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SUMMARY
Inflammation can support or restrain cancer progression and the response to therapy. Here, we searched for
primary regulators of cancer-inhibitory inflammation through deep profiling of inflammatory tumor microen-
vironments (TMEs) linked to immune-dependent control in mice. We found that early intratumoral accumu-
lation of interferon gamma (IFN-g)-producing natural killer (NK) cells induced a profound remodeling of the
TME and unleashed cytotoxic T cell (CTL)-mediated tumor eradication. Mechanistically, tumor-derived pros-
taglandin E2 (PGE2) acted selectively on EP2 and EP4 receptors on NK cells, hampered the TME switch, and
enabled immune evasion. Analysis of patient datasets across human cancers revealed distinct inflammatory
TME phenotypes resembling those associated with cancer immune control versus escape in mice. This al-
lowed us to generate a gene-expression signature that integrated opposing inflammatory factors and pre-
dicted patient survival and response to immune checkpoint blockade. Our findings identify features of the
tumor inflammatory milieu associated with immune control of cancer and establish a strategy to predict
immunotherapy outcomes.
INTRODUCTION

The concept that cancer induces inflammation and that inflam-

matory cells within the tumor bed can support cancer progres-

sion is well established (Coussens et al., 2013; Hanahan and

Weinberg, 2011; Mantovani et al., 2008). Aggressive and inva-

sive tumor behaviors in both preclinical models and patients

are commonly associated with tumor-infiltrating macrophages,

neutrophils, immature myeloid cells, or regulatory T cells and

with molecules produced by these and other leukocytes, as

well as stromal cells, or cancer cells themselves. Interleukin-6

(IL-6), IL-8, transforming growth factor b (TGF-b), CXCL1, or

VEGF are examples of soluble factors with pleiotropic effects

that can foster cancer growth and spread (Coussens et al.,

2013; Mantovani et al., 2008).

Inflammation at the tumor site can also have a protective

role, partly by contributing to immune recognition and elimina-
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tion of cancer cells. Cytotoxic T cells (CTLs), in particular, are

major anti-tumor effectors in preclinical cancer models, and

their intratumoral abundance is associated with improved pa-

tient outcome and response to cancer therapy (Binnewies

et al., 2018; Fridman et al., 2012). Accordingly, high intratu-

moral levels of CTL chemoattractants, such as CXCL9 or

CXCL10, or cytokines that promote CTL differentiation and

effector function, such as IL-12 or type I and II interferons

(IFNs), have also been linked with a favorable prognosis

(Chow et al., 2019; Dangaj et al., 2019; Spranger et al., 2017;

Vesely et al., 2011). In addition to conventional helper CD4+

and cytotoxic CD8+ T cells, other immune subsets, such as

natural killer (NK) cells, gd T cells, or the Batf3-dependent con-

ventional type I dendritic cells (cDC1) have also been associ-

ated with improved outcome (Barry et al., 2018; Böttcher et

al., 2018; Gentles et al., 2015; Morvan and Lanier, 2016;

Salmon et al., 2016; Spranger et al., 2017). This is true both
er 15, 2020 ª 2020 The Author(s). Published by Elsevier Inc. 1215
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in spontaneous and in therapy-induced anti-tumor responses,

such as those ensuing from the administration of immune

checkpoint inhibitors.

Particularly in immune checkpoint blockade (ICB) therapy,

preexisting intratumoral T cell immunity ( Herbst et al., 2014; Tu-

meh et al., 2014) and activation of specific inflammatory path-

ways (Ayers et al., 2017; Cristescu et al., 2018; Rooney et al.,

2015) have been associated with treatment efficacy. Objective

responses from ICB are generally greater in the so-called ‘‘hot’’

T cell-inflamed tumors characterized by higher CTL infiltration,

tumor mutational burden (TMB), neoantigen load, and clonality

or IFN-g signaling (Ayers et al., 2017; Cristescu et al., 2018;

McGranahan et al., 2016; Rizvi et al., 2015; Snyder et al., 2014;

Van Allen et al., 2015). However, the prognostic and predictive

utility of these tumor features is limited and varies across malig-

nancies. Indeed, patients with equally high TMB or CD8 T cell

abundance experienced dichotomous responses to ICB (Rizvi

et al., 2015; Snyder et al., 2014; Van Allen et al., 2015).

Despite their pivotal role in cancer progression and

response to therapy, mechanisms that dictate the balance be-

tween cancer-promoting versus cancer-inhibitory inflammation

within the tumor microenvironment (TME) are not clear (Shala-

pour and Karin, 2019). In particular, the underlying signals and

pathways that instruct the establishment of T cell-inflamed tu-

mors are not completely understood. Although high TMB or

evidence of IFN-g signaling help discriminate hot from

‘‘cold’’ tumors, at least in some cancer types, what precedes

and drives T cell infiltration and effector function is

poorly defined.

Here, we sought to identify instructive signaling pathways and

factors responsible for the establishment of inflammatory TMEs

characteristic of T cell-inflamed tumors. We carried out deep

cellular and molecular tumor phenotyping of murine cancer

models in which prostaglandin E2 (PGE2) release or lack thereof

determines progression versus immune-mediated rejection,

respectively (Zelenay et al., 2015). These models allowed us

to study primary determinants of cancer immunogenicity and

T cell control in settings of equivalent TMB but distinct inflam-

matory profiles coupled to dichotomous tumor fates. We found

that the control of tumors deficient in cyclooxygenase enzymes

(COXs), and rate limiting for PGE2 synthesis, was independent

of major innate immune signaling pathways but required the

early intratumoral accumulation of NK cells. As well as directly

killing cancer cells, NK cell-derived IFN-g induced a profound

molecular remodeling of the TME, ultimately leading to CTL-

mediated tumor eradication. Mechanistically, PGE2 acted

selectively on NK cells by EP2 and EP4 receptors to inhibit

the TME switch and thereby enabling immune escape. To

assess the potential translational relevance of our findings, we

analyzed large cancer patient datasets, including multiple

independent cohorts of patients receiving ICB. We showed

that pro- and anti-tumorigenic inflammatory molecular profiles

associated with the COX-2/PGE2 axis and NK cell activity,

respectively, can be found within many human cancers and

have independent prognostic utility. Critically, a murine-derived

gene signature that integrated these antagonistic inflammatory

phenotypes predicted ICB outcome in multiple human tumor

types, even in patient cohorts in which established immune bio-

markers failed to do so.
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RESULTS

Increased NK Cell and Reduced Neutrophil
Accumulation Precede Adaptive Immune Control of
COX-Deficient Tumors
To search for orchestrators of hot TMEs, we exploited an exper-

imental system in which divergent immune-dependent tumor

fates are consistently observed independently of the overall

TMB of cancer cells. In this model, tumors are rendered sponta-

neously immunogenic by cancer cell-intrinsic ablation of the

COX-2/PGE2 synthesis pathway. Thus, BrafV600E-driven mela-

noma cells made deficient for COX-1 and -2 (Ptgs�/� cells) fail

to form progressive tumors in immunocompetent mice, but their

COX-competent parental counterpart (Ptgs+/+) subverts adap-

tive immunity and grows uncontrollably (Zelenay et al., 2015).

To confirm that these opposing outcomes were fully attributable

to differences in cancer cell COX competence, we restored

COX activity in Ptgs�/� cells by retroviral transduction. COX-2-

complementation re-established PGE2 production by mutant

Ptgs�/� cells and their ability to form progressive tumors in

immunocompetent mice (Figures S1A and S1B).

To investigate the basis for immune-mediated control in this

model, we first assessed the involvement of canonical innate im-

mune signaling pathways that classically initiate and coordinate

innate and adaptive immunity. Notably, Ptgs�/� tumors still re-

gressed in mice deficient in the signal transducers MyD88,

Toll-IL-1R resistance domain-containing adapter-inducing IFN-

b (TRIF), mitochondrial antiviral signaling protein (MAVS), cyclic

GMP-AMP synthase (cGAS), or stimulator of IFN genes (STING)

with similar kinetics to wild-type hosts (Figure 1A), implying that

TLR, RLR, and cGAS pathways are all redundant for immune-

mediated control of these tumors. We next characterized the tu-

mor-infiltrating immune cell composition early on to understand

what initially facilitates tumor control. COX-deficient tumors

were noticeably smaller than parental or COX-2-restored cells

4 days following implantation (Figure S1C), before the onset of

adaptive immunity, which is apparent only 7 to 10 days post-im-

plantation (Zelenay et al., 2015). Examination of multiple immune

cell types by flow cytometry showed an increase in neutrophils

and amarked reduction in NK cell infiltration in COX-sufficient tu-

mors (Figures 1B–1D and S1H). Other leukocyte populations

were unchanged or less consistently affected at this time point

(Figures 1B, S1D, S1E, and S1H). Kinetics of immune cell

composition revealed a divergence in the accumulation of neu-

trophils and NK cells from as early as 2 days post-implantation

(Figure S1F). This phenomenon was also observed in large pro-

gressive Ptgs+/+ and Ptgs�/� tumors 1 month post-implantation

in Rag1�/� mice (Figure S1G). An analysis of tumor sections by

immunofluorescence further validated the absence of Ly6G+

cells and the presence of NK1.1+ cell clusters in COX-deficient

tumors (Figures S1I and S1J).

We extended our analysis to other widely used cancer models

with varying immunogenic potentials. In colorectal MC38 and

CT26 and breast 4T1 cells, ablation of the COX-2/PGE2 pathway

significantly impaired tumor growth selectively in immunocom-

petent hosts (Figures S2A and S2B; Zelenay et al., 2015). As in

the BrafV600E-driven melanoma model, their early leukocyte infil-

trate showed decreased neutrophil and increased NK cell accu-

mulation across the different COX-deficient tumor models,
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Figure 1. Ablation of Cancer Cell-Intrinsic COX Alters the Intratumoral Accumulation of Select Innate Immune Cell Subsets

(A) Kaplan-Meier plots showing the fraction of tumor-bearing wild-type (n = 10), Tmem173�/� (n = 5),Cgas�/� (n = 5), Trif�/� (n = 7),Mavs�/� (n = 6), andMyd88�/�

(n = 6) mice injected with Ptgs�/� or Ptgs+/+ melanoma tumor cells in wild-type (n = 10) hosts.

(B–D) Immune cell infiltrate analysis of Ptgs+/+, Ptgs�/�, and Ptgs�/�+COX-2 tumors 4 days post-implantation. (B) Two-dimensional distributed stochastic

neighbor embedding (t-SNE) projections of CD45+ cells for each group (n = 6 concatenated samples per group). The frequency and the number of intratumoral

neutrophils (C) and NK cells (D) are shown.

(E) Weight of Ptgs+/+ and Ptgs�/� tumors 4 days post-implantation in wild-type, NK cell-depleted, or Rag1�/� mice.

(F) Ptgs+/+, Ptgs�/� (+/� synthetic PGE2), and Ptgs�/�+COX-2 melanoma cells tested for susceptibility to NK cell-mediated killing. E:T refers to ratio of effec-

tor:target cells.

(G) Percentage of NK cells contacting either 1 or more (2–5) Ptgs+/+, Ptgs�/�, or Ptgs�/�+COX2 targets.

(H) Violin plots representing the number of interactions and the cumulative contact time of NK cells with Ptgs+/+, Ptgs�/�, and Ptgs�/�+COX-2 targets. Data are

expressed as mean ± SEM, one-way ANOVA (C–F and H) or Fisher’s exact test. (G).
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whereas other innate immune cell subsets, includingmonocytes,

tumor-associatedmacrophages (TAMs), or DCs were largely un-

affected. This opposing pattern of neutrophil and NK cell infiltra-

tion was also observed comparing early and established Ptgs+/+

and Ptgs�/� 4T1 tumors implanted orthotopically into the mam-

mary fat-pad (Figure S2D). Altogether, these data indicated that

cancer cell-intrinsic COX-2 activity attracts neutrophils and hin-

ders early intratumoral NK cell buildup across several cancer

models.

NKCells AreEssential for Both TCell-Independent andT
Cell-Dependent Tumor Control
To assess the contribution of either neutrophils and/or NK cells

as putative early regulators of the TME composition and tumor

fate, we monitored tumor burden and analyzed the immune

cell infiltrate following their antibody-mediated depletion. Elimi-

nation of neutrophils and/or other GR-1+ cells altered neither tu-

mor size nor the prevalence of other leukocyte subsets in COX-

competent or -deficient tumors (seeMendeley Data). In contrast,

NK cell depletion led to a clear increase inPtgs�/� tumor size and

weight, which became comparable to those of COX-competent

tumors as early as 4 days after cancer cell implantation (Fig-

ure 1E). Of note, despite the significant increase in Ptgs�/� tumor

size, the overall content of other innate immune cell subsets was

not grossly altered at this time point, neither in the melanoma nor

MC38 colorectal models (Figures S3A and S3B).

