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Cryo-EM has emerged as a key method to visualize and 
model biologically important macromolecules and cellular 
machines. Researchers can now routinely achieve resolutions 

better than 4 Å, yielding new mechanistic insights into cellular pro-
cesses and providing support for drug discovery1.

The recent explosion of cryo-EM structures raises important 
questions. What are the limits of interpretability given the quality of 
maps and resulting models? How can model accuracy and reliabil-
ity be quantified under the simultaneous constraints of map density 
and chemical rules?

The EMDataResource Project (EMDR) (emdataresource.org) 
aims to derive validation methods and standards for cryo-EM 
structures through community consensus2. EMDR has convened 
an EM Validation Task Force3 analogous to those for X-ray crystal-
lography4 and NMR5 and has sponsored challenges, workshops and 
conferences to engage cryo-EM experts, modelers and end-users2,6. 
During this period, cryo-EM has evolved rapidly (Fig. 1).

This paper describes outcomes of EMDR’s most recent chal-
lenge, the 2019 Model ‘Metrics’ Challenge. Map targets representing 

the state-of-the-art in cryo-EM single particle reconstruction were 
selected in the near-atomic resolution regime (1.8–3.1 Å) with a 
twist: three form a resolution series from the same specimen/imag-
ing experiment. Careful evaluation of submitted models by par-
ticipating teams leads us to several specific recommendations for 
validating near-atomic cryo-EM structures, directed toward both 
individual researchers and the Protein Data Bank (PDB) structure 
data archive7.

Results
Challenge design. Challenge targets (Fig. 2) consisted of a 
three-map human heavy-chain apoferritin (APOF) resolution series 
(a 500-kDa octahedral complex of 24 ɑ-helix-rich subunits), with 
maps differing only in the number of particles used in reconstruc-
tion8, plus a single map of horse liver alcohol dehydrogenase (ADH) 
(an 80-kDa ɑ/β homodimer with NAD and Zn ligands)9.

A key criterion for target selection was availability of high-quality, 
experimentally determined model coordinates to serve as references 
(Fig. 3a). A 1.5 Å X-ray structure10 served as the APOF reference 
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This paper describes outcomes of the 2019 Cryo-EM Model Challenge. The goals were to (1) assess the quality of models that 
can be produced from cryogenic electron microscopy (cryo-EM) maps using current modeling software, (2) evaluate repro-
ducibility of modeling results from different software developers and users and (3) compare performance of current metrics 
used for model evaluation, particularly Fit-to-Map metrics, with focus on near-atomic resolution. Our findings demonstrate the 
relatively high accuracy and reproducibility of cryo-EM models derived by 13 participating teams from four benchmark maps, 
including three forming a resolution series (1.8 to 3.1 Å). The results permit specific recommendations to be made about vali-
dating near-atomic cryo-EM structures both in the context of individual experiments and structure data archives such as the 
Protein Data Bank. We recommend the adoption of multiple scoring parameters to provide full and objective annotation and 
assessment of the model, reflective of the observed cryo-EM map density.
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since no cryo-EM model was available. The X-ray model provides 
an excellent although not a fully optimized fit to each map, owing 
to method/sample differences. For ADH, the structure deposited by 
the original cryo-EM study authors served as the reference9.

Thirteen teams from the USA and Europe submitted 63 models 
in total, using whatever modeling software they preferred, yielding 
15–17 submissions per target (Fig. 3b and Table 1). Most (51) were 
created ab initio, sometimes supported by additional manual steps, 
while others (12) were optimizations of publicly available models. 
The estimated human effort per model was 7 h on average, with a 
wide range (0–80 h).

Submitted models were evaluated as in the previ-
ous challenge11 with multiple metrics in each of four tracks: 
Fit-to-Map, Coordinates-only, Comparison-to-Reference and 
Comparison-among-Models (Fig. 3c). The metrics include many in 
common use as well as several recently introduced.

Metrics to evaluate global Fit-to-Map included Map-Model 
Fourier shell correlation (FSC)12, FSC average13, Atom Inclusion14, 
EMRinger15, density-based correlation scores from TEMPy16–18, 
Phenix19 and the recently introduced Q-score to assess atom 
resolvability8.

Metrics to evaluate overall Coordinates-only quality included 
Clashscore, Rotamer outliers and Ramachandran outliers from 
MolProbity20, as well as standard geometry measures (for example, 
bond, chirality, planarity) from Phenix21. PDB currently uses all 
of these validation measures based on community recommenda-
tions3–5. New to this challenge round was CaBLAM, which evaluates 
protein backbone conformation using virtual dihedral angles22.

Metrics assessing similarity of model to reference included 
Global Distance Test23, Local Difference Distance Test24, CaRMSD25 
and Contact Area Difference26. Davis-QA was used to measure 
similarity among submitted models27. These measures are widely 
used in critical assessment of protein structure prediction (CASP) 
competitions27.

Several metrics were also evaluated per residue. These were 
Fit-to-Map: EMRinger15, Q-score8, Atom Inclusion14, SMOC18 and 
CCbox19; and for Coordinates-only: Clashes, Ramachandran outli-
ers20 and CaBLAM22.

Evaluated metrics are tabulated with brief definitions in Table 2 
and extended descriptions are provided in Methods.

An evaluation system website with interactive tables, plots and 
tools (Fig. 3d) was established to organize and enable analysis of the 
challenge results and make the results accessible to all participants 
(model-compare.emdataresource.org).

Overall and local quality of models. Most submitted models 
scored well, landing in ‘acceptable’ regions in each of the evalua-
tion tracks, and in many cases performing better than the associated 
reference structure that served as a control (Supplementary Fig. 1). 
Teams that submitted ab initio models reported that additional 
manual adjustment was beneficial, particularly for the two lower 
resolution targets.

Evaluation exposed four fairly frequent issues: mis-assignment of 
peptide-bond geometry, misorientation of peptides, local sequence 
misalignment and failure to model associated ligands. Two-thirds of 
submitted models had one or more peptide-bond geometry errors 
(Extended Data Fig. 1).

