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Abstract—Lung cancer caused by mutations in the epidermal
growth factor receptor (EGFR) is a major cause of cancer deaths
worldwide. EGFR Tyrosine kinase inhibitors (TKIs) have been
developed, and have shown increased survival rates and quality of
life in clinical studies. However, drug resistance is a major issue,
and treatment efficacy is lost after about an year. Therefore,
predicting the response to targeted therapies for lung cancer
patients is a significant research problem. In this work, we
address this issue and propose a personalized model to predict the
drug-response of lung cancer patients. This model uses clinical
information, geometrical properties of the drug binding site,
and the binding free energy of the drug-protein complex. The
proposed model achieves state of the art performance with 97.5%
accuracy, 100% recall, 95% precision, and 96.3% F1-score with
a random forest classifier. This model can also be tested on other
types of cancer and diseases, and we believe that it may help
in taking optimal clinical decisions for treating patients with
targeted therapies.

Index Terms—Binding free energy, Cancer, Drug response,
EGFR mutations, Machine learning, Personalized medicine,
Protein-drug interactions

I. INTRODUCTION

LUNG cancer is a leading cause of cancer deaths world-
wide [1], and has the lowest survival rate among all

cancer types. It is the second most common type of cancer,
and often diagnosed at later stages when metastatic spread to
other parts of the body may have occurred [2] [3].

In the last decade, great progress has been made in the
management of non-small cell lung cancer NSCLC patients.
Molecular targeting has made great advancements, and EGFR
and ErbB family members have been identified as a useful
therapeutic targets [4]. Over-expression of EGFR is found in
about 60% of advanced NSCLC patients [5]. The US Food
and Drug Administration (FDA) has approved small molecule
inhibitors Gefitinib/Erlotinib as a first line treatment for lung
cancer patients, harboring EGFR mutations [6].

Small molecule inhibitors produced encouraging results at
the initial stage of therapy, and increased the survival rate and
life quality of patients. However, drug resistance appeared due
to secondary point mutation(s), which limited the effectiveness
of the drug [7]. Using molecular dynamics, several computa-
tional studies have been conducted to decode the mechanism
of drug resistance simulations [8], [9]. These studies provided
useful insights about the conformational dynamics [10], stabil-
ity [11], and structural changes [12] of EGFR and explaining
several aspects of drug resistance. Recently, a framework is
developed for the visualization of protein-drug interaction for
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lung cancer drug resistance analysis in [13]. There is still much
unexplained variation in a patient’s response to these drugs and
the patient’s personal characteristics may play a significant role
in the mechanism of drug resistance.

The completion of human genome project [14] has allowed
a move from the traditional medical model of targeting a
large population, as a one-size fits all approach [15], towards
personalized therapies. Information from genomic and genetic
data provides new opportunities for patient care, prevention,
and diagnosis [16].

Predicting a patient’s response to a drug treatment [17] [18],
or identifying their optimal treatment strategy, is challenging
for computational methods due to limited data sources. Disease
outcomes have been modeled for breast [19], and lung [20]
cancers, and for large B-cell lymphoma [21] using clinical
and molecular structural information and for NSCLC patients
using supervised machine learning [22].

As response to a drug is often mediated by a protein-drug in-
teraction, the geometry of the drug binding site, or pocket, and
molecular dynamics (MD) modeling of the binding site, can
be useful predictors. MD simulation of the binding energy of
drug-mutant complexes and patient’s personal characteristics
when combined with an extreme learning machine (ELM) [23]
could classify the drug response level into two classes [24].
They achived an accuracy of 95.3%. In another interesting
work, Local geometrical properties combined with energy
related features in an Eigen binding site method achieved
69.35% accuracy for four classes of drug responses [25]
and personal and geometric features were used to make a
similar prediction in [26], while Bin et al. used protein-
drug interaction footprints in a three level drug response
classificationl [27].

These studies demonstrate the potential of combining dy-
namic molecular features with patient’s personal character-
istics to predicting drug responses, but the quality of the
predictions needs to be improved for potential clinical use.
In this work, we combine geometry, energy and patient’s
personal information to predict four classes of drug response.
The proposed model achieves state of the art performance with
97.5% accuracy, 100% recall, 95% precision, and 96.3% F1
score. The main contributions of this work can be stated as
follows.

