Almost Surely Stable Deep Dynamics

We construct DNN-based dynamic models
with implicit stability guarantees.

This paper is concerned with modeling stable discrete-time stochastic
systems of the form:

Xep1 = SO 0p4)
We embed a Lyapunov neural network into a DNN-based dynamic
model, making it inherently stable. [1] proposed this idea for continuous-
time systems, however, we are concerned with training based on noisy,
discrete state observations.

X;.1 Where
Vix,.) < Vix,)

An implicit output layer enforces a stability condition on the dynamic model.

Lyapunov stability

Lyapunov theory is a powerful framework for proving stability. A
(candidate) Lyapunov function is a ‘bowl’ shaped function that satisfies
several conditions:

» Vi R" = R, is continuous with V(0) = 0

» (||x]]) < V(x) Vx & R"where @ is a nonnegative, continuous,
strictly increasing and unbounded function

If there exists V and constant
0 < f < 1 such that:

Vix,, ) < pVx,) Vi
Then the system is asymptotically
stable [2].

Key: A Lyapunov function is typically sought for particular dynamics,
whereas our model has a Lyapunov function ‘built-in’ to the dynamics,
inherently satisfying the stability condition.
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V(x*) — BV(x,) = 0

The nominal dynamic modelfis ‘absorbed’ back into a suitable level set of V.

Closed-form dynamics for convex Lyapunov
NN

This column treats deterministic systems, then is extend to the stochastic
setting. A Lyapunov neural network (NN) V ‘guides’ the nominal dynamic

modelfto the equilibrium point:
1. If V(f(xt)) < pV(x,), then no problem
2. 1t V(f(x,)) > pV(x,), then define:

A V(x,)
Gt = rfon) = 0 g
V(f(x,))

= Easyto implement;fand V are trained simultaneously; However,
the model may rely too heavily on convexity.

Implicitly stable dynamics for general
Lyapunov NN

We generalize the above strategy through an implicit model:
1. If V(f(xt)) < pV(x,), then no problem
2. If V(f(xt)) > BV(x,), then solve the equation in y*:
V(r* fOe)) = BV(x) = 0
= The implicit model is continuous in x; The one-dimensional root-

finding problem can be evaluated via a Newton-bisection hybrid;
However, training can be more difficult/slower.
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Stable mixture density network parameters

C
w0
0

A mixture density network [3] is a convenient way of modeling
conditional density functions:

k
Py lx) = Z T (X )P (X1 | X,)
=1

The means/covariances are given by the network, which we explicitly
control in a stable fashion using the previous techniques:

V(:ut+1) < V(,Mt) A4
12l =0 (V(ﬂr)) — 0

2nd mean stable
(- Lyapunov stable )

Examples

Here we show sample trajectories after training on a nonlinear
deterministic system, and after training on a nonlinear stochastic ODE.
Please see paper for experimental details.
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These are separate examples. (Left) Comparing (non-) convex approaches for a deterministic
system; (Right) Sample trajectories of a learned model for a stochastic system.
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