and pooling leaf 
punches from 50 companion plants; these will be processed for bacterial 16S and eukaryotic ITS1 rDNA am-
plicon sequencing, to qualitatively assess the bacterial, fungal and oomycete phyllosphere community. We will 
similarly assess the soil microbiome at our sites. We will sample the epiphytic and endophytic compartments 
of a total of 3,600 A. thaliana plants by collecting 10 individuals for each of the 360 site/season combinations. 
We will collect plants before the onset of flowering by randomly selecting plants within a specific size range, 
recording signs of infection such as chlorosis, water soaking, necrotic spots, oomycete and fungal reproductive 
structures.  

Discovering (patho)microbiota variation by WGS and amplicon sequencing: To identify microbial taxa 
most likely to be pathogenic, one needs to know not only which taxa are most common in a sample, but also 
whether they are abundant in absolute terms. Notwithstanding the effects of rare taxa, plant pathogens typically 
only affect the plant if they accumulate to appreciable levels96. The absolute quantification of individual mi-
crobial taxa greatly improves the inference of networks, with more correlations among genera becoming de-
tectable. Similarly, causal effects of the gut microbiome on the human host can only be detected with 
knowledge of absolute microbe levels97. There have been few attempts to quantify pathogen levels in planta 
while simultaneously characterizing the background microbiota. In one of our recent studies, for example, 
absolute microbial load in wild A. thaliana plants could be directly predicted by the presence of a specific 
taxonomic group of Pseudomonas strains24.  

For these reasons, we will prepare not 
only 16S and ITS1 rDNA amplicons, but 
also whole-genome shotgun (WGS) se-
quencing libraries of plants and their endo-
phytic communities using an in-house trans-
pososomes-on-bead method. WGS reads will 
first be mapped against the A. thaliana refer-
ence genome along with PacBio reference 
genomes for local populations and our data-
base of nearly complete NLR catalogs from 
over 60 strains98 (providing host genotype in-
formation and allowing us to normalize sam-
ple amount). We will taxonomically assign 
the remaining reads with a pipeline we have 
established55. Pilot experiments in Germany 
and Sweden indicate that most plants produce ~5% microbial reads, and 1.2 Gb sequence provides excellent 
power for species-level assignments55 (Fig. 7). Absolute microbial load will be determined as the ratio of 
bacterial to plant reads, and load for each taxon will be estimated from the ratio of their reads relative to total 
microbial reads, scaled by average genome size of each taxonomic group. We have also developed methods to 
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use the WGS data for estimating absolute abundance of taxa detected only in the 16S/ITS1 rDNA amplicon 
data55. For the epiphytic communities, we will perform only amplicon analyses, since the goal here is merely 
to determine how much more predictive they are for endophytic colonization in comparison with microbiota 
from neighboring plants. Finally, we will analyze samples from the first two seasons (1,200) by shallow RNA-
seq to assess how well microbial taxonomy, genetics and load predict the induction of markers for PAMP- and 
effector-triggered immunity, the two main layers of the plant immune system99. 

Discovering (patho)microbiota variation by PEN-seq: To generate a deep understanding of variation in our 
three pathogenic taxa (Pseudomonas, Xanthomonas and Pantoea) and Sphingomonas to discover potential 
genetic variants responsible for interactions within and between them, we will use pathogen enrichment se-
quencing, PEN-seq11,100. Sphingomonas will be included, because this bacterial genus is not only often one of 
the most abundant bacterial taxa in the phyllosphere of wild A. thaliana55,56, but it can also protect A. thaliana 
against Pseudomonas induced disease58, and it can modify Pseudomonas competitive interactions (see Section 
a). Based on our complete genome sequences of local isolates of the four taxa, we will build corresponding 
baits based on consensus sequences of the core genomes and genetic elements such as effectors and secretion 
systems that are likely to be important for pathogen success, targeting about 1.5 Mb per genus24,89,101–103. We 
will enrich DNA of the four focal bacterial taxa from pools of barcoded WGS libraries, aiming for 80x read 
depth per sample. Reads will be mapped against the genomic components represented by the baits, to determine 
both SNP and presence/absence (P/A) variation. We will infer linkage between variants for each species within 
each sample using polymorphism frequencies104, to ascertain not only the presence and relative levels of 
different genes and genetic variants, but to estimate also the diversity at the strain level for our focal taxa.  

Discovering factors affecting pathobiota diversity: Using bilinear factors models such as Partial-Least 
Square Regression, we will determine how abiotic variables as well as richness and composition of back-
ground microbiota and plant communities affect both absolute levels and genetic diversity of our focal mi-
crobes, at the level of individual plants, sites, seasons and geographical regions. Finally, we will infer microbial 
networks105,106 and test for more complex effects of pathobiota-associated microbial communities. The goal 
of this effort is to identify the major axes of (a)biotic variation that affect our focal microbes, which we then 
will vary experimentally in the infection trials described in Aim 4. 