At resolutions near 3 Å or in weak local density, the carbonyl O 
protrusion disappears into the tube of backbone density (Fig. 2), 
and trans peptide bonds are more readily modeled in the wrong ori-
entation. If peptide torsion ϕ (C,N,Cα,C), ψ (N,Cα,C,N) values are 
explicitly refined, adjacent sidechains can be pushed further in the 
wrong direction. Such cases are not flagged as Ramachandran outli-
ers but they are recognized by CaBLAM28 (Extended Data Fig. 2).

Sequence misthreadings misplace residues over very large dis-
tances. The misalignment can be recognized by local Fit-to-Map 
criteria, with ends flagged by CaBLAM, bad geometry, cis-nonPro 
peptides and clashes (Extended Data Fig. 3).

ADH contains tightly bound ligands: an NADH cofactor as well 
as two zinc ions per subunit, with one zinc in the active site and the 
other in a spatially separate site coordinated by four cysteine residues9. 
Models lacking these ligands had considerable local modeling errors, 
sometimes even mistracing the backbone (Extended Data Fig. 4).

Although there was evidence for ordered water in higher- 
resolution APOF maps8, only two groups elected to model water. 
Submissions were also split roughly 50/50 for (1) inclusion of pre-
dicted H-atom positions and (2) refinement of isotropic B factors. 
Although near-atomic cryo-EM maps do not have a sufficient level 
of detail to directly identify H-atom positions, inclusion of predicted 
positions can still be useful for identifying steric properties such as 
H-bonds or clashes20. Where provided, refined B factors modestly 
improved Fit-to-Map scores (Extended Data Fig. 5).

Evaluating metrics: Fit-to-Map. Score distributions of Fit-to-Map 
metrics (Table 2) were systematically compared (Fig. 4a–d). For 
APOF, single subunits were evaluated against masked subunit maps, 
whereas for ADH, dimeric models were evaluated against the full 
sharpened cryo-EM map (Fig. 2d). To control for the varied impact 
of H-atom inclusion or isotropic B-factor refinement on different 
metrics, all evaluated scores were produced with H atoms removed 
and all B factors were set to zero.

Score distributions were first evaluated for all 63 models across 
all four challenge targets. A wide diversity in performance was 
observed, with poor correlations between most metrics (Fig. 4a). 
This means that a model that scored well relative to all 62 others 
using one metric may have a much poorer ranking using another. 
Hierarchical analysis identified three distinct clusters of similarly 
performing metrics (Fig. 4a, labels c1–c3).

The unexpected sparse correlations and clustering can be under-
stood by considering per-target score distribution ranges, which 
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Fig. 1 | Single particle cryo-EM models in the Protein Data Bank. a, Plot of 
reported resolution versus PDB release year. Models derived from single 
particle cryo-EM maps have increased dramatically since the ‘resolution 
revolution’ circa 2014. Higher-resolution structures (blue bars) are also 
trending upward. b, EMDataResource challenge activities timeline.

Nature Methods | VOL 18 | February 2021 | 156–164 | www.nature.com/naturemethods 157

http://www.nature.com/naturemethods


Analysis Nature Methods

differ substantially from each other. The three clusters identify sets 
of metrics that share similar trends (Fig. 4c).

Cluster 1 metrics (Fig. 4c, top row) share the trend of decreas-
ing score values with increasing map resolution. The cluster consists 
of six real-space correlation measures, three from TEMPy16–18 and 
three from Phenix19. Each evaluates a model’s fit in a similar way: 
by correlating calculated model-map density with experimental 
map density. In most cases (five out of six), correlation is performed 
after model-based masking of the experimental map. This observed 
trend is contrary to the expectation that a Fit-to-Map score should 
increase as resolution improves. The trend arises at least in part 
because map resolution is an explicit input parameter for this class 
of metrics. For a fixed map/model pair, changing the input resolu-
tion value will change the score. As map resolution increases, the 
level of detail that a model-map must faithfully replicate to achieve 
a high correlation score must also increase.

Cluster 2 metrics (Fig. 4c, middle row) share the inverse trend: 
score values improve with increasing map target resolution. Cluster 
2 metrics consist of Phenix Map-Model FSC = 0.5 (ref. 19), Q-score8 
and EMRinger15. The observed trend is expected: by definition, 
each metric assesses a model’s fit to the experimental map in a man-
ner that is intrinsically sensitive to map resolution. In contrast with 
cluster 1, cluster 2 metrics do not require map resolution to be sup-
plied as an input parameter.

Cluster 3 metrics (Fig. 4c, bottom row) share a different overall 
trend: score values are substantially lower for ADH relative to APOF 
map targets. These measures include three unmasked correlation 
functions from TEMPy16–18, Refmac FSCavg13, Electron Microscopy 
Data Bank (EMDB) Atom Inclusion14 and TEMPy ENV16. All of these 
measures consider the full experimental map without masking, so can 
be sensitive to background noise, which is substantial in the unmasked 
ADH map and minimal in the masked APOF maps (Fig. 2d).

Score distributions were also evaluated for how similarly they 
performed per target, and in this case most metrics were strongly 

correlated with each other (Fig. 4b). This means that for any single 
target, a model that scored well relative to all others using one met-
ric also fared well using nearly every other metric. This situation 
is illustrated by comparing scores for two different metrics, CCbox 
from cluster 1 and Q-score from cluster 2 (Fig. 4d). The plot’s four 
diagonal lines demonstrate that the scores are tightly correlated 
with each other within each map target. But, as described above, the 
two metrics have different sensitivities to map-specific factors. It is 
these different sensitivities that give rise to the separated, parallel 
spacings of the four diagonal lines, indicating score ranges on dif-
ferent relative scales.

One Fit-to-Map metric showed poor per-target correlation with 
all others: TEMPy ENV (Fig. 4b). ENV evaluates atom positions 
relative to a density threshold that is based on sample molecular 
weight. At near-atomic resolution this threshold is overly generous. 
TEMPy Mutual Information and EMRinger also diverged from oth-
ers (Fig. 4b). Mutual information scores reflected strong influence 
of ADH background noise. In contrast, masked MI_OV correlated 
well with other measures. EMRinger yielded distinct distributions 
owing to its focus on backbone placement15.