Early control of Ptgs�/� tumors was still noticeable in Rag1�/�

mice lacking adaptive immunity (Figure 1E), arguing for direct NK

cell cytotoxic activity against Ptgs�/� tumor cells. Indeed, NK

cells were more efficient at killing COX-deficient than parental

or COX-2-restoredmelanoma cells in vitro or COX-deficient cells

in the presence of synthetic PGE2 (Figure 1F). Furthermore, live

imaging of NK and cancer cell co-cultures showed that COX-2

activity hindered the interaction of NK cells with tumor cells (Fig-

ures 1G and 1H). Migration tracking of NK cells showed that the

frequency of contacts with more than one target and the overall

cumulative target contact time were significantly higher in co-

cultures of NK cells with Ptgs�/� tumor cells (Figures 1G and

1H). NK cell viability or migratory behavior were, conversely,

not altered by cancer cell COX-2 sufficiency in these experi-

mental settings (Figures S3D, S3E, and S3F). Overall, these

data supported a model whereby NK cells directly kill COX-defi-

cient cancer cells, restricting early tumor growth.

Sustained and long-term growth control of Ptgs�/� melanoma

and MC38 colorectal tumors was also impaired in NK cell-

depleted mice in which tumors grew as progressively as their

parental counterparts (Figures 2A, S3C, and S3G). Yet, this pro-

longed growth restriction was equally dependent on adaptive

immunity (Figures 2A, S2B, and S3G), indicating that sole NK

cell cytotoxic activity is insufficient for tumor eradication. There-

fore, to determine the relative and hierarchical involvement of

different lymphocyte subsets in tumor control, we compared

the growth of Ptgs�/� tumors in Rag1�/� mice or in wild-type

mice depleted of either NK cells, CD4+ T cells, CD8+ T cells, or

both CD4+ and CD8+ T cells. In agreement with NK cell participa-

tion in both innate and adaptive phases of immune control, tu-

mors grew faster in NK cell-depleted mice than in mice lacking

only CD8+ T cells (Figures 2A and S3G) and even more aggres-

sively in hosts lacking both NK cells and T cells (Figure S3H).
1218 Immunity 53, 1215–1229, December 15, 2020
Nevertheless, tumors progressed, and full eradications were

never observed in NK cell-competent Rag1�/� hosts or following

depletion of CD8+ T cells (Figures 2A, S3G, S3H, and S3I). Last,

tumors were still rejected in mice depleted of CD4+ T cells or

lacking gd T cells (Figures 2A, S3G, and S3I). However, com-

bined ablation of both CD4+ and CD8+ cells led to faster tumor

growth than in mice ablated of just CD8+ T cells, suggesting a

non-redundant contribution of CD4+ T cells (Figures 2A and

S3G). Taken together, these data indicated that among different

lymphocyte subsets, NK cells were uniquely responsible for early

control; however, full tumor eradication relied on the action of

both NK and conventional T cells.

In agreement with the hypothesis that NK cells were upstream

of adaptive immunity, their early depletion inhibited the accumu-

lation of CD8+ T cells within Ptgs�/� tumors evaluated 7 days af-

ter tumor cell implantation (Figure 2B). Intratumoral activation

and effector T cell function were also markedly compromised

in the absence of NK cells, as revealed by the enumeration of tu-

mor-infiltrating CD44+ CD8+ T cells and IFN-g-producing CD8+

or CD4+ T cells (Figure 2C). Notably, delaying NK cell ablation

to this time point did not impair the eradication of Ptgs�/� tumors

(Figure 2D), ascribing a primary early role for NK cells in setting

the stage for the ensuing T cell-mediated tumor elimination.

Genetic Ablation of PGE2 Receptors EP2 and EP4 on NK
Cells Unleashes T Cell Immunity toward COX-
Competent Tumors
To further examine the early instructive role of NK cells in the initi-

ation of cancer immunity and to validate our findings in a setting

independent of CRISPR mutant cells, we took advantage of

genetically engineered mice lacking EP2 and EP4 receptors (en-

coded by Ptger2 and Ptger4), which mediate the downstream

immunomodulatory signaling of PGE2 (Kalinski, 2012). In

Gzmb-Cre Ptger4floxed/floxed Ptger2�/� mice (referred to as GPP

mice) (Chen et al., 2015) all cells are deficient for EP2 but only

granzyme-B-expressing cells lack both EP2 and EP4. Strikingly,

parental COX-competent melanoma cells failed to form progres-

sive tumors when implanted into GPPmice, mirroring the growth

profile phenotype of their COX-deficient counterparts in wild-

type hosts (Figure 2E). Equally, parental Ptgs2+/+ MC38 colo-

rectal cells showed evidence of delayed tumor growth in GPP

mice (Figure S4A). Ptgs+/+ melanoma cells grew progressively

in either single germline EP2-deficient or conditional EP4-defi-

cient mice, suggesting the dual deletion of both PGE2 receptors

on granzyme B+ cells was required for spontaneous tumor

regression (Figure 2G). In the spleen and early on among tu-

mor-infiltrating immune cells, NK cells constituted the vast ma-

jority of granzyme B+ cells, with only a very small proportion of

CD3+ T cells expressing granzyme B, as determined by fluores-

cence-activated cell sorting (FACS) (Figure S4C). Indeed,

consistent with NK cells being the primary and direct cellular

target of cancer cell-derived PGE2 in vivo, Ptgs+/+ tumors in

GPP mice were smaller early on and showed heightened infiltra-

tion by NK cells and CTLs at days 4 and 7, respectively (Figures

2F and S4B). These tumors also had significantly fewer neutro-

phils, fully recapitulating the phenotype of Ptgs�/� tumors in

wild-type animals (Figure S4D) and implying an essential sup-

pressive role for both EP2 and EP4 on NK cells in preventing tu-

mor-eradicating immunity.



C

B

F

D

A

E

G

Figure 2. NK Cells Contribute to Both Innate and Adaptive Immune Control of Ptgs–/– Tumors

(A) Growth profile of Ptgs+/+ and Ptgs�/� melanoma cells implanted into Rag1�/� or wild-type mice untreated or depleted of NK, CD4+, and/or CD8+ cells.

(B and C) Frequency of CD8+ T cells (B); representative plots and frequency of CD8+ CD44+, CD8+ IFNg+, and CD4+ IFNg+ T cells (C) gated on live, CD45+, CD3ε+

cells in Ptgs+/+ and Ptgs�/� untreated or NK cell-depleted wild-type mice analyzed 7 days post-implantation.

(D) Individual growth profiles of Ptgs�/� melanoma cells in wild-type mice depleted of NK cells from the day before or a week after cancer cell implantation.

(E) Growth profile of Ptgs+/+ and Ptgs�/� cells in wild-type mice or Ptgs+/+ cells in GPP mice.

(F) Tumor weight, NK cell frequency, and number per g of tumor analyzed 4 days after implantation of Ptgs+/+ and Ptgs�/� cells in wild-type or Ptgs+/+ cells in

GPP mice.

(G) Growth profile of Ptgs+/+ and Ptgs�/� melanoma cells in wild-type or Ptgs+/+ melanoma cells in Ptger2�/� or Gzmb-Cre Ptger4floxed/floxed mice. Data are

expressed as mean ± SEM, one-way (B–C and F) or two-way ANOVA (A).
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Figure 3. IFNg-Producing NK Cells Drive an Early Switch toward

Cancer Inhibitory Inflammation Characteristic of T Cell-Inflamed

Tumors

(A) Analysis by RNA sequencing (RNA-seq) of bulk Ptgs+/+ and Ptgs�/� tumors

in wild-type mice or Ptgs�/� tumors from NK cell-depleted mice 4 days post-

implantation. GSEA of a hallmark IFN-g response gene set in Ptgs�/� tumors

compared to that of Ptgs+/+ or Ptgs�/� tumors from NK cell-depleted mice.

False discovery rate (FDR) was calculated using GSEA.

(B) Percentage of intratumoral IFN-g+ NK cells and tumor weight of Ptgs+/+and

Ptgs�/� tumors in wild-type mice or Ptgs�/� in Ifng�/� mice 4 days post-im-

plantation.

(C) Tumor growth of Ptgs+/+and Ptgs�/� tumors in wild-type mice or Ptgs�/� in

Ifng�/� mice.
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NK Cells Drive an Early TME Molecular Reprogramming
Characteristic of T Cell-Inflamed Tumors through IFN-g
Production
To investigate the mechanistic basis for the contribution of NK

cells to early changes in the TME, we profiled the transcriptome

of TAMs, the most abundant immune cell subset within both

COX-competent and -deficient tumors by RNA sequencing (Fig-

ures 1B, S1E, and S5A). Pathway analysis revealed downregula-

tion of processes associated with prostaglandin and IL-1

signaling and upregulation of type I and type II IFN pathways in

TAMs isolated from Ptgs�/� tumors (Figure S5B). Gene set

enrichment analysis (GSEA) equally uncovered a marked enrich-

ment in ‘‘Hallmark IFN-g response’’ (Figure S5C). This switch in

the molecular profile of TAMs toward IFN-g signaling was also

evident by bulk tumor RNA sequencing and, crucially, depended

on NK cell presence (Figure 3A). These data suggested that early

accumulation of NK cells is essential for the polarization of COX-

deficient tumors toward cancer-inhibitory (CI) inflammation and

that IFN-g may play a role in this process. Indeed, Ptgs�/� tu-

mors were enriched in IFN-g-producing NK cells and, when im-

planted into IFN-g-deficient mice, had comparable weight to

their parental counterparts early on and grew progressively

over time (Figures 3B and 3C). Moreover, wild-type NK cells

were superior to Ifng�/� NK cells at controlling tumor growth

following their adoptive transfer toPtgs�/� tumor-bearing Ifng�/�

mice (Figure S4F).

The potential involvement of NK cells in the early intratumoral

inflammatory switch was further confirmed by monitoring the

expression of hallmark pro- and anti-tumorigenic factors in

mice bearing Ptgs+/+ or Ptgs�/� tumors depleted of NK cells.

Transcript levels of soluble factors often linked to cancer-pro-

moting (CP) inflammation, such as IL-6, CXCL1, CXCL2, IL-1b,

or G-CSF, were markedly higher in COX-competent compared

to COX-deficient tumors, and their expression was unchanged

in the absence of NK cells (Figure 3D). In contrast, expression

of CI factors, such as IFN-g, CXCL9, CXCL10, T-bet, or gran-

zyme B, was significantly reduced following NK cell depletion

(Figures 3D and 3E). This effect was particularly evident in

Ptgs�/� tumors in which the expression of these genes was

highest.

Upregulation of CI inflammatory factors depended on NK cells

but was largely unaltered in Rag1�/� hosts, lacking ab and gd

T cells, NK T cells and B cells (Figure 3E). Notably, IFN-g defi-

ciency phenocopied the effects of NK cell depletion, as levels

of CI transcripts were significantly reduced in Ptgs�/� tumors

implanted in Ifng�/� mice (Figure 3E). Moreover, adoptive trans-

fer of wild-type IFN-g-competent NK cells into these mice

reverted the defect, raising the expression of CI mediators by

4-fold on average compared to control Ifng�/� mice receiving
(D) Gene expression of factors associated with CP (red) or CI (blue) inflam-

mation normalized to Gapdh in NK cell-competent or -depleted mice injected

with Ptgs+/+ or Ptgs�/� melanoma cells.

(E) Expression levels of CI genes in Ptgs+/+ tumors in wild-type mice (n = 16) or

in Ptgs�/� tumors in NK cell-competent (n = 16) or -depleted (n = 9) wild-type,

Rag1�/� (n = 9), and Ifng�/� (n = 8) mice. Data are normalized to Gapdh and

expressed as mean ± SEM of the fold change of the average expression in

Ptgs+/+ tumors. One-way ANOVA followed by multiple comparisons (Dunnet)

against levels in Ptgs�/� tumors from wild-type mice.
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Figure 4. Single-Cell RNA-Seq Uncovers a Broad NK Cell-Driven Myeloid Cell Reprogramming from Pro-tumorigenic to Anti-tumorigenic
Pathways

Single-cell RNA-seq of 11,651 CD45+ cells isolated from pooled tumors from wild-type or NK cell-depleted Ptgs�/� tumor-bearing mice.

