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Introduction

• To this point, we’ve been primarily focused 
on the genotypes of individuals--the DNA 
sequence that is decided when gametes 
fuse to form a zygote

• The phenotype is any measurable aspect 
of an organism

• Phenotype is the outcome of information 
encoded by the genome filtering through 
complex developmental and physiological 
processes and interaction with 
environment
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Introduction

• A central focus in biology is trying to 
understand the path from genotype to 
phenotype, often referred to as the 
genotype-phenotype map

• In this chapter we will focus on 
understanding how phenotypic variation 
in a population is the product of 
variation at the genotypic level

• For example, we can calculate the 
mean phenotypic value of a species for 
each genotype at a particular locus 



Introduction

• For example, Wang and colleagues (2018), 
looked at the association of a phenotype 
known as “budset” in European Aspen with 
genotypes at various loci across the genome

• Timing of budset is very important for local 
adaptation since trees at higher latitude 
must flower earlier to reproduce prior to frost

• The strongest association with budset timing 
occurs with a SNP in the PtFT2 gene, a 
locus associated with flowering time across 
many plant species
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Introduction

• As seen in the lower right plot, we can 
determine the relationship between 
genotype and phenotype by fitting a linear 
regression of phenotypes across the 
genotypes at a particular SNP:

• 𝑋 is a vector of individuals’ phenotypes, 𝐺! is 
a vector of genotypes at a particular locus, 
taking the value of 0, 1, or 2 depending on 
whether an individuals is a homozygote (0 or 
2) or heterozygote (1)

• 𝜇 is the phenotypic mean
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Introduction

• The slope of the regression line (𝑎!) can be 
interpreted as the average effect of 
substituting a copy of one allele for the 
alternative allele

• In the Aspen example, the slope is -13.6 
days

• Each copy of the G allele at PtFT2 causes 
budset to occur 13.6 days earlier
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Introduction

• We can calculate a p-value for our regression and do this SNP-by-SNP across 
the genome, an analysis known as a Genome-Wide Association Study (GWAS)

• The logarithm of p-values is often plotted for each SNP across the entire 
genome in a so-called “Manhattan plot”

• Below is the Manhattan plot from the Wang et al. study, clearly showing the 
PtFT2 locus as an outlier (colored in red)



Introduction

• In the plot below, each SNP is a different dot on the Manhattan plot

• Note how many SNPs nearby the causal SNP at PtFT2 also have significant p-
values (above the threshold indicated by the dotted line)

• These SNPs do not directly affect budset, but they are associated with the 
causal locus because of linkage disequilibrium (not enough recombination has 
occurred between these close loci to break up associations)



Introduction

• Below is a zoomed-in plot of p-values of SNPs right around the PtFT2 locus, 
with SNPs colored based on their value of D’ (remember, this is a measure of 
linkage disequilibrium)

• As SNPs are further and further away from the causal locus, LD and the 
significance of p-values decay



Introduction

• We must be careful to understand that PtFT2 is merely a gene that is 
associated with budset in this particular sample under these particular 
environmental conditions; PtFT2 is not generally a gene for budset

• In other samples and/or environments or through mutant screens, we may find 
other loci associated with budset



Introduction

• Also note how the genetic basis of 
budset in this particular study 
appears to have a relatively simple 
genetic basis; (PtFT2) is the only 
clear outlier and has a large effect 
on the trait

• Other traits, like human height, 
have a much more complex genetic 
basis, with small functional effects 
being detected across hundreds of 
loci; these are referred to as 
“polygenic” traits
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7.0.1 A simple additive model of a trait

• To develop a simple model to connect genotype and phenotype, let’s imagine 
that a particular trait is controlled by 𝐿 loci that act in an additive manner (i.e., 
we can sum their effects)

• We can sum effects across loci using the following equation:

• Where 𝜇 is the mean phenotype in our population and 𝑋",$ is deviation from the 
mean based on genotype, which is determined by the sum of effects (𝑎!) across 
loci