Collectively these results reveal that multiple factors such as 
using experimental map resolution as an input parameter, presence 
of background noise and density threshold selection can strongly 
affect Fit-to-Map score values, depending on the chosen met-
ric. These are not desirable features for archive-wide validation of 
deposited cryo-EM structures.

Evaluating metrics: Coordinates-only and versus Reference. 
Metrics to assess model quality based on Coordinates-only (Table 2), as 
well as Comparison-to-Reference and Comparison-among-Models 
(Table 2) were also evaluated and compared (Fig. 4e,f).

Most Coordinates-only metrics were poorly correlated with 
each other (Fig. 4e), with the exception of bond, bond angle and 
chirality root mean squared deviation (r.m.s.d.), which form a 
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Fit-to-Map analysis (APOF targets, masked single subunits; ADH, unmasked sharpened map). The molecular boundary is shown in red at the EMDB 
recommended contour level, background noise is represented in gray at one-third of the EMDB recommended contour level and the full map extent is 
indicated by the black outline.

Nature Methods | VOL 18 | February 2021 | 156–164 | www.nature.com/naturemethods158

http://www.ebi.ac.uk/PDBe/entry/EMDB/20026
http://www.ebi.ac.uk/PDBe/entry/EMDB/20027
http://www.ebi.ac.uk/PDBe/entry/EMDB/20028
http://www.ebi.ac.uk/PDBe/entry/EMDB/0406
http://www.nature.com/naturemethods


AnalysisNature Methods

small cluster. Ramachandran outliers, widely used to validate 
protein backbone conformation, were poorly correlated with all 
other Coordinates-only measures. More than half (33) of submit-
ted models had zero Ramachandran outliers, while only four had 
zero CaBLAM conformation outliers. Ramachandran statistics are 
increasingly used as restraints29,30, which reduces their use as a vali-
dation metric. These results support the concept of CaBLAM as an 
informative score for validating backbone conformation22.

CaBLAM metrics, while orthogonal to other Coordinates-only 
measures, were unexpectedly found to perform very simi-
larly to Comparison-to-Reference metrics. The similarity likely 
arises because the worst modeling errors in this challenge were 
sequence and backbone conformation mis-assignments. These 
errors were equally flagged by CaBLAM, which compares mod-
els against statistics from high-quality PDB structures, and the 
Comparison-to-Reference metrics, which compare models against a 
high-quality reference. To a lesser extent, modeling errors were also 
flagged by Fit-to-Map metrics (Fig. 4f). Overall, Coordinates-only 
metrics were poorly correlated with Fit-to-Map metrics (Fig. 4f and 
Extended Data Fig. 6a).

Protein sidechain accuracy is specifically assessed by Rotamer 
and GDC-SC, while EMRinger, Q-score, CAD, hydrogen bonds 
in residue pairs (HBPR > 6), GDC and LDDT metrics include 
sidechain atoms. For these eight measures, Rotamer was com-
pletely orthogonal, Q-score was modestly correlated with the 
Comparison-to-Reference metrics, and EMRinger, which measures 
sidechain fit as a function of main chain conformation, was largely 

independent (Fig. 4f). These results suggest a need for multiple 
metrics (for example, Q-score, EMRinger, Rotamer) to assess differ-
ent aspects of sidechain quality.

Evaluating metrics: local scoring. Several residue-level scores were 
calculated in addition to overall scores. Five Fit-to-Map metrics con-
sidered masked density for both map and model around the evalu-
ated residue (CCbox19, SMOC18), density profiles at nonhydrogen 
atom positions (Q-score8), density profiles of nonbranched residue 
Cɣ-atom ring paths (EMRinger15) or density values at non-H-atom 
positions relative to a chosen threshold (Atom Inclusion14). In two 
of these five, residue-level scores were obtained as sliding-window 
averages over multiple contiguous residues (SMOC, nine residues; 
EMRinger, 21 residues).

Residue-level correlation analyses similar to those described 
above (not shown) indicate that local Fit-to-Map scores diverged 
more than their corresponding global scores. Residue-level scor-
ing was most similar across evaluated metrics for high resolu-
tion maps. This observation suggests that the choice of method 
for scoring residue-level fit becomes less critical at higher resolu-
tion, where maps tend to have stronger density/contrast around  
atom positions.

A case study of a local modeling error (Extended Data Fig. 3) 
showed that Atom Inclusion14, CCbox19 and Q-score8 produced 
substantially worse scores within a four-residue ɑ-helical misthread 
relative to correctly assigned flanking residues. In contrast, the 
sliding-window-based metrics were largely insensitive (a new 
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TEMPy version offers single residue (SMOCd) and adjustable win-
dow analysis (SMOCf)31). At near-atomic resolution, single residue 
Fit-to-Map evaluation methods are likely to be more useful.

Residue-level Coordinates-only, Comparison-to-Reference and 
Comparison-among-Models metrics (not shown) were also evalu-
ated for the same modeling error. The MolProbity server20,22 flagged 
the problematic four-residue misthread via CaBLAM, cis-Peptide, 
Clashscore, bond and angle scores, but all Ramachandran scores 
were either favored or allowed. The Comparison-to-Reference 
LDDT and LGA local scores and the Davis-QA model consensus 
score also strongly flagged this error. The example demonstrates 
the value of combining multiple orthogonal measures to identify 
geometry issues, and further highlights the value of CaBLAM as an 
orthogonal measure for backbone conformation.

Group performance. Group performance was examined by model-
ing category and target by combining Z-scores from metrics deter-
mined to be meaningful in the analyses described above (Methods 
and Extended Data Fig. 6). A wide variety of map density features 
and algorithms were used to produce a model, and most were 
successful yet allowing a few mistakes, often in different places 
(Extended Data Figs. 1–4). For practitioners, it might be beneficial 
to combine models from several ab initio methods for subsequent 
refinement.

Discussion
This third EMDR Model Challenge has demonstrated that cryo-EM 
maps with a resolution ≤3 Å and from samples with limited confor-
mational flexibility have excellent information content, and auto-
mated methods are able to generate fairly complete models from 
such maps, needing only small amounts of manual intervention.