(legend continued on next page)
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IFN-g-deficient NK cells (Figure S4F). Finally, themolecular intra-

tumoral landscape of Ptgs+/+ tumors in GPP mice emulated that

of COX-deficient tumors in wild-type mice (Figure S4G), in keep-

ing with their regressive growth profile (Figure 2E). Collectively,

these data demonstrated a key role for PGE2 acting on EP2

and EP4 in modulating the intratumoral inflammatory response

and identified IFN-g-secreting NK cells as drivers of a profound

TME switch conducive to adaptive immunity.

Next, to comprehensively examine the impact of NK cells on

the transcriptional profile of multiple tumor-infiltrating immune

cells, we resorted to single-cell RNA sequencing. Analysis of

CD45+ cells isolated from early COX-deficient tumors implanted

in control or NK cell-depleted hosts revealed the presence of 18

different immune cell clusters (Figure 4A; Table S1). Apart from

NK cells themselves, the abundance of other immune cell popu-

lations remained mostly unaltered by NK cell depletion, which is

in agreement with our flow cytometry analysis at this same time

point. From the CI inflammatory mediators found to be upregu-

lated in Ptgs�/� tumors (Figures 3D and 3E), transcripts encod-

ing for Eomesodermin, Perforin-1, and CCL5 were largely

restricted to the NK cell cluster (Figure S5D). This was also the

case for granzyme B and IFN-g, identifying NK cells as the major

early source of these effector molecules and as the most likely

cellular target responsible for the early phenotype in GPP mice

(Figures S5D and S5E). Transcripts for other CI factors critical

for CTL recruitment, such as CXCL9 or CXCL10 (Chow et al.,

2019; Dangaj et al., 2019; Spranger et al., 2017), were conversely

largely confined to myeloid cell populations (Figures 4B, S5E,

and S5F). Yet, in agreement with our bulk tumor analysis, their

levels were significantly reduced following depletion of NK cells.

Differential gene expression analysis and GSEA of monocytes

and TAMs further demonstrated the orchestrating function of NK

cells in TME polarization toward an inflammatory profile condu-

cive to effector T cell infiltration. A paired comparison of multiple

monocyte and TAMclusters showed pronounced and consistent

enrichment in IFN-g, allograft rejection and oxidative phosphor-

ylation signaling in NK cell-proficient mice (Figures 4C and 4D;

Table S2). Conversely, upregulation of ‘‘Hypoxia,’’ ‘‘TNF-

a-signaling via NF-kB’’ (nuclear factor kB), ‘‘Glycolysis,’’ ‘‘PI3K

signaling’’ (phosphatidylinositol 3-kinase signaling), ‘‘TGF-b

signaling,’’ gene sets, and other pro-tumorigenic inflammatory

pathways (DeNardo and Ruffell, 2019; Mantovani et al., 2017)

was common in NK cell-depleted tumors (Figure 4D; Table S3).

Together, these data support a model whereby early NK cell

IFN-g production drives extensive myeloid cell polarization and

a wide-ranging TME makeover characteristic of T cell-inflamed

tumors.

Opposing Tumor Inflammatory Profiles Associated with
COX-2 Expression and NK Cell Prevalence in Human
Cancer
To investigate whether molecular characteristics of NK cell-

driven inflammatory TMEs were conserved across human can-

cers and associated with the COX-2/PGE2 pathway, we interro-
(A) t-SNE plots showing the clustering and distribution. Each point represents a

(B)Cxcl9 andCxcl10 gene expression analysis in all cell clusters shown in (A). Data a

(C) Enrichment analysis for hallmark IFN-g response gene set in various monocy

(D) Single-sample GSEA of all hallmark gene sets in the same myeloid populatio
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gated transcriptomic datasets of multiple patient-derived tumor

types by using data from The Cancer Genome Atlas (TCGA;

https://cancergenome.nih.gov). We first examined the associa-

tion of COX-2 itself with the inflammatory factors whose expres-

sion was regulated by the COX-2/PGE2/EP2-4 axis and NK cell

activity in the mouse models and represent canonical mediators

often linked with CP and CI inflammation in human cancer (Fig-

ures 3D and S4H). This analysis showed unambiguous positive

correlations between transcript levels of PTGS2, encoding for

COX-2, and the levels of CP factors induced by cancer cell-

intrinsic COX-2 in murine tumors pan-cancer (Figure 5A). In

contrast, CI mediators whose intratumoral expression was

elevated by NK cell activity in COX-deficient tumors showed

an inverse correlation with PTGS2 in many malignancies (Fig-

ure 5A). Further stratification of cancer types revealed pro-

nounced subtype-specific anti-correlations of PTGS2 with CI

genes, as shown for triple-negative breast cancer (TNBC) in

both TCGA and Molecular Taxonomy of Breast Cancer Interna-

tional Consortium (METABRIC) (Curtis et al., 2012) datasets

(Figure S6D).

The positive and negative association of COX-2 with CP and

CI factors, respectively, were highly statistically significant in tu-

mors, such as lung adenocarcinoma (LUAD) and head and neck

squamous cell carcinoma (HNSC) (Figure 5B). In these tumor

types, uniform and contrasting expression patterns of CI genes

were found by comparing tumors with high or low NK cell infiltra-

tion that were inferred using a signature of three selective and

defining NK cell markers (Danaher et al., 2018; Figure 5C; Table

S5).

Additional bioinformatics analysis pan-cancer showed that

COX-2 expression was positively associated with the intratu-

moral abundance of fibroblasts, endothelial cells, and neutro-

phils. In contrast, COX-2 transcripts were inversely correlated

with various immune subsets in many malignancies, including

NK cells and CTLs (Figures 5D, S6E, and S6F). Collectively,

these data are in line with our findings in mice, uncovering antag-

onistic inflammatory profiles linked to intratumoral NK cell levels

and COX-2/PGE2 pathway activity in human cancer.

AMouse-Derived Inflammatory Gene Signature Exhibits
Independent Prognostic Utility across Multiple
Malignancies
To assess the prognostic value of these opposing inflammatory

tumor profiles, we performed univariate and multivariate survival

analysis by using Cox proportional hazards regression models.

We focused on cancer types in which we found evidence of

divergent inflammatory profiles associated with COX-2 expres-

sion levels, such as LUAD, HNSC, TNBC, metastatic skin cuta-

neous melanoma (MSKCM), cervical squamous cell carcinoma

and endocervical adenocarcinoma (CESC), kidney renal clear

cell carcinoma (KIRC), or ovarian cancer (OV). To integrate

both CP and CI mediators whose expression was controlled by

tumor cell-derived PGE2 in mice, we calculated a ratio between

the combined average expression of human homologs of these
single cell colored according to cluster designation.

re expressed as normalized counts-per-million (CPM), unpaired Student’s t test.

te and TAM clusters.

ns as in (C).

https://cancergenome.nih.gov
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Figure 5. COX-2 Expression Delineates

Cancer-Promoting from Cancer-Inhibitory

Inflammation in Human Cancers

(A) Heatmap showing the Pearson correlation co-

efficient of PTGS2 expression with the mouse-

derived COX-IS genes across various human da-

tasets from TCGA: testicular germ cell tumors

(TGCT; n = 155), lung adenocarcinoma (LUAD; n =

512), head and neck squamous cell carcinoma

(HNSC; n = 517), uterine corpus endometrial

carcinoma (UCEC; n = 530), primary skin cuta-

neous melanoma (PSKCM; n = 115), sarcoma

(SARC; n = 259), kidney renal clear cell carcinoma

(KIRC;, n = 516), cervical and endocervical cancers

(CESCs; n = 305), lung squamous cell carcinoma

(LUSC; n = 487), stomach adenocarcinoma (STAD;

n = 412), esophageal carcinoma (ESCA; n = 183),

metastatic skin cutaneous melanoma (MSKCM;

n = 357), pancreatic adenocarcinoma (PAAD; n =

178), glioblastoma multiforme (GBM; n = 166),

bladder urothelial carcinoma (BLCA; n = 408),

ovarian cancer (OV; n = 305), acute myeloid leu-

kemia (LAML; n = 173), thymoma (THYM; n = 120),

rectum adenocarcinoma (READ; n = 156), prostate

adenocarcinoma (PRAD; n = 495), pheochromo-

cytoma and paraganglioma (PCPG; n = 183), kid-

ney renal papillary cell carcinoma (KIRP; n = 286),

brain lower grade glioma (LGG; n = 528), colon

adenocarcinoma (COAD; n = 445), breast invasive

carcinoma (BRCA; n = 976), liver hepatocellular

carcinoma (LIHC; n = 370), and thyroid carcinoma

(THCA; n = 507).

(B) Correlation analysis of PTGS2 against COX-IS

genes in LUAD and HNSC datasets. The Pearson

coefficientand thecorrespondingpvalueareshown.

(C) CI gene expression in NK cell high (top 25%)

and NK cell low (bottom 25%) tumors stratified

based on an NK cell-specific gene signature (see

also Table S4) in LUAD and HNSC datasets.

(D) Pearson correlation coefficient of PTGS2

expression with the indicated cell populations

defined using the Microenvironment cell population

(MCP) counter algorithm in all datasets shown in (A).
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genes per patient. The stratification of patients according to this

COX-2-associated inflammatory signature (referred to as COX-

IS) showed that patients with higher COX-IS had worse out-

comes in all malignancies tested (Figures 6A and S5A). Notably,

COX-IS-based patient stratification was independently prog-

nostic across all seven tumor types when adjusted for age,

gender, tumor stage, and other disease-specific features (Fig-

ures 6B and S5B). Individual COX-IS elements or combined

CP genes showed poor or inconsistent association with survival

(Figures 6C and S5C). Signatures of NK cell, CD8+ T cell, IFN-g

signaling, or CI genes showed, as expected, comparable prog-

nostic utility. However, none was as robust as the COX-IS,

demonstrating the power of integrating pro-tumorigenic inflam-

matory mediators with known measures of T cell-inflamed tu-

mors to predict overall patient survival.

The COX-IS Predicts Responses from Immune
Checkpoint Therapy in Multiple Cancers
Finally, to evaluate the value of the COX-IS in predicting the

outcome from ICB, we examined several datasets of cancer pa-
tients treated with anti-CTLA-4, anti-PD-(L)1 or combinations of

these therapies. We analyzed nine independent cohorts of pa-

tients with melanoma, bladder, gastric, and clear cell renal can-

cer for which we had access to both the transcriptional profile

before ICB treatment and matched response data. For each

cohort, we calculated the COX-IS in baseline samples from

either responder or non-responder patients, as defined in the

original studies. The COX-IS was in every case lower in patients

that benefited from ICB than in those that did not, regardless

of the cancer type or the immune checkpoint drug used (Figures

7A and S7A). Moreover, the association of the COX-IS with

outcome was found independently of the platform used for

molecular profiling (RNA sequencing or Nanostring counting)

and when analyzing heavily pre-treated or treatment-naive pa-

tient cohorts.

To benchmark the COX-IS, we first compared its performance

against immune gene signatures related to T cell-inflamed tu-

mors. The COX-IS wasmore powerful and reliable at distinguish-

ing responders from non-responders than CD8+ T cell, NK cell,

or IFN-g signatures or the T cell-inflamed signature (TIS; Ayers
Immunity 53, 1215–1229, December 15, 2020 1223
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Figure 6. The COX-IS Is an Independent Prognostic Factor across Various Cancer Types

(A–C) Survival analysis of HNSC (TCGA, n = 517), TNBC (METABRIC, n = 251), MSKCM (TCGA, n = 357), KIRC (TCGA, n = 516), and OV (TCGA, n = 305) patients

stratified according to the COX-IS. (A) Kaplan-Meier survival plots parsed as high versus low on amedian cutoff for COX-IS. (B) Forest plots showing amultivariate

Cox regression analysis for the indicated risk factors in HNSC, MSKCM, TNBC, KIRC, and OV. (C) Hazard ratio associated with the indicated gene signatures or

the individual gene elements of the COX-IS. Hazard ratio (95% confidence interval [CI]), log-rank (Mantel-Cox) test (A–C).

ll
OPEN ACCESS Article
et al., 2017) across the different patient cohorts (Figure 7B).

The selective NK cell signature was slightly superior to other CI

related signatures, consistent with this innate cell subset playing

a key role in dictating the inflammatory profile at the tumor site.