• We have developed a drug response prediction model us-
ing molecular dynamics simulation and machine learning,
which achieves state of the art performance.

• Our work demonstrates the contribution of geometrical
features to increase in prediction accuracy.
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Fig. 1. Crystal structure of EGFR with Gefitinib (a). Euclidean distance between drug binding site residues (b), and (c) shows the molecular structure of a
drug.

• As the proposed model is a general model, it can be tested
on other types of cancer and and diseases and used in
clinical decision support with minor modifications.

The paper is organized as follows. In section II, we formu-
late an improved method to classify a patient’s response to
drug treatment. Sections III, IV and V present the proposed
methodology, geometrical feature extraction and classification,
while results and discussion are given in section VI. Conclu-
sions and future work are given in section VII.

II. FORMULATION OF THE CLASSIFICATION MODEL

The framework to classify individual patient outcomes
is divided into three modules; computational modeling of
mutant/drug structures, MD simulations, and classification.
Figure 1 (a) shows the crystal structure of the EGFR dimer
in complex with Gefitinib and this is the template from which
mutant structures are modeled. Figure 1 (b) and (c) show
the key interactions between the protein and drug and the
detailed chemical structure of Gefitinib. Prediction of mutant
structures from the template by computational modeling, using
the Rosetta modeling tools [28], is shown in Figure 2 (a), MD
simulations are shown in Figure 2 (b), and the classification
module is shown in Figure 2 (c).

A. Datasets and Patients

The clinical information to conduct such study is always a
major challenge. The clinical information used in this study
was taken from several published sources [24], [25], [29]–
[31]. A dataset of 201 NSCLC patients was obtained. These

patients had a median age of 63 years, 35% (71) were female
and 65% (130) male, and about 75% were non-smokers. All
patients received EGFR-TKIs as their first line of treatment.
A total of 31 different EGFR mutations occurred in these
patients at frequencies shown in Figure 3. The most common
mutations were L858R, delE746−750 and L858R−T790M.
All mutations were modelled into the EGFR 3D structure using
Rosetta [28].

The potency of an inhibitor can be measured by a patient’s
survival time or their drug response level. Drug response is
classified into four levels, based on the response evaluation
criteria in solid tumors RECIST [32]. Response levels 1 and 2
indicate complete and partial responses to the drug. Response
levels 3 and 4 correspond to stable and progressive disease.
The dataset used here consisted of 19, 118, 30, 34 patients at
response levels 1, 2, 3 and 4, respectively. The dataset was
divided into training (80%, 163 patients) and testing (20%, 38
patients) subsets.

B. Personal features

The personalized information used for each patient was age,
sex, smoking history, performance status, and drug response
level. Age was coded as [0,4] based on the ranges (0,40), (41,
50), (51, 60), (61, 70), and (70+). Figure 4 shows that the
drug response level and survival time are not correlated with
the age of a patient.

A detailed description of the features and their value ranges
are presented in Table I. For a patient with specific personal
and clinical information, the energy and geometric features of
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Fig. 2. The framework for predicting the drug response in lung cancer patients based on personal data, energy, and geometric features. Mutant structures are
predicted by computational methods then molecular dynamics simulations extract energy and geometrical features. Machine learning classifiers then predict
four classes of drug response from these features

Fig. 3. Distribution of mutation statistics for 201 patients with drug response.
L858R, L858R-T790M, and delE746-750 were the most common mutants.

their mutant EGFR-Gefitinib complex were obtained and used
to predict their drug response level through machine learning
classifiers.

III. PROPOSED METHODOLOGY

The framework for predicting drug response level is divided
into three parts (Figure 2). Initially, the mutation is modeled
into the EGFR 3D structures so that MD simulations [33]
can be performed to extract the energy and geometric features
of the protein-drug interaction which are passed to machine
learning classifiers to predict the drug response level.
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Fig. 4. Drug response and survival time by patient age

A. Computational modeling of the structures

The 3D mutant structures are predicted based on the crystal
structure of wildtype EGFR, taken from Protein Data Bank
(PDB) [34]. The high resolution ddgmonomer (HRDM) [35]
protocol in Rosetta is used to predict point mutations, and the
comparative modeling protocol is used to predict multi-point
mutations [36]. Quality assessment of predicted structures is
performed by Verify3D [37], and Q-mean [38].
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Feature type Attributes Description Discrete/Continuous Range