Inclusion of maps in a resolution series enabled controlled evalu-
ation of metrics by resolution, with a completely different map pro-
viding a useful additional control. These target selections enabled 
observation of important trends that otherwise could have been 
missed. In a recent evaluation of predicted models in the CASP13 
competition against several roughly 3 Å cryo-EM maps, TEMPy 
and Phenix Fit-to-Map correlation measures performed very simi-
larly31. In this challenge, because the chosen targets covered a wider 
resolution range and had more variability in background noise, the 
same measures were found to have distinctive, map feature-sensitive 
performance profiles.

Most submitted models were overall either equivalent to or bet-
ter than their reference model. This achievement reflects significant 
advances in the development of modeling tools relative to the state 
presented a decade ago in our first model challenge2. However, 
several factors beyond atom positions that become important for 
accurate modeling at near-atomic resolution were not uniformly 
addressed; only half included refinement of atomic displacement 
factors (B factors) and a minority attempted to fit water or bound 
ligands.

Fit-to-Map measures were found to be sensitive to different 
physical properties of the map, including experimental map resolu-
tion and background noise level, as well as input parameters such 
as density threshold. Coordinates-only measures were found to 
be largely orthogonal to each other and also largely orthogonal to 
Fit-to-Map measures, while Comparison-to-Reference measures 
were generally well correlated with each other.

The cryo-EM modeling community as represented by the chal-
lenge participants have introduced a number of metrics to evaluate 
models with sound biophysical basis. Based on our careful analyses 
of these metrics and their relationships, we make four recommen-

Table 1 | Participating modeling teams

Team IDa, name Team members No. of submitted 
models

Effort type(s) Software

10 Yu X. Yu 4 ab initio+manual Phenix21, Buccaneer37, Chimera38, Coot29, 
Pymol

25 Cdmd M. Igaev, A. Vaiana, H. Grubmüller 4 optimization automated CDMD39

27 Kumar D. Kumar 1 ab initio+manual Phenix, Rosetta40, Buccaneer, ARP/
wARP41, Coot

28 Ccpem S. W. Hoh, K. Cowtan, A. P. 
Joseph, C. Palmer, M. Winn, 
T. Burnley, M. Olek, P. Bond, E. 
Dodson

4 ab initio+manual CCPEM42, Refmac13, Buccaneer, Coot, 
TEMPy16–18

35 Phenix P. Afonine, T. Terwilliger, L.-W. 
Hung

4 ab initio+manual Phenix, Coot

38 Fzjuelich G. Schroeder, L. Schaefer 3 optimization automated Phenix, Chimera, DireX43, MDFF44, CNS, 
Gromacs

41 Arpwarp G. Chojnowski 8 ab initio automated, ab 
initio+manual

Refmac, ARP/wARP, Coot

54 Kihara D. Kihara, G. Terashi 8 ab initio+manual Rosetta, Mainmast45, MDFF, Chimera

60 Deeptracer L. Wang, D. Si, R. Cao, J. Cheng, S. 
A. Moritz, J. Pfab, T. Wu, J. Hou

10 ab initio automated, ab 
initio+manual

Cascaded-CNN46, Chimera

73 Singharoy M. Shekhar, G. Terashi, S. Mittal, 
D. Sarkar, D. Kihara, K. Dill, A. 
Perez, A. Singharoy

5 ab initio+manual, optimization 
automated

reMDFF47, MELD48, VMD, Chimera, 
Mainmast

82 Rosetta F. DiMaio, D. Farrell 8 ab initio automated, ab 
initio+manual

Rosetta, Chimera

90 Mbaker M. Baker 2 ab initio+manual Pathwalker49, Phenix, Chimera, Coot

91 Chiu G. Pintilie, W. Chiu 2 optimization+manual Phenix, Chimera, Coot
aEach team was assigned a random two-digit ID for blinded identification.
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Table 2 | Evaluated metrics

Metric class Package metric definition

Fit-to-Map

Correlation Coefficient, 
all voxels

Phenix CCbox full grid map versus model-map density correlation coefficient19

TEMPy CCC full grid map versus model-map density correlation coefficient17

Correlation Coefficient, 
selected voxels

Phenix CCmask map versus model-map density, only modeled regions19

Phenix CCpeaks map versus model-map density, only high-density map and model regions19

TEMPy CCC_OV map versus model-map density, overlapping map and model regions18

TEMPy SMOC Segment Manders’ Overlap, map versus model-map density, only modeled regions18

Correlation Coefficient, 
other density function

TEMPy LAP map versus model-map Laplacian filtered density (partial second derivative)16

TEMPy Mutual Information (MI) map versus model-map Mutual Information entropy-based function16

TEMPy MI_OV map versus model-map Mutual Information, only modeled regions18

Correlation Coefficient, 
atom positions

Chimera/MAPQ Q-score map density at each modeled atom versus reference Gaussian density function8

FSC Phenix FSC05 Resolution (distance) of Map-Model FSC curve read at point FSC = 0.5 (ref. 19)
CCPEM/Refmac FSCavg FSC curve area integrated to map resolution limit13,42

Atom Inclusion EMDB/VisualAnalysis AI all Atom Inclusion, percentage of atoms inside depositor-provided density threshold14

TEMPy ENV Atom Inclusion in envelope corresponding to sample molecular weight; penalizes unmodeled regions16

Sidechain Density Phenix EMRinger evaluates backbone by sampling map density around Cɣ-atom ring paths for nonbranched residues15

Coordinates-only

Configuration Phenix Bond r.m.s.d. of bond lengths21

Phenix Angle r.m.s.d. of bond angles21

Phenix Chiral r.m.s.d. of chiral centers21

Phenix Planar r.m.s.d. of planar group planarity21

Phenix Dihedral r.m.s.d. of dihedral angles21

Clashes MolProbity Clashscore Number of steric overlaps ≥0.4 Å per 1,000 atoms20

Conformation MolProbity Rotamer sidechain conformation outliers20

MolProbity Rama Ramachandran ɸ,ψ main chain conformation outliers20

MolProbity CaBLAM outliers CO and Cɑ-based virtual dihedrals22

MolProbity Calpha outliers Cɑ-based virtual dihedrals and Cɑ virtual bond angle22

