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In prior work [1 – 3], I showed that, under the condition of low numerical aperture and no vignetting, a lens 

system’s relative illumination 𝑅𝐼 may be approximately expressed as 

 

                                                           𝑅𝐼 =
(𝐴/𝐴𝑜) cos4 𝜃

(1 + 𝐷)[1 + 𝐷 + 𝑦(𝑑𝐷/𝑑𝑦)]
 ,                                                            (1) 

 

where 𝐴 is the off-axis entrance pupil’s surface area, 𝐴𝑜 is the on-axis entrance pupil’s surface area, 𝜃 is 

the chief ray angle in object space, 𝑦 is the field height (i.e., it is the height of the object), and 𝐷 is the 

fractional image distortion defined by  

 

                                                                                 𝐷 =
𝑦′ − 𝑦𝑝′

𝑦𝑝′
 ,                                                                              (2) 

 

where 𝑦′ is the real image height, and 𝑦𝑝′ is the paraxial image height. The quantity 𝑑𝐷/𝑑𝑦 has been called 

“differential distortion” [1] and it is the instantaneous rate of change of image distortion with respect to 

field height. The ray geometry for these quantities is illustrated in Fig. 1, where we assume that the en-

trance and exit pupils may in general be buried within elements or spaces of the lens system. 

 

 

Fig. 1 Geometry of rays for a lens system for the quantities in Eq. (1). 

 

ABSTRACT 
In a prior journal publication, I showed how to control 

the relative illumination of a lens system as a function 

of image distortion and differential distortion, but I did 

not account for the contribution from the entrance 

pupil satisfactorily. This technical note tells how to do 

this by applying a simple geometric method. 
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In Eq. (1), it is easy to see that the quantities 𝑦, 𝜃, 𝐷, and 𝑑𝐷/𝑑𝑦 may be determined from ray data, but 

it is not so clear how to determine the ratio 𝐴/𝐴𝑜. To determine this ratio, consider that if a fictitious small 

thin lens were placed flat at the tip of the object to “look into the lens system”, then an image of the off-

axis entrance pupil could be made to form at a plane located some distance −∆𝑍 behind the small thin 

lens. Suppose that the full y-dimensional length of this entrance pupil image is ∆𝑌 (see Fig. 2). Then, by 

symmetry, a “dummy surface” placed at +∆𝑍 from the object would reveal that the full y-dimension of the 

ray cone centered at the chief ray also possesses length ∆𝑌. A similar argument can be made for the or-

thogonal axis at the plane of the dummy surface. If we refer to the orthogonal axis (in and out of the page) 

as the “+/- x dimension”, then at the dummy surface (and assuming a circular aperture stop), one has ap-

proximately an ellipse with half dimensions ∆𝑌/2 and ∆𝑋/2 in orthogonal axes, and the area of this ellipse 

would be 𝜋∆𝑋∆𝑌/4. Similarly, at the dummy surface, there would be a circle of some radius 𝑅 and area 

𝜋𝑅2 for the on-axis cone of rays traveling towards the entrance pupil. Thus, the ratio 𝐴/𝐴𝑜 is equal to the 

ratio (𝜋∆𝑋∆𝑌/4)/𝜋𝑅2. In this way, one may “sense” the ratio 𝐴/𝐴𝑜 by way of placing a dummy surface at 

an arbitrary distance in front of the object, which is easily done in the prescription of an optical design 

program for a lens system layout.   

 

 
 

Fig. 2 “Sensing” the entrance pupil area using a dummy surface in front of the object. 

 

As an example, consider the lens prescription given by “Figure 1” in U.S. Patent 2,031,792, which is a 

symmetrical lens of 66 mm effective focal length (EFL) at wavelength 588 nm [4]. Using Zemax OpticStu-

dio [5], the lens layout is shown in Fig. 3 without vignetting at an aperture of f/6.3, semi-field angle 35 

degrees, object at infinity, and image plane set at 51.9421 mm from the back vertex of the last element. 

