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Non-small-cell lung cancer (NSCLC) is the leading cause of cancer-related
deathsworldwide.Althoughadvances are beingmade towards earlier detection
and the development of impactful targeted therapies and immunotherapies, the
5-year survival of patients with advanced disease is still below 20%. Effective
cancer research relies on pre-clinical model systems that accurately reflect the
evolutionary course of disease progression and mimic patient responses to
therapy. Here, we review pre-clinical models, including genetically engineered
mousemodels and patient-derivedmaterials, such as cell lines, primary cell cul-
tures, explant cultures and xenografts, that are currently being used to
interrogateNSCLCevolution frompre-invasive disease through locally invasive
cancer to the metastatic colonization of distant organ sites.
1. Background
Lung cancer is the most commonly diagnosed cancer type globally for men and
women, and constitutes almost one in five cancer deaths worldwide [1]. Lung can-
cers are classified as either small-cell lung cancer (SCLC; approx. 15%) or non-small-
cell lung cancer (NSCLC; approx. 85%). NSCLC is, in turn, divisible into two main
histological subtypes: lung adenocarcinoma (LUAD) and lung squamous cell carci-
noma (LUSC), plus several less frequently observed subtypes, such as large cell
carcinoma, adenosquamous carcinoma and carcinoid tumours. LUAD typically
arises in the distal lung, whereas LUSC arises centrally, probably reflecting different
cells-of-origin for these two lung cancer types [2]. It is widely thought that LUAD
develops from alveolar type II (AT2) epithelial cells or cells within bronchioalveolar
duct junctions, whereas LUSC develops from basal epithelial cells in airways,
although data from animal models [3] and an increasing appreciation of the
plasticity of lung epithelial cells [4] make this uncertain.

The two major NSCLC subtypes can be distinguished further based on cell
morphology and histological staining: LUAD typically appears glandular,
whereas LUSC harbours large polygonal cells with squamous differentiation.
Different marker proteins also aid diagnosis as TTF-1/NKX2-1 and KRT7
expression are indicative of LUAD, whereas TP63 and KRT5/6 expression are
indicative of LUSC [5]. At the genomic level, the mutational and copy number
landscapes of LUAD and LUSC are distinct [6–8]. In LUAD, the occurrence of
oncogenic driver mutations in KRAS, EGFR, HER2, MET and FGFR1/2, as well
as oncogene fusions involving anaplastic lymphoma kinase (ALK), the ROS1
receptor tyrosine kinase (RTK), neuregulin 1 (NRG1), neurotrophic tyrosine
kinase receptor type 1 (NTRK1) and RET, offer possibilities for new targeted
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Figure 1. A timeline of advances in pre-clinical models of non-small-cell lung cancer. Created with BioRender.com based on [16–28].
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therapies. Recent progress has been made using small-molecule
inhibitors to target difficult-to-drug mutated forms of KRAS,
and clinical trials are on-going [9]. While LUSC is not character-
ized by the same mutations as LUAD and has fewer targetable
oncogenic drivers, tumour suppressor alterations such as TP53,
CDKN2A and KEAP1 are common in both subtypes [6–8].

Lung cancer survival is highly stage dependent; in England
between 2013 and 2017, diagnosis at stage I was associated
with a greater than 50% 5-year survival, whereas if the diagnosis
was at stage IV, i.e. metastatic disease, the equivalent figure was
approximately 3% (Office of National Statistics, UK). In NSCLC,
independent of histological subtype, the standard first-line treat-
ment for patients with stage I–III tumours is surgical resection,
with adjuvant chemotherapy offering a small benefit for those
with locallyadvanced stage III disease [10]. If surgery is not poss-
ible or is declined then chemoradiotherapy is typically offered.
Immune checkpoint inhibitors have revolutionized NSCLC
treatment and emerging survival data from early phase clinical
trials indicate a significant increase in median overall survival
for a subset of patients. Anti PD-L1 and PD-1 therapies have
been licenced for use in both locally advanced and advanced
cases, respectively [11] and although treatment efficacy has
been linked to tumour PD-L1 expression [12], patient stratifica-
tion for immunotherapy agents requires further refinement
[13]. Targeted therapy has predominantly focussed on inhibiting
the constitutive activation of mutated forms of the epidermal
growth factor receptor (EGFR). A majority of patients initially
respond to treatment but eventually progress as therapy resist-
ance develops [14]. The emergence of resistance coupled with a
high number of unknown resistance mechanisms indicates the
potential for rapid tumour evolution [15].

The recent advancements in cancer treatments outlined
above would not have been achieved without experimental
models to investigate the different aspects of disease initiation
and progression. Pre-clinical models represent important tools
that allow us to study tumour evolution in the absence of
therapy in a manner that is not possible in patients. Along
with enabling studies of early disease, these models also allow
us to compare the efficacy of novel therapies with established
treatments and to study mechanisms of therapy resistance.
Such systems have the potential to identify biomarkers of
response for patient stratification and to inform future personal-
ized therapies. In this review, we describe the progress that has
been made to diversify the tools available for NSCLC research,
discuss their relative advantages and disadvantages for
particular research questions and reflect on some of the
outstanding questions facing the field.
2. Pre-clinical NSCLC model systems
The study of NSCLC has progressed tremendously since the
initial investigations identifying chemical carcinogens as a
source of lung cancer (figure 1). The technical and scientific
advancements in NSCLC research have included the estab-
lishment of immortal cell lines, primary cell cultures,
xenografts and mouse models, which each have their relative
merits and disadvantages (table 1).