7.0.1 A simple additive model of a trait

• Here, 𝑋%,$ is the deviation of an individual away from the phenotypic mean due 
to the environment

• This includes more tractable aspects of the environment (e.g., temperature, 
precipitation) as well as more stochastic noise (pests, disease, predation, 
storms)

• To make this simple model more realistic, we can incorporate the effects of 
environment on a particular trait:



7.0.1 A simple additive model of a trait

• Given the complexity of environment, 
its effects will usually follow a normal 
distribution across individuals

• If enough loci contribute to a trait, the 
genotypic effects will be normal as well

• Combined, the contributions of 
genotype and environment lead to a 
normal distribution for the value of a 
trait across a population

• Bear in mind that we are ignoring the 
interactions of alleles at a locus 
(dominant vs. recessive) and the 
interactions of alleles across the 
genome (epistasis)



7.0.2 Additive genetic variance and heritability

• Focusing just on additive effects (ignoring non-additive for now), we’ll begin to build 
models including variance

• Additive genetic variance (𝑉"), is the phenotypic variance due to the additive effects 
of segregating genetic variation

• Our phenotypic variance across individuals can be written as:

• Which includes an environmental component (but no interaction between genotype 
and environment)



7.0.2 Additive genetic variance and heritability

• Additive genetic variance (𝑉") can be written as: 

• Where 𝑉𝑎𝑟(𝐺$,!&!) is the contribution of locus 𝑙 to the additive variance across 
individuals



7.0.2 Additive genetic variance and heritability

• Given the findings of various GWAS that 
have identified candidates underlying 
traits, we can start to represent how loci 
contribute to a polygenic trait

• Estimated effect size of each locus can 
be used in a weighted sum based on an 
individual’s genotype

• The weighted sum is the individual’s 
polygenic score
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7.0.2 Additive genetic variance and heritability

• Take for example 1700 SNPs that are 
associated with variation in human 
height

• The effect of each SNP is very small 
(median = 0.07cm)

• Plotted to the right is the distribution of 
the number of height-increasing alleles 
in 1000 humans and their polygenic 
scores

• These roughly follow a normal 
distribution due to the number of loci

• Those with higher polygenic scores are 
taller
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7.0.2 Additive genetic variance and heritability

• For considering the evolution of phenotypes, it will be helpful to think about what 
proportion of phenotypic variance is due to genetic differences alone (i.e., not due to 
the environment)

• If a trait had no genetic basis, no matter how much selection changed the mean 
phenotype within a generation, the trait would not change over multiple generations

• The proportion of phenotypic variance that is genetic is known as heritability (ℎ'):



7.0.2 Additive genetic variance and heritability

• Since we are assuming this is all additive variance, we call this the narrow sense 
heritability

• If we were also considering dominance and epistasis (the total proportion of 
phenotypic variance attributable to genetic factors), this would be the broad sense 
heritability

• Since phenotypic variance will change based on sample and environment, we 
cannot generalize heritability across other samples or environments
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7.0.3 The covariance between relatives

• Resemblance between relatives (e.g., 
twins) has long been of interest to 
quantitative geneticists

• In fact, similarity in phenotype can be 
used to estimate heritability and the 
covariance of traits

• For example, do tall women tend to 
have tall sisters?

• If there is a genetic component to 
traits, we would expect these patterns 
of decreasing covariance: identical 
twins > full sibs > half sibs > first 
cousins



7.0.3 The covariance between relatives

• Simulation of covariance between individuals across a range of genetic 
relatedness
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7.0.3 The covariance between relatives

• Under a simple additive model of phenotypes, we can write covariance as:

• Where we are looking at the covariance in phenotypes of two individuals 
(𝑋(, 𝑋') and breaking this into components of maternal (𝑀) alleles, paternal 
(𝑃) alleles, and the environment (𝐸)