Wenext performedadeeper bioinformatics analysis on the two

largest cohorts available that had a significant number of patients

with unambiguous objective responses post-ICB, namely pro-

gressivedisease (PD) andcomplete response (CR). In thebladder

cancer dataset, 167 and 25 patients were classified as PD or CR,

respectively (Mariathasan et al., 2018), and 26 and 9 in the renal

cell carcinoma (RCC) cohort (McDermott et al., 2018) following

monotherapy with anti-PD-L1. We compared the power of the

COX-IS with T cell-inflamed tumor-related gene signatures in

discriminating PD versus CR patients as single variables by

computing the area-under-the-curve from receiver operating

characteristic (ROC) plots. In both datasets, the COX-IS outper-

formed the other gene signatures (Figure 7C), highlighting its abil-

ity to distinguish patients with distinct responses to ICB. In the

RCC cohort, the COX-IS was the only single variable gene signa-
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ture that reached statistical significance in the anti-PD-L1mono-

therapy arm. Moreover, an analysis of this entire cohort from the

IMmotion150 trial (McDermott et al., 2018) showed that theCOX-

IS associated with response in the trial arms that received anti-

PD-L1either aloneor in combinationwith anti-VEGF (FigureS7B).

However, no association with outcome was found in the arm in

which patients were treated with the tyrosine kinase inhibitor su-

nitinib, showing that theCOX-IS predictive value does notmerely

derive from its overall prognostic utility.

The latter datasets also allowed further benchmarking and

testing of the value of combining the COX-IS approach with es-

tablished biomarkers of ICB response, such as TMB or PD-L1

protein expression. Using the entire datasets, we performed

multivariate binomial logistic regression to assess the predictive

power of differentmodels. Again, as a single variable, the COX-IS

was superior to TIS, IFN-g , or CD8+ T cell signatures in both

bladder cancer andRCCdatasets (Figure 7D). In thebladder can-

cer cohort, both PD-L1 expression and especially TMB were

associated with therapeutic response (Figure 7E). Nonetheless,
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Figure 7. The COX-IS Predicts Response to ICB in Different Tumor Types

(A) Analysis of COX-IS at baseline in responder (R) and non-responder (NR) groups in melanoma (dataset 1: Riaz et al., 2017; 2: Van Allen et al., 2015; 3: Hugo et

al., 2016; 4: Gide et al., 2019; 5: Chen et al., 2016), bladder (dataset 6: Mariathasan et al., 2018; 7: Snyder et al., 2017), renal (dataset 8: McDermott et al., 2018),

and gastric (dataset 9: Kim et al., 2018) cancer patients as defined in the original studies (see STAR Methods).

(B) Analysis of COX-IS; TIS; and IFN-g, NK cell, and CD8+ T cell signatures (see Table S4) at baseline in R and NR patients shown in (A). The p value (�log10) for

each comparison is plotted.

(C) ROC analysis for COX-IS; TIS; and IFN-g, NK cell, and CD8+ T cell signatures in PD versus CR patient from datasets 6 and 8. The area under the ROC curve

was used to quantify response prediction.

(D and E) Explained variance (deviance) in patient response for generalized linearmodels fit using single variables (sv) (D) or their combinationswith TMB or PD-L1

expression (E) in dataset 6 and 8. Chi-square test was used to compare nested models.

(F) Survival of melanoma (pooled datasets 1, 2, 3, and 4) and bladder cancer (dataset 6) patients stratified in quantiles according to their COX-IS. Log-rank

(Mantel-Cox) test.

ll
OPEN ACCESSArticle
combining either TMB or PD-L1with the COX-IS, but not with the

TIS, achieved a statistically significant improvement in predictive

power compared to either model alone. In the RCC cohort, in

contrast, neither TMB nor PD-L1 showed a predictive value as

a single variable, whereas the COX-IS did (Figure 7E).

Last, we investigated the value of the COX-IS in predicting sur-

vival from ICB stratifying patients by using amedian cutoff or four
quantiles according to their COX-IS score at baseline. Patients

with a lower COX-IS benefited significantly more in a combined

analysis of four independent melanoma cohorts, with a 2-year

difference in the median survival between the lowest and top

quantiles (Figures 7F and S7C). Importantly, this association

with survival remained significant when adjusting for prior ICB

treatment or for the dataset analyzed (Figure S7D). In the
Immunity 53, 1215–1229, December 15, 2020 1225
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melanoma cohort 2 (Van Allen et al., 2015), which is well known

for the association of TMBwith response, no trendwas observed

when patients were stratified based onCP or CI signatures sepa-

rately, whereas the COX-IS strongly predicted patient survival

(Figure S7E). In the bladder cancer cohort subjected to PD-L1

blockade, patients with a higher baseline COX-IS similarly had

a worse outcome (Figures 7F and S7C), with the top group

showing a median survival of only 6 months compared to more

than 1.5 years in the bottom quarter. Once more, the predictive

power of the COX-IS was independent of TMB or of the occur-

rence of visceral or liver metastasis, with both features being

particularly informative in this cohort (Figure S7D). These results

extended the predictive value of the COX-IS to survival post-ICB

therapy and established the approach of combining CP and CI

mediators as a potent indicator of outcome from both anti-

CTLA-4 and/or PD-(L)1 therapy.

DISCUSSION

Tumor-associated inflammation is an established cancer hall-

mark linked to several features of malignant tumors (Hanahan

and Weinberg, 2011). Accordingly, inflammatory mediators and

signaling pathways commonly found in clinically apparent tu-

mors constitute adverse prognostic factors and promote therapy

resistance (Mantovani et al., 2008; Shalapour and Karin, 2019).

The recent success of ICB therapy has greatly reinvigorated

the study of tumor immunology and inflammation and, in partic-

ular, the identification of immune correlates of outcome to ICB,

such as tumor infiltration by T cells (Blank et al., 2016; Fridman

et al., 2017; Salmon et al., 2019; Topalian et al., 2016). The prin-

ciples and rules that control the establishment of these so-called

hot T cell-inflamed tumors remain poorly understood (Havel

et al., 2019; Topalian et al., 2016). Here, we set out to delineate

leading orchestrators of hot TMEs by using mouse models with

equal TMB but dichotomous immune-dependent progressive

or regressive tumor fates coupled to distinctive antagonistic in-

flammatory profiles. These model systems allowed us to tease

apart the instructive pathways of T cell-mediated tumor control

independently of the antigenic determinants of the cancer cells

themselves. Unexpectedly, the eradication of COX-deficient tu-

mors still occurred in mice lacking the major signal transduction

pathways that normally underlie and bridge innate and adaptive

immune responses. Instead, our analysis singled out NK cells as

primary instructors of a TME characterized by cancer-restraining

inflammation and required for CTL-mediated tumor eradication.

NK cells have been frequently implicated in the control of he-

matological malignancies (Guillerey et al., 2016), and our findings

add to a growing list of recent studies highlighting a role for this

innate lymphocyte subset in immune surveillance of solid neo-

plasms (André et al., 2018; Barrow et al., 2018; Barry et al.,

2018; Böttcher et al., 2018; Lavin et al., 2017; Molgora et al.,

2017; Nicolai et al., 2020). The functions of NK cells in cancer

are pleiotropic, ranging from direct sensing and killing of trans-

formed cells to stimulating T cell-mediated immunity (Morvan

and Lanier, 2016; Vesely et al., 2011). Our mouse models uncov-

ered both types of cancer suppressive activities; however, com-

plete tumor regression fully relied on NK cells linking innate to

adaptive tumor immunity. Thus, our findings are consistent

with a temporal sequence of events whereby NK cells directly
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contribute to cancer cell killing while simultaneously eliciting a

broad inflammatory TME switch that precedes and stimulates

T cell-mediated cancer immunity.

Deep transcriptional profiling exposed a stark upregulation

of classic mediators and pathways associated with hot tumors

that coincided with NK cell accumulation. Single-cell RNA

sequencing identified NK cells as the direct and unique source

of key CI factors and as the instigators of CI pathways expressed

more widely by DCs, monocytes, or TAMs (Chow et al., 2019;

Dangaj et al., 2019; DeNardo and Ruffell, 2019; Mantovani

et al., 2017; Spranger et al., 2017; Wculek et al., 2020). Accord-

ingly, pronounced polarization toward IFN-g signaling and other

CI pathways by various prevalent myeloid cell populations relied

on NK cells. In their absence, those same populations showed

evidence of pro-tumorigenic molecular programs. Of note,

recent studies established how IFN-g produced locally by tu-

mor-reactive T cells can act on bystander distant tumor cells

and promote broad remodeling of the TME (Hoekstra et al.,

2020; Thibaut et al., 2020). In our experimental settings, we

found that IFN-g production from NK cells, but not from NK T,

gd, or ab T cells, was necessary and sufficient for sculpting the

early inflammatory TME toward CI inflammation.

The profound NK and T cell-dependent suppression of tumor

growth was impaired by natural or restored expression of COX-2

in cancer cells. The COX-2/PGE2 pathway is associated with

malignant cancer growth (Wang and Dubois, 2010) and pro-

motes immune evasion (Böttcher et al., 2018; Zelenay and Reis

e Sousa, 2016; Zelenay et al., 2015). Given the expression of

the PGE2 receptors EP2 and EP4 in multiple cell types (Furuya-

shiki and Narumiya, 2011; Kalinski, 2012), the cellular targets of

PGE2 in cancer are potentially several. It is indeed likely that the

loss of EP4 on CTLs contributed to tumor control in GPP mice,

which is similar to what happens during chronic viral infections

(Chen et al., 2015). However, our analysis of the early cellular

and molecular profile of the TME pinpointed NK cells as the pri-

mary target of PGE2/EP2-4 signaling, uncovering a specific

cellular and molecular therapeutic target.

Bioinformatics analysis of numerous cancer patient datasets

demonstrated the translational relevance of our findings and

pointed to the COX-2/PGE2 and NK cell/IFN-g pathways as pu-

tative determinants of the TME inmany humanmalignancies. Ev-

idence for antagonistic expression of the very same CP and CI

mediators that were controlled by these pathways in the mouse

models was found in many malignancies. Furthermore, PTGS2

transcript levels were significantly associatedwith higher neutro-

phil numbers and lower cytotoxic cell abundance, mirroring the

findings in the mouse models. This observation, in turn, implied

that COX-2 levels do not simply reflect differential overall leuko-

cyte infiltration but rather qualitative changes in tumor immune

infiltrate composition.

Our analysis established the independent prognostic rele-

vance of integrating pro- and anti-tumorigenic inflammatory me-

diators in one single indicator as a means to predict overall pa-

tient survival. Crucially, this approach associated with outcome

from ICB independently of the immune checkpoint inhibitor

drug used or the cancer type analyzed. Patients with low COX-

IS were consistently enriched within the responder group and

had better outcomes and was the case across several indepen-

dent patient cohorts (Chen et al., 2016; Gide et al., 2019; Hugo et
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al., 2016; Kim et al., 2018; Mariathasan et al., 2018; McDermott

et al., 2018; Riaz et al., 2017; Snyder et al., 2017; Van Allen et al.,

2015) regardless of the method used to determine gene expres-

sion levels. Notably, the COX-IS outperformed previously pub-

lished gene signatures related to T cell-inflamed tumors in terms

of both prognostic and predictive power. Furthermore, it demon-

strated independent predictive power even in patient cohorts for

which TMBor PD-L1 expression did not associate with outcome.

These findings are even more striking considering the COX-IS

was devised from the analysis of a handful of established CP and

CI inflammatory mediators in mouse cancer models. As such,

the COX-IS has neither been refined nor optimized for human

analysis, circumventing the issues associated with overfitting

and exposing the notable parallels between the TME in mice

and humans. It is likely that its predictive power can be enhanced

and broadened by future bioinformatics analysis, and its actual

potential as a companion diagnostic will require further testing

in a prospective study. We speculate that the superior power

of the COX-IS over signatures of CI inflammation originates

from combining in one single index, surrogate markers of two

intimately linked hallmarks of cancer, tumor-promoting inflam-

mation and evasion of immunity (Hanahan and Weinberg,

2011). The advantage of multigene gene signatures over single

markers is well recognized (Ayers et al., 2017; Chen et al.,

2016; Cristescu et al., 2018; Rooney et al., 2015) and is of partic-

ular value in complex systems, such as the TME for which, argu-

ably, no single inflammatory mediator can be attributed as hav-

ing exclusive tumor promoting or suppressive properties.

In conclusion, our parallel analysis of mouse cancer models

and human patient datasets revealed an instructive function for

NK cells in initiating an anti-tumorigenic inflammatory response

distinctive of hot T cell-inflamed tumors. Moreover, the COX-2/

PGE2/EP2-4 axis emerges as a major conserved determinant

by which numerous cancer types modulate their surrounding

environment and avoid immune-mediated elimination. These

findings have direct clinical implications and propose that moni-

toring the COX-IS could be a powerful indicator of ICB outcome

and possibly other immune therapies.