2.1. Established cell lines
The most frequently reported NSCLC laboratory models are cell
lines (table 2), which are inexpensive, scalable and widely avail-
able [29,30]. Cells, isolated from patients’ tumours have been
selected for growth, most often on plastic cultureware, in culture
medium containing bovine serum. Lung cancer cells were
among the first to be successfully cultivated in the laboratory
[32] and, to date, over 200 NSCLC cell lines are available in cell
line collections [33,34]. Sequencing efforts from the Wellcome
Trust Sanger Institute’s cell lines project (https://cancer.sanger.
ac.uk/cosmic) and the Broad Institute’s Cancer Cell Line Ency-
clopedia (https://portals.broadinstitute.org/ccle) have
identified the mutational status for 110 and 136 NSCLC cell
lines, respectively. Community resources such as Cellosaurus
(https://web.expasy.org/cellosaurus) also collate publicly avail-
able cell line information. Most NSCLC cell lines are derived
from adenocarcinomas with fewer LUSC cell lines available
due to the lack of effective culturing methods. In general,
LUSC cell lines tend to be less well-characterized and there are
concerns that some cell lines are potentially misattributed due
to their in vitro similarity to squamous cancers from other
organs. NSCLC cell lines maintain some of the fundamental fea-
tures of the tumours from which they were derived [35] but the
most widely used NSCLC cell lines are now several decades
post-establishment, limiting the availability of clinical data and
modern genetic characterization of the parental tumour, includ-
ing germline sequencing. It is important to recognize that, due to
on-going mutational processes and genomic instability, the
divergence of these long-term cultures from the original
tumour occur during continued propagation. Additional
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Table 1. An overview of the relative merits of NSCLC models.

source material advantages disadvantages

cell lines large number available

inexpensive and widely available

many are well-characterized

permissive of genetic manipulation

permissive of biochemical studies and drug screens

cell selection based on growth on culture conditions

phenotypic changes caused by immortalization

divergence/genetic drift may affect reproducibility

few modern LUSC lines

germline data generally unavailable

primary patient samples

normal tissue

tumour biopsy

circulating tumour cells

close-to-patient: recent clinical data and other matched

patient samples

permissive to the on-going development of novel models,

e.g. those involving organoids and/or co-culture

difficult to maintain AT2 phenotype in culture

difficult to establish pre-invasive or LUSC cultures

contaminating normal airway cells common in tumour

cultures

establishment within a clinical timeframe is challenging

limited availability

genetically engineered

mouse models (GEMms)

reproducible within pure background strains

in situ microenvironment

control over genetic alterations

immune competent animals

strong oncogenic drive limits study of early tumour

evolution

more rapid progression than in human patients

multiple allele generation can require many generations

and be costly

species differences

carcinogen-induced tumour

models

mimic pre-invasive disease stages

in situ microenvironment

immune competent animals

more rapid progression than in human patients

often develop the extensive multi-tumour disease

species differences
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complexity and irreproducibility is introduced by the different
selection pressures applied as multiple laboratories cultivate
cell lines with variable tissue culture practices. Consequently,
divergent cell growth behaviour [36] and response to therapies
[37] have been reported.
2.2. Patient-derived tissue

2.2.1. Ex vivo explant cultures

Small fragments or slices of resected NSCLC tumours can be
maintained in the cell culture medium, allowing short-term
investigations. Explant cultureswere pioneered as ‘histocultures’
in which tumour pieces were supported on collagen-based
sponge gels that enabled short-term tumour cell survival and
proliferation read-outs [38]. In a recent study, around 70% of
NSCLCs were amenable to explant culture [39] and further
optimization might be possible by customizing matrix protein
composition and/or using the autologous serum in such cul-
tures [40]. Precision-cut lung slices (PCLSs) can be generated
by filling tissue with agarose before creating 100–500 µm sec-
tions using a tissue slicer or a vibratome. Sections are then
cultured in a maintenance medium and, although survival
times vary, some cell types can survive for more than 7 days.
PCLSs have gained popularity in other chronic lung disease set-
tings [41], although the difficulties of genetic manipulation
within such a short timeframemake transformation studies chal-
lenging. The surgical resection of primary tumours lends itself to
such studies [16] but, in practice, applicationof this technology in
lung cancer studies remains limited.
2.2.2. Primary cell cultures

Primary cell cultures, in either 2D or 3D culture formats, can be
derived from cells retrieved by lobectomies, brush or forcep
biopsies, from resected or biopsied tumours, or from circulating
tumour cells (CTCs) recovered from blood samples. These are
distinguished fromcell lines by the relative recencyof their estab-
lishment and, in some cases, a lack of indefinite proliferative
capacity, although the long-term culture of primary cells is
now possible in some systemswithout immortalization. Despite
the ease of establishing normal airway epithelial cell cultures,
pre-invasive [42] and invasive LUSC cells [43–46] are difficult
to culture by existing methods, perhaps due to the presence of
widespread CNAs [6,47]. Increasing the culture success rate is
hamperedbya lackof clarityaboutwhat tumour (or cellular) fea-
tures are selected for by in vitro culture conditions. Recently, 3D
patient-derived organoids (PDOs) have been established [48,49].
Generating pureNSCLCorganoid cultureswithout the presence
of contaminating normal airwayorganoids is a challenge but can
be partially resolved by selection forTP53-mutant cells using the
small-molecule Nutlin-3a [50].
2.2.3. Patient-derived xenograft (PDX) models

In patient-derived xenograft (PDX) models, patient tumour
tissueorCTCsare implantedor injected intoan immunocompro-
mised mouse host to achieve continued proliferation of tumour
cells. This is most frequently done at a subcutaneous site but
can also be orthotopic or injected into the circulation. PDX
models are close-to-patient and have a 30–40% success rate
[51]. Higher stage tumours engraft more readily in mice and