Versus Reference Model

Atom Superposition Local Global Alignment (LGA) GDT-TS Global Distance Test Total Score, average percentage of model Cɑ that superimpose 
with reference Cɑ, multiple distance cutoffs23

LGA GDC Global Distance Calculation, average percentage of all model atoms that superimpose with reference, multiple 
distance cutoffs23

LGA GDC-SC Global Distance Calculation for sidechain atoms only23

OpenStructure/QS CaRMSD r.m.s.d. of Cɑ atoms25

Interatomic Distances LDDT LDDT Local Difference Distance Test, superposition-free comparison of all-atom distance maps between model and 
reference24

Contact Area CAD CAD Contact Area Difference, superposition-free measure of differences in interatom contacts26

HBPLUS50 HBPR > 6, hydrogen bond precision, nonlocal. fraction of correctly placed hydrogen bonds in residue pairs with >6 
separation in sequence

Comparison among models

Atom Superposition, 
Multiple

DAVIS-QA average of pairwise LGA GDT-TS scores among submitted models27

Fig. 4 | Evaluation of metrics. Model metrics (Table 2) were compared with each other to assess how similarly they performed in scoring the challenge 
models. a–d, Fit-to-Map metrics analyses. a, Pairwise correlations of scores for all models across all map targets (n = 63). b, Average correlation of scores 
per target (average over four correlation coefficients, one for each map target with T1, n = 16; T2, n = 15; T3, n = 15; T4, n = 17). Correlation-based metrics are 
identified by bold labels. In a, table order is based on a hierarchical cluster analysis (Methods). Three red-outlined boxes along the table diagonal correspond 
to identified clusters (no. c1–c3). For ease of comparison, order in b is identical to a. c, Representative score distributions are plotted by map target, ordered 
by map target resolution (see legend at bottom; T1, n = 16; T2, n = 15; T4, n = 17; T3, n = 15). Each row represents one of the three clusters defined in (a). Each 
score distribution is represented in box-and-whisker format (left) along with points for each individual score (right). Lower boxes represent Q1–Q2 (25th–
50th percentile, in target color as shown in legend); upper boxes represent Q2–Q3 (25th–75th percentile, dark gray). Boxes do not appear when quartile 
limits are identical. Whiskers span 10th to 90th percentile. To improve visualization of closely clustered scores, individual scores (y values) are plotted against 
slightly dithered x values. d, Scores for one representative pair of metrics are plotted against each other (CCbox from cluster 1 and Q-score from Cluster 2). 
Diagonal lines represent linear fits by map target. e, Coordinates-only metrics comparison. f, Fit-to-Map, Coordinates-only and Comparison-to-Reference 
metrics comparison. Correlation levels in a,b,e,f are indicated by shading (see legend at top). See the Methods for additional details.
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dations regarding validation practices for cryo-EM models of pro-
teins determined at near-atomic resolution as studied here between 
3.1 and 1.8 Å, a rising trend for cryo-EM (Fig. 1a).

Recommendation 1. For researchers optimizing a model against 
a single map, nearly any of the evaluated global Fit-to-Map metrics 
(Table 2) can be used to evaluate progress because they are all largely 

equivalent in performance. The exception is TEMPy, ENV is more 
appropriate at lower resolutions (>4 Å).

Recommendation 2. To flag issues with local (per residue) 
Fit-to-Map, metrics that evaluate single residues are more suitable 
than those using sliding-window averages over multiple residues 
(Evaluating metrics: local scoring).
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Recommendation 3. The ideal Fit-to-Map metric for archive-wide 
ranking will be insensitive to map background noise (appropriate 
masking or alternative data processing can help), will not require 
input of estimated parameters that affect score value (for example, 
resolution limit, threshold) and will yield overall better scores for 
maps with trustworthy higher-resolution features. The three cluster 
2 metrics identified in this challenge (Fig. 4a ‘c2’ and Fig. 4c center 
row) meet these criteria.

•	 Map-Model FSC12,19 is already in common use, and can be com-
pared with the experimental map’s independent half-map FSC 
curve.

•	 Global EMRinger score15 can assess nonbranched protein 
sidechains.

•	 Q-score can be used both globally and locally for validating 
nonhydrogen atom x,y,z positions8.

Other Fit-to-Map metrics may be rendered suitable for 
archive-wide comparisons through conversion of raw scores to 
Z-scores over narrow resolution bins, as is currently done by the 
PDB for some X-ray-based metrics4,32.

Recommendation 4. CaBLAM and MolProbity cis-peptide 
detection22 are useful to detect protein backbone conformation 
issues. These are particularly valuable tools for cryo-EM, since maps 
at typical resolutions (2.5–4.0 Å, Fig. 1a) may not resolve backbone 
carbonyl oxygens (Fig. 2).

In this challenge, more time could be devoted to analysis when 
compared with previous rounds because infrastructure for model 
collection, processing and assessment is now established. However, 
several important issues could not be addressed, including evalu-
ation of overfitting using half-map based methods13,33–35, effect of 
map sharpening on Fit-to-Map scores8,36, validation of ligand fit and 
metal ion/water identification and validation at atomic resolution 
including H atoms. EMDR plans to sponsor additional model chal-
lenges to continue promoting development and testing of cryo-EM 
modeling and validation methods.
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Methods
Challenge process and organization. Informed by previous challenges2,6,11, the 
2019 Model Challenge process was substantially streamlined in this round. In 
March, a panel of advisors with expertise in cryo-EM methods, modeling and/or 
model assessment was recruited. The panel worked with EMDR team members to 
develop the challenge guidelines, identify suitable map targets from EMDB and 
reference models from the PDB and recommend the metrics to be calculated for 
each submitted model.

The challenge rules and guidance were as follows: (1) ab initio modeling is 
encouraged but not required. For optimization studies, any publicly available 
coordinate set can be used as the starting model. (2) Regardless of the modeling 
method used, submitted models should be as complete and as accurate as possible 
(that is, equivalent to publication-ready). (3) For each target, a separate modeling 
process should be used. (4) Fitting to either the unsharpened/unmasked map or 
one of the half-maps is strongly encouraged. (5) Submission in mmCIF format is 
strongly encouraged.