Limitations of Study
The signals and pathways that initiate immune responses against

malignant cells remain poorly understood. Based on various

experimental models and readouts, we concluded that NK cells

are necessary and sufficient to trigger CTL-dependent anti-tumor

immunity. Notably, the eradication of tumors was not compro-

mised in hosts deficient in themajor signaling pathways that drive

immunity against microbes. However, our experimental systems

could not discriminate whether these pathways were truly

dispensable or rather redundant. Dissecting these scenarios

would require the use of mice double or triple deficient in these

central immune signaling nodes. Similarly, we showed that

renderingNKcells insensitive to the effects of PGE2was sufficient

to elicit robust anti-tumor immunity in GPP mice. Yet, this experi-

mental system did not allow us to formally rule out a potential role

for another EP4 and granzyme-B-expressing cell population or of

an EP2-expressing cell subset, besides NK cells, that might

contribute to tumor control in GPP mice. The use of alternative

Cre-driver linesmore selective toNKcells aswell as aPtger2 con-

ditional, instead of a germlinemutant, allele would be of interest to
further explore the cellular targets of PGE2 and their contribution

to tumor inflammation and progression. Finally, we tested the hu-

man relevance of our murine findings by mining the tumor tran-

scriptional profile of patients with advanced cancer. Future work

thatencompasses theanalysisofearlycancer lesions iswarranted

to further assess the role of tumor-infiltrating NK cells as primary

instructors of hot T cell-inflamed tumors in humans.
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Liberzon, A., Birger, C., Thorvaldsdóttir, H., Ghandi, M., Mesirov, J.P., and

Tamayo, P. (2015). The Molecular Signatures Database (MSigDB) hallmark

gene set collection. Cell Syst. 1, 417–425.

Mantovani, A., Allavena, P., Sica, A., and Balkwill, F. (2008). Cancer-related

inflammation. Nature 454, 436–444.

Mantovani, A., Marchesi, F., Malesci, A., Laghi, L., and Allavena, P. (2017).

Tumour-associated macrophages as treatment targets in oncology. Nat.

Rev. Clin. Oncol. 14, 399–416.

Mariathasan, S., Turley, S.J., Nickles, D., Castiglioni, A., Yuen, K., Wang, Y.,

Kadel, E.E., III, Koeppen, H., Astarita, J.L., Cubas, R., et al. (2018). TGFb atten-

uates tumour response to PD-L1 blockade by contributing to exclusion of

T cells. Nature 554, 544–548.

McDermott, D.F., Huseni, M.A., Atkins, M.B., Motzer, R.J., Rini, B.I., Escudier,

B., Fong, L., Joseph, R.W., Pal, S.K., Reeves, J.A., et al. (2018). Clinical activity

and molecular correlates of response to atezolizumab alone or in combination

with bevacizumab versus sunitinib in renal cell carcinoma. Nat. Med. 24,

749–757.

McGranahan, N., Furness, A.J.S., Rosenthal, R., Ramskov, S., Lyngaa, R.,

Saini, S.K., Jamal-Hanjani, M., Wilson, G.A., Birkbak, N.J., Hiley, C.T., et al.

(2016). Clonal neoantigens elicit T cell immunoreactivity and sensitivity to im-

mune checkpoint blockade. Science 351, 1463–1469.

Molgora, M., Bonavita, E., Ponzetta, A., Riva, F., Barbagallo, M., Jaillon, S.,

Popovi�c, B., Bernardini, G., Magrini, E., Gianni, F., et al. (2017). IL-1R8 is a

checkpoint in NK cells regulating anti-tumour and anti-viral activity. Nature

551, 110–114.

Morvan, M.G., and Lanier, L.L. (2016). NK cells and cancer: you can teach

innate cells new tricks. Nat. Rev. Cancer 16, 7–19.

Nicolai, C.J., Wolf, N., Chang, I.-C., Kirn, G., Marcus, A., Ndubaku, C.O.,

McWhirter, S.M., and Raulet, D.H. (2020). NK cells mediate clearance of

CD8+ T cell-resistant tumors in response to STING agonists. Sci. Immunol.

5, eaaz2738.

Reich, M., Liefeld, T., Gould, J., Lerner, J., Tamayo, P., and Mesirov, J.P.

(2006). GenePattern 2.0. Nat. Genet. 38, 500–501.

Riaz, N., Havel, J.J., Makarov, V., Desrichard, A., Urba, W.J., Sims, J.S., Hodi,

F.S., Martı́n-Algarra, S., Mandal, R., Sharfman, W.H., et al. (2017). Tumor and

microenvironment evolution during immunotherapy with Nivolumab. Cell 171,

934–949.e16.

Rizvi, N.A., Hellmann, M.D., Snyder, A., Kvistborg, P., Makarov, V., Havel, J.J.,

Lee, W., Yuan, J., Wong, P., Ho, T.S., et al. (2015). Mutational landscape de-

termines sensitivity to PD-1 blockade in non–small cell lung cancer. Science

348, 124.

Robinson, M.D., McCarthy, D.J., and Smyth, G.K. (2010). edgeR: a

Bioconductor package for differential expression analysis of digital gene

expression data. Bioinformatics 26, 139–140.

Roh, W., Chen, P.-L., Reuben, A., Spencer, C.N., Prieto, P.A., Miller, J.P.,

Gopalakrishnan, V., Wang, F., Cooper, Z.A., Reddy, S.M., et al. (2017).

Integrated molecular analysis of tumor biopsies on sequential CTLA-4 and
PD-1 blockade reveals markers of response and resistance. Sci. Transl.

Med. 9, eaah3560.

Rooney, M.S., Shukla, S.A., Wu, C.J., Getz, G., and Hacohen, N. (2015).

Molecular and genetic properties of tumors associated with local immune

cytolytic activity. Cell 160, 48–61.

Salmon, H., Idoyaga, J., Rahman, A., Leboeuf, M., Remark, R., Jordan, S.,

Casanova-Acebes, M., Khudoynazarova, M., Agudo, J., Tung, N., et al.

(2016). Expansion and activation of CD103(+) dendritic cell progenitors at

the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF in-

hibition. Immunity 44, 924–938.

Salmon, H., Remark, R., Gnjatic, S., and Merad, M. (2019). Host tissue deter-

minants of tumour immunity. Nat. Rev. Cancer 19, 215–227.

Shalapour, S., and Karin, M. (2019). Pas de deux: control of anti-tumor immu-

nity by cancer-associated inflammation. Immunity 51, 15–26.

Snyder, A., Makarov, V., Merghoub, T., Yuan, J., Zaretsky, J.M., Desrichard,

A., Walsh, L.A., Postow, M.A., Wong, P., Ho, T.S., et al. (2014). Genetic basis

for clinical response to CTLA-4 blockade in melanoma. N. Engl. J. Med. 371,

2189–2199.

Snyder, A., Nathanson, T., Funt, S.A., Ahuja, A., Buros Novik, J., Hellmann,

M.D., Chang, E., Aksoy, B.A., Al-Ahmadie, H., Yusko, E., et al. (2017).

Contribution of systemic and somatic factors to clinical response and resis-

tance to PD-L1 blockade in urothelial cancer: an exploratory multi-omic anal-

ysis. PLoS Med. 14, e1002309.

Spranger, S., Dai, D., Horton, B., and Gajewski, T.F. (2017). Tumor-residing

Batf3 dendritic cells are required for effector T cell trafficking and adoptive T

cell therapy. Cancer Cell 31, 711–723.e4.

Thibaut, R., Bost, P., Milo, I., Cazaux, M., Lemaı̂tre, F., Garcia, Z., Amit, I.,

Breart, B., Cornuot, C., Schwikowski, B., and Bousso, P. (2020). Bystander

IFN-g activity promotes widespread and sustained cytokine signaling altering

the tumor microenvironment. Nat. Cancer 1, 302–314.

Thorsson, V., Gibbs, D.L., Brown, S.D., Wolf, D., Bortone, D.S., Ou Yang,

T.-H., Porta-Pardo, E., Gao, G.F., Plaisier, C.L., Eddy, J.A., et al. (2018). The

immune landscape of cancer. Immunity 48, 812–830.e14.

Topalian, S.L., Taube, J.M., Anders, R.A., and Pardoll, D.M. (2016).

Mechanism-driven biomarkers to guide immune checkpoint blockade in can-

cer therapy. Nat. Rev. Cancer 16, 275–287.

Tumeh, P.C., Harview, C.L., Yearley, J.H., Shintaku, I.P., Taylor, E.J.M.,

Robert, L., Chmielowski, B., Spasic, M., Henry, G., Ciobanu, V., et al. (2014).

PD-1 blockade induces responses by inhibiting adaptive immune resistance.

Nature 515, 568–571.

Van Allen, E.M., Miao, D., Schilling, B., Shukla, S.A., Blank, C., Zimmer, L.,

Sucker, A., Hillen, U., Foppen, M.H.G., Goldinger, S.M., et al. (2015).

Genomic correlates of response to CTLA-4 blockade in metastatic melanoma.

Science 350, 207–211.

Vesely, M.D., Kershaw, M.H., Schreiber, R.D., and Smyth, M.J. (2011). Natural

innate and adaptive immunity to cancer. Annu. Rev. Immunol. 29, 235–271.

Wang, D., and Dubois, R.N. (2010). Eicosanoids and cancer. Nat. Rev. Cancer

10, 181–193.

Wculek, S.K., Cueto, F.J., Mujal, A.M., Melero, I., Krummel, M.F., and Sancho,

D. (2020). Dendritic cells in cancer immunology and immunotherapy. Nat. Rev.

Immunol. 20, 7–24.

Workman, P., Aboagye, E.O., Balkwill, F., Balmain, A., Bruder, G., Chaplin,

D.J., Double, J.A., Everitt, J., Farningham, D.A.H., Glennie, M.J., et al.

(2010). Guidelines for the welfare and use of animals in cancer research. Br.

J. Cancer 102, 1555–1577.

Zelenay, S., and Reis e Sousa, C. (2016). Reducing prostaglandin E2 produc-

tion to raise cancer immunogenicity. OncoImmunology 5, e1123370.

Zelenay, S., van der Veen, A.G., Böttcher, J.P., Snelgrove, K.J., Rogers, N.,

Acton, S.E., Chakravarty, P., Girotti, M.R., Marais, R., Quezada, S.A., et al.

(2015). Cyclooxygenase-dependent tumor growth through evasion of immu-

nity. Cell 162, 1257–1270.
Immunity 53, 1215–1229, December 15, 2020 1229

http://refhub.elsevier.com/S1074-7613(20)30461-1/sref29
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref29
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref30
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref30
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref30
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref30
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref31
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref31
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref31
http://refhub.elsevier.com/S1074-7613(20)30461-1/opt1EBYocEB11
http://refhub.elsevier.com/S1074-7613(20)30461-1/opt1EBYocEB11
http://refhub.elsevier.com/S1074-7613(20)30461-1/opt1EBYocEB11
http://refhub.elsevier.com/S1074-7613(20)30461-1/opt1EBYocEB11
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref32
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref32
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref32
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref33
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref33
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref33
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref34
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref34
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref35
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref35
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref35
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref36
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref36
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref36
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref36
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref37
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref37
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref37
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref37
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref37
http://refhub.elsevier.com/S1074-7613(20)30461-1/optZbJ00RqW99
http://refhub.elsevier.com/S1074-7613(20)30461-1/optZbJ00RqW99
http://refhub.elsevier.com/S1074-7613(20)30461-1/optZbJ00RqW99
http://refhub.elsevier.com/S1074-7613(20)30461-1/optZbJ00RqW99
http://refhub.elsevier.com/S1074-7613(20)30461-1/optaNvDT6ezvg
http://refhub.elsevier.com/S1074-7613(20)30461-1/optaNvDT6ezvg
http://refhub.elsevier.com/S1074-7613(20)30461-1/optaNvDT6ezvg
http://refhub.elsevier.com/S1074-7613(20)30461-1/optaNvDT6ezvg
http://refhub.elsevier.com/S1074-7613(20)30461-1/optaNvDT6ezvg
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref38
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref38
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref39
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref39
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref39
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref39
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref40
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref40
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref41
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref41
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref41
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref41
http://refhub.elsevier.com/S1074-7613(20)30461-1/optsQ4ecakPQq
http://refhub.elsevier.com/S1074-7613(20)30461-1/optsQ4ecakPQq
http://refhub.elsevier.com/S1074-7613(20)30461-1/optsQ4ecakPQq
http://refhub.elsevier.com/S1074-7613(20)30461-1/optsQ4ecakPQq
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref42
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref42
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref42
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref43
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref43
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref43
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref43
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref43
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref44
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref44
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref44
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref45
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref45
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref45
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref45
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref45
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref46
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref46
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref47
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref47
http://refhub.elsevier.com/S1074-7613(20)30461-1/optZKY36rekXa
http://refhub.elsevier.com/S1074-7613(20)30461-1/optZKY36rekXa
http://refhub.elsevier.com/S1074-7613(20)30461-1/optZKY36rekXa
http://refhub.elsevier.com/S1074-7613(20)30461-1/optZKY36rekXa
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref48
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref48
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref48
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref48
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref48
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref49
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref49
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref49
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref50
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref50
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref50
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref50
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref51
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref51
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref51
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref52
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref52
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref52
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref53
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref53
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref53
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref53
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref54
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref54
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref54
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref54
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref55
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref55
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref56
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref56
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref57
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref57
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref57
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref58
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref58
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref58
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref58
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref59
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref59
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref60
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref60
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref60
http://refhub.elsevier.com/S1074-7613(20)30461-1/sref60


ll
OPEN ACCESS Article
STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit monoclonal anti-Cox1 (clone D2G6) Cell Signaling Technology Cat# 9896S; RRID: AB_10860249