Table 2. A list of selected, commonly used NSCLC cell lines along with the driver mutations found in each. Oncogene driver information, TP53 status, sex and
ethnicity was derived from COSMIC (https://cancer.sanger.ac.uk/cell_lines) and Cellosaurus (https://web.expasy.org/cellosaurus). LUDLU-1 is described as per a
published report [31]. WT = wild type.

name cancer type tissue origin driver mutation TP53 status sex
predominant
ethnicity

A549 LUAD/carcinoma primary KRAS p.Gly12Ser (Hom)

STK11 p.Gln37Ter (Hom)

WT M Caucasian

NCI-H322 LUAD primary unknown p.Arg248Leu (Hom) M Caucasian

NCI-H358 LUAD primary KRAS p.Gly12Cys (Het) Loss (Hom) M Caucasian

NCI-H522 LUAD primary unknown p.Pro191fs*56 (Het

Sanger/Hom

Cellosaurus)

M Caucasian

NCI-H3255 LUAD primary EGFR p.Leu858Arg (Hom) c.560-1G>A (Hom) F Caucasian

HCC-4006 LUAD metastasis:

pleural

effusion

EGFR p.Leu747-Glu749del. WT M Caucasian

PC9 LUAD metastasis:

lymph node

EGFR amplified, EGFR

ex19del

p.Arg248Gln (Hom) M unknown

LUDLU-1 LUSC primary BRCA1, BRCA2 p.Arg248Trp (Hom) M Caucasian

NCI-H520 LUSC primary ATM p.Pro383Ala (Het)

CDKN2A p.Gly45fs*8

(Hom)

p.Trp146Ter (Hom) M Caucasian

NCI-H2170 LUSC primary unknown p.Arg158Gly (Hom) M Caucasian

SK-MES-1 LUSC metastasis:

pleural

effusion

unknown p.Glu298Ter (Hom) M Caucasian

NCI-H647 adenosquamous primary KRAS p.Gly13Asp (Hom) c.782+1G>T (Hom) M Caucasian

NCI-H1299 lung large cell

carcinoma

metastasis:

lymph node

NRAS p.Gln61Lys (Het) Loss (Hom) M Caucasian

ChaGo-K1 bronchogenic

carcinoma

metastatic site:

subcutaneous

ARID1A p.His684Asp (Het)

RB1 p.Glu837Lys (Hom)

p.Cys275Phe (Het) M Caucasian

NL20 human bronchial

epithelial cells

normal bronchus transformed; SV40, LargeT WT F unknown

royalsocietypublishing.org/journal/rsob
Open

Biol.11:200247

4

successful engraftment is a negative prognostic indicator in early
stage disease [52,53]. While most PDX models are established
subcutaneously for convenient tumour burden monitoring,
there is evidence that orthotopic [54] or renal capsule [55] trans-
plantation might substantially increase engraftment. Genome
editing technologies are also increasingly applicable to xeno-
grafts [56]. Nevertheless, the use of a mouse host is a limitation
in terms of the stromal, vascular and immune microenviron-
ments experienced by the tumour and, comparable to cell
cultures, thesemodels are susceptible to somedegree of genomic
divergence due to on-going evolution [37].

2.3. Model organism research

2.3.1. Genetically engineered mouse models

Most NSCLC model organism work has focussed on the
mouse as a result of the powerful genetic tools available for
tumour induction and lineage tracing. Genetically engineered
mouse models (GEMMs) are typically inbred mouse strains
that have been genetically manipulated to express oncogenic
alleles or delete tumour suppressor genes to generate auto-
chthonous tumours.

Since smoking-induced lung cancer has a high mutational
burden, it is advantageous to use reductionist GEMMs—
which allow experimental control over a small number of
genetic alterations—to establish which events drive cancer
and which are passenger mutations. Simplified genetic
models with alterations to a few typically strong oncogenes
or tumour suppressor genes are useful to dissect complex
pathological mechanisms and test putative therapies in con-
trolled conditions. The conditional mutagenesis systems
CRE-LOX and FLP-FRT allow temporal control of genetic
events within specific lung cell populations [57]. Still, complex
models containing five or more mutated alleles are costly and
still lack pre-cancer evolutionary context. While GEMMs have
traditionally taken a long time to derive, the emergence of
CRISPR–Cas9 genome editing increasingly allows faster deri-
vation [58]. Overall, GEMMs typically provide rapidly
developing lung cancer models that generate multiple small
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tumours in the lungs but, given that they lack the genomic
damage caused by tobacco smoking, they often do not capture
the mutational diversity of human tumours [59,60]. Incorpor-
ating additional mutagenesis, caused either by chemicals or
the expression of proteins known to cause mutations, such
as cytosine deaminases, might bring mouse models closer to
human tumour mutational burden. Importantly, the short
(approx. 2 year) lifespan of mice and differences in cell-intrin-
sic factors, such as in telomere biology [61], mean that GEMM
tumours are not subject to the same evolutionary histories as
human tumours. Nonetheless, the use of GEMMs has signifi-
cantly increased our understanding of NSCLC, both with
regards to disease progression and potential treatments.

Most NSCLC GEMMs result in adenocarcinoma and there
has been a particular focus on those caused by Krasmutations.
Multiple mutant alleles exist but the most widely used is Kras-
G12D. Adenocarcinomas can be produced by Kras-G12D
expression in AT2 cells expressing either Sftpc or Scgb1a1
(CCSP; CC10) [62]. Although Scgb1a1 is expressed in bronchio-
lar club cells in this model, they do not form invasive cancers
[62] unless Trp53 mutations are introduced [63,64]. Lineage
tracing in a Kras-G12 V model further showed that many
alveolar cells expressing the mutant allele do not divide [65],
suggesting heterogeneity among AT2 cells. Indeed, during
homeostasis, only a subpopulation of AT2 cells are Wnt
active stem cells within a fibroblastic niche [66,67] and Wnt
signalling has been implicated in the progression [68] of
Kras/Trp53 adenocarcinoma models [69]. Multiple other Kras
combinations have been generated, including those with acti-
vating PIK3CA mutations [70] or MYC overexpression [71].
Similarly, mouse models of targetable mutations have been
developed by expressing human EGFR [72], EML4-ALK
fusion kinase [73] or ROS1 fusion kinases [74,75].