Members of cryo-EM and modeling communities were invited to participate 
in mid-April 2019 and details were posted on the challenges website (challenges.
emdataresource.org). Models were submitted by participant teams between 1 
and 28 May 2019. For APOF targets, coordinate models were submitted as single 
subunits at the position of a provided segmented density consisting of a single 
subunit. ADH models were submitted as dimers. For each submitted model, 
metadata describing the full modeling workflow were collected via a Drupal 
webform, and coordinates were uploaded and converted to PDBx/mmCIF format 
using PDBextract51. Model coordinates were then processed for atom/residue 
ordering and nomenclature consistency using PDB annotation software (Feng Z., 
https://sw-tools.rcsb.org/apps/MAXIT) and additionally checked for sequence 
consistency and correct position relative to the designated target map. Models were 
then evaluated as described below (Model evaluation system).

In early June, models, workflows and initial calculated scores were made 
available to all participants for evaluation, blinded to modeler team identity 
and software used. A 2.5-day workshop was held in mid-June at Stanford/SLAC 
to review the results, with panel members attending in person. All modeling 
participants were invited to attend remotely and present overviews of their 
modeling processes and/or assessment strategies. Recommendations were made 
for additional evaluations of the submitted models as well as for future challenges. 
Modeler teams and software were unblinded at the end of the workshop. In 
September, a virtual follow-up meeting with all participants provided an overview 
of the final evaluation system after implementation of recommended updates.

Coordinate sources and modeling software. Modeling teams created ab initio 
models or optimized previously known models available from the PDB. Models 
optimized against APOF maps used PDB entries 2fha, 5n26 or 3ajo as starting 
models. Models optimized against ADH used PDB entries 1axe, 2jhf or 6nbb. Ab 
initio software included ARP/wARP41, Buccaneer37, Cascaded-CNN46, Mainmast45, 
Pathwalker49 and Rosetta40. Optimization software included CDMD39, CNS52, 
DireX43, Phenix21, REFMAC13, MELD48, MDFF44 and reMDFF47. Participants 
made use of VMD53, Chimera38, COOT29 and PyMol for visual evaluation and/or 
manual model improvement of map-model fit. See Table 1 for software used by 
each modeling team. Modeling software versions/websites are listed in the Nature 
Research Reporting Summary.

Model evaluation system. The evaluation system for 2019 challenge 
(model-compare.emdataresource.org) was built on the basis of the 2016/2017 
Model Challenge system11, updated with several additional evaluation measures 
and analysis tools. Submitted models were evaluated for >70 individual metrics 
in four tracks: Fit-to-Map, Coordinates-only, Comparison-to-Reference and 
Comparison-among-Models. A detailed description of the updated infrastructure 
and each calculated metric is provided as a help document on the model evaluation 
system website. Result data are archived at Zenodo54. Analysis software versions/
websites are listed in the Nature Research Reporting Summary.

For brevity, a representative subset of metrics from the evaluation website are 
discussed in this paper. The selected metrics are listed in Table 2 and are further 
described below. All scores were calculated according to package instructions using 
default parameters.

Fit-to-Map. The evaluated metrics included several ways to measure the correlation 
between map and model density as implemented in TEMPy16–18 v.1.1 (CCC, 
CCC_OV, SMOC, LAP, MI, MI_OV) and the Phenix21 v.1.15.2 map_model_cc 
module19 (CCbox, CCpeaks, CCmask). These methods compare the experimental 
map with a model map produced on the same voxel grid, integrated either over the 
full map or over selected masked regions. The model-derived map is generated to 
a specified resolution limit by inverting Fourier terms calculated from coordinates, 
B factors and atomic scattering factors. Some measures compare density-derived 
functions instead of density (MI, LAP16).

The Q-score (MAPQ v.1.2 (ref. 8) plugin for UCSF Chimera38 v.1.11) uses a 
real-space correlation approach to assess the resolvability of each model atom in 
the map. Experimental map density is compared to a Gaussian placed at each atom 
position, omitting regions that overlap with other atoms. The score is calibrated by 

the reference Gaussian, which is formulated so that a highest score of 1 would be 
given to a well-resolved atom in a map at an approximately 1.5 Å resolution. Lower 
scores (down to −1) are given to atoms as their resolvability and the resolution of 
the map decreases. The overall Q-score is the average value for all model atoms.

Measures based on Map-Model FSC curve, Atom Inclusion and protein 
sidechain rotamers were also compared. Phenix Map-Model FSC is calculated 
using a soft mask and is evaluated at FSC = 0.5 (ref. 19). REFMAC FSCavg13 
(module of CCPEM42) integrates the area under the Map-Model FSC curve to a 
specified resolution limit13. EMDB Atom Inclusion determines the percentage 
of atoms inside the map at a specified density threshold14. TEMPy ENV is also 
threshold-based and penalizes unmodeled regions16. EMRinger (module of Phenix) 
evaluates backbone positioning by measuring the peak positions of unbranched 
protein Cγ atom positions versus map density in ring paths around Cɑ–Cβ bonds15.

Coordinates-only. Standard measures assessed local configuration (bonds, bond 
angles, chirality, planarity, dihedral angles; Phenix model statistics module), 
protein backbone (MolProbity Ramachandran outliers20; Phenix molprobity 
module) and sidechain conformations, and clashes (MolProbity rotamers outliers 
and Clashscore20; Phenix molprobity module).

New in this challenge round is CaBLAM22 (part of MolProbity and as Phenix 
cablam module), which uses two procedures to evaluate protein backbone 
conformation. In both cases, virtual dihedral pairs are evaluated for each 
protein residue i using Cɑ positions i − 2 to i + 2. To define CaBLAM outliers, 
the third virtual dihedral is between the CO groups flanking residue i. To define 
Calpha-geometry outliers, the third parameter is the Cɑ virtual angle at i. The 
residue is then scored according to virtual triplet frequency in a large set of 
high-quality models from PDB22.