The relative illumination given by OpticStudio (OS) is shown in Fig. 4. For an object at infinity, it can be 

shown (see Appendix A) that Eq. (1) may be expressed as 

 

                                                      𝑅𝐼 =
(𝐴/𝐴𝑜) cos4 𝜃

(1 + 𝐷)[1 + 𝐷 + sin 𝜃 cos 𝜃 (𝑑𝐷/𝑑𝜃)]
 .                                               (3) 

 

We now show that Eq. (3) may be used to estimate the relative illumination of this lens. In particular, we 

shall calculate it at full field (i.e., at the field half angle of 35 degrees) and compare the computed value 

with the value given by OS in Fig. 4, which is roughly 0.35.  
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Fig. 3 Layout in Zemax OpticStudio for the lens given by “Figure 1” in U.S. Patent 2,031,792.   

 

 

 

Fig. 4 Relative illumination plotted in Zemax OpticStudio for the lens in Fig. 3.  

 

 If one were to enter the prescription for the lens in Fig. 3, one would find that the image at full field has 

pincushion distortion at 1.22%, which means that 𝐷 = 0.0122. At full field, the differential distortion is 

approximately 𝑑𝐷/𝑑𝜃 ≈ 0.0416. Applying these values and 𝜃 = 350 into Eq. (3), we have: 

 

                                          𝑅𝐼 =
(𝐴/𝐴𝑜) cos4(350)

(1 + 0.0122)[1 + 0.0122 + sin(350) cos(350) (0.0416)]
                                 

 

                                                ≈ (𝐴/𝐴𝑜)0.4311.                                                                                                         (4) 
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It remains to determine the quantity 𝐴/𝐴𝑜. To do this, consider the spot diagram shown in Fig. 5 for the on 

and off-axis ray bundles at the dummy surface of the layout in Fig. 3. One can obtain values for ∆𝑋, ∆𝑌, 

and 𝑅 from this spot diagram or from special operands in the merit function. In fact, the values shown in 

Fig. 5 were obtained from OS’s merit function operands for ray heights. Applying the values for ∆𝑋, ∆𝑌, 

and 𝑅 shown in Fig. 5 into the relation 𝐴/𝐴𝑜 = (𝜋∆𝑋∆𝑌/4)/𝜋𝑅2, we have 𝐴/𝐴𝑜 = 0.8174. Applying this 

value into Eq. (4), we have 

 

                                                               𝑅𝐼 ≈ (0.8174)0.4311 ≈ 0.3524.                                                              (5) 

 

 

 

Fig. 5 Spot diagram for the two fields at the dummy surface shown in Fig. 3.  

 

 

Note that the value for the full field relative illumination computed in Eq. (5) is quite close to the full 

field relative illumination given by the OS plot in Fig. 4, proving that the method for “sensing” the entrance 

pupil area ratio 𝐴/𝐴𝑜 in Eq. (1) [or, equivalently, in Eq. (3) for an object at infinity] works. The method could 

also potentially be applied to lens systems with non-circular apertures. In such cases, one would not assume 

that the on and off-axis entrance pupils have circular and elliptical shapes, respectively.  

 Why would one apply the method described here (and in Refs. 1 – 3) to estimate relative illumination 

when modern optical design programs can provide this data automatically? In fact, there are even more 

scholarly ways to compute and analyze relative illumination and aberrations [6 – 8]. The simple answer is 

that the method in this paper is just the way I do it, and it gives me quick information about what I’m 

controlling and constraining when designing a lens. Eqs. (1) and (3) also tell me how to tailor the relative 

illumination. I could ⎯ if I wanted to ⎯ make relative illumination uniform throughout the field by control-

ling image distortion and differential distortion [2], and also the entrance pupil area. We know a lot about 

image distortion, but not so much about differential distortion. The latter has a significant impact on rela-

tive illumination even when image distortion is zero at one or more field points. 

 

APPENDIX A: RELATIVE ILLUMINATION WHEN THE OBJECT IS AT INFINITY 
 

To get from Eq. (1) to Eq. (3), one simply notes that the quantity 𝑦(𝑑𝐷/𝑑𝑦) is precisely equal to 

𝑦𝑝′(𝑑𝐷/𝑑𝑦𝑝′), where 𝑦𝑝′ is the paraxial image height as defined in Eq. (2). Substituting 𝑦𝑝′(𝑑𝐷/𝑑𝑦𝑝′) in 

place of 𝑦(𝑑𝐷/𝑑𝑦) in Eq. (1) yields 
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                                                        𝑅𝐼 =
(𝐴/𝐴𝑜) cos4 𝜃