LUSC GEMM development has been hindered by the rarity
of activating oncogenes, the lack of lung basal cell-specific Cre-
drivers and the absence of basal cells from airway epithelium
distal to the main bronchi in mouse (compared to humans,
where they are present throughout many airway generations).
Combining Sox2 overexpression with tumour suppressive Pten
and Cdkn2a mutations leads to LUSC-like tumours regardless
of whether the Cre-driver gene is expressed by basal, club or
AT2 cells [76]. Sox2 overexpression in mouse club cells leads to
the proximalization of the bronchiolar epithelium and
adenocarcinomas expressing the squamous marker TP63 even-
tually form [77]. Hybrid approaches using mouse genetics and
in vitro organoids have also allowed the development of tumori-
genic mouse organoids that overexpress Sox2 and harbour
deletions in the key LUSC tumour suppressor genes Trp53,
Cdkn2a and Pten [78]. Lkb1 loss, a rare event in human LUSC,
together with Sox2 overexpression lead to mouse LUSC [79]. In
LUAD, the addition of Lkb1 mutations to Kras-driven GEMMs
has confirmed that they modify histology, as dual mutants
give rise to LUAD, LUSC and mixed adenosquamous lesions
[80]. In established Kras-driven tumours, Lkb1 loss promotes
the transition to squamous histology [81] with redox balance
[82] and epigenetic mechanisms involving polycomb repressive
complex 2 (PRC2) [81] both implicated mechanistically in
LUSC formation.

2.3.2. Carcinogen-induced NSCLC

Exposure of rodents to particulate matter, whole tobacco
smoke or e-cigarette vapour produces physiologically
relevant changes in the lung epithelium [83,84] and acceler-
ates tumour development [85–87]. Cigarette smoke
condensate or pure chemical carcinogens induce lung cancers
that arise through relevant pre-invasive disease processes.
The most commonly used, urethane, generates predomi-
nantly Kras-driven LUAD which transitions through
adenoma precursor lesions [88]. Multiple carcinogen-driven
LUSC models are also available: benzo[a]pyrene causes squa-
mous bronchial lesions in hamsters [89]; repeated intra-
tracheal injection of 3-methylcholanthrene (MCA) in mice
causes metaplastic lesions throughout the bronchial tree
which progress to invasive and metastatic LUSC [90]; and
N-nitroso-tris-chloroethylurea (NTCU) produces a LUSC-
like lung cancer when applied to the back skin of mice [91–
93]. Susceptibility to chemical carcinogens varies by mouse
strain and correlates with the prevalence of spontaneous
tumour formation.
3. Cancer origins in ‘normal’ tissue
The use of clonal cell culture to expand single progenitor cells
has allowed whole-genome sequencing of histologically
normal airway epithelium [42], revealing the presence of
somatic mutations, including known cancer driver mutations.
As expected, the mutational burden increased with age and
was significantly higher in adults with a tobacco smoking his-
tory [42]. The detected cancer driver mutations were those
typical of LUSC, with TP53, NOTCH1 and FAT1 mutations
being the most frequent. Individual cells rarely contained mul-
tiple driver mutations but, unlike in LUSC tumours, copy
number alterations were uncommon [42]. It remains unclear
whether primary ‘normal’ airway epithelial cell culture
imposes selective pressures similar to those observed in estab-
lished cell lines [36,37]. Despite these concerns, primary airway
culturesmight facilitate studies on differences in cancer suscep-
tibility among the four recently identified subpopulations of
cultured normal airway basal epithelial cells [94].

Airway basal cells have also been immortalized, for
example by using overexpression of CDK4 and TERT [95],
and region-specific differences in airway biology are retained
in cell lines from different locations in the proximal–distal
axis of the bronchial tree [96]. To more closely resemble fully
differentiated airway epithelium, it is possible to direct basal
cell differentiation towards multiciliated and mucosecretory
cell fate in either air-liquid interface cultures [97] or as 3D ‘tra-
cheospheres’ [98]. More recent advances in organoid culture
enable expanding cultures of airway epithelial cells containing
all three major cell lineages as 3D organoids [48].

Unfortunately, in vitro studies of primary alveolar epi-
thelial cells—and therefore efforts to map mutations in the
normal alveolar epithelium—have been hindered by the
short time that it is possible to maintain proliferating AT2
progenitor cells in culture before they differentiate to non-
proliferative AT1-like cells [99]. Immortalized alveolar epi-
thelial cells have been developed [100] but the narrow
timeframe available for transduction with immortalization
factors means that, similar to primary alveolar cultures,
these cells more closely resemble AT1 cells. Use of Rho-associ-
ated protein kinase (ROCK) inhibitors during AT2 cell culture
derivation might enable AT2 cell-like phenotype preservation
for studies of step-wise carcinogenesis [99]. Similar to 2D cul-
tures, most reported alveolar organoid systems have not
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allowed serial passaging [67,101], limiting their utility for
cancer modelling. Recently, long-term culture methods for
human organoids containing AT2 cells that are capable of
AT1-like differentiation have been described [102,103], further
expanding the repertoire of models available.