Comparison-to-Reference and Comparison-among-Models. Assessing the similarity 
of the model to a reference structure and similarity among submitted models, we 
used metrics based on atom superposition (LGA GDT-TS, GDC and GDC-SC 
scores23 v.04.2019), interatomic distances (LDDT score24 v.1.2), and contact area 
differences (CAD26 v.1646). HBPLUS50 was used to calculate nonlocal hydrogen 
bond precision, defined as the fraction of correctly placed hydrogen bonds with 
more than six separations in sequence (HBPR > 6). DAVIS-QA determines for each 
model the average of pairwise GDT-TS scores among all other models27.

Local (per residue) scores. Residue-level visualization tools for comparing the 
submitted models were also provided for the following metrics: Fit-to-Map, 
Phenix CCbox, TEMPy SMOC, Q-score, EMRinger and EMDB Atom Inclusion; 
Comparison-to-Reference, LGA and LDDT; and Comparison-among-Models, 
DAVIS-QA.

Metric score pairwise correlations and distributions. For pairwise comparisons 
of metrics, Pearson correlation coefficients (P) were calculated for all model scores 
and targets (n = 63). For average per-target pairwise comparisons of metrics, P 
values were determined for each target and then averaged. Metrics were clustered 
according to the similarity score (1 − |P|) using a hierarchical algorithm with 
complete linkage. At the beginning, each metric was placed into a cluster of its 
own. Clusters were then sequentially combined into larger clusters, with the 
optimal number of clusters determined by manual inspection. In the Fit-to-Map 
evaluation track, the procedure was stopped after three divergent score clusters 
were formed for the all-model correlation data (Fig. 4a), and after two divergent 
clusters were formed for the average per-target clustering (Fig. 4b).

Controlling for model systematic differences. As initially calculated, some 
Fit-to-Map scores had unexpected distributions, owing to differences in modeling 
practices among participating teams. For models submitted with all atom 
occupancies set to zero, occupancies were reset to one and rescored. In addition, 
model submissions were split approximately 50/50 for each of the following 
practices: (1) inclusion of hydrogen atom positions and (2) inclusion of refined B 
factors. For affected fit-to-map metrics, modified scores were produced excluding 
hydrogen atoms and/or setting B factors to zero. Both original and modified 
scores are provided at the web interface. Only modified scores were used in the 
comparisons described here.

Evaluation of group performance. Rating of group performance was done using 
the group ranks and model ranks (per target) tools on the challenge evaluation 
website. These tools permit users, either by group or for a specified target and 
for all or a subcategory of models (for example, ab initio), to calculate composite 
Z-scores using any combination of evaluated metrics with any desired relative 
weightings. The Z-scores for each metric are calculated from all submitted models 
for that target (n = 63). The metrics (weights) used to generate composite Z-scores 
were as follows.

Coordinates-only. CaBLAM outliers (0.5), Calpha-geometry outliers (0.3) and 
Clashscore (0.2). CaBLAM outliers and Calpha-geometry outliers had the best 
correlation with Comparison-to-Reference parameters (Fig. 4f), and Clashscore is 
an orthogonal measure. Ramachandran and rotamer criteria were excluded since 
they are often restrained in refinement and are zero for many models.
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Fit-to-Map. EMRinger (0.3), Q-score (0.3), Atom Inclusion (0.2) and SMOC (0.2). 
EMRinger and Q-score were among the most promising model-to-map metrics, 
and the other two provide distinct measures.

Comparison-to-Reference. LDDT (0.9), GDC_all (0.9) and HBPR >6 (0.2). LDDT 
is superposition-independent and local, while GDC_all requires superposition; 
H-bonding is distinct. Metrics in this category are weighted higher, because 
although the reference models are not perfect, they are a reasonable estimate of the 
right answer.

Composite Z-scores by metric category (Extended Data Fig. 6a) used the 
Group Ranks tool. For ab initio rankings (Extended Data Fig. 6b), Z-scores were 
averaged across each participant group on a given target, and further averaged 
across T1 + T2 and across T3 + T4 to yield overall Z-scores for high and low 
resolutions group 54 models were rated separately because they used different 
methods. Group 73’s second model on target T4 was not rated because the metrics 
are not set up to meaningfully evaluate an ensemble. Other choices of metric 
weighting schemes were tried, with very little effect on clustering.

Molecular graphics. Molecular graphics images were generated using UCSF 
Chimera38 (Fig. 2 and Extended Data Fig. 3) and KiNG55 (Extended Data Figs. 1, 2 
and 4).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The map targets used in the challenge were downloaded from the EMDB, 
entries EMD-20026 (file emd_20026_additional_1.map.gz), EMD-20027 (file 
emd_20027_additional_2.map.gz), EMD-20028 (file emd_20028_additional_2.
map.gz) and EMD-0406 (file emd_0406.map.gz). Reference models were 
downloaded from the PDB, entries 3ajo and 6nbb. Submitted models, model 
metadata, result logs and compiled data are archived at Zenodo at https://doi.
org/10.5281/zenodo.4148789, and at https://model-compare.emdataresource.org/
data/2019/. Interactive summary tables, graphical views and .csv downloads of 
compiled results are available at https://model-compare.emdataresource.org/2019/
cgi-bin/index.cgi. Source data are provided with this paper.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Evaluation of peptide bond geometry. All 63 Challenge models were evaluated using MolProbity. APOF and ADH each have one 
cis peptide bond per subunit before a proline residue. (a) Counts of peptide bonds with each of the following conformational properties: cisP: cis peptide 
before proline, twistP: non-planar peptide (>30°) before proline, cis-nonP: cis peptide before non-proline, twist-nonP: non-planar peptide bond before 
non-proline. Incorrect cis-nonP usually occurred where the model was misfit (see Extended Data Figs. 2 and 3), while incorrect cis or trans Pro usually 
produced poor geometry. Values inconsistent with reference models are highlighted. Statistically, 1 in 20 proline residues are genuinely cis; only 1 in 3000 
non-proline residues are genuinely cis, and strongly non-planar peptide bonds (>30°) are almost never genuine28. Models are identified by the submitting 
group (Gp #, group id as defined in Table 1), model number (some groups submitted multiple models), and Target (T1-T3: APOF, T4: ADH). Optimized 
models are shaded blue. Only two groups (28, 31) had all peptides correct for all 4 targets. Models illustrated in panels b-d are indicated by labeled boxes. 
(b) Correct cis peptide geometry for Pro A62 in two ADH models. (c) Incorrect trans peptide geometry, with huge clashes up to 1.25 Å overlap (clusters of 
hot pink spikes), 2 CaBLAM outliers (magenta CO dihedral lines), and poor density fit. (d) Incorrect trans peptide geometry, with huge 1.9 Å Cβ deviation at 
Leu 61 (magenta ball) because of incorrect hand of Cα, and 2 CaBLAM outliers. Molecular graphics were generated using KiNG.