Rabbit monoclonal anti- Cox2 (clone D5H5) Cell Signaling Technology Cat# 12282S; RRID: AB_2571729

Control rat IgG2a, k Isotype Biolegend Cat# 400501; RRID: AB_326523

Control mouse IgG2b, k Isotype Biolegend Cat# 401201; RRID: AB_2744505)

anti-Gr1 (clone RB6-8C5) Biolegend Cat# 108414; RRID: AB_313379

anti-NK1.1 (clone PK136) BioXCell Cat# BE0036; RRID: AB_1107737

Ultra-LEAF Purified anti-Asialo-GM1 Antibody Biolegend Cat# 146002; RRID: AB_2562206

anti-CD4 (clone GK1.5) BioXCell Cat# BE0003-1; RRID: AB_1107636

anti-CD8alpha (clone YTS169.4) BioXCell Cat# BE0117; RRID: AB_10950145

anti-CD49b-APC (clone DX5) BioLegend Cat# 103516; RRID: AB_2566101)

anti-Ly6G- PE/Dazzle 594 (clone 1A8) BioLegend Cat# 127648; RRID: AB_2566319

anti CD4-Alexa700 (RM4-5) BioLegend Cat# 100536; RRID: AB_493701

anti-CD8a-PE (clone 53-6.7) BioLegend Cat# 100708; RRID: AB_312747

CD45-BV605 (Clone 30-F11) eBioscience Cat# 103155; RRID: AB_2650656

CD11b-BV785 (Clone M1/70) BioLegend Cat# 101243; RRID: AB_2561373

Ly6C-FITC (Clone AL- 21) BD Bioscience Cat# 553104; RRID: AB_394628

F4/80-PE-Cy7 (Clone CI: A3-1) BioLegend Cat# 123114; RRID: AB_893478

anti-MHCII I-A/I-E-Alexa700 (Clone M5/114.15.2) BioLegend Cat# 107622; RRID: AB_493727

anti-MHCII I-A/I-E- APC- eFluor780 (Clone M5/

114.15.2)

Thermo Fisher Scientific Cat# 47-5321-82; RRID: AB_1548783

anti-CD11c-PerCP/Cy5.5 (Clone N418) BioLegend Cat# 117328; RRID: AB_2129641

anti- CD103-APC (Clone 2E7) BioLegend Cat# 121414; RRID: AB_1227502

anti- CD103-PE (Clone 2E7) BioLegend Cat# 121406; RRID: AB_1133989

NK1.1-APC (Clone PK136) BioLegend Cat# 108710; RRID: AB_313397

NK1.1- PE (Clone PK136) BioLegend Cat# 108708; RRID: AB_313395

CD49b-APC (Clone DX5) BioLegend Cat# 108910; RRID: AB_313417

XCR1- Alexa647 (Clone ZET) BioLegend Cat# 148214; RRID: AB_2564369

XCR1-BV421 (Clone ZET) BioLegend Cat# 148216; RRID: AB_2565230

Siglec-H-BV711 (Clone E50-2440) BD Bioscience Cat# 740764; RRID: AB_2740427

IFNg-eFluor450 (Clone XMG1.2) Thermo Fisher Scientific Cat# 48-7311-82; RRID:

AB_1834366

CD44-APC-eFluor780 (Clone IM7) Thermo Fisher Scientific Cat# 47-0441-82; RRID: AB_1272244

CD3ε-Percp-Cy5.5 (Clone 145-2C11) BioLegend Cat# 100328; RRID: AB_893318

CD3ε-APC (Clone 145-2C11) BioLegend Cat# 100312; RRID: AB_312677

CD8a-PE (Clone 53-6.7) BioLegend Cat# 100708; RRID: AB_312747

CD8a-PE-Cy7 (Clone 53-6.7) BioLegend Cat# 100722; RRID: AB_312761

CD4-FITC (Clone RM4-5) BioLegend Cat# 100510; RRID: AB_312713

CD4-APC-eFluor780 (Clone GK1.5) Thermo Fisher Scientific Cat# 47-0041-82; RRID: AB_11218896

anti-CD16/32 (clone 2.4G2) BioLegend Cat# 101302; RRID: AB_312801

affinity purified anti-Ly6G (Clone 1A8) BD Bioscience Cat# 551459; RRID: AB_394206

affinity purified anti-NK1.1- biotynilated

(Clone PK136)

BioLegend Cat# 108704; RRID: AB_313391

CD19-eFluor450 (Clone eBio1D3) Thermo Fisher Scientific Cat# 48-0193-82; RRID: AB_2734905
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Chemicals, Peptides, and Recombinant Proteins

Collagenase IV Worthington Biochemical Cat# LS004188

DNase I Roche Cat#11284932001

Aqua LIVE/Dead-405 nm staining Thermo Fisher Scientific Cat# L34957

Brefeldin A Solution (1,000X) Biolegend Cat# 420601

Monensin Solution (1,000X) Biolegend Cat# 420701

10 mm latex beads Beckman Coulter Cat# 6602796

OCT embedding medium Thermo Fisher Scientific Cat# 12678646

Recombinant FC IL-2 Thermo Fisher Scientific Cat# 34-8021-85

CellTrace Calcein Green Thermo Fisher Scientific Cat# C34852

Calcein Red- Orange Thermo Fisher Scientific Cat# C34851

RLT lysis buffer QIAGEN Cat# 79216

PureZOL RNA isolation Reagent BioRad Cat# 7326890

Critical Commercial Assays

RNeasy RNA isolation Kit QIAGEN Cat# 74106

Direct-zol RNA MiniPrep Kit Zymo Research Cat# R2052

High Capacity cDNA archive Kit Applied Biosystems Cat# 4368813

MojoSort Mouse NK Cell Isolation Kit Biolegned Cat# 480050

Lexogen QuantSeq 30-mRNaseq Library

Prep Kit FWD

Lexogen Cat# 015

Chromium Single Cell 30 Reagent Kit v3 10X Genomics PN- 1000075, PN-120262

Chromium Chip B 10X Genomics PN-1000073

Kapa Library Quantification Kit for Illumina

sequencing platforms

Kapa Biosystems Cat# KK4873

Prostaglandin E2 Express ELISA Kit Cyman Chemical Cat# 500141

Deposited Data

Raw and processed data (bulk tumor RNaseq) This paper GEO: GSE139044

Raw and processed data (sorted TAM RNaseq) This paper GEO: GSE139045

Raw and processed data (single cell RNaseq) This paper GEO: GSE139046

Table of cluster biomarkers (scRNaseq) This paper Table S1

DEG analysis in Myeloid population (scRNaseq) This paper Table S2

Single sample GSEA (scRNaseq) This paper Table S3

Ingenuity Pathway Analysis (sorted TAM RNaseq) This paper Table S4

Signature gene list (human dataset analysis) This paper Table S5

Immune infiltrate in neutrophil-depleted tumor

bearing mice (FACS analysis)

This paper https://doi.org/10.17632/gngxk9mjkm.1

Experimental Models: Cell Lines

Melanoma C57BL/6 Braf +/LSL-V600E;Tyr::

CreERT2 +/o;p16 INK4a�/� cell line

Dhomen et al., 2009 Ptgs+/+

Melanoma C57BL/6 Braf +/LSL-V600E;Tyr::

CreERT2 +/o;p16 INK4a�/� cell line COX1/2-

deficient

Zelenay et al., 2015 Ptgs�/�

CT26 Cancer Research UK Manchester Institute N/A

MC38 Cancer Research UK Manchester Institute N/A

4T1 Cancer Research UK Manchester Institute N/A

CT26 COX2-deficient Zelenay et al., 2015 N/A

MC38 COX2-deficient This paper N/A

4T1 COX1/2-deficient Zelenay et al., 2015 N/A

(Continued on next page)

ll
OPEN ACCESSArticle

Immunity 53, 1215–1229.e1–e8, December 15, 2020 e2

https://doi.org/10.17632/gngxk9mjkm.1


Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

Mouse: C57BL/6JOlaHsd ENVIGO Stock No: 057

Mouse: BALB/cOlaHsd ENVIGO Stock No: 162

Mouse: Rag1�/� Cancer Research UK Manchester Institute N/A

Mouse: Ifng�/� Cancer Research UK Manchester Institute N/A

Mouse: Tmem173�/� Cancer Research UK Manchester Institute N/A

Mouse: Cgas�/� Cancer Research UK Manchester Institute N/A

Mouse: Trif�/� Cancer Research UK Manchester Institute N/A

Mouse: Mavs�/� Cancer Research UK Manchester Institute N/A

Mouse: Myd88�/� Cancer Research UK Manchester Institute N/A

Mouse: Gzmb-Cre Ptger4floxed/floxed /Ptger2�/� Cancer Research UK Manchester Institute N/A

Mouse: Gzmb-Cre Ptger4floxed/floxed Cancer Research UK Manchester Institute N/A

Mouse: Ptger2�/� Cancer Research UK Manchester Institute N/A

Mouse: Tcrd�/� Instituto de Medicina Molecular, Lisbon N/A

Oligonucleotides

Ccl2-Taqman probe Thermo Fisher Scientific Mm00441242_m1

Ccl5-Taqman probe Thermo Fisher Scientific Mm01302427_m1

Cd8a-Taqman probe Thermo Fisher Scientific Mm01182107_g1

Ptgs2-Taqman probe Thermo Fisher Scientific Mm00478374_m1

Cxcl1 -Taqman probe Thermo Fisher Scientific Mm04207460_m1

Cxcl10-Taqman probe Thermo Fisher Scientific Mm00445235_m1

Cxcl2-Taqman probe Thermo Fisher Scientific Mm00436450_m1

Cxcl9-Taqman probe Thermo Fisher Scientific Mm00434946_m1

Eomes-Taqman probe Thermo Fisher Scientific Mm01351984_m1

Csf3-Taqman probe Thermo Fisher Scientific Mm00438334_m1

Gapdh-Taqman probe Thermo Fisher Scientific Mm99999915_g1

Gzmb -Taqman probe Thermo Fisher Scientific Mm00442837_m1

Hprt-Taqman probe Thermo Fisher Scientific Mm03024075_m1

Ifng-Taqman probe Thermo Fisher Scientific Mm01168134_m1

Il12a-Taqman probe Thermo Fisher Scientific Mm00434169_m1

Il12b-Taqman probe Thermo Fisher Scientific Mm01288989_m1

Il1a-Taqman probe Thermo Fisher Scientific Mm00439620_m1

Il1b-Taqman probe Thermo Fisher Scientific Mm00434228_m1

Il6-Taqman probe Thermo Fisher Scientific Mm00446190_m1

Prf1-Taqman probe Thermo Fisher Scientific Mm00812512_m1

Stat1-Taqman probe Thermo Fisher Scientific Mm01257286_m1

Tbx21-Taqman probe Thermo Fisher Scientific Mm00450960_m1

Vegfa-Taqman probe Thermo Fisher Scientific Mm00437306_m1

Software and Algorithms

ImageJ/Fiji software https://imagej.nih.gov/ij/ version 2.0.0-rc14/1.49

Ingenuity Pathways Analysis software (IPA) QIAGEN 2018 update

Cell Ranger Pipeline 10X Genomics version 3.1

GraphPad Prism GraphPad Software version 8.2.0

FlowJo Software TreeStar FlowJo LLC. version 10.4.2

Cytobank Software CytoBank, Inc. N/A

Partek Flow software (Single cell Toolkit) Partek build version 8.0.19.0610

R software R project N/A

Other

Mouse Diet: RM3 expanded and irradiated SDS Code: 801185
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RESOURCE AVAILABILITY

Lead Contact
Information and requests for resources and reagents should be directed to the Lead Contact (santiago.zelenay@cruk.manchester.

ac.uk).

