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1 Prelude

The scientific community has responded to the COVID-19 pandemic with
admirable global cooperation and solidarity, characterized by rapid sharing of
results and data in an effort to urgently re-focus research toward the common
goal of developing prevention and treatment modalities to help turn the tide of
the COVID-19 pandemic. As spoken by WHO Director-General Dr. Tedros
Adhanom Ghebreyesus at the 2020 Aspen Security Forum, “Our best way
forward is to stick with science, solutions and solidarity and together we can
overcome this pandemic.” World Health Organization (2020)

In this spirit, we are making this Statistical Analysis Plan (SAP) publicly
available at a relatively early and intermediate stage. The SAP is a work
in progress that will continue to be developed and refined over the coming
weeks. Our hope is that fellow statistical scientists and scientists of other
disciplines will bring new insights and offer input to maximize the scientific
knowledge pertaining to immune correlates of protection that can be learned
from COVID-19 vaccine efficacy trials. We invite collaboration and are ea-
ger to explore opportunities for working with others on COVID-19 immune
correlates analyses.

We envisage three applications of this SAP. First, as the Coronavirus Pre-
vention Network Statistical Center and OWS Biostatistics Team our group
is responsible for statistical design and analysis of immune correlates for the
Operation Warp Speed (OWS) phase 3 trials, and this SAP serves as a mas-
ter protocol-type SAP for harmonized immune correlates analyses across the
OWS trials. Second, researchers conducting additional clinical trials may
work collaboratively with our group to co-conduct the immune correlates
analysis. Third, researchers conducting clinical trials may use this SAP as
a resource for immune correlates analyses conducted on their own, either by
implementing this SAP or components therein, or by selecting methods and
code from it to adopt for their own SAPs.

We are implementing the SAP in R. The R scripts are hosted on a Github
code repository CovidCorrSAP (hosted by Dr. Youyi Fong) and will be made
publicly available as soon as they are ready. The first publicly available down-
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load will be focused on immunogenicity characterization and correlates of risk
analysis and the second one will be focused on correlates of protection anal-
ysis. This collaborative Github repository will include reproducible reports
implementing the SAP on a mock/practice COVID-19 vaccine efficacy trial
data set.

Please direct communication related to this SAP to Peter B. Gilbert at the
Fred Hutchinson Cancer Research Center (pgilbert@fredhutch.org).

2 Introduction
2.1 Antibody Assays and Day 57 Markers

This SAP describes the statistical analysis of antibody markers measured at
a key time point post last vaccination as immune correlates of risk and as
various types of immune correlates of protection against primary and sec-
ondary endpoints in OWS / CoVPN COVID-19 vaccine efficacy (VE) trials.
For definiteness, we assume this time point for antibody measurements is
Day 57, a typical time point for a two-dose vaccine; for a one-dose vaccine
the key time point would likely be around Day 28. The antibody markers
of interest are measured using one of three kinds of humoral immunogenicity
assays [more detail on assay types (2) and (3) can be found in Sholukh et al.
(2020)]:

(1) bAbs: Binding antibodies to the vaccine insert SARS-CoV-2 proteins;

(2) Pseudovirus-nAbs: Neutralizing antibodies against viruses pseu-
dotyped with the vaccine insert SARS-CoV-2 proteins; and

(3) Wild Type Live virus-nAbs: Neutralizing antibodies against live
“vaccine insert-matched” wild type SARS-CoV-2 (or recombinant “vaccine
insert-matched” SARS-CoV-2 harboring a reporter gene within the viral
genome).

For example, the following assays are expected to be used:

(1) bAb assay: The MSD-ECL Multiplex Assay (MSD-ECL = meso scale
discovery-electrochemiluminescence assay) measures binding antibody to anti-
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gens corresponding to: Spike (an engineered version of the Spike protein har-
boring a double proline substitution (S-2P) that stabilizes it in the closed,
prefusion conformation [McCallum et al. (2020)]); the Receptor Binding Do-
main (RBD) of the Spike protein; and Nucleocapsid protein (N), which is
not contained in any of the COVID-19 vaccines. This assay has a standard
curve to interpolate arbitrary units/ml; an 8 point dilution curve on each
sample with 5-fold dilutions starting at 1:20; an 8 point dilution curve on
VRC control sera; and includes Positive, Negative and Intermediate controls.
Binding antibody to N are not of interest as a potential immune correlate;
these data are included only for immunogenicity evaluation.