Anticipated knowledge gained: (i) Rich insights into the pathobiota, microbiota and environment of our 
host species A. thaliana; (ii) differences in the microbiota and pathobiota in native and introduced ranges of 
the host; (iii) differences in microbiota and pathobiota structures when assessed at the level of genes versus 
taxa; (iv) host resistance genes and bacterial effectors affecting patterns of association–perhaps identifying 
drivers of co-evolution; (v) knowledge of the robustness of pathobiota community structure; and (vi) dis-
covery of key abiotic and biotic factors affecting pathobiota diversity. 

Contingency planning: The proposed methods are already in place, and we have long experience with the field 
sites that we will sample. The greatest risk is that individual A. thaliana populations disappear or sites are 
destroyed by development, but in each of the regions, we can easily choose from additional sites. We estimate 
that over the course of three years, fewer than 4 of the 20 sites in each region are at risk. A final risk is that 
our PEN-seq enrichment baits do not include all causal genes, but core genome relatedness should still capture 
at least in part patterns of sharing of causal non-core genome genes, plus we can resort to the WGS data for 
additional gene discovery (although these will be relatively low coverage).  

Aim 2: Experimental characterization of the spectrum of microbe-microbe interactions  

Rationale: In any ecological network, highly diverse interactions can be observed at both intra- and inter-
specific levels. In Aim 2, we seek to characterize the full matrix of interactions among 600 focal isolates. There 
are two motivations for this ambitious experiment. First, we know very little about the relative frequency of 
competition (both partners are harmed), commensalism (one partner benefits, the other is not impacted), 
asymmetry (one partner benefits, the other is negatively impacted) and reciprocal help (both partners benefit) 
in any system; we are particularly interested in the prevalence of mutually beneficial interactions. Second, 
this matrix of interactions provides the first building block for predicting which assemblages of isolates should 
persist, under the assumption that microbial interactions are the main driver of community structure. We think 
of these predictions as a useful null distribution for comparison to natural communities measured in Aim 1. 
We will estimate this matrix in two ways, once measuring pairwise interactions in the absence of other isolates 
and once in their presence; the comparison of these matrices will guide our search for higher-order interac-
tions in Aim 3. A major innovation of our work will be that we will not only use genetically barcoded microbial 
strains, but also genetically barcoded plants, which will support the analysis of an unprecedented number of 
parallel infections. 
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A system for discovery of microbe-microbe interactions: We have established extensive collections of bac-
terial strains from A. thaliana in France, Germany and the US over the past decade24,25,42,43,48,49,51,53 (including 
the 3 x 20 sites of Aim 1), and have tested many strains for their ability to cause disease in our gnotobiotic 
system. We will test interactions among 150 strains each of P. agglomerans, X. campestris, P. syringae com-
plex, Sphingomonas sp., with one third originating from each geographic region. (The number of 150 strains 
is based on power estimates for subsequent GWA studies53,107). As laid out above, we will include Sphingo-
monas, both because it is often a dominant taxon in wild A. thaliana55,56, and because they can affect compet-
itive interactions between Pseudomonas strains (see Section a). Sphingomonas can thus be thought of as a 
proxy for the non-pathogenic background microbiota. Note also that only X. campestris is not expected to 
comprise non-pathogenic strains. From each geographic region, 50 strains of each taxon will be chosen based 
on phylogenetic diversity25,108,109 and diversity of habitats from which they derive, prioritizing sites in which 
the four species naturally co-occur.  

Ultimately, we wish to learn which of the almost 2600 possible multi-member communities (each strain can 
be present or absent) can persist. To this end, we will generate empirical data, by infecting gnotobiotic plants 
with barcoded bacterial isolates, as described in detail below. We will approach the universe of possible inter-
actions in two ways. First, in a “bottom-up” approach, we will test all pairwise interactions among our 600 
strains, and infect plants with each of the 179,700 possible pairs (including pairs of differently barcoded de-
rivatives of the same strains; 4 replicates per pair). In addition, all single-strain infections will be tested with 
10 replicates. Second, we will take advantage of recent work by our co-investigator Allesina, who has devised 
a highly efficient way of calculating the complete matrix of interactions among strains. In this “top-down” 
approach, one begins with complex mixtures that are free to collapse to their endpoints71. We will adopt this 
strategy by infecting (i) 12 replicates with three 200-member regional communities (containing 50 strains from 
each of the four bacterial taxa); (ii) 12 replicates with four 150-member species communities (containing 50 
strains of the same bacterial taxon from each of the three geographic regions); and (iii) 500 unique, 150-mem-
ber communities randomly drawn from all 600 isolates, tested without replicates, as the replication here comes 
from each strain being present in on average 125 communities. In total, we will infect over 700,000 plants in 
this set of experiments. 