Age Patient’s personal Discrete [0 - 4]
Clinical information Sex information Discrete [0 - 2]

Smoking history Discrete [0 - 2]
Performance status Discrete [0 - 2]

VDW Continuous [-60 - -45]
EEL Binding free energy Continuous [-23 -11]

Energy feature ESURF between protein-drug mutant Continuous [-45 - -1]
EPB Continuous [27 - 40]

Matching rates Matched atoms Discrete [0, 17]
Convex atoms Strength of interaction Discrete [0, 43]

Geometrical features Connectivity Connected atoms Discrete [0, 23]
Euclidean distance Distance between drug and target Continuous [30 - 39 Å]
Hydrogen bonds Number of hydrogen bonds Discrete [775 - 1650]

TABLE I
CLINICAL INFORMATION AND ENERGY AND GEOMETRICAL FEATURES: DESCRIPTION AND VALUES

B. Molecular dynamics simulation

MD simulations of the protein-drug complex were per-
formed using the QM/MM method in Amber [39] with a
surrounding waterbox neutralized using Na+ and Cl- atoms
and the ff9SB [40] and gaff force fields. The total energy of
the system is the sum of the bonded (stretch, bend, torsion)
and non-bonded (electrostatic, van derWaals) terms.

Etotal = Estretch +Ebend +Etorsion +Eelectrostatic +Evdw

(1)
Energy minimization is performed to refine the modeled
structure bfeore the MD run, which starts with a heating of the
system from 0 ° K to 300 ° K, followed by density equilibrium
for 50-ps and constant pressure for 500-ps. The SHAKE [41]
algorithm was used to constrain bond stretching and for
efficient temperature control. After achieving a stable state,
production MD runs were performed at constant temperature
(300 ° K) and pressure (1 atm) for 2-ns. The MD simulations
were performed using a 12 core 3.47 Ghz I-7 processor, with
8 GB RAM [42]. A Tesla C2075 GPU [43] was used for
production files. Each simulation was completed in about 12
hours. The CPPTRAJ [44] package in Amber was used to
extract the trajectory with frames collected every 10-ps, giving
200 frames for each run.

1) Root mean square deviation: The root mean square
deviation is used to measure the spatial variance between a
reference structure and superimposed structures.

RMSD(t) =

√√√√ 1

N

N∑
i=0

||Xi − Yi||2 (2)

where N is the number of frames, Xi is the target and Yi
is the reference structure. RMSD [45] is used to measure the
stability of the MD simulations. The trajectories of the RMSD
values of EGFR and its mutants from the reference structure
are shown in Figure 5.

2) Binding free energy: The free energy of binding [46]
of a drug to a protein in a solvent environment estimates the
binding affinity [47]. The parallel version of MM-GBSA [48]
on a 12 core, 3.47 GHz processor is used for the simulation.

Fig. 5. RMSD trajectories of EGFR and its mutants from the reference
structure. As the values are within 5 Å, the structures are reliable for further
analysis.

The MD trajectory was input to the MM-GBSA, and each sim-
ulation took about 12 hours for computation. The binding free
energy is calculated based on the theory of the thermodynamic
cycle in vacuum and solvent environments [49], as:

∆G = ∆GBind,V acuum + ∆GSolv,Complex

−(∆GSolv,ligand + ∆GSolv,Receptor)
(3)

where ∆G is the binding free energy difference of
the receptor-ligand system in a vacuum. ∆GSolv,Complex,
∆GSolv,ligand, and ∆GSolv,Receptor represent their energy
differences between vacuum and solvent states.

The energy component is composed of Van der Waals
forces (VDW), electrostatic energy (EEL), the electrostatic
contribution to solvation, and non-polar contributions to the
solvation free energy (ESURF). The binding free energy and
its components for EGFR and its mutants are shown in
Figure 6.