(2) Pseudovirus-nAb assay: A firefly luciferase (ffLuc) reporter neutraliza-
tion assay for measuring neutralizing antibodies against SARS-CoV-2 Spike-
pseudotyped viruses; and

(3) Wild Type Live virus-nAb assay: An assay measuring antibody-
mediated neutralization of live wild-type SARS-CoV-2 (WA isolate, passage
3, Vero-E6 cells).

Throughout this SAP we assume that all three types of assays have validated
versions that are applied uniformly to samples collected in one or several
late-stage SARS-CoV-2 vaccine efficacy trials. Samples from the same trial
are expected to be assayed by the same lab that performs one of these im-
munoassays.

Based on each immunoassay applied to paired serum samples collected from
participants on Day 1 (baseline, pre-vaccination) and Day 57, a set of multiple
markers will be defined for immunogenicity and immune correlates analyses.
For example, the bAb-related markers will be defined as log;y IgG concen-
tration (IU/ml) at Day 57 and by difference in log;y concentration (Day 57
minus Day 1) representing log;, fold-rise in IgG concentration, to the Spike,
RBD, and N antigen targets. The lower limit of quantitation (LLOQ) of
the binding antibody assay is 34 AU/ml and the upper limit of quantitation
(ULOQ) is 19,136,250 AU/ml, where AU stands for arbitrary units from a
standard curve that will aligned to the WHO standards before use on efficacy
trials samples. Once these standards appear, units will be reported in IU/ml
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(International units/ml). Values of bAb below the LLOQ are assigned the
value LLOQ/2 = 17 IU/ml. Values greater than the ULOQ are assigned the
value ULOQ).

The pseudovirus-nAb markers are defined as Day 57 log;y serum inhibitory
dilution 50% titer (ID50) and 80% titer (ID80), as well as the logyq fold-rise
of these markers over Day 1. The ID50 and ID80 values are estimated based
on a starting serum dilution of 1:20, with eight 5-fold dilutions. Thus 1:20 is
the lower limit of detection (LLOD). The LLOQ for ID50 and ID80 is based
on precision, with values LLOQ = 49 for ID50 and LLOQ = 43 for IDS&O0.
ID50 and ID80 values below the LLOQ are assigned the value 49/2 = 25 and
43/2 = 22, respectively. If there is an upper limit of quantitation (ULOQ),
then values greater than the ULOQ are assigned the value of the ULOQ.

The W' live virus-nAb marker is defined as Day 57 logjg serum MNH0 calcu-
lated using the Spearmana€ “Karber method, as well as the logyo fold-rise of
this marker over Day 1. The LLOQ for MN50 for the Battelle assay is 117.35
and the ULOQ is 18,976.19, and the LLOD is 62.16. Values below the LLOQ
are assigned the value 117.35/2 = 59 and values greater than the ULOQ are
assigned the value of the ULOQ).

For two-dose vaccines, the immunogenicity and correlates analyses may also
include the same antibody markers measured at the second-dose sampling
time point, which we refer to as the Day 29 time point. In this SAP we
include contingency sub-sections marked ‘[With Day 29 Markers]’” to describe
how the SAP is augmented to include the Day 29 antibody markers in the
analysis.

3 Study Cohorts and Endpoints

3.1 Study Cohort for Correlates Analyses

Finalization of the primary study cohort for correlates analysis will take place
before unblinding case /non-case and treatment arm information for correlates
analyses. The default is for the primary study cohort to be the same as the
cohort used in the primary analysis of vaccine efficacy against the primary
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endpoint in the protocol, except that availability of a Day 1 and Day 57 blood
sample for antibody testing is also required. It may also be required to have
results from all tests for SARS-CoV-2 infection on Day 57 samples [serology
and /or nucleic acid amplification test (NAAT)].

Typically the primary analysis cohort is baseline SARS-CoV-2 negative par-
ticipants in the per-protocol cohort, with the per-protocol cohort defined as
those who received all planned vaccinations without any specified protocol
deviations, and who were NAAT negative at the terminal vaccination visit.
We refer to this cohort representing the primary population for correlates
analysis as the Per-Protocol Baseline Negative Cohort. We will wait to fully
understand all of the antigen and serology testing data that are available in
the data set to finalize the definition of the primary analysis cohort. If a vac-
cine has high vaccine efficacy, it is possible that rare vaccine breakthrough
cases will be individuals who were infected before the second vaccine dose, or
soon after the first dose, but had unusually long time periods between SARS-
CoV-2 acquisition and symptomatic infection (COVID) diagnosis. This sit-
uation could complicate the interpretation of correlates analyses. Therefore,
we may conduct some correlates analyses that use a stringent criterion to
include vaccine breakthrough cases in the analyses, such as requiring antigen
negative tests at both Day 29 and Day 57 and all serologies negative through
Day 57.