While it might be tempting to consider only the more efficient “top-down” strategy starting with complex 
mixtures, we need the results from the pairwise tests for GWA mapping of genes underlying microbe-mi-
crobe interactions. Note also that measurement of the complex mixtures is considerably less efficient than that 
of pairs because of the much higher number of barcodes present in each starting mixture. A comparison be-
tween the matrices from these two strategies will nevertheless be invaluable in guiding our exploration of 
higher-order interactions required for generating a null distribution of feasible communities in Aim 3.  

Barcoding bacterial isolates and plants: To achieve this massive phenotyping, which will be divided among 
the three groups, we will use an ultra-high-throughput method that we have recently developed to measure 
the interactions between bacterial isolates within gnotobiotic A. thaliana. The bacterial strains will be 
marked with “barcodes”, which are short, unique DNA sequences. 
Similarly, we will construct genetically barcoded plants. Bar-
codes can be PCR amplified via flanking primer binding sequences 
that are the same in all strains, and the amplicons counted after 
Illumina sequencing. The ratios of bacterial to plant barcode se-
quencing reads then provide information on absolute microbe 
abundances scaled to the number of plant cells in each infection.  

The mini-Tn7 system110–112 has successfully yielded site-spe-
cific chromosomal integrations in all four of our bacterial taxa113–

115, and we have already transformed three of them in our own labs 
(Fig. 8). Sequences integrated downstream of the glmS gene are 
stably maintained and do not impose fitness costs110. We will use 
a published high-throughput method116 to insert the barcodes, and 
we will whole-genome sequence the transformed strains on the 
PacBio platform (the genome sequences will also be used for joint 
GWA mapping, see below). 

A major innovation of our work is that infections will be car-
ried out with a collection of A. thaliana plants that are genetically 
identical except for unique barcode sequences that have been in-
tegrated into their genomes, using a similar principle as for the 
bacterial isolates (Fig. 8). We will use the HPG1 strain, the most 
common strain among A. thaliana populations in the US35, to fa-
cilitate the use of a local strain for US-based field tests in Aim 4; 

Tn7L Tn7Rmarker bar
code

P1 P2 P3 P4

bacterial genome
glmS

barcode
NNN...NNN

(16 bp)

Figure 8. Top, barcoding strategy for microbes. 
P1/2/3/4 indicate PCR primers flanking barcodes 
integrated at the glmS locus (after ref. 110). 
Bottom left, gnotobiotic assay system. Bottom 
middle, close-ups of lightly, moderately and 
heavily diseased plants 36 hours after infection 
with different P. viridiflava strains. Bottom right, 
Examples of X. campestris, Sphingomonas sp. 
and P. syringae isolated from A. thaliana and 
transformed with a luciferase construct with the 
same backbone as planned for barcoding.



Weigel Part B2 PATHOCOM 

10 

we note that this strain belongs to a genetic group common in Western Europe33. At least 192 barcodes will be 
integrated into a single chromosomal position that does not affect plant fitness, using an improved 
CRISPR/Cas9 system117. These lines are currently being constructed in collaboration with Daisuke Miki 
(Shanghai) and Michael Desai (Harvard). 

Ultra-high-throughput infections: We have developed an automated protocol for infection using a pipet-
ting robot with which we can infect >1,500 plants/day (requiring ~9 months’ work for each of the three groups). 
Amplicon sequencing will be used to quantify the barcodes in each infection. Because the barcodes are present 
in a single copy per genome, the ratio of bacterial to plant barcode counts gives a direct measure of the 
absolute abundance of each strain (in units of bacterial genomes per host plant genomes). Because every plant 
line and bacterial strain is uniquely barcoded, plant material from 192 infections can be pooled for DNA 
extraction and PCR and converted into a single sequencing library, thereby increasing the throughput of 
infection assays by almost two orders of magnitude. Libraries can in turn be pooled for sequencing. We will 
aim for ~16,000 reads per infected plant for the pairwise infections, and correspondingly more reads for the 
more complex infections, which should provide excellent precision (most reads will be from the host plant).  

The results from barcode counting will be classified qualitatively as one of six outcomes: competition  
(--), reciprocal help (++), independence (00), asymmetry (+-), commensalism (0+), and amensalism (0-). We 
will also calculate a competitive score si of each strain i as its mean fraction fij after co-inoculation with each 
of the n-1 interacting strains. The relevance for whole-plant outcomes will be confirmed by assessing disease 
state of infected plants for the most dramatic interactions using imaging. We will extract rosette surface area 
as a proxy for plant biomass from the images, with RGB color analysis revealing the visible disease state of 
infected plants. From this, we will determine whether potential differences in disease between mono- and 
pairwise infections outcome align with interactions inferred from barcode counting.  

