Highly efficient Al doped Ni-Mn-O catalysts for auto-thermal reforming of acetic acid: Role of MnAl₂O₄ for stability of Ni species

Yuxin Song ^a; Boquan Chen ^a; Xiaomin Hu ^a; Qiao Wang ^a; Xingyue Xie ^a; Hui Dai ^a and Lihong Huang ^{a,b,*}

- ^a Department of Chemical and Pharmaceutical Engineering, Chengdu University of Technology, Chengdu 610059, China
- ^b Richard G. Lugar Center for Renewable Energy, Indiana University-Purdue University, Indianapolis, IN 46202, United States
- * Corresponding author
 - E-mail address: huanglihong06@cdut.cn, lihhuang@iupui.edu (L. Huang)

Fig. S1. (a) Nitrogen adsorption-desorption isotherms and (b) pore size distributions of calcined NM-xA catalysts: (1) NM; (2) NM-0.25A; (3) NM-0.5A; (4) NM-1A

Fig. S2. (a, b, d) TEM images and (c,e) HRTEM images of the reduced NM; (f, g, j) TEM images and (h, i, k) HRTEM images of the reduced NM-0.5A.

Fig. S3. (a, b, e) TEM images and (c, d) HRTEM images of the spent NM; (f, g ,j) TEM images and (h,i) HRTEM images of the spent NM-0.5A.

Fig. S4. TG-DTA profiles of spent NM-xA catalysts: (1) NM; (2) NM-0.25A; (3) NM-0.5A;(4) NM-1A