For trials with the primary analysis of vaccine efficacy in baseline negative
individuals, CoR and CoP analyses are only done in baseline negative indi-
viduals, and the analysis of data from baseline positive individuals is for pur-
poses of immunogenicity characterization, given too-few anticipated vaccine
breakthrough study endpoints for CoR/CoP assessment (although if there
are many baseline positive vaccine breakthrough endpoint cases that base-
line positive subgroup analyses may be considered). In baseline negative
individuals, antibody marker data in placebo recipients is relevant for verify-
ing the expectation that almost all Day 57 marker responses will be negative,
given the lack of SARS-CoV-2 antigen exposure.
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3.1.1 [With Day 29 markers]

It Day 29 markers are included, analyses of Day 29 correlates are done in
the same cohort as studied for the analyses of Day 57 markers, except the
time origin in correlates analyses is set at the Day 29 visit and the set of
participants included in the analysis is augmented with intercurrent cases.
Intercurrent cases are defined as participants who were diagnosed with the
COVID primary endpoint sometime between 7 days post Day 29 visit and 6
days post Day 57 visit (if the Day 57 visit is missed, then between 7 days post
Day 29 visit and 34 days post Day 29 visit). These intercurrent cases would
be missed for the Day 57 per-protocol correlates analyses for which cases are
counted starting 7 days after the Day 57 visit. Note that intercurrent cases
may or may not qualify for the per-protocol cohort depending on the timing
of the COVID case and on protocol violations. Analyses that include both
Day 29 and 57 markers use the same cohort as for analyses of Day 57 markers
only.

3.2 Study Endpoints

Endpoints for per-protocol correlates analyses are included if they occur at
least 7 days after the Day 57 visit, to help ensure that the endpoint did
not occur prior to Day 57 antibody measurement. Thus participants with a
per-protocol endpoint diagnosed earlier are excluded from the per-protocol
correlates analyses.

Figure 1 defines five study endpoints that are assessed in COVID-19 vaccine
efficacy trials, where all trials to our knowledge use COVID (symptomatic
infection) as the primary endpoint. While the severe COVID endpoint is
of paramount clinical importance, likely the number of events at the time
of the first correlates analysis will be too small to assess correlates against
this endpoint, such that correlates analyses will be done once more endpoints
have accrued through longer-term follow-up.

In contrast, depending on the estimate of vaccine efficacy, there may be

enough data to assess correlates against the endpoints non-severe COVID,
SARS-CoV-2 infection (COV-INF), asymptomatic infection (ASYMP-COV-
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INF) at or shortly after the time of the first correlates analysis, and viral
load at COVID diagnosis. Similar statistical methods can be used for each
endpoint, with some distinctions that we discuss below in “General Statistical
Issues in Correlates Assessment.”

When a correlates analysis is done, all available follow-up for participants is
included through to the time of the data base lock for the correlates analysis,
for every CoR and CoP analysis that is conducted. This means that the time
of right censoring for a given failure time endpoint will be the first event of
loss to follow-up or the date of administrative censoring defined as the last
date of available follow-up. For CoP analyses, which use both vaccine and
placebo recipient data and leverage the randomization, follow-up is censored
at the time of unblinding.

3.2.1 [With Day 29 markers]

If Day 29 markers are included, analyses that study Day 29 markers count
study endpoints starting 7 days post Day 29 visit, instead of starting 7 days
post Day 57 visit. Analyses that include both Day 29 and Day 57 markers
(for correlates analyses this only includes the multivariable correlates of risk
superlearning objective) use the same cohort and endpoints as analyses of
Day 57 markers only.

4 Objectives of Immune Correlates Analyses of a Phase 3 Trial
Data Set

4.1 Characterize Vaccine Immunogenicity

There are two objectives to characterize the binding and neutralizing anti-
body immunogenicity of the vaccine:

Stage 1 To characterize vaccine immunogenicity (bAb, nAb) at Day 1, 29, 57

Stage 2 To characterize vaccine immunogenicity /durability (bAb, nAb) over time
(Day 1, 29, 57, 209, 394, 759)
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4.2 Correlates of Risk and Correlates of Protection

We broadly classify the proposed analyses into two related categories: corre-
lates of risk (CoR) and correlates of protection (CoP) analyses. CoR analyses
seek to characterize correlations/associations of markers with future risk of
the outcome amongst vaccinated individuals in the study cohort. CoP anal-
yses seek to formally characterize causal relationships among vaccination,
antibody markers and the study endpoint, and use data from both vaccine
and placebo recipients. Table 1 summarizes these objectives and statistical
frameworks that are commonly used to these ends.