Predicting interactions from bacterial genetics: To ascertain the genetics underpinning strain interactions, 
one needs to map a trait of interest, such as absolute/relative abundance of each strain or ability to cause 
disease, to two genomes simultaneously. We have published a method, ATOMM, for doing precisely that 
when considering a pathogen and its host53. ATOMM uses a two-way mixed-effect model to test for genetic 
associations and cross-species genetic interactions while accounting for sample structure including interac-
tions between the genetic backgrounds of the two organisms. It furthermore has the capacity to consider both 
SNPs and presence/absence polymorphisms, a feature that is necessary for effective mapping within micro-
bial species118–121. By pairing 130 whole-genome sequenced A. thaliana strains with only 22 whole-genome 
sequenced Xanthomonas strains, ATOMM allowed us to fine map very small Xanthomonas genomic regions 
(<50 bp) involved in cross-species interactions53. The method is also very powerful in finding rare genetic 
variants. Our Chicago co-investigator Mary Sara McPeek together with a PATHOCOM-supported postdoc 
will adapt ATOMM for mapping microbe-microbe interactions in which interacting species both have a large 
dispensable genome and, in case of within-species interactions, population structure is shared.  

Horizontal gene transfer (HGT) can promote cooperation by increasing genetic relatedness at loci on 
mobile genetic elements (MGEs)122, and many genes involved in social interactions between bacteria are 
indeed carried by MGEs, in particular plasmids123–125. As mentioned, we will have de novo assemblies of 
genomes of our 600 bacterial strains, including complete MGE information. Preliminary analyses of a subset 
of our strains indicate that the frequency of plasmid-bearing strains spans a wide range across our four focal 
bacterial species (from ~5% for X. campestris to 100% for P. agglomerans). We expect HGT to be only a 
minor factor in our system, given the short time course of our experiments (36 hours). Nonetheless, we will 
estimate the upper bound of HGT in our system by analyzing at least 100 instances where replicate infections 
differ the most in their endpoints (an expectation is that the stochasticity of HGT events will lead to higher 
variance). For each of these, we will use proximity ligation based sequencing methods126,127 to empirically 
determine the extent of HGT. If warranted, we will incorporate such information in our models in Aim 3. 

To confirm the causal role of candidate genes identified by joint GWA mapping, we will functionally 
validate up to 50 candidates using classical molecular genetics (e.g., marker-exchange deletion, complemen-
tation by chromosomal insertion etc.). Candidates will be chosen according to criteria such as type of interac-
tions (with a preference for positive interactions), intra- vs. interspecific interactions (with a preference for 
pathogen-pathogen interactions), and percentage of variance explained by GWA hits. These efforts will di-
rectly allow for estimating false positives in the GWA analyses. 

Anticipated knowledge gained: (i) Relative frequency of different types of microbe-microbe interactions, 
in both pathogenic and non-pathogenic strains; (ii) effects of various categorical variables (e.g., regions, 
bacterial species, presence of MGEs), in particular whether cooperation/facilitation is more common 
within/between species or geographical regions128; (iii) relationship between virulence and competitive abil-
ity, which is critical for epidemiology, yet poorly understood; (iv) importance of higher-order interactions; 
(v) spectrum of genes involved in bacterial microbe-microbe interactions; and (vi) roles of major genetic 
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mechanisms hypothesized to underlie positive interactions, such as kin recognition, Greenbeard effects and 
compatibility genes129.  

Contingency planning: One risk is that the direct integration of barcodes into plant genomes might turn out to 
be too inefficient. In this case, we will adopt the GESTALT method for generating barcodes in a special 
transgene130. Regarding GWA mapping, the effect of population structure is always highly dependent on the 
trait considered38. If population structure leads to an inflation of false negatives39,131, we will reduce population 
structure by performing GWA mapping separately within each region (France, Germany, USA). The genetic 
architecture underlying natural variation of microbe-microbe interactions can be unpredictable as well. If 
allelic effects of candidate genes are marginal132, we will create lines that contain multiple mutations/overex-
press multiple genes. 

Aim 3: Building a model of persistent communities from empirical microbe-microbe interactions 

Rationale: The glue that connects our diverse datasets will be a model that is developed and refined in an 
iterative process with data collection. By tailoring our model structure to encompass two-way, three-way, and 
increasingly more complex interactions between strains, we will refine it until it captures the key features of 
microbial interactions in planta, as measured with increasingly complex synthetic communities.  