Robust and scalable primary airway and alveolar culture
methodologies have the potential to improve our understand-
ing of the effect of specific somatic mutations on cellular
dynamics in human epithelia and are compatible with
CRISPR–Cas9-mediated gene editing approaches that might
allow temporal reconstruction of NSCLC molecular events, as
has been possible in studies of colorectal carcinogenesis [104].
 ob
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4. Modelling early tumorigenesis
Early detection of NSCLC is a priority for improving clinical
outcomes, particularly in cases where intervention could
occur before invasive disease occurs. Achieving this will
require a better understanding of pre-invasive cancer biology
but the required laboratory studies are currently challenging.
GEMMs typically introduce strong oncogenic and/or tumour
suppressor alterations in many cells simultaneously, thus lim-
iting the extent to which their progression mimics early
tumour evolution. Nevertheless, mouse models allow a
high degree of genetic control and provide a much greater
range of tumour microenvironmental cues than culture
systems. Primary or immortalized cell cultures from carci-
noma-in-situ or adenomatous lesions have not yet been
derived but progression to malignancy can be investigated
through the introduction of cancer mutations into immorta-
lized ‘normal’ basal cell lines [105]. This approach has
identified a subpopulation of basal epithelial cells with
enhanced motility [106] and has been used as an organotypic
model of dysplasia by introducing TP53 inactivation and
SOX2 overexpression [107]. It is highly likely that both
GEMMs and cell cultures will be invaluable tools for estab-
lishing the physiological order of events that drive early
oncogenesis and the dependencies of pre-malignant cells
above and beyond those of normal tissues.

Chemical carcinogen models are particularly relevant in
early tumorigenesis research because the tumours undergo
a histological transition similar to that seen in human
patients. In the urethane-induced LUAD model, the tumours
are also morphologically similar to spontaneous tumours in
aged mice, with a robust immune infiltrate organized in ter-
tiary lymphoid structures. This observation, together with the
fact that the growth pattern of LUAD tumours varies
between chemicals, suggests that carcinogens accelerate
physiologically relevant processes [108,109]. Consistent with
patient data [110], Kras mutations are identified as an early
event, Cdkn2a can be epigenetically downregulated in early
foci and later deleted in both adenomas and adenocarcino-
mas, while Trp53 mutations are found in adenocarcinomas
but not hyperplasias, supporting a role for Trp53 in invasion
[60]. However, it is noteworthy that Kras G12C mutations are
not found in either urethane- (Q61R/Q61 L) or nitrosomethy-
lurea-induced (NMU; G12D) [60] mouse tumours as these
carcinogens do not induce the requisite base substitution.

Squamous chemical carcinogen models also mimic
patient pre-cancerous lesions, albeit on an accelerated time
frame. In NTCU-treated mice, tracheal dysplasia precedes
proximalization of the bronchial epithelium and progression
to invasive LUSC [111]. In spite of the differences in cellular
composition between mouse and human airways [112], the
model recapitulates key aspects of LUSC natural history,
with KRT5-expressing lesions and apparent PI3 K signalling
[113]. RNA sequencing analysis suggests similarities in the
immune response of LUSC patients and NTCU-treated mice
[114], although full genomic characterization to compare
mouse to human lesions is not yet available and differences
emerge between mouse strains and sexes [115]. Despite
some systemic and local side effects, NTCU-treated mice
rarely develop other squamous cell carcinomas, such as of
the skin or oesophagus, and are suitable for chemoprevention
studies. Therefore, deeper characterization and comparison of
carcinogen-induced NSCLC models using modern genomic,
epigenomic and transcriptomic tools are warranted.
5. Drug response
Cell lines are extensively used forassayingdrug efficacyas clonal
genetic alterations are maintained and they are amenable to
high-throughput assays. There are concerns about genetic and
functional differences between different sublines of established
cancer cell lines, including A549 cells [37], that might result in
divergent responses in compound screening experiments [116].
The use of cell lines to predict the efficacy of treatment in relation
to particular tumour features, such as histology or particular
mutations, will probably require investigating a large number
of cell lines in order to generate robust data. Efforts such as the
CancerCell Line Encyclopaedia [117] that havedeeply character-
ized NSCLC cell lines enable the integration of genetic
characteristics with functional drug sensitivity assays (e.g.
those that can be interrogated via DepMap; https://depmap.
org/portal). Patient-derived models such as primary cell cul-
tures, PDOs and PDX models are expected to display greater
fidelity to the behaviour of the patient tumour as a result of
the recency of establishment. Indeed tumour explants [38] and
PDXmodels [118] can be predictive of the efficacy of chemother-
apy, while PCLSs have also been used to test novel therapeutics
[119]. Comparisons of pre-clinical model efficacy with phase II
clinical trial results support the predictive value of cell lines
and human xenografts but not mouse allografts in NSCLC
[120]. Overall, these studies show that selecting a range of
cell lines (or patient-derived models) to address specific
questions (e.g. within mutation status or histology) can improve
predictivity and argue the need for comparing multiple
well-characterized cell lines with other disease models.

Pre-clinical models are not only important tools for predict-
ing the efficacy of targeted therapies, but also for determining
mechanisms of resistance, for example to chemotherapies or tar-
geted therapies. That cell lines candevelop resistance to therapies
through the expansion of pre-existing subclones argues that they
preserve some tumour heterogeneity [121]. A concern is that
selection pressure upon cell line establishment or during expan-
sion might not fully reflect the primary cancer, thus preventing
the discovery of possible resistancemechanisms. These concerns
are also relevant inpatient-derivedmodels, reiterating the impor-
tance of using a wide range of models and maximizing
comparisons with patient datasets where these are available.