(1 + 𝐷)[1 + 𝐷 + 𝑦𝑝′(𝑑𝐷/𝑑𝑦𝑝′)]
 .                                                     (A1) 

 

Eq. (A1) may be applied to compute relative illumination (at low numerical aperture and no vignetting) for 

an object at infinity. However, for objects at infinity, since optical design programs usually provide the im-

age distortion and relative illumination plot in terms of 𝜃, it would be convenient if Eq. (A1) is expressed 

completely in terms of 𝜃. To do this, first substitute Eq. (2) into Eq. (A1) to get 

 

                                                                 𝑅𝐼 =
(𝐴/𝐴𝑜) cos4 𝜃

𝑦′
𝑦𝑝′

[
𝑦′
𝑦𝑝′

+ 𝑦𝑝′
𝑑𝐷

𝑑𝑦𝑝′
]

 .                                                                      (A2) 

 

Now, by applying Eq. (2), we note that 

 

                                                  
𝑑𝐷

𝑑𝑦𝑝′
=

𝑑

𝑑𝑦𝑝′
(

𝑦′ − 𝑦𝑝′

𝑦𝑝′
) =

𝑦𝑝
′ (𝑑𝑦′/𝑑𝑦𝑝′) − 𝑦′

𝑦𝑝′2
 .                                              (A3) 

 

Substituting the result on the right-side of Eq. (A3) into Eq. (A2) we have 

 

                                                    𝑅𝐼 =
(𝐴/𝐴𝑜) cos4 𝜃

𝑦′
𝑦𝑝′

[
𝑦′
𝑦𝑝′

+ 𝑦𝑝′ (
𝑦𝑝

′ (𝑑𝑦′/𝑑𝑦𝑝′) − 𝑦′

𝑦𝑝′2 )]

                                                        

 

                                                             =
(𝐴/𝐴𝑜)𝑦𝑝′ cos4 𝜃

𝑦′(𝑑𝑦′/𝑑𝑦𝑝′)
 .                                                                                   (A4) 

 

For an object at infinity, there is no distinction between 𝜃 measured at the entrance pupil and at the object 

space principal plane of a lens system, hence, tan 𝜃 = 𝑦𝑝′/𝑓, where 𝑓 is the EFL of the lens system. There-

fore, 𝑑𝑦𝑝
′ = 𝑓 sec2 𝜃 𝑑𝜃 = 𝑓𝑑𝜃/ cos2 𝜃. Substituting this and tan 𝜃 = 𝑦𝑝′/𝑓 into Eq. (A4) we have 

 

                                          𝑅𝐼 =
(𝐴/𝐴𝑜)𝑓2 tan 𝜃 cos4 𝜃

𝑦′(𝑑𝑦′/𝑑𝜃) cos2 𝜃
=

(𝐴/𝐴𝑜)𝑓2 sin 𝜃 cos 𝜃

𝑦′(𝑑𝑦′/𝑑𝜃)
.                                         (A5)  

 

Eq. (A5) is actually the form described by Rudolf Kingslake [9] when he applied Max Reiss’s [10] technique 

for deriving the relative illumination of a lens system from the point of view of the object (for an object at 

infinity). It is rather interesting to note that neither Kingslake nor Reiss performed the full differentiation 

𝑑𝑦′/𝑑𝜃. Had they done it ⎯ and had they expressed image distortion in the form given by Eq. (2) ⎯ per-

haps they would have “discovered” differential distortion. Interestingly, Welford [11] refers to 𝑑𝑦′/𝑑𝑦 as 

“differential distortion”, but not in the context of its role in relative illumination. Anyway, Eq. (A5) may now 

be recast into the form given by Eq. (3) if we now look to Eq. (2) and re-arrange it as 𝑦′ = 𝑦𝑝′(1 + 𝐷) and 
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note that for an object at infinity, tan 𝜃 = 𝑦𝑝′/𝑓, so 𝑦𝑝′ = 𝑓 tan 𝜃. Therefore, 𝑦′ = 𝑓 tan 𝜃 (1 + 𝐷). Differ-

entiating this, we have  

 

                                                             
𝑑𝑦′

𝑑𝜃
= 𝑓(1 + 𝐷) sec2 𝜃 + 𝑓 tan 𝜃

𝑑𝐷

𝑑𝜃
.                                                    (A6)  