• When expanding this, we can ignore terms of covariance between 
environments of individuals (𝐶𝑜𝑣 𝑋(% , 𝑋'% = 0) and covariance between the 
environment of one individual and the genetic variation in the other individual 
(𝐶𝑜𝑣(𝑋(%, (𝑋') + 𝑋'*))



7.0.3 The covariance between relatives

• After ignoring these covariances that involve environment, we are left with:

• Now our assessment of covariance in phenotype between individuals is just 
based on covariance in their maternal and paternal allelic effects

• Based on what we know about relatedness, we can simplify this equation

• We’ll start with a few specific cases before developing this more generally



7.0.3 The covariance between relatives

Identical Twins:
• Twins share their maternal and paternal alleles, 

identical by descent (𝑋() = 𝑋') and 𝑋(* = 𝑋'*)

• If we assume that the twins’ mother and father are 
unrelated, the covariance between their alleles is 0: 
(𝐶𝑜𝑣 𝑋(* , 𝑋') = 𝐶𝑜𝑣 𝑋() , 𝑋'* = 0)

• By utilizing these assumptions, equation 7.10 simplifies 
to:
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7.0.3 The covariance between relatives

Identical Twins:
• This tells us that that covariance in traits between 

monozygotic twins is equal to the additive genetic 
variance (𝑉")

• This allows for a very simple calculation of the narrow 
sense heritability in which we divide our covariance in 
traits from monozygotic twins by the trait variance:
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• Where 𝜌)+ is just the correlation in traits across 
monozygotic twins

• This excludes the shared environment of twins and 
non-additive effects



7.0.3 The covariance between relatives

Parent and Child:
• Children resemble their parents because they inherit their 

genome from their parents

• Assuming a mother and father are unrelated, children 
have 1 allele that is IBD from their mother and one allele 
that is IBD with their father (𝑟( = 1 and 𝑟, = 𝑟' = 0)

• For example, let’s assume that a mother (ind 1) transmits 
her own paternal allele to her child (ind 2) so 𝑋*( = 𝑋)'

• In this case, 𝐶𝑜𝑣 𝑋*(, 𝑋)' = 𝑉𝑎𝑟 𝑋*( = (
'
𝑉"

• This means that the covariance in traits between parent 
and child (𝐶𝑜𝑣(𝑋(, 𝑋')) is equal to (

'
𝑉"



7.0.3 The covariance between relatives

Parent and Child:
• We can use this result to calculate the 

narrow sense heritability through the 
regression of the child’s phenotype on the 
parental mid-point phenotype, which is the 
average of mother and father’s 
phenotypes

• The slope of this regression provides an 
estimate of ℎ':
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7.0.3 The covariance between relatives

Parent and Child:
• If much of the phenotypic variation is 

due to additive genetic variation (ℎ' ≈
1), then children will resemble their 
parents

• If much of the phenotypic variation is 
environmental (ℎ' ≈ 0) and children 
and parents do not share an 
environment, then children will not 
resemble their parents
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7.0.3 The covariance between relatives

Parent and Child:
• Going back to the song sparrow data, we 

can see that ℎ' = 0.43 for beak depth and 
0.3 for tarsus length based on the slope of 
the regression

• This tells us, for example, that 30% of the 
difference in tarsus length is attributable to 
additive genetic differences across 
individuals

• Smith and Zach (1979) who published 
these results, also estimated ℎ' based on 
the slope using each parent and found this 
to be about half of ℎ' based on the 
midpoint between parents
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7.0.3 The covariance between relatives

Parent and Child:
• This regression approach does not take into 

account the shared environment between 
parents and offspring, and therefore likely 
inflates our estimate of heritability

• For plants, we can grow our samples across 
different environments to disentangle 
genetics and environment and better 
understand heritability

• In the song sparrow experiment, they tried 
cross-fostering offspring (moving eggs to 
new nests) and found that heritability was still 
high, so the effects of environment were 
minimal
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7.0.3 The covariance between relatives

