
Almost Surely Stable Deep Dynamics

We construct DNN-based dynamic models 
with implicit stability guarantees.

This paper is concerned with modeling stable discrete-time stochastic 
systems of the form: 

 
We embed a Lyapunov neural network into a DNN-based dynamic 
model, making it inherently stable. [1] proposed this idea for continuous-
time systems, however, we are concerned with training based on noisy, 
discrete state observations.  

xt+1 = f(xt, ωt+1)

This column treats deterministic systems, then is extend to the stochastic 
setting. A Lyapunov neural network (NN)  ‘guides’ the nominal dynamic 

model  to the equilibrium point: 

1.  If , then no problem 

2.  If , then define: 

 

➡    Easy to implement;  and  are trained simultaneously; However, 
the model may rely too heavily on convexity.

V
̂f

V( ̂f(xt)) ≤ βV(xt)
V( ̂f(xt)) > βV(xt)

xt+1 = γ(xt) ̂f(xt) =
βV(xt)

V( ̂f(xt))
̂f(xt)

̂f V

Closed-form dynamics for convex Lyapunov 
NN

Lyapunov stability Examples
Here we show sample trajectories after training on a nonlinear 
deterministic system, and after training on a nonlinear stochastic ODE. 
Please see paper for experimental details. 
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xt
xt+1 where
V(xt+1) < V(xt)

An implicit output layer enforces a stability condition on the dynamic model.

If there exists  and constant 
 such that: 

  
Then the system is asymptotically 
stable [2].

V
0 < β ≤ 1

V(xt+1) < βV(xt) ∀t
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Implicitly stable dynamics for general 
Lyapunov NN

Stable mixture density network parameters

We generalize the above strategy through an implicit model: 
1.  If , then no problem 

2.  If , then solve the equation in : 

 

➡    The implicit model is continuous in ; The one-dimensional root-
finding problem can be evaluated via a Newton-bisection hybrid; 
However, training can be more difficult/slower.

V( ̂f(xt)) ≤ βV(xt)
V( ̂f(xt)) > βV(xt) γ⋆

V(γ⋆ ̂f(xt)) − βV(xt) = 0
x

The nominal dynamic model  is ‘absorbed’ back into a suitable level set of .̂f V

Lyapunov theory is a powerful framework for proving stability. A 
(candidate) Lyapunov function is a ‘bowl’ shaped function that satisfies 
several conditions: 

‣  is continuous with  

‣  where  is a nonnegative, continuous, 
strictly increasing and unbounded function 

V : ℝn → ℝ≥0 V(0) = 0
φ(∥x∥) ≤ V(x) ∀x ∈ ℝn φ

These are separate examples. (Left) Comparing (non-) convex approaches for a deterministic 
system; (Right) Sample trajectories of a learned model for a stochastic system.

A mixture density network [3] is a convenient way of modeling 
conditional density functions: 

 

The means/covariances are given by the network, which we explicitly 
control in a stable fashion using the previous techniques: 

 

p(xt+1 |xt) =
k

∑
i=1

πi(xt)ϕi(xt+1 |xt)

V(μt+1) < V(μt) ∀t

∥Σt∥ = 𝒪 (V(μt)) → 0

Key: A Lyapunov function is typically sought for particular dynamics, 
whereas our model has a Lyapunov function ‘built-in’ to the dynamics, 
inherently satisfying the stability condition.

https://dais.chbe.ubc.ca/assets/
preprints/
2020C6_Lawrence_NeurIPS.pdf
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