Parameterizing ecological interactions from experimental data: The modeling is based on the recent work 
by our co-Investigator Allesina71, who devised a simple statistical method to predict coexistence and expected 
abundance in a pool of known species, using data produced by a limited number of experiments (see Section 
a). Once the model is fit, and its quality assessed by performing out-of-fit predictions, it can be used to predict 
the coexistence and abundance of individual strains in any community that can be formed by combining 
any number of strains from our 600 strains studied in Aim 2. The model can be made more complex by incor-
porating higher-order interaction (HOI)133 terms (the model described in Section a maps into a linear regres-
sion; including HOIs amounts to performing polynomial regressions): 
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Despite the fact that the model now contains a larger number of parameters, fitting only requires marginally 
more data. This means that one can build progressively more complex models, until out-of-fit predictions 
match experimental data quite closely. Whenever the model containing HOIs fits data better than the simpler 
model, this indicates the presence of interaction modification: the presence of strain k modifies the interaction 
between strains i and j (e.g., by modifying the environment, or because of cross-feeding).  
Building the model through an iterative process with data collection: As specified in Aim 2, we will meas-
ure abundances of all strains in isolation, in pairs and in more complex communities. Whenever two strains 
grow on their own and also coexist, we can fit the model, and by collating all two-strain models together, we 
can build a large matrix of all pairwise relationships. Note that (under ideal conditions) this matrix contains 
information on all possible communities that can be formed from the entire set of strains, not only those 
communities that we have directly measured. However, because the model is built with information on mono- 
cultures and pairs, it necessarily neglects scenarios in which a third species influences the interaction between 
the other two. We can therefore exploit the 150- and 200-member communities measured in Aim 2 to build 
a “top-down” model in which only information on these larger communities is used to parameterize interac-
tions. We can then contrast the parameters found in the bottom-up vs. top-down model, thereby highlighting 
discrepancies that would suggest the presence of higher-order interactions. We will use this comparison to 
guide subsequent experiments that will tackle communities of various complexity, and we will combine the 
top-down and bottom-up models to produce an even more accurate measure of interactions. The combined 
model will predict microbial triplets, quadruplets, etc. that are most likely to (i) contain non-pairwise in-
teractions (via comparison of the bottom-up and top-down models), and (ii) coexist robustly (via the com-
bined model). We expect the two models to be sufficient to describe the data; to this end, we are performing a 
Taylor expansion for surface embedding of all the points describing abundances of the isolates in all possible 
communities. Having identified potential higher-order interactions, we will measure the relevant communities, 
assess the goodness of the predictions, and refine our estimates by incorporating the new data. In this way, we 
can set up an iterative experimental design that chooses the next experiment to perform in a way that max-
imizes the improvement of the quality of fit, while at the same time minimizing the number of experiments 
required for improvement of the model. 

Comparison of the model output with patterns of association at the species, isolate, and even gene level, 
as described in Aim 5, will reveal the extent to which dynamics of the pathobiota can be explained based on a 
characterization of strain/species interactions. Other factors, such as the abiotic environment, plant genetic 
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variation, and the presence of other members of the microbiota, will be considered in Aim 4, and additionally 
incorporated in Aim 5. 

Anticipated knowledge gained: This analysis will (i) define the importance of higher-order interactions 
in our microbial communities; characterization of such interactions is an open problem in ecology, and our 
analysis has therefore the potential to (ii) impact the discipline generally by providing high-quality, replicable 
and documented cases of higher-order interactions that can be dissected and studied in laboratory condi-
tions.  

Contingency planning: Few risks are foreseen for the implementation of this Aim, as the basic framework for 
the model that we want to construct is already in place. The major risk is that we lag with the generation of 
the experimental data in Aim 2. However, model construction can begin even before all the data are in hand. 

Aim 4: Experimental characterization of (a)biotic factors modulating pathogen-pathogen interactions 

Rationale: Environmental factors influence disease development and transmission dynamics134,135. Aerial 
(e.g. temperature, precipitation) and soil parameters (e.g. pH, nutrient content) affect the physiology of the 
plant, which may alter pathogen resistance135. Similarly, plant genetics can greatly impact growth of a single 
pathogenic strain74, and genetic diversity is known to exist among bacterial biocontrol agents136. What remains 
unknown is how these abiotic and biotic factors influence pathogen-pathogen interactions. In this Aim, we 
will test the effects of abiotic conditions, Sphingomonas genetics, and A. thaliana genetics on a core matrix of 
pathogen-pathogen interactions that will be representative of the full matrix of pairwise interactions among 
the 450 pathogenic strains. We predict that a majority of interactions will be affected by abiotic conditions 
due to qualitative and quantitative modification of host-produced resources. On the other hand, the genetics 
of Sphingomonas and A. thaliana should have more restricted effects, due to both host-strain38,53,137 and strain-
strain specificity107. We will test these hypotheses. In all experiments, bacterial growth will be quantified with 
our high-throughput barcode method from Aim 2. 

Establishing a core matrix of pathogen-pathogen interactions: We will sample in silico one million com-
binations (i.e., submatrices) of 18 pathogenic strains (six each from Pantoea, Xanthomonas and Pseudomo-
nas, including two per geographic region). From our empirical data, we will know the frequencies of different 
interactions (competition, reciprocal help etc.) as well as the distribution of competitive scores among the 153 
pairs of 18 strains in each of these randomly chosen combinations. We will identify the combination of 18 
pathogenic strains that best reflects the distribution of interactions observed in the full matrix of pairwise 
interactions among the 450 pathogenic strains. If several submatrices have equally good fits, we will choose 
the  submatrix with the highest variance of competitive scores.  