Parent and Child:
• While the simple approximation of heritability 

based on parent/child regression is 
somewhat flawed, it provides useful intuition 
on whether we can predict offspring 
phenotype based on parents

• If the slope is close to 0, we have little hope 
of predicting offspring phenotypes based on 
the parents; whereas a slope close to 1 
indicates we have good predictive power

• Natural selection will be most efficient when 
children closely resemble their parents
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7.0.3 The covariance between relatives

Parent and Child:
• Finally, with this method, if we want to predict 

a child’s phenotype based on those of the 
parent, we take the mean phenotype of the 
population and add the difference between 
our parental mean phenotype and the 
population mean multiplied by the narrow 
sense heritability:
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7.0.3 The covariance between relatives

General pairs of relatives:
• In considering twins and parent-child relationships, it is clear that an understanding of 

covariance in phenotypes across relatives requires knowledge of the number of alleles 
they share as IBD 

• If relatives 1 & 2 share 0 alleles IBD, then: 𝐶𝑜𝑣 𝑋() + 𝑋(* , 𝑋') + 𝑋'* = 0

• 1 allele IBD, then: 𝐶𝑜𝑣 𝑋() + 𝑋(* , 𝑋') + 𝑋'* = 𝑉𝑎𝑟 𝑋() = (
'
𝑉"

• 2 alleles IBD, then: 𝐶𝑜𝑣 𝑋() + 𝑋(* , 𝑋') + 𝑋'* = 𝑉"

• The general equation, therefore, for any pair of relatives becomes:



7.0.3 The covariance between relatives

General pairs of relatives:
• In summary, under a simple additive model of the genetic basis of a phenotype, to 

measure the narrow sense heritability we need to:

1. Measure the covariance between pairs of relatives (assuming that we can remove 
the effect of shared environmental noise)

2. Use the covariance between relatives to calculate 𝑉"

3. Divide this by the total phenotypic variance to get ℎ'



7.0.3 The covariance between relatives

𝐶𝑜𝑣 𝑋!, 𝑋" = 0.25cm2 𝑉# = 4cm2

For half sibs, 𝑟! =
!
"

and 𝑟$ = 𝑟" = 0, therefore, 𝐶𝑜𝑣 𝑋!, 𝑋" = %!
&

0.25cm2 =
𝑉'
4

1cm2 = 𝑉'

ℎ" = 𝑉'/𝑉#

ℎ" = 𝑉'/𝑉#
ℎ" = 1cm2/4cm2

ℎ"= ¼ 



7.0.3 The covariance between relatives

The Animal Model:

• Our models up until now have assumed a particular relationship between a set of 
individuals, but often we will be working with a population with range of relationships 
across individuals (e.g., think of breeding programs with complex pedigrees)

• More complex “mixed” models have been developed that can accommodate distributions 
of additive genetic and environmental variance.

• These approaches are widely used in modern quantitative genetics to estimate genetic 
variances and heritabilities



Coop, Chapter 7: 7.1-7.1.1
Phenotypic variation and the resemblance between relatives



7.1 Multiple Traits

• Traits often covary, due to environment 
(e.g., high elevation in maize) or due to 
underlying genetic covariance between 
traits

• Genetic covariance can be due to 
pleiotropy (one gene affecting multiple 
traits), for example, genes that affect skin 
pigmentation can also affect hair color

• Genes that are linked may also result in 
covariation of the traits they encode

• Assortative mating may drive covariation 
as well



7.1 Multiple Traits

• Let’s consider two traits (e.g., leg and nose length, but we’ll call them 1 & 2) in 
an individual 𝑖: 𝑋(,$ and 𝑋',$

• We can write these as:

• Where we have our trait means (𝜇), genetic effects (𝑋"), and environmental 
effects (𝑋%)