Materials Availability
Requests for cancer cell lines generated in this study can be addressed to the Lead Contact. No new animal strains were generated

for this study.

Data and Code Availability
The RNA sequencing data have been deposited in the NCBI’s Gene Expression Omnibus database and can be accessed through the

GEO reference Series GSE139047. The accession number for bulk tumor transcriptomes is GSE139044. The accession number for

the transcriptome of sorted TAMs is GSE139045. The accession number for the single cell RNA-sequencing data is GSE139046. Im-

mune infiltrate FACS data in neutrophil-depleted tumor-bearing mice have been deposited in Mendeley Data https://doi.org/10.

17632/gngxk9mjkm.1.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
Wild-type mice were on a C57BL/6J or Balb/C genetic background (ENVIGO). Rag1�/�, Ifng�/�, Tmem173�/�, Cgas�/�, Trif�/�,
Mavs�/�, Myd88�/�, Gzmb-Cre Ptger4floxed/floxed Ptger2�/�, Gzmb-Cre Ptger4floxed/floxed and Ptger2�/� mice in a C57BL/6 back-

ground were housed and bred at Cancer Research UKManchester Institute in specific pathogen-free conditions in individually venti-

lated cages. Tcrd�/� mice were housed and bred at the Instituto de Medicina Molecular, Lisbon. Both male and female mice were

used in procedures and they were randomly assigned to experimental groups. All procedures involving animals were performed

under the PDCC31AAF license, in accordance with ARRIVE guidelines and National Home Office regulations under the Animals

(Scientific Procedures) Act 1986. Procedures were approved by the Animal Welfare and Ethical Review Bodies (AWERB) of the

CRUKManchester Institute and tumor volumes did not exceed the guidelines set by the Committee of the National Cancer Research

Institute (Workman et al., 2010) as stipulated by the AWERB.

Cancer Cell Lines
Cells were cultured under standard conditions and confirmed to be mycoplasma free. The BrafV600E-driven 5555 melanoma cell line

was established from the C57BL/6 Braf +/LSL-V600ETyr::CreERT2 +/op16 INK4a�/� model (Dhomen et al., 2009). CT26, 4T1, and MC38

cells are commercially available. Ptgs1/Ptgs2�/� (BrafV600E-driven melanoma and 4T1) and Ptgs2�/� (MC38 and CT26) cells were

generated by CRISPR/Cas9-mediated genome engineering as previously described (Zelenay et al., 2015). To restore COX-2 expres-

sion in Ptgs2�/�MC38 colorectal and Ptgs1/Ptgs2�/�melanoma cells, the complete open reading frame of murine Ptgs2was cloned

from parental BrafV600E-driven melanoma cell line into the retroviral vector pFB. The resulting construct was introduced in COX-defi-

cient cells by standard retroviral transduction. Knockout of Ptgs1, Ptgs2 and regain of COX-2 expression was verified by immuno-

blotting using anti COX-1 and COX-2 specific antibodies (Cell Signaling) and by monitoring the concentration of PGE2 in cell super-

natants by ELISA (Cayman chemical).

Mouse Procedures
Tumor cells were harvested by trypsinization, washed three times with PBS, filtered on a 70 mm cell strainer and injected subcuta-

neously into the flank of recipient mice. Growth profile experiments were performed injecting 1x105 cells in 100 mL of PBS. Tumor

tissues analyzed at day 4 or 7 were harvested from mice injected with 2x106 cells in 100 mL of PBS. Importantly, we have confirmed

that injection of 1x106 or 2x106 cells Ptgs�/� cells leads to the generation of tumors that are fully rejected into wild-type mice. Tumor

cells were > 95% viable at the time of injection as determined by Trypan blue exclusion. Tumor size was quantified as themean of the

longest diameter and its perpendicular and expressed as tumor diameter. In depletion experiments, mice were injected one day

before or from day 7 post-tumor cell implantation with 200 mg of specific Ab i.p. (control rat or mouse IgG, anti-Gr1 clone RB6-

8C5, anti-NK1.1 clone PK136, anti-ASIALO GM-1, anti-CD4 clone GK1.5 and anti-CD8alpha clone YTS 169.4, all from BioXCell or

Biolegend) and then every three days with 200 mg of the indicated antibody for the entire duration of the experiment. Depletion of

neutrophils, NK cells, CD4+ and CD8+ T cells was confirmed by FACS using anti-CD49b-APC (clone DX5), anti-Ly6G-PE-CF594

(clone 1A8), anti CD4-Alexa700 (RM4-5) and anti-CD8a-PE (clone 53-6.7) respectively.

METHOD DETAILS

Quantitative RT-PCR
Tumors were collected and homogenized using TissueLyser II (QIAGEN) and total RNA extracted using RLT lysis buffer (QIAGEN) or

PureZOL Reagent (BioRad) following themanufacturer’s recommendations. RNAwas further purified using RNeasy RNA isolation kit
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(QIAGEN) or Direct-zol RNAMini Prep Kit (Zymo Research). cDNAwas synthesized using 1-3 mg of total RNA by reverse transcription

using High Capacity cDNA archive kit (Applied Biosystems) and quantitative real-time PCR was performed using TaqMan probes

(Applied Biosystems) using a QS5 fast real-time PCRsystem (Applied Biosystems) or the Biomark� HD system (FLUIDIGM). Data

were analyzed with the D2CT method (Applied Biosystems, Real-Time PCR Applications Guide).

FACS analysis
For analysis of tumor-infiltrating leukocytes, tumors were collected, cut into small pieces and digestedwith Collagenase IV (200 U/ml,

Worthington Biochemical) and DNase I (0.2 mg/ml, Roche) for 35 minutes at 37�C, washed with FACS buffer (PBS containing 2%

FCS, 2 mM EDTA and 0.01% sodium azide), filtered on a 70 mm cell strainer and pelleted. The composition of tumor infiltrate was

determined by flow cytometry using a combination of the following antibodies: CD45-BV605 (Clone 30-F11), CD11b-BV785 (Clone

M1/70), Ly6G-PE-CF594 (Clone 1A8), Ly6C-FITC (Clone AL-21), F4/80-PE-Cy7 (Clone CI: A3-1), anti-MHCII I-A/I-E-Alexa700 or

APC-eFluor780 (Clone M5/114.15.2), anti-CD11c-PerCP/Cy5.5 (Clone N418), anti-CD103 APC or PE (Clone 2E7) NK1.1-APC or

PE (Clone PK136); CD49b-APC (Clone DX5), XCR1-BV421 or Alexa647 (Clone ZET) Siglec-H-BV711 (Clone E50-2440), IFNg-

eFluor450 (Clone XMG1.2), CD44-APC-eFluor780 (Clone IM7), CD3e Percp-Cy5.5 or APC (Clone 145-2C11), CD8a-PE or -PE-

Cy7 (Clone 53-6.7), CD4-FITC (Clone RM4-5) or CD4-APC-eFluor780 (Clone GK1.5) from eBioscience, BioLegend or BDBioscience.

Fc receptors were saturated with an anti-CD16/32 (clone 2.4G2, eBioscience) 5 minutes before the staining. Cell viability was

determined by Aqua LIVE/Dead-405 nm staining (Invitrogen). Intracellular epitopes were detected after ex vivo restimulation (4h

PMA/ionomycin) using Intracellular Fixation & Permeabilization Buffer set (eBioscience) following manufacturer instructions. Monen-

sin (eBiolegend) and Brefeldin A (eBiolegend) solutions were added 2h before the staining. Live cell counts were calculated from the

acquisition of a fixed number (5000) of 10 mm latex beads (Coulter) mixed with a known volume of unstained cell suspension. Cells

were analyzed on a Fortessa X-20 (BD Bioscience) or on a Novocyte (ACEA).

Immunofluorescence Analysis
Tumor tissues were mounted in OCT embeddingmedium (Thermo Scientific) and stored at�80�C. 30 mmconsecutive sections were

cut, mounted on Superfrost plus slides (Thermo Scientific) and fixed in 4% paraformaldehyde for 15 min, rehydrated in PBS and

blocked in 5% normal goat or donkey (Sigma-Aldrich) serum, 2% BSA in PBS for 2h at room temperature (RT). Tumor sections

were incubated with the following primary antibodies for 2h at RT or overnight at 4�C: affinity purified anti-Ly6G (Clone 1A8; BD

Bioscience) and affinity purified anti-NK1.1-biotynilated (Clone PK136). Sections were then incubated for 1h at RT with the following

species-specific cross-adsorbed detection antibodies: Alexa647-conjugated donkey anti-rat and FITC-conjugated streptavidin from

Jackson ImmunoResearch Laboratories and Invitrogen-Molecular Probes, respectively. For DNA detection, DAPI (300 nM; Invitro-

gen-Molecular Probes) was used. After each step, sections were washed with PBS containing 0.01% (v/v) Tween 20 (VWR Chem-

icals) and finally mounted with antifade mounting medium FluorPreserve Reagent (Calbiochem) and analyzed with an Aperio VERSA

200 scanner (Leica). Negative controls were obtained by omission of the primary antibody. Cell number per high power field (HPF)

was calculated using Fiji software version 2.0.0-rc14/1.49.

NK cell in vitro killing and live tracking
NK cells used in in vitro assays were isolated from spleens of naive mice. Total splenocytes were stained using a biotinylated-anti-

body cocktail (anti-CD3e, anti-CD19, anti-CD4, anti-CD8a, anti-CD14, anti-Ly6G, anti-TER-119, anti-F4/80) for 15 min. After

washing, cells were resuspended in 400 mL ofMojoSortTM buffer (PBS, 2.5%w/v BSA, 10mMEDTA), and 100 mLMojoSortTM strep-

tavidin nanobeads for 15 min on ice. Afterward, cells were placed in a magnet and the supernatant isolated, followed by centrifuga-

tion and resuspension in complete RPMI. IsolatedNK cells were plated in complete RPMI containing 1000U/ml IL-2 at 106 cells/ml for

four days. Ten thousand Ptgs+/+, Ptgs�/� or Ptgs�/� + COX-2 melanoma cells were plated in 384 well plates. Following adhesion for

2h, cells were stained in the wells with 0.5 mM CellTrace Calcein Green (ThermoFisher Scientific) for 20 min. NK cells were stained

separately with 0.32 mM CellTrace Calcein Red-Orange (ThermoFisher Scientific) for 20 min. Cells were washed twice and 2500 NK

cells were added to wells containing target cells. The plate was imaged using a Zeiss Axio Observer with a 20X air objective in a tem-

perature-controlled chamber (37�C, 5% CO2). Images were captured using two LEDs: Cyan 470/24 (excitation: 461-487, dichroic:

461-487, emission: 499-530) andGreen 550/15 (excitation: 543-566, dichroic: 543-566, emission: 580-611), with a 5min interval for 6

hours. NK cell migration and target contact were analyzed using Fiji. Migration tracking was performed manually and migration pa-

rameters (speed, directionality, and displacement) were calculated using in-house developedMATLAB scripts. Contact analysis was

performed by measuring the number of frames in which NK cells were in contact with their targets. A successful contact was defined

as anNK cell actively interactingwith a target for at least 3 consecutive frames. The researcher was blinded regarding the genotype of

melanoma cells during analysis.

Sorting of TAMs
Tumors were processed for FACS analysis as described above and stained with Aqua LIVE/DEAD-405 nm (Invitrogen), CD45-BV605

(Clone 30-F11), CD11b-BV785 (Clone M1/70), Ly6G-PE-CF594 (Clone 1A8), Ly6C-FITC (Clone AL-21), F4/80-PE-Cy7 (Clone CI: A3-

1) and NK1.1-APC (Clone PK136) antibodies. FACS buffer used in these experiments was EDTA and sodium azide free. Live CD45+

CD11b+ F4/80+ NK1.1- Ly6G- Ly6C-/dim cells from three Ptgs+/+ and three Ptgs�/� tumor samples were sorted on a BD FACSAria III

with > 98% purity. Each sample was a pool of 10 tumors.
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Adoptive NK cell transfer
Onemillion splenic NK cells sorted fromwild-type or Ifng�/�mice were injected intravenously into Ifng�/�mice 4 hours before and on

day 3 post tumor cell injection. Briefly, NK cells were enriched using the Mojo NK cell isolation kit (Biolegend) according to manufac-

turer instructions. The resulting negative fraction was stained using Aqua LIVE/DEAD-405 nm (Invitrogen), CD19-eFluor450 (Clone

eBio1D3), CD3e Percp-Cy5.5 (Clone 145-2C11), and NK1.1-APC (Clone PK136) antibodies and sorted on a BD FACSAria III with

> 99% purity. Each preparation was a pool of five spleens.