 

Substituting Eq. (A6) into Eq. (A5) and using the fact that 𝑦′ = 𝑓 tan 𝜃 (1 + 𝐷), we have 

 

                                            𝑅𝐼 =
(𝐴/𝐴𝑜)𝑓2 sin 𝜃 cos 𝜃

𝑓 tan 𝜃 (1 + 𝐷) [𝑓(1 + 𝐷) sec2 𝜃 + 𝑓 tan 𝜃
𝑑𝐷
𝑑𝜃

]
 .                                     (A7)  

 

Finally, by performing a little bit of algebraic manipulation, Eq. (A7) becomes Eq. (3). We could have arrived 

at Eq. (A7) from Eq. (A2) without first deriving Eq. (A5), but the reason I did not do it was because I wanted 

to show how to arrive at Max Reiss’s formula [i.e., Eq. (A5)]. 

 

APPENDIX B: CONCEPT OF COMPUTING RELATIVE ILLUMINATION IN MODERN 

OPTICAL DESIGN PROGRAMS 
 

According to the Zemax OS manual, Matthew Rimmer’s technique [12] is used for computing relative illu-

mination in OS. How does it work? The way I like to think about it is to first note that, for a Lambertian 

source of radiance 𝐿 in air, the on-axis image irradiance 𝐸𝑜 (in air) for an aberration-free optical system is 

proportional to the average of the squares of image space ray numerical apertures (NA) sampled around 

the lens’s exit pupil [13]: 

 

                                                                   𝐸𝑜 = 𝜋𝐿
1

𝑁
∑ 𝑁𝐴𝑖

2
𝑁

𝑖=1
 .                                                                       (B1)  

 

For any off-axis ray bundle, a similar argument can be made if the local image surface at the image height 

of interest is orthogonal to the central ray in the ray bundle. Thus, at full field, if the chief ray is orthogonal 

to the local image surface at the full image height, then one may perform the sum in Eq. (B1) for those rays, 

provided that you know how to obtain the proper ray angles at the local image surface. Multiplying the 

result by cos 𝜃′ (to “recline” the obliquity of the image plane, and where 𝜃′ is the chief ray in image space) 

yields the off-axis image irradiance. Finally, the ratio of the off-axis irradiance to the on-axis irradiance is 

the relative illumination. Note that if the optical system has aberrations, ray intercept data would provide 

lateral deviations from perfect focus, and one may apply these to correct the aberrated rays to determine 

ray angles for ideal rays. This is also pointed out by Rimmer in his paper [12]. 

 One might wonder why, in this appendix, we talk about relative illumination in terms of ray data from 

the exit pupil. In contrast, in earlier parts of this paper (and in Appendix A), we talked about relative illumi-

nation in terms of ray data from the entrance pupil. Actually, they are equivalent, due to conservation of 

flux between rays entering the entrance pupil and rays exiting the exit pupil. In fact, Kingslake calls them 

the “Image Space Formula” and “Object Space Formula” for “Oblique Illuminance” [9]. It’s just that only 

when you examine rays going into the entrance pupil would you be able to express relative illumination as 

an explicit function of image distortion and differential distortion (and of course, the ratio of the entrance 
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pupil areas) as defined in Eqs. (1) – (3), which is convenient for practical lens design. And by the way, they 

are related to the coma of the exit pupil, which affects the size and shape of the exit pupil ⎯ and that is 

how the exit pupil affects relative illumination, besides the fact that the image plane is flat and orthogonal 

to the optic axis. Another advantage of examining rays at the object side is that all of the rays propagating 

from a field point towards the entrance pupil have no “focus aberration” at the field point (i.e., they all 

diverge from an ideal point at the object), so all of the rays surrounding a “diverging ray cone” graze per-

fectly around the entrance pupil. This is unlike the situation mentioned earlier concerning aberrated rays 

converging from the exit pupil towards the image plane. Therefore, in theory, I think that if one can obtain 

appropriate direction cosines for entrance pupil rays at the object plane, one can replace the quantity 

(𝐴/𝐴𝑜) cos4 𝜃 in Eqs. (1) and (3) by the type of sum given by Eq. (B1), which would enable lifting the re-

striction on having low NA for the lens system. 
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