• We can, once again, describe variance for phenotype (𝑉(, 𝑉'), environment (𝑉(,%, 
𝑉',%), and the additive genetic variance (𝑉(,", 𝑉',") for both traits



7.1 Multiple Traits

• With two traits, however, we also need to think about covariance in phenotype 
(𝑉(,' = 𝐶𝑜𝑣(𝑋(, 𝑋')), environmentally induced covariance (𝑉%,(,' =
𝐶𝑜𝑣(𝑋(,% , 𝑋',%)), and additive genetic covariance (𝑉",(,' = 𝐶𝑜𝑣(𝑋(,", 𝑋',"))

• For covariance due to pleiotropy, for example, let’s consider two traits that are 
affected by 𝐿 SNPs; if the additive effect of an allele at the 𝑖-. SNP is 𝛼$,( and 
𝛼$,' on our two traits, then additive covariance between traits is:

• This describes genetic covariance between traits, because loci that affect trait 1 
also affect trait 2



7.1 Multiple Traits

• While we won’t develop this notation further at the moment, variances and 
covariances of traits can be written in matrix notation across any number of 
traits:

• Just as we did with single traits, we can estimate covariance between traits in 
different relatives:



7.1 Multiple Traits

• As an example of phenotypic and genetic 
covariance, green treefrog males make calls to 
attract mates that vary based on trill length and 
frequency

• Females prefer both many trills and calls, but 
this is energetically costly

• There may be a trade-off between these traits, 
so Welch and colleagues (2014) explored 
whether covariance between traits could be 
detected



7.1 Multiple Traits

• Males appeared to either take the 
strategy of 1) more trills, or 2) more 
calls, and a positive correlation was 
observed between pulse number and 
call period

• This phenotypic covariance is 
associated with underlying genetic 
covariance between the traits, 
because the same trait correlation 
was observed in offspring
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7.1 Multiple Traits

• We can further assess additive genetic covariance by calculating the statistic 
known as the “additive genetic correlation” between phenotypes: 

• As a reminder 𝑉",( and 𝑉",' are the additive genetic variance for each trait 
individually and this statistic will determine the extent to which they are correlated



7.1 Multiple Traits

• One important application of genetic 
covariance in evolutionary genetics is 
where this breaks down, for example, 
with sexually antagonistic selection 
and the evolution of sexual dimorphism

• Potti and Canal (2011) studied 
forehead patch sizes in male and 
female Pied fly-catchers

• Stronger covariance is seen between 
fathers and their sons than between 
fathers and their daughters
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7.1.1 Non-additive variation

• Up until now, we have been discussing 
additive genetic variation, where we can 
sum the effects of alleles and loci to 
estimate phenotype

• Non-additivity can occur when there is 
dominance of an allele at a locus or 
when there are interactions across loci 
(epistasis)

• These complications are incorporated 
into quantitative genetic models by 
partitioning genetic variance across 
multiple components 



7.1.1 Non-additive variation

• To create a model for the dominance 
component of genetic variance, we need to 
think about how alleles are transmitted 
across generations

• A parent transmits one allele to its offspring 
and the other allele is sampled at random 
from the population

• If your mom transmits allele 1 (frequency = 𝑝) 
to you, then with probability 𝑝 you will be a 11 
homozygote and with probability 𝑞 you will be 
a 12 heterozygote



7.1.1 Non-additive variation

• More generally, let’s consider a biallelic locus 𝑙 with frequency 𝑝 for allele 1 and 
genotypes 0, 1, and 2 based on copies of allele 1

• The mean phenotypes across environments and genetic backgrounds for each of 
these genotypes are 𝑋!,,, 𝑋!,(, and 𝑋!,'

• We can “mean center (MC)” these phenotypes by subtracting the mean phenotype 
across all genotypes: 𝑋′!,, = 𝑋!,, − 𝜇

• We can think about the average MC phenotype of an individual who received allele 
1 from one parent as being averages of homozygotes (receiving another allele 1) 
and heterozygotes (receiving allele 2) weighted by the probability of those 
genotypes:



7.1.1 Non-additive variation

• Next, we can consider the average phenotype of offspring based on the number of 
copies of allele 1 that they have:

• These are the additive MC genetic values (also known as the breeding values)

• Here, we are considering only additive contributions of alleles in each genotype



7.1.1 Non-additive variation
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• To further illustrate dominance, let’s 
consider an additive locus (top row) and 
a fully dominant allele (bottom row)

• The MC phenotype from each genotype 
is represented by a black dot with purple 
circles illustrating frequency of 
genotypes in the population

• The additive genetic value is indicated 
by red dots for each genotype

• The red line is a regression through the 
additive genotype and phenotype



7.1.1 Non-additive variation
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• In the additive case, the additive values 
of genotypes coincide with the MC 
phenotypes across all genotypic classes 
(0, 1, and 2)

• The regression line also goes through all 
three genotypic classes

• In the dominant case, the additive 
genetic values differ from phenotypic 
means and are closer to the observed 
values that are more common in the 
population
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• When there is a difference in the 
additive effect of two alleles, we can 
measure this as the effect of swapping 
an allele 1 for an allele 2:
• 𝛼! = 𝛼!,' − 𝛼!,(

• This is the same as the regression of 
phenotype against genotype (the red 
lines in the figure)

• When there is dominance, our 𝛼! (or 
slope of the red line) is affected by allele 
frequency
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• When the dominant allele (allele 1) is 
rare, the slope will be greater, because 
the effect on average phenotypes will be 
stronger when an allele 2 homozygous 
genotype becomes a heterozygote

• When the dominant allele is common, 
the slope will be less because swapping 
out an allele 2 for an allele 1 will mainly 
make heterozygotes into 11 
homozygotes which have the same 
phenotype
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• The genetics of the age of sexual 
maturity in salmon is a good example of 
dominance in nature

• A single allele of large effect is found 
near the VGLL3 gene

• In males, the L allele which causes late 
maturity is recessive to the E early 
allele, but causes a 1 year difference in 
sexual maturity when homozygous

• In females, the L allele is not recessive, 
showing a much more additive trend
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• The variance in the population phenotype due to additive breeding values at a 
locus is:

• And can be summarized across all loci as:
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• Having partitioned the additive component of variance, we can now consider the 
dominance component of variance which is defined as “the population variance 
among genotypes at a locus due to their deviation from additivity”

• For example, the deviation for the heterozygote genotype would be:

• And dominance variance at a locus is this genotype-frequency-weighted sum of 
squared dominance deviations
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• Across all loci in the genome this dominance variance is written as:

• And now we have partitioned all genetic variance and can write:
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• We can now revisit our narrow sense heritability as ℎ' = /(
/)
= 𝑉"/(𝑉0 + 𝑉%), which 

is the proportion of phenotypic variance explained by additive genetic variance

• We can also now write an equation for total proportion of phenotypic variance 
explained by genetic differences among individuals as the broad sense heritability: 
𝐻' = 𝑉0/(𝑉0 + 𝑉%)
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• When dominance is present in loci that affect a trait of interest, we need to modify 
our equation summarizing phenotypic covariance among relatives to:

• The dominance variance acts on loci where both alleles are identical by descent, 
increasing their covariance beyond what might be expected due to additivity
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• The fact that parent-child covariance is only a factor of additive genetic variance is 
an important outcome and reflects the fact that alleles are random draws from the 
population

• In the short-term this holds, but as allele frequencies change in a population (e.g., 
dominant alleles become more common), the additive genetic variance will change
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• Finally, epistasis, as a deviation from additivity is only briefly considered

• Essentially, residual variance between two-locus genotypes after accounting for 
additive and dominant deviations at each locus individually can be attributed to 
epistasis

• Epistasis, though, can be particularly difficult to quantify and additive genetic 
variance alone is typically quite good at predicting short-term evolution