In this work, we have used the binding free energy and its
components as energy features in our prediction model. Drug-
sensitive mutants generally have higher binding energy values
than drug resistant mutants. The energy features vs response
level and survival are shown in Figure 7. Energy feature are not
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Fig. 6. Binding free energy between the EGFR-mutants and the EGFR-TKI

one-to-one or linearly related to the response level, indicating
an influence of patient specific features.
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Fig. 7. Binding free energy vs drug response levels and survival times

IV. GEOMETRICAL FEATURES

Interactions between the binding site residues of a protein
and small molecule inhibitors are commonly used in prediction
methods [50]. Local geometric surface properties were deter-
mined based on the alpha shape [51] using the computational
geometry algorithm library (CGAL) [52].

A. Alpha shape

The theory of the alpha shape algorithm is based on 3D
Delaunay triangulation, which aims to maximize the minimum

angle of all the angles of the triangle in triangulation [53].
Given four atoms A, B, C, D, in 3D space, after successful
triangulation, no atom will be located in the circumcircle of
any triangle. The Delaunay algorithm maximizes the angle
using the following rule.

xA yA x2A + y2A 1
xB yB x2B + y2B 1
xC yC x2C + y2C 1
xD yD x2D + y2D 1

 > 0

Here xA, yA shows the location of atom in a 2D-plane. If the
determinant is positive, the atom D lies in the circumcircle of
A, B, C, as shown in Figure 8.

Fig. 8. Unsuccessful triangulation using the Delaunay algorithm. Atom D
lies in the circumcirle of A, B, C

1) Convex atoms: Each atom in a drug-mutant system has
a position and mass, represented as a = (p, w), where p is
the position and w is the mass of the atom. Two atoms a1
= (p1, w1) and a2 = (p2, w2) are defined as orthogonal or
sub-orthogonal using the following equation.{

|p1p2| = w1 + w2, a1 ⊥ a2
p1p2| = w1 > w2, a1 ⊥s a2

From the alpha shape, the solid angle [54] of atoms was
determined to characterize the geometric properties of the local
surface . If A, B, C, and D are the vertices of a tetrahedron,
the solid angle, Ωi, is:

Ωi =
∑
i

(φAB
i + φBC

i + φAC
i − π) (4)

where φAB
i , φBC

i , and φBC
i represent the dihedral angles

of tetrahedron i.
Ω′ =

cos(Ωi)

4
(5)

Ω′ results in a convex shape if positive and a concave shape if
negative (Figure 9). The number of atoms in a convex shape
at the local surface of the drug-dimer complex are used.
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Fig. 9. Atoms in Convex and Concave shapes at the surface curvature. At
point A and B, the atoms are matched and there is a strong interaction between
them, whereas at point A and C, the atoms are unmatched, and there is a weak
interaction.

2) Matching rates: The atoms at the interface of the
structures create the interaction between the drug and the
target. The surface atoms are collected using the alpha shape
algorithm, and named as point set A. After that, point sets
B and C are obtained, to represents the surface atoms of the
target and the drug, respectively. The interacting atoms (I)
are obtained using set operations and further classified as,
interacting atoms on the drug Id or target It.

I = (B ∪ C)−A
It = (I ∩ B)

Id = (I ∩ C)

(6)

I represents the interacting atoms, It the interacting atoms
in the target, and Id the interacting atoms in the drug. The
matching rate is determined by selecting atoms at the drug and
the target. If one of the atoms is convex and other is concave,
the pair is recorded as matched and there is a strong interaction
between them. If both atoms are convex or concave, the pair
is unmatched, and the interaction is weak. The matched and
unmatched atoms are determined as:

f(B,C) =

{
1 ΩB × ΩC < 0

0 otherwise

(7)

Matching rates are calculated for each frame of the MD
trajectory as:

MR =

∑
i,j f(Bi, Ci)

N
(8)

MR represents the matching rate, f(Bi, Ci) is a matched
atom pair, and N is the total number of MD snapshots. The
matching rate is used as a feature in this work, and low
matching rates were linked to low drug responses.

3) Connectivity measure: Connectivity changes between
binding site residues and the drug molecule throughout the
MD simulation. The consistency of these connections could
be used as a predictor of the drug response level.

Ck,i =
∑
j

Ak,i,j (9)

Where Ak,i,j represents the connection between the ith EGFR
atom and the jth drug atom in the kth MD snapshot, and is
1 if there is a connection and zero otherwise.