Robustness of pathogen-pathogen interactions to abiotic variation: Two sets of experiments will be carried 
out. First, we will alter the growth conditions of the gnotobiotic A. thaliana plants for infections. To this end, 
we will employ five growth conditions that best reflect major axes of variation in climate/weather and soil 
parameters affecting pathobiota variation in wild A. thaliana populations in year 1 (Aim 1). Plants will be 
infected with each of the 153 microbial pairs (10 replicates) or single strains (20 replicates) in five conditions, 
for a total of 9,450 plants.  

Second, we will grow our standard A. thaliana HPG1 strain (which is from the USA) outdoors at the 
Bergelson field station in southwest Michigan, where field experiments with genetically modified organisms 
can be carried out. To take seasonal and year-to-year variation in climate into account, we will use two sowing 
dates that match the main germination cohorts in southwest Michigan (mid-October and mid-March) over two 
years. Local weather (including temperature and humidity) will be recorded with data loggers. We will add 
different amounts of the three major nutrients to the native soil, to manipulate nutrient status along the axes 
identified as important in Aim 1. Each nutrient level will include 153 pairwise infections (10 replicates), plus 
single-strain infections (20 replicates), for a total of 5,670 plants per ‘year x season’ combination. Seeds will 
be directly sown in the field and seedlings at the five-to-six leaf stage will be sprayed with bacterial suspen-
sions. In addition, we will monitor the background microbiota in 10 pools of 10 control plants before in-
fection for each of the 12 ‘year x season x nutrient status’ combinations using 16S rDNA and ITS1 profiling. 
These experiments will reveal which abiotic factors have the greatest impact on pathogen interactions in our 
system and they will provide additional data for our modeling efforts in Aim 5.  

Robustness of pathogen-pathogen interactions to the genetics of Sphingomonas: We have shown that some 
Sphingomonas strains can modify pathogen-pathogen interactions (see Section a). To test how genetic di-
versity within Sphingomonas affects pathogen-pathogen interactions, we will grow gnotobiotic barcoded A. 
thaliana plants, and individually test the response of each of the 153 pathogen pairs from above to our 150 
Sphingomonas strains (3 replicates, 68,850 plants total; individual interactions between Sphingomonas and 
each of the 18 pathogens will be known from Aim 2).  

http://bergelson.uchicago.edu/?page_id=512
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For each of the 153 pathogen pairs, GWA mapping in Sphingomonas will be carried out using a modified 
version of EMMAX138 that, like ATOMM53, allows for both SNP and insertion-deletion polymorphisms. The 
GWA hits will start to establish a genomic landscape in Sphingomonas associated with community-wide 
interactions in the context of pathogenicity. Up to 50 candidate genes will be functionally validated using 
classical molecular genetics (e.g. marker-exchange deletion, complementation etc.). The candidate genes will 
be chosen according to several criteria: (i) candidates that shift interactions from cooperation/facilitation to 
competition; (ii) the number of pathogen pairs affected (i.e., level of environmental pleiotropy), with a prefer-
ence for generalist candidates; and (iii) fraction of variance explained by GWA hits. These efforts will directly 
allow for estimating false positives in the GWA analyses.  

Robustness of pathogen-pathogen interactions to host genetics: It is well established that the host immune 
system can greatly affect pathogen proliferation, but we know little about the effects a given host has on inter-
actions among pathogens. To address this question, we will first perform gnotobiotic infections of eight A. 
thaliana strains from each of our three geographic regions. Plants will be inoculated with 153 pathogen pairs 
and 18 single pathogens (5 replicates, 20,520 plants total). Based on the results, we will select a submatrix of 
4x4 pathogens that best capture the range of responses with the 153 (18x18) pairs across these 24 A. thaliana 
strains. We will perform gnotobiotic infections of 300 whole-genome sequenced A. thaliana strains (from 
near Toulouse) inoculated with the 6 pathogen pairs and 4 single pathogens (5 replicates, 15,000 plants total). 
Such a set of A. thaliana strains has ample power to fine-map genomic regions associated with pathobiota 
descriptors (Fig. 4). Because the genetic architecture of pathogen resistance may be different in a more eco-
logically realistic environment46,81, we will repeat the experiment in semi-natural conditions by growing 
30,000 plants over two years at our field station in Michigan. Seeds will be directly sown in the field and 
seedlings at the five-to-six leaf stage sprayed with bacterial suspensions. As in the growth chamber experi-
ments, we will image plants to quantify the fitness impact of co-infection on growth and disease symptoms. 
GWA fine-mapping of genomic regions associated with disease descriptors will be run using a Bayesian 
hierarchical model that explicitly accounts for the scaled covariance matrix of population allele frequencies, 
which makes the analyses robust to complex demographic histories and allows permutation of phenotypes 
among A. thaliana strains139. From both the gnotobiotic and field GWA experiments, up to ten candidate 
genes will be functionally validated with CRISPR/Cas9 mutants in the appropriate backgrounds. Finally, we 
will analyze a subset of 768 host x pathogen combinations samples by shallow RNA-seq to assess how well 
differences in disease symptoms and pathogen proliferation align with altered PAMP- and effector-triggered 
immunity99.  