In addition to predicting cohort-level responsiveness to
therapy, it has also been proposed that patient-derived
models might predict drug efficacy for individuals. However,
for precision oncology to become a reality, the scalability and

https://depmap.org/portal
https://depmap.org/portal
https://depmap.org/portal
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time frame must fit the clinical need. Currently, these models
take several weeks or months to establish, but in one study
reductions in the time required to get clinically actionable
information from PDX models was achieved by implantation
of tumour pieces in the subrenal capsule followed by testing
of alternative chemotherapy regimens with results known
within eight weeks [55]. Although not yet applied to
NSCLC, patient-derived tumour cell clusters have been devel-
oped which allow short-term cell expansions from primary
tumours, including immune and fibroblast populations,
allowing the investigation of hundreds of therapeutic options
per patient in a manner that correlated with the clinical per-
formance [122]. Of course, a caveat of these strategies might
be tumour complexity with regards to intra-tumour hetero-
geneity and sampling bias. This concern might be minimized
by targeting truncal mutations and perhaps by using as
much as possible of the tumour material remaining after clini-
cal diagnostics to generate more representative models [123].
00247
6. Tumour microenvironment
An ideal model of the tumour microenvironment would
comprise patient-matched tumour, stromal and immune cell
populations with their native architecture preserved.
Tumour explant cultures and PCLSs attempt to achieve this
by maintaining living, surgically resected tumour tissue in
the laboratory. Although existing studies largely focus on
tumour cells in these systems, such cultures also offer an
opportunity to study tumour–stroma interactions and the
effects of immunomodulatory drugs. T cell populations can
be imaged within PCLSs [124] suggesting the opportunity
to study cellular localization, for example, the exclusion of
T cells from tumours [125], in a manner that is not possible
in other human in vitro systems. Nevertheless, the limited
timeframe of such experiments and the differential sensitivity
of different cell types to culture mean that mouse models and
reductionist human models recapitulating specific cellular
interactions remain the mainstay of tumour microenviron-
ment research in NSCLC.

6.1. Tumour–stromal interactions
Increasingly, we recognize the importance of cancer-associ-
ated fibroblasts (CAFs) as regulators of lung cancer growth,
immunogenicity and metastasis. CAFs are fibroblasts that
have been activated by a variety of signals in the tumour
microenvironment and single-cell RNA sequencing studies
suggest the heterogenous nature of lung CAFs [126].

Genetic and syngeneic mouse models feature authentic
stromal–epithelial interaction after tumour induction allow-
ing the study of the interplay between the tumour and
stroma. In xenotransplantation experiments, host–tumour
interactions can be limited by cell signalling incompatibilities
between species. A prominent example is stromal mouse hep-
atocyte growth factor (HGF), which cannot fully activate the
human MET receptor in epithelial cells [127], potentially lim-
iting the growth of HGF-dependent tumours. However,
human fibroblasts are readily expanded in cell culture on
plastic, allowing comparisons between healthy control,
matched adjacent lung and tumour-associated fibroblasts.
These can be introduced into cell lines, primary cell culture
or xenograft assays to determine phenotypic changes and
their effects on epithelial cells. Experiments to date support
the notion that (at least a subset of) CAFs act as a supportive
niche that maintains NSCLC cells in a de-differentiated state
[128–130]. Fully describing CAF subsets, the epigenetic stab-
ility of the CAF state and the extent to which targeting
CAFs can be therapeutically beneficial are active areas of
research [131].
6.2. Mechanical force
Advancements in microfluidic technologies have enabled the
development of NSCLC cancer-on-a-chip devices. Originally
these devices were designed as a ‘lung-on-a-chip’, combining
airway or alveolar epithelial cells with endothelial cells in dis-
tinct channels [132]. When the EGFR-mutant LUAD cell line
H1975 was seeded in this system among normal epithelial
cells, it grew faster among alveolar than airway epithelial
cells [17], consistent with its alveolar origin. Application of
mechanical force to mimic breathing led to reduced prolifer-
ation of the cancer cell line, which also became more resistant
to the EGFR inhibitor rociletinib [17], demonstrating the
potential for changes in cell behaviour upon incorporating
physiological parameters into cell culture experiments.
6.3. Tumour-immune interactions
In lung cancer immunology research, intact immune surveil-
lance is available in GEMMs as well as carcinogen-induced
and syngeneic mouse models. Since immune evasion occurs
early in LUSC pathogenesis [133,134], carcinogen-based
models might offer an opportunity for immunotherapy devel-
opment. Three main syngeneic models have been described:
Madison 109 (MAD109) was derived from a spontaneous
BALB/c mouse lung tumour in 1964 [135], the Lewis lung car-
cinoma (LLC) cell line was derived from a C57BL mouse in
1951 [136] and KLN-205 was derived from a DBA/2 mouse
treated with MCA in the 1970s [90,137]. These models produce
very rapidly growing tumours in the lung either following
direct implantation or as a result of metastases from subcu-
taneous xenografts. As discussed above, GEMMs are
frequently poorly immunogenic, presumably due to their
low mutational burden. Nevertheless, both syngeneic models
and GEMMs can be modified to present model antigens
such as ovalbumin in order to study antigen presentation
and recognition by transgenic T cells engineered with reactiv-
ity against ovalbumin-derived peptides [138,139]. More
recently, the inversion-induced joined neoantigen (NINJA)
system has been developed, which allows spatially and tem-
porally controlled expression of defined neoantigens in
mouse lung cancer cell lines, lung tissue and in GEMMs
[140]. Crucially the system avoids central tolerance and as
such will allow the investigation of endogenous T cells in
anti-tumour immunity [140].