Dk,i =
∑
i

Ck,i > 0 (10)

Dk represents number of connected atoms in the MD snapshot.
The number of connected atoms over the entire trajectory is
used as a feature.

Ek =

∑
N
i=1(Dk,i)

N
(11)

4) Binding site positioning: The positioning is evaluated
using the Euclidean distance between drug-binding site atoms
and the center of the drug-molecule.

D(a, b) =
√

(xa − xb)2 + (ya − yb)2 + (za − zb)2 (12)

The binding site residues are represented by their CA atoms,
and if there are 14 CA atoms at the binding site, and two
atoms at the drug molecule center, then a 14 × 2 or 28 ×
1 vector will represent this. The distance over the entire MD
simulation of 200 frames can be represented as 200 × 28
matrix. The binding site position is represented as the average
distance between the drug and the target.

Davg =

∑N
i=1(Di)

N
(13)

where Davg shows the binding site position, Di shows the
ith MD snapshot distance, and N shows the number of
MD snapshots. All the feature values were normalized to
[0,1]. Figure 10 shows the geometrical features relative to
the response level. Generally, drug sensitive mutants have less
distance between the drug and the target.
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Fig. 10. Geometric features by response level. As the distance and number
of convex atom increases, the response level also increases.
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Fig. 11. Normalized values for energy, and geometrical features

5) Hydrogen Bonds: Hydrogen bonds contribute to the
stability of a structure and can provides insights about inter-
actions within the structure. Stable systems tend to have more
hydrogen bonds. The number of hydrogen bonds in the EGFR-
drug complex were calculated using the hbond command in
Amber.

B. Composite Geometric Features

The geometric features were combined to make two com-
posite features, with the matching rate, number of connected
atoms, and number of hydrogen bonds as one feature, xg1 and
the number of convex atoms and Euclidean distance, xg2, as
the other. Similarly, the personal features and energy features
were combined as xp and xe1, respectively.

C. Feature normalization

Each feature was normalized to the [0, 1] range using min
- max normalization.

zi =
xi −min(x)

max(x)−min(x)
(14)

where zi represents the normalized value, min(x) represents
the minimum value, and max(x) represents the maximum
value for each feature. The normalized values are shown in
Figure 11. Composite features and density distributions are
presented in Figure 12.

Fig. 12. Feature and density distributions. The geometrical features are most
discriminative.

V. CLASSIFICATION

For patients with clinical information, geometrical and en-
ergy features were obtained from their EGFR mutant drug
complex, and classifiers were trained to predict one of the
four-classes of drug response level. Five popular classifiers
were tested using Rstudio with the CARET package [55] and
10-fold cross-validation.

A. Classification performance metric

The classification performance metrics used are precision,
recall, F1-measure and balanced accuracy.

Precision =
TP

TP + FP
(15)

Recall =
TP

TP + FN
(16)

F1−measure =
2 ∗ Precision ∗Recall
Precision+Recall

(17)

BalAcc =
TP + TN

TP + TN + FP + FN
(18)

The terms TP, FP, FN, and TN denote true positive, false
positive, false negative, and true negative respectively. The
performance metrics are shown in Figure 13.

We also used Kappa (κ) statistic to deal with multi-class
classification and and imbalanced problems.

κ =
po − pe
1− pe

(19)
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Classification Performance Metrics
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Fig. 13. Classification performance metric. Random forest achieved the best
performance with 100% precision and 97.5% balanced accuracy.

Fig. 14. Dot plots for classification accuracy and Kappa values using a
10-fold cross-validation

where po is the observed agreement and pe is the expected
agreement.

VI. RESULTS AND DISCUSSION

In this work, we have designed a drug-response prediction
model for lung cancer patients. Clinical data, age, survival,
sex, smoking history, and type of mutation, were collected
from various previous studies [24], [25], [29]–[31] and were
used with energy and geometric features from the EGFR
mutant-drug complex to predict the drug-response level as
one of complete response, partial response, stable disease and
progressive disease. The accuracy of the five classifications
methods on these data and their Kappa scores [56] showing
the agreement between the reference and predicted values are
shown in Figure 14. The average accuracy of Knn at 71% with
Kappa at 39% is lowest, whereas the random forest achieves
an accuracy of 97.5% with Kappa at 95%.