Anticipated knowledge gained: (i) A rigorous test of the prediction that nutrients should broadly impact 
bacterial interactions, whereas host and Sphingomonas genetics should have narrower effects; (ii) identifica-
tion of genes underlying Sphingomonas effects on pathogen-pathogen interactions, thereby providing a 
glimpse of the types of genes and pathways that can have such effects; (iii) identification of genes underlying 
host effects on pathogen-pathogen interactions, thereby providing a glimpse of the types of genes and path-
ways that can have such effects in particular in ecologically realistic conditions, enabled by our field station 
in Michigan. 

Contingency planning: If first results indicate that pathogen-pathogen interactions are not influenced by one 
of the three tested factors, we will concentrate our efforts on the other two factors. Regarding field experiments, 
we are very experienced in the management of thousands of plants39,42,77,140. If a field experiment nevertheless 
fails, we will conduct additional experiments in growth chambers with more pairs of pathogenic strains. For 
GWA mapping in Sphingomonas, if the rate of false negatives appears too high when considering the 150 
strains, we will perform GWA separately with strains from each geographic region. For A. thaliana, the effect 
of population structure is small in our set of 300 local strains88, but the genetic architecture underlying trait 
variation cannot be known beforehand. If allelic effects of candidate genes are marginal, we will create lines 
with multiple mutations/overexpress multiple genes. 

Aim 5: Applying the model in an ecological genomics framework 

Rationale: Our ultimate goal is to compare real-world patterns in the pathobiota to predictions generated 
from our models, in order to decipher the drivers of community structure, based on the following logic: given 
a characterization of (microbe)n interactions, there is a method71 to determine which combinations of microbes 
form communities that can persist. We will employ this technique in a novel way by defining the universe of 
persistent communities, given a defined characterization of microbial interactions and a strong assumption 
that these interactions determine community structure. Patterns emerging from this set of persistent commu-
nities will define a null distribution of expected patterns, provided that microbial interactions are sufficient 
to explain community structure. We will compare our survey data from Aim 1 to these null distributions.  
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Confirming key abiotic and biotic drivers of pathobiota composition: We will begin by utilizing the mod-
els developed in Aim 3 that are based only on the laboratory data generated in Aim 2. Of course, we do not 
expect that these models will work off the shelf to explain attributes of real-world pathobiota such as their 
richness, isolate relatedness etc. However, we will investigate model fit across our hierarchical field collec-
tions to identify biotic and abiotic factors that impact microbe-microbe interactions. We will have found 
candidate biotic and abiotic drivers in Aim 4, and we will seek confirmation of their importance. These explo-
rations can be completed at a variety of scales with respect to the organization of the microbial communities. 
For example, it would be unrealistic to imagine that we can predict the abundance of all isolates in our regional 
sets from Aim 2 (even if we can find exact matches in our real-world data). We will instead investigate whether 
some isolates are ecologically equivalent by comparing the strength and direction of their interactions with 
all other strains, and collapse isolates that behave similarly. This will reduce the challenge, and should provide 
greater chances of successful predictions. For similar reasons, we may find a better match between our model 
predictions and survey data, if we make those comparisons at a genetic rather than taxonomic level. We 
posit that genetic comparisons may be more successful because of the extensive overlap in gene content across 
isolates. 

Extending the model: Once we identify important abiotic and/or biotic drivers, we can extend the model to 
make microbial interactions a function of these drivers. Data from Aim 4, for example, will allow us to 
estimate simple functions for nutrients, as well as other factors that we have tested. It is important to note that 
abiotic and biotic factors that impact all microbe-microbe interactions in the same way will not modify com-
munity structure, and therefore will not pose a problem for our approach (for the effect of temperature, see 
Fig. 4 of ref. 71). With nine postdoc years devoted to model development under the supervision of co-investi-
gator Allesina, we are allowing sufficient room for model improvement, but until we can explore the data, it 
is premature to anticipate which avenues will be most fruitful. Some possibilities include the roles of (i) spatial 
structure, especially if structure is revealed in our real-world data (Aim 1), and (ii) transmission dynamics, 
where we can draw upon characterization of the epiphytic communities and the microbiome of neighboring 
plants in Aim 1 to define a pool of potential colonists. If HGT of cooperation genes is detected in our exper-
iments in Aim 2, we will extend our model to consider eco-evolutionary dynamics. In addition, ongoing work 
by Allesina is extending the simple models from ref. 71 to include resource competition and higher-order 
interactions, as well as relaxing assumptions to allow the use of relative abundances and underdetermined 
(sparse) interactions. We will, of course, consider these newer models. 