Nevertheless, there are substantial differences between the
composition, protein production and function of the human
and mouse immune systems. Of particular relevance given
that neutrophils are the most abundant immune cell popu-
lation in the NSCLC tumour microenvironment [141],
human blood contains more neutrophils than lymphocytes,
whereas the mouse lymphocytes substantially outnumber neu-
trophils [142]. As such, a range of model systems now exist to
explore human immune cells in the context of NSCLC.
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Firstly, human immune cells can be introduced into
mouse models. In adoptive cell therapy experiments, injec-
tion of tumour-bearing mice with engineered CAR-T cells
has expanded studies beyond in vitro reactivity assays [143]
and could similarly be applied to tumour-infiltrating lym-
phocytes (TILs) [144], which have entered early phase
clinical trials for NSCLC. To investigate checkpoint inhibi-
tors, TILs within initial biopsies can be studied by co-
administering checkpoint inhibitors at the time of tumour
implantation and then sacrificing the mice at early time
points [145]. Although the long-term effects of therapy on
tumour burden cannot be established in this model, it is
nevertheless possible to study the phenotypes of both the
tumour and immune cell populations.

In xenotransplantation experiments, the required use of
severely immunocompromised mice with deficiencies in
both innate and adaptive immune responses has drawbacks
for studying pathogenesis and testing potential therapies,
particularly emerging immunomodulators. More complete
reconstitution of the human blood and immune cell lineages
has been achieved in ‘humanized’ mice where haematopoie-
tic stem cells (HSCs) are engrafted in NSG mice following
irradiation-induced clearance of host progenitor cells [146].
Humanized mice can live for more than 30 weeks post-
transplantation [147], which has allowed the subsequent
application of a human tumour model. The response to
anti-PD-1 therapy was dependent upon the presence of
human T cells and variable depending on the donor cells
used for reconstitution [148]. Unfortunately, it is rarely poss-
ible to isolate HSCs and tumour cells from the same
individual and, even in donor-matched experiments, the T
cells that develop in humanized mice are educated in the
mouse thymus and thus selected on mouse MHC, resulting
in an allogeneic response which limits studies of tumour-
specific antigen responses.

In studies of newly derived cell lines or PDOs, it is poss-
ible to establish simultaneous patient-matched cultures of
fibroblasts or immune cells to increase model complexity
and better represent the tumour microenvironment. For
example, T cell-tumour interactions have been investigated
in entirely in vitro systems with expansion of tumour-reactive
T cells from PBMCs and co-culture with autologous NSCLC
organoids [18].
7. Metastasis and relapse
NSCLCs commonly metastasize to the brain, bone, liver and
adrenal glands [149]. Compared to primary disease, tissue
acquisition in metastatic, progression and relapse settings are
more challenging; clinical diagnosis typically relies on imaging
andbiopsies, butmetastases are rarely surgically resected. Some
NSCLC cell lines have been derived from metastases but most
lung PDX models are primary tumour-derived even though
metastases have a high engraftment rate (figure 2) [150].

CTCs, which are more abundant in patients with late-stage
cancers [151], might help to overcome the primary disease bias
of PDX collections. Methods to derive CTC-derived explant
(CDX) models have been developed in SCLC [152] where
researchers faced similar sampling difficulties. CTCs are more
frequent in SCLC than in NSCLC patients, and while NSCLC
CDX models have been reported that mimic donor patient
treatment response [19,153], the success rate is considerably
lower than for SCLC using current methods. A marker-
independent methodology to isolate CTCs for engraftment is
especially important in NSCLC as the partial epithelial-to-
mesenchymal transition may result in loss of the epithelial
CTC capture and detection markers commonly used in some
CTC platforms. Short-term CTC cultures are emerging as
alternatives to study the biology of metastatic disease [154].
Another method has been to culture metastatic NSCLC cells
frommalignant pleural effusions before injection as xenografts
[155]. Lung cancer metastasis can also be comprehensively
characterized in autopsy settings but there are obvious
challenges in maintaining cell viability for the establishment
of pre-clinical models, with key parameters including the inter-
vals to both refrigeration and to sampling. Nevertheless, early
reports suggest that model derivation is possible through
rapid autopsies (ideally performed within 24 h post-mortem)
in both primary NSCLC and in the metastasis of cancers from
other organ sites to the lungs [156].

The injection of cancer cell lines into immunocompro-
mised mice is an extensively reported in vivo cancer
metastasis model [157]. These experiments are particularly
relevant in lung cancer because cells injected into the tail
vein circulate to the lungs, providing a model of metastasis
when cells become lodged in small alveolar capillaries. How-
ever, such experiments are limited by the drawbacks of prior



Table 3. Outstanding questions in the application of pre-clinical model systems to non-small-cell lung cancer.

questions regarding the use of pre-clinical models discussion points

why is there a low success rate in translatability of pre-clinical data to

clinical applications?

do we do enough orthogonal validation of pre-clinical model findings in

patient samples?

statistically significant differences observed in vitro/in vivo might not translate

into biological relevant differences in patients

pharmacokinetic differences between species

how does the fact that genetically complex GEMms traditionally lose

or gain all of their modifications at the same time point impact

their tumour evolution?

in human disease, subclonal modifications occur later during disease

progression

better models with temporal modifications are needed in order to model

acquired metastatic potential

we typically induce tumours in young mice, does age affect temporal

evolution?

how much does pre-clinical model choice skew research outcome? do we fully understand the extent to which drug responses in vitro are shaped

by cell culture artefacts (e.g. genetic drift, culture conditions)?

how would existing NSCLC therapies perform across an unbiased array of pre-

clinical models?

how should we weight evidence from different models where data are

contradictory?

are patient sex and ethnic background sufficiently explored as variables?

can we model copy number-driven tumours in non-human species? genome organization across species is not conserved so tumour copy number

evolution will be dissimilar

are the molecular mechanisms leading to drug resistance shared

between pre-clinical models and patients?

species differences and non-physiological conditions might lead to resistance

mechanisms not observed in the clinic

how should we use knowledge from big datasets to generate

hypotheses that can be investigated in pre-clinical models?

do existing training programs sufficiently emphasize computational skills?

are the clinical parameters investigated during drug screening in

agreement between species?

tumour burden monitoring and definitions of progression vary between models

and patients

species differences might exist in the side effects profiles of new therapies
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culture and additional issues caused by a second bottleneck
imposed by an introduction to the mouse circulation and
the fast-growing and homogeneous nature of the resulting
tumours. Brain metastases can be initiated through intracra-
nial or intracardiac delivery of cells in mice and more
advanced models—in which human brain metastasis-initiat-
ing cells are injected via the intrathoracic route, reform lung
tumours and subsequently re-seed brain metastases [158]—
have focussed on the earliest steps of brain metastatic coloni-
zation with the rationale that future therapies might prevent
the seeding of metastases before they form.