The confusion matrices for training and testing are shown
in Figure 15 and 16 respectively. The random forest classifier

achieves 100% accuracy with no mis-classification for training
data and only one mis-classification in the testing data.

Fig. 15. Confusion matrix for the training dataset. The labels correspond to
complete response, no response, partial response and stable disease.

A. Comparison

Table II shows that the classification accuracy of the pro-
posed method achieves state of the art performance relative
to related works and for prediction using four classes of
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Fig. 16. Confusion matrix for testing dataset, labels as in Figure 17.

drug response. The pioneer work [24] used binding free
energy, and personal features of 168 patients to predict a two-
class drug response. Methods predicting fewer response levels
performed better than earlier four-level predictors, however,
our method outperforms all previous work. The combination
of geometrical, energy, and personal features seems to be the
optimal strategy for predicting the drug response. Figure 17,
shows the contribution of each feature.

Contribution of features in Accuracy
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Fig. 17. Contribution of geometrical, personal, and energy features in the
accuracy

B. Discussion

Rapid developments in the field of bioinformatics and the
large amount of genomic data available today, allows devel-
opment of personalized drug response models [58]. Previous
studies showed that drug response is associated with clinical
information, the type of EGFR mutation, binding free energy,
and geometrical properties of the drug binding pocket. Dif-
ferent studies combined different properties to achieve higher
accuracy (Table II).

In this work, three features, clinical information, protein-
drug interactions, and geometrical properties of the drug-
binding pocket, were combined to achieve state of the art
performance with 97.5% accuracy, 100% recall, 95% preci-
sion, and 96.3% F1 - score with a random forest classifier.
The classifier performed well on all the classes, with only
one mis-classification between stable disease and progressive
disease.

Our main focus in this work was on modeling the ge-
ometry of the drug-binding pocket and combining this with
clinical information. The geometrical features, convex atoms
at the interaction surface of the complex, the matching rates
of surface atoms, the distances between the center of the
drug molecule and binding-site residues, and hydrogen bonds,
were the most discriminative features. Combining clinical and
molecular predictors to identify drug-sensitive patients was
most effective. Further investigation of this model may result
in mutation, age or gender specific therapies and the model can
also help in selecting the optimal drug for specific patients.

A limitation of this study was that it contained only most
common 33 EGFR mutations from a possible 594 EGFR
mutations available in COSMIC database [59]. However, the
mutations used account for about 90% of all mutations. It is
difficult to determine drug sensitivity to rare mutations due
to limited patient data. Another limitation is the small dataset
of 201 patients. Since, obtaining clinical data is difficult due
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Reference Number of patients Features Method Response Level Accuracy

[24] 167 Personal and energy Extreme learning machines 2 95.13

[57] 355 Personal and genetic Sequential minimization optimization 2 76.56

[26] 137 Geometrical and personal Softmax regression 4 70.78

[25] 311 Energy and geometrical Support vector machine 4 69.35

[27] NA Protein-drug interactions Naive Bayes 3 95.50

Proposed method 201 Personal, energy, and geometrical Random forest 4 97.50

TABLE II
COMPARISON WITH OTHER METHODS

to privacy and ethical considerations, most clinical studies
consist of fewer than 400 patients, e.g. Table II, and may have
imbalanced numbers of patients at each response level. Despite
this, our model achieved a highly accurate prediction rate.

Personalized or precision medicine separates patients into
different groups based on their individual medical decisions,
interventions, risk of disease and drug-responses. Our model
provides a personalized drug response model with a highly
accurate prediction rate that could be tested on other types of
cancer and other diseases.

VII. CONCLUSION

Computational methods, especially machine learning [60]–
[62] are widely used to analyze, visualize and predict re-
sponses to lung cancer drugs. In this work, we developed a
systematic model that uses personal, energy, and geometrical
features in machine learning classifiers to predict the four
levels of drug response. This method achieved state of the art
performance at 97.5% accuracy with a random forest classifier,
even though only a small patient dataset was available. This
demonstrates the potential of the random forest method to
deal with difficult learning situations and to be implemented
in daily clinical practice to optimize treatment strategies for
individual patients. In the future, more clinical data will be
collected to further refine the prediction model, and test it on
other diseases.
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