Comparing model output and real-world data: For each parameterized and well-formulated model that we 
develop, we will compare its predictions to patterns that we have measured in the real world (Aim 1). Patterns 
can be investigated at the level of isolates (with PEN-seq data), genes (with PEN-seq and metagenome data), 
species or communities (from amplicon data). For example, we have previously observed a higher richness in 
the pathobiota when the microbial community contains a greater fraction of pathogenic taxa25. By generating 
the universe of persistent communities under a particular model, and generating the relationship between the 
fraction of pathogens and the diversity of the pathobiota, we can test the ability of our model to capture this 
qualitative pattern as revealed in the data. Similarly, if we identify genes in the microbes that promote coop-
eration, or genes in the plants that promote cooperation, we will ask how the prevalence of those genes relates 
to pathobiota diversity both in the data and in the model predictions. And if we continue to see that Sphingo-
monas lessens the pressure on competitively inferior isolates (see Section a), we can examine the relationship 
between Sphingomonas abundance and pathobiota diversity in both model and data. There are many addi-
tional questions we can ask, and the ones enumerated here only serve as examples, to illustrate our general 
approach.  

Anticipated knowledge gained: This last aim is open-ended, but we expect to build a (i) general under-
standing of ecological and genetic drivers of microbial community structure; (ii) their relative importance, 
and (iii) the utility of an ecological versus genetic characterization of microbial communities. 

Contingency planning: The greatest risk is that the laboratory data to parameterize our models do not allow 
accurate prediction at one or several scales (broad-scale patterns vs. effects of specific environmental param-
eters, genetic variants etc.). An alternative approach that we can adopt involves fitting our models using a 
subset of field data and then testing our ability to predict patterns in the remaining field data. Note that this 
does not obviate Aims 1-4: all knowledge gained in the previous Aims will still be valid, as are the identification 
and characterization of ecologically important genes that will allow us to ask genetically driven questions in 
Aim 5. 
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Ensuring team integration 

The three Principal Investigators and their co-investigators already have a proven record of collaboration. 
To continue to ensure seamless integration of team members at the three sites, we will have (i) monthly “all 
hands” meetings by video conferencing at 9 am Chicago/4 pm European time, (ii) weekly project meetings 
by video conferencing, (iii) joint field sampling efforts (of note, Bergelson has carried out joint field experi-
ments in Sweden for several years now with collaborators from Sweden, Austria and the UK), (iv) mandatory 
secondments of postdocs and PhD students, and (v) annual multi-day retreats rotating among the three sites. 
We will use two major tools for project management, information exchange and internal reporting. We will 
use Slack for rapid, informal communication between team members, and Atlassian’s Confluence platform 
for long-term coordination. Confluence provides a powerful wiki-like platform for team collaboration, and it 
allows for secure sharing of data and information, reporting as well as assignment and tracking of experiments. 

Risk statement and outlook 

How does PATHOCOM meet the high-risk/high-gain profile expected of ERC projects? PATHOCOM goes 
beyond the current state of the art by taking full advantage of very rapid developments in the genomics of 
wild communities, ultra-high-throughput methods for studying microbe-microbe interactions in planta 
and our ability to model very large data sets. With the exception of human gut microbiome research, we are 
not aware of other programs with similar ambitions to understand drivers of microbe-microbe interactions 
in the real world, at the level of community, environment and genetics. While lab studies have been very 
successful in informing us about general principles and mechanisms of pathogen recognition by the host, and 
evasion of recognition by pathogens, we are still largely in the dark when it comes to understanding how 
microbes interact in the context of natural infections to overcome plant defenses. We will redress this situ-
ation in PATHOCOM.  

Our aims span a range of approaches with increasing risk. Aim 1 will deliver rich knowledge about 
microbe diversity in an exceptionally large sample of wild plants, across a sufficient number of seasons and 
geographic regions that general patterns can be distinguished from local idiosyncrasies. Importantly, because 
we will capture genome-wide genetic variation, this Aim will set the stage for subsequent mechanistic stud-
ies. Aims 2 and 4 will produce an orthogonal data set of pathogen-pathogen interactions at a similarly am-
bitious scale, backed up by complete genome information. Note that the data sets that are generated in Aims 
1, 2 and 4 can be mined by others for discovery of genetic and ecological mechanisms with alternative ana-
lytical approaches. Aims 3 and 5 are the aims with the most uncertain outcomes. In these Aims, we will syn-
thesize the observational and empirical sides of the project, by developing cutting-edge models to explain 
patterns of microbe-microbe interactions observed in simplified lab settings, in controlled field experiments, 
and directly in data from wild plants. These models will predict broad-scale patterns from small-scale char-
acterization of species interactions and thus build a general understanding of how microbial community struc-
ture is shaped, with the less certain part being how far they will go in predicting the effects of individual 
isolates, genes or environmental factors. 

If successful, a systematic understanding of forces that shape the success of pathogenic microbes in wild 
plants will have important implications not only for anticipating disease development in agroecosystems, but 
also for the design of new intervention strategies based on interfering with synergistic positive interactions 
among co-infecting pathogens. 
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