Nature Methods | www.nature.com/naturemethods

http://www.nature.com/naturemethods


AnalysisNature Methods

Extended Data Fig. 2 | Classic CaBLAM outlier with no Ramachandran outlier. a, Mis-modeled peptide (identified by red ball at carbonyl oxgen 
position) is flagged by two successive CaBLAM outliers (magenta dihedrals), a bad clash (hot-pink spikes), and a bond-angle outlier (not shown), but no 
Ramachandran outlier. b, Correctly modeled peptide, involving a near-180° flip of the central peptide to achieve regular α-helical conformation. Ser 38 of 
T1/APOF model 60_1 is shown in (a); model 35_1 shown in (b). This example illustrates the most easily correctable situations: (1) for a CaBLAM outlier 
inside helix or β-sheet, regularize the secondary structure; (2) for two successive CaBLAM outliers, try flipping the central peptide. Molecular graphics 
were generated using KiNG. Note that sidechains are truncated by graphics clipping.
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Extended Data Fig. 3 | Evaluation of a short sequence misalignment within a helix. Local Fit-to-Map and Coordinates-only scores are compared for a 
3-residue sequence misalignment inside an ɑ-helix in an ab initio model submitted to the Challenge (APOF 2.3 Å 54_1). a, Model residues 14–42 vs target 
map (blue: correctly placed residues, yellow: mis-threaded residues 25–29, black: APOF reference model, 3ajo). b, Structure-based sequence alignment 
of the ab initio model (top) vs. reference model (bottom). c, Local Fit-to-Map scores (screenshot from Challenge model evaluation website Fit-to-Map 
Local Accuracy tool). Curves are shown for Phenix Box_CC (orange), EMDB Atom Inclusion (purple), Q-score (red) EMRinger (green), and SMOC (blue). 
The score values for model residue Leu 28 are shown in the box at right. d, Residue scores were calculated using the Molprobity server. The mis-threaded 
region is boxed in (b-d). Panels (a) and (b) were generated using UCSF Chimera.
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Extended Data Fig. 4 | Modeling errors around omitted Zinc ligand in ADH. Target 4 (ADH) density map with examples of modeling errors caused by 
omission of Zinc ligand. a, Reference structure with Zinc metal ion (gray ball) coordinated by 4 Cysteine residues (blue sidechains). b-e, Submitted models 
missing Zinc (labels indicate the group_model ids). All have geometry and/or conformational violations as flagged by MolProbity CaBLAM (magenta 
pseudobonds), cis-nonPro (green parallelograms), Ramachandran (green pseudobonds), Cbeta (magenta spheres), and angle (blue and red fans). Model 
(b) has backbone conformation very close to correct, while (b) and (c) both have flags indicating bad geometry of incorrect disulfide bonds. Models (c) 
and (d) have backbone distortions, and (e) is mistraced through the Zn density. Molecular graphics were generated using KiNG.
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Extended Data Fig. 5 | Fit-to-Map Scores with and without refined B-factors (ADP). Two representative metrics are shown: a, CCmask correlation, b, 
FSC05 resolution−1. Each plotted point indicates the calculated score for atom positions with B-factors included (horizontal axis) versus the calculated 
score for atom positions alone (vertical axis). Plot symbols identify map targets. Of 63 models total, 33 included refined B-factors. Differing scores +/- 
B-factors contribute off-diagonal points (black dotted lines are reference diagonals).
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Extended Data Fig. 6 | Group performance evaluations. a, Group composite Z-scores plotted by metric category. The nine teams with highest 
Coordinate-only composite Z-score rankings are shown, sorted left to right. The plot illustrates that by group/method, Coordinate-only scores 
are poorly corelated with Fit-to-Map and Comparison-to-Reference scores. In contrast, a modest correlation is observed between Fit-to-Map and 
Comparison-to-Reference scores. b, Averaged model composite Z-scores plotted for ab initio modeling groups at higher resolution (T1 at 1.8 Å, T2 at 
2.3 Å) and lower resolution (T3 at 3.1 Å, T4 at 2.9 Å). In each case 6 groups produced very good models (Z ≥ 0.3; green pins), though not the same set. 
Runner-up clusters (−0.3 ≤ Z < 0.3) are shown with gold pins. Individual scores and order shift with alternate choices of evaluation metrics and weights, 
but the clusters at each resolution level are stable. Composite Z-scores were calculated as described in Methods.

Nature Methods | www.nature.com/naturemethods

http://www.nature.com/naturemethods







	Cryo-EM model validation recommendations based on outcomes of the 2019 EMDataResource challenge

	Results

	Challenge design. 
	Overall and local quality of models. 
	Evaluating metrics: Fit-to-Map. 
	Evaluating metrics: Coordinates-only and versus Reference. 
	Evaluating metrics: local scoring. 
	Group performance. 

	Discussion

	Online content

	Fig. 1 Single particle cryo-EM models in the Protein Data Bank.
	Fig. 2 Challenge targets: cryo-EM maps at near-atomic resolution.
	Fig. 3 Challenge pipeline.
	Fig. 4 Evaluation of metrics.
	Extended Data Fig. 1 Evaluation of peptide bond geometry.
	Extended Data Fig. 2 Classic CaBLAM outlier with no Ramachandran outlier.
	Extended Data Fig. 3 Evaluation of a short sequence misalignment within a helix.
	Extended Data Fig. 4 Modeling errors around omitted Zinc ligand in ADH.
	Extended Data Fig. 5 Fit-to-Map Scores with and without refined B-factors (ADP).
	Extended Data Fig. 6 Group performance evaluations.
	Table 1 Participating modeling teams.
	Table 2 Evaluated metrics.