30-mRNA sequencing and analysis
RNA was prepared from sorted TAMs or bulk tumors as described above. Lexogen QuantSeq 30-mRNaseq Library Prep Kit (FWD,

Cat. No. 015) for Illumina was used for the construction of sequencing libraries from 500ng (bulk tumors) or 800pg (sorted TAMs) of

total RNA, and then sequenced in Illumina NextSeq500 at the CRUK Manchester Institute Molecular Biology Core facility. The fastq

read files for the mouse QuantSeq sequencing were trimmed with BBDUK from the BBMAP tools software, to remove the first 12

bases of each read and to remove contaminates as suggested by the lexogen documentation. Trailing polyG and polyA tails were

removed with fqtrim and cutadapt. After trimming the reads were aligned to the mouse GRCm38 genome reference downloaded

from ENSEMBL with STAR (Dobin et al., 2013). The aligned reads were then allocated to genetic features in the GRCm38 v86 anno-

tation using featureCounts from the Subread software (Liao et al., 2014). The Feature Counts count matrix was then read into the R

bioconductor package edgeR (Robinson et al., 2010), and log2(CPM+1) values were used to generate heatmaps. The differential

expression analysis was performed using the edgeR package with TMM normalization and the generalized linear model differential

expression test. Differentially expressed genes were defined based on a false discovery rate (FDR) % 0.05 and a Log2 fold change

(FC) ± 1.5. The resulting gene list was analyzed with Ingenuity Pathways Analysis software (IPA) (Kr€amer et al., 2014). Results of the

IPA analysis are shown in Figure S5B and in Table S4.

Single cell mRNA sequencing and analysis
Tumors were processed for FACS analysis as described above and stained with Aqua LIVE/DEAD-405 nm (Invitrogen) and CD45-

BV605 (Clone 30-F11) antibodies. FACS buffer used in these experiments was EDTA and sodium azide free. Live CD45+

cells from ten pooled tumors per each group were sorted on a BD FACSAria III with a purity > 98%. Cells were counted using a he-

mocytometer after Trypan Blue exclusion. Sixteen thousand cells were loaded into a channel of a Chromium Chip B (10X Genomics,

PN-1000073) and GEMswere generated on the ChromiumController (10X Genomics, GCG-SR-1). 3.5% spike-in parental BrafV600E-

driven melanoma cells were added to each sample for assessing sample-to-sample variability. Indexed sequencing libraries were

prepared using the Chromium Single Cell 30 Reagent Kit v3 (10X Genomics, PN-1000075, PN-120262) according to manufacturer’s

instructions, with 11 cycles of cDNA amplification and 14 cycles of sample index PCR.

Libraries were quantified by qPCR using a Kapa Library Quantification Kit for Illumina sequencing platforms (Kapa Biosystems Inc.

Cat No: KK4873). Paired-end sequencing was carried out by clustering 1.4 pM of the equimolar pooled libraries on a NextSeq 500

sequencer (Illumina inc.). Raw sequencing data were converted into fastq files using the Cell Ranger Pipeline version 3.1 (10X Geno-

mics). The resulting filtered featurebcmatrix in h5 formatwas loadedonPartek Flowsoftware for analysis. Briefly, cellswere filtered for

total reads (min:500-max:15,000), detected genes (min:200-max:4,000) andmitochondrial readcontents (min:0%-max:10%). Result-

ing featureswere normalized using Log2CPM+1.Geneswith expression equal to zero in 100%of the cellswere filtered out. A principal

component analysiswas run inorder to identify commonsourcesof variationbetween the twodatasets. Finally, the resultingdatawere

subjected to graph-based clustering analysis using the first 15 principal components. The identified clusters were visualized using t-

distributed Stochastic Neighbor Embedding of the principal components (t-SNE) and different immune cell populations were classi-

fied based on group specific biomarkers (Table S1) as shown in Figure 3E. Gene set enrichment analysis (GSEA) examining enriched

Hallmark gene sets (Liberzon et al., 2015) in the same cell cluster from Ptgs�/� or Ptgs�/�-NK cell depleted tumors was performed

usingGenePattern platform (Reich et al., 2006). To run single-sampleGSEA (ssGSEA), gene expressiondataset files (.gct file), immune

marker gene set file (.gmt file) and class parameter (.cls file) were uploaded on GenePattern environment and the ssGSEA score for

each hallmark gene set was calculated using default parameters (Figure 3G; Table S3).

Bioinformatic Analysis of Patient Datasets
TCGA gene expression data (mRNA level 3 RSEM normalized) was downloaded from the Broad Institute Firehose portal between

September 2017 and February 2018. Datasets with less than 100 samples were not included in the analysis. Tumor tissue and normal

tissue samples (sample ID ending in 11 or 12) were separated. METABRIC data was downloaded from cBioPortal. Patients with gene

expression data were classified into three groups (HER2 positive, ER/PR status positive/HER2 negative, ER/PR/HER2 negative).

To obtain the COX-IS, signature scores were computed by mean expression (Log2 RSEM) of signature genes, as well as by mean

Z-score normalized gene expression values. The ‘cancer-promoting’ and ‘cancer-inhibitory’ inflammatory genes whose expression

was regulated by COX-2 activity in themousemodels (Figure 3C; Zelenay et al., 2015) were computed as follows: VEGFA, CCL2, IL8,

CXCL1, CXCL2, CSF3, IL6, IL1B and IL1A were positively correlated (pos, also referred as CP) and expressed as:

pos =
Xnp

i =1

Gpos
i ðeÞ;
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CCL5, CXCL9, CXCL10, CXCL11, IL12A, IL12B, IFNG, CD8A, CD8B, GZMA, GZMB, EOMES, PRF1, STAT1 and TBX21 were nega-

tively correlated (neg, also referred ad CI) and defined as:

neg =
Xnn

i = 1

Gneg
i ðeÞ;

where np and nn are the number of genes in pos and neg groups respectively.

Finally, COX-IS was calculated as:

COX� IS =

1
np

Pnp
i = 1G

pos
i ðeÞ

1
nn

Pnn
i = 1G

neg
i ðeÞ

We computed pairwise Pearson correlation coefficients for genes of the COX-IS in each patient cohort, and plotted coefficients

against PTGS2 in each cohort. Tumor types were ordered left to right by the increasing mean correlation of PTGS2 with genes of

the CI signature. For HNSC and LUAD datasets, we plotted the Pearson correlation coefficient against the –Log10 p value from

the same analysis. The expression of CI genes in NK cell-high versus -low patients was analyzed. Patients in the top 25% and bottom

25%of NK cell infiltration (as defined byDanaher et al., 2017) were classified asNK cell high and low respectively. Pearson correlation

coefficients were also computed for the PTGS2 gene against MCPcounter (version 1.1.0) (Becht et al., 2016) and (Danaher et al.,

2017) cell populations. Heatmaps were generated using the pheatmap (version 1.0.12) package. Kaplan-Meier plots for overall sur-

vival were generated at the maximum follow up threshold per each tumor type and the COX-IS was used to segregate high risk from

low risk patients. Patient fromLUAD (n = 512), HNSC (n = 517), TNBC (n = 251),MSKCM (n = 357) andCESC (n = 305) were stratified in

quartiles (75%, 50% and 25% stringency) according to the COX-IS. The most significant comparison is shown. All survival analysis

was carried out using the R survival (version 3.1-8) package, and plotted using GraphPad Prism. For selected gene signatures (see

Table S5) univariate survival analysis was carried out by stratifying patients into high and low groups with three different cut-offs:

25%, 50% and 75%. For each signature the optimal cut-off, defined by lowest logrank p value, was selected. We utilized the overall

survival end-point data annotated by Thorsson et al., 2018 and expressed this as years.Multivariate analysis was carried out for COX-

IS using clinical data downloaded from cBioPortal, we defined age, sex and stage variables for each patient where appropriate. Stag-

ing was converted to a continuous variable, grouping together all Stage I ( = 1), Stage II ( = 2), Stage III ( = 3) and Stage IV ( = 4). There

were 488 LUADpatients with the required information (176 events). For HNSC, we also adjusted for HPV status (n = 275with sufficient

information, 137 events). For M-SKCM, 9 patients annotated as Stage I/II NOS were given a stage score of 1. Overall there were 314

patients (167 events). For CESC, we adjusted for age and stage (n = 301, events = 74). For KIRC, we adjusted for age, stage and sex

(n = 515, events = 168). For OV, we adjusted for age and stage (n = 302, events = 183). The TNBC cohort from METABRIC, was

adjusted for age, tumor stage, chemotherapy (CTx), radiotherapy (RTx) and grade (n = 177, events = 83).

Datasets of cancer patients receiving ICB were obtained following instructions within individual publications. For the renal cancer

cohort (McDermott et al., 2018) we obtained special permissions and access to data through a written agreement between The

CRUK Cancer Inflammation and Immunity Group and Roche/Genentech. All datasets that required counts to be processed were

computed using edgeR (version 3.24.3). Genes were filtered out based on a threshold of 0.25 CPM in 10% samples. Log2

CPM+1 expression matrices were generated and used for downstream analysis. For the McDermott cohort, fastq files were down-

loaded from the European Genome Archive under accession EGAS00001002928. For the Kim and Gide cohorts, fastq files were ob-

tained from the European Nucleotide Archive under accessions PRJEB25780 and PRJEB23709 respectively. Data for the bladder

cancer cohort (Mariathasan et al., 2018) were obtained using the IMVigor210Biologies R package. A counts matrix for the Snyder

et al., 2017 cohort was available to download from zenodo.org following the link in the online version of the paper. One Nanostring

dataset was obtained from the Chen et al., 2016 publication. This dataset was downloaded from the supplementary file of the study,

and included a main cohort plus an extra cohort of 8 pre-PD1 patients (Roh et al., 2017) that we also included in our analysis. FPKM

values for the Hugo and Riaz datasets were obtained from the GEO database under accessions GSE78220 and GSE91061 respec-

tively. The Van Allen cohort TPMmatrix was downloaded from http://github.com/vanallenlab. In agreement with the original studies,

patients from Mariathasan, McDermott, and Snyder cohorts, with progressive disease (PD) and stable disease (SD) were pooled as

non-responders, and those with a partial or complete response were pooled as responders. For melanoma cohorts and the gastric

cohort, stable disease patients were pooled instead with responders.

Logistic regression models were constructed using the glm function in R. Nested and individual models were assessed by the Chi-

square test. All available patients were usedwhere appropriate, except for TMBmodels in theMariathasan cohort, where 76 patients

did not have mutation data. PDL1 expression, labeled as enrolment IC (immune cell) level, was used as a categorical variable. On-

treatment samples were excluded from all datasets where available. RNA sequencing datasets from pooledmelanoma cohorts (Gide

et al., 2019; Hugo et al., 2016; Riaz et al., 2017; Van Allen et al., 2015) and bladder cancer (Mariathasan et al., 2018; Snyder et al.,

2017) were analyzed to determine the association of the COX-IS with survival.

QUANTIFICATION AND STATISTICAL ANALYSIS

For all studies, sample size was defined on the basis of past experience on cancer models, to detect differences of 20% or greater

between the groups (10% significance level and 80% power). Values were expressed as mean ± SEM or median of biological
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replicates, as specified. Unpaired Student’s t test, Pearson’s correlation, chi-square test, one- and two-way ANOVA were used as

specified. Tukey, Dunnet or Sidak corrections were applied for multiple comparisons. A Mann–Whitney U-test was used in cases of

non-Gaussian distribution. Survival curves and hazard ratio were calculated with a Log-rank (Mantel-Cox) test. A ROUT test (Q = 0.05

stringency) was applied to exclude outliers. A p value < 0.05 (*p < 0.05, **p < 0.01, ***p < 0.001) was considered significant. Statistics

were calculated with GraphPad Prism version 8.2.0 (GraphPad Software). Flow cytometry standard (.fcs) files were analyzed using

FlowJo (FlowJo LLC.) version 10.4.2 and Cytobank (CytoBank, Inc.) software. Partek Flow software (Single cell Toolkit, build version

8.0.19.0610) was used for single cell RNA-sequencing analysis. R software (R project) was used for analysis of cancer patient

datasets.
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