Neither Kras G12D- or Egfr L858R-driven LUAD GEMMs
generate robust spontaneousmetastasis [59], although the intro-
duction of Trp53 loss into the Kras G12D model is able to
generate metastatic lesions [69,159,160]. It was recently shown
that mice with additional E-Cadherin loss suffer an increased
incidence of metastasis to the chest wall, lymph nodes, liver
and kidney [161]. The development of new barcoding technol-
ogies, such as high-throughput barcode sequencing (Tuba-seq)
[162,163], coupled with CRISPR–Cas9-mediated gene editing,
will facilitate studies to determine the effects of other additional
mutations on tumour evolution and to identify pro-metastatic
factors [164].
It is noteworthy that the Kras G12D-driven GEMM also
releases tumour-derived cell-free DNA (cfDNA) into circula-
tion [165] which might provide a tractable model to study
mechanistic questions about cfDNA release as liquid biopsies
move towards clinical application in the early detection and
relapse settings. Recently, zebrafish have emerged as a
powerful alternative to mouse metastasis and drug sensitivity
models as they require less patient material, are more rapidly
established and their near transparency as embryos and
larvae facilitates imaging studies [166]. However, concerns
regarding species differences increase with evolutionary
distance.
8. Future directions
Despite extensive progress in established and new NSCLC
pre-clinical model systems, there remain a number of questions
for the field to reflect upon (table 3). Pre-clinical models are
unevenly distributed across the disease course, with an over-
whelming majority representative of primary NSCLC and
relatively few available in the pre-invasive, metastatic, pro-
gression or relapse settings. Efforts to prioritize early
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detection in lung cancer are likely to lead to increased diagno-
sis of pre-invasive and early stage disease, making new and
improved experimental systems to model and predict the
trajectory of pre-cancerous lesions invaluable. An expanding
knowledge of the mutations and copy number events that
are tolerated and positively selected within physio-
logically functional epithelium will also help to guide
more sophisticated models of early NSCLC.

In addition to deriving new models, there are opportu-
nities to improve the efficiency and reproducibility of
existing approaches. Creating and distributing cell lines,
GEMMs and xenograft models that generate reproducible
results is a priority. In doing so, effort should be made to
ensure that patient-derived models are fromwell-characterized
patients with in-depth molecular and genetic characterization
and high-quality control standards. For example, human epi-
thelial cell markers should be monitored in PDX models as
xenografts can form human lymphomas or mouse sarcomas
[167], while primary cell cultures should be monitored for
contamination with non-tumour stromal or epithelial cells.

Care should also be taken to address biases in our devel-
opment of patient-derived models relating to patient sex,
ethnicity and cancer genomics. Most pre-clinical models in
Western countries are derived from male Caucasian or Hispa-
nic patients, with few from patients of other ethnicities, and
they typically represent smoking-associated NSCLC. For
example, patients of East Asian descent constitute only 2%
of NSCLC cell lines in US-based collections [33], meaning
that never-smoker, EGFR-driven NSCLC is underrepre-
sented. Effective international efforts to share pre-clinical
models are required to help to address these issues and
allow the collection of sufficient numbers of well-described
models for more diverse patient groups and those with rare
mutations.

Finally, the design of NSCLC animal experiments might
also benefit from mimicking treatment regimens and study
designs that are used in clinical practice. Commonly used
endpoints in clinical studies—such as overall survival, pro-
gression-free survival, time to progression and overall
response rate—map poorly to studies in mice. This is particu-
larly true when using subcutaneous tumour/cell lines
xenografts whose growth have limited systemic impact.
GEMMs might be amenable to more comparable dosing,
dose regimens and sequential therapeutics [168]. Mouse
studies might also more closely mimic RECIST guidelines
in which a partial response is defined as a 30% loss and pro-
gressive disease as a 20% increase in the sum of lesion
diameters against baseline [169]. The study of progression,
metastasis and relapse is also complicated by the divergent
approaches taken in mouse and human studies. Surgical
resection of primary tumours in rodent models is challen-
ging, particularly due to multifocal tumour growth. Indeed,
even when this is less problematic, such as in breast cancer
models [170], the long and variable latency of metastatic
lesion appearance creates challenges for timing therapeutic
interventions in most current mouse models.
9. Conclusion
In the past several decades, our understanding of NSCLC has
moved from histopathological depictions, through an increased
comprehension of molecular and genetic causes towards
understanding the effects of the tumour microenvironment
and the molecular dynamics of tumour evolution. Pre-clinical
lung cancer research continues to become more multidisciplin-
arywith contributions from the fields of developmental biology,
stem cell biology and immunology helping to decipher inter-
actions between tumour cells and their environment. In
addition, it is vital that new clinical knowledge is fed back to
improve pre-clinical models. While no models are (or are ever
likely to be) able to fully recapitulate the phenotypes and
responses of patient tumours, the application of multiple
approaches with an awareness of their limitations is driving
progress in the field of NSCLC.
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