The advantage of CoR analyses it that it is possible to obtain definitive
answers from the phase 3 data sets, that is one can credibly characterize as-
sociations between markers and outcome. The advantage of CoP analyses is
that the effects being estimated have interpretation directly in terms of how
an antibody marker can be used to reliably predict vaccine efficacy (the crite-
rion for use of a non-validated surrogate endpoint for accelerated approval).
The disadvantage of CoR analyses are that a CoR may fail to be a CoP, for
example due to unmeasured confounding, lack of transitivity where a vaccine
effect on an antibody marker occurs in different individuals than clinical vac-
cine efficacy, or off-target effects (VanderWeele (2013)). The disadvantage
of CoP analyses is that statistical inferences rely on causal assumptions that
cannot be completely verified from the phase 3 data, such that compelling
evidence may require multiple phase 3 trials and external evidence on mech-
anism of protection (e.g., from adoptive transfer or vaccine challenge trials).
Our approach presents results for both CoR and CoP analyses, seeking clear
exposition of how to interpret results, the assumptions undergirding the va-
lidity of the results, and diagnostics of these assumptions and assessment of
robustness of findings to violation of assumptions.

We conjecture that an antibody marker could qualify as a non-validated sur-
rogate endpoint (meeting accelerated approval criteria) based on meeting all
three conditions: (1) demonstration of a strong and robust CoR with con-
founding control; (2) external data supporting functionality and connection
to a mechanism of protection; and (3) CoP analyses supporting that the
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biomarker is likely to be a CoP and not only a CoR. Mechanisms of protec-
tion as in (2) may be learned through passive antibody transfer studies and
vaccine challenge studies in animals and/or humans.

Table 1: Correlates of Risk (CoRs) and Correlates of Protection (CoPs) Objectives for Day 57
Markers

Objective Type

Objective

CoRs (Risk Prediction
Modeling)

To assess Day 57 markers as CoRs in vaccine
recipients

a. Relative risks of outcome across marker levels

b. Absolute risk of outcome across marker levels

c. Machine learning risk prediction for
multivariable markers

CoP: Correlates of VE

To assess Day 57 markers as correlates of VE in

vaccine recipients

a. Principal stratification effect modification analysis

b. Assesses VE across subgroups of vaccine recipients defined by
Day 57 marker level in vaccine recipients

CoP: Controlled
Effects on
Risk and VE

To assess Day 57 markers for how assignment
to vaccine and a fixed marker value would
alter risk compared to assignment to placebo

CoP: Stochastic
Interventional Effects
on Risk and VE

To assess Day 57 markers for how stochastic
shifts in their distribution would
alter mean risk and VE (Hejazi et al., 2020)

CoP: Mediators of VE

To assess Day 57 markers as mediators of VE
a. Mechanisms of protection via natural direct and indirect effects
a. Estimate the proportion of VE mediated by a marker or markers

4.2.1

[With Day 29 markers|

If Day 29 markers are included, then each of the objectives for Day 57 markers
is repeated for Day 29 markers. In addition, the multivariable CoR machine
learning objective includes models that include both Day 29 and Day 57

markers.
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4.3 Synthesis of the Phase 3 Correlates Analyses for Decisions

Establishment of an immunologic biomarker for approval /bridging applica-
tions is generally not based on pre-fabricated criteria nor a single type of
correlates analysis. Therefore, the goal of the correlates analysis is to gener-
ate evidence about correlates from many perspectives, and to synthesize the
evidence to support certain decisions. Consequently, we believe there is value
in assessing all of the types of correlates presented in Table 1 in each trial,
given that the analyses address distinct questions. Obtaining a set of results
from multiple distinct approaches that provide complementary and coherent
support may increase the rigor and robustness of an evidence package sup-
porting potential use of an antibody marker as a validated surrogate (for tra-
ditional approval) or as a non-validated surrogate (for accelerated approval)
(Fleming and Powers (2012)); these uses of a biomarker are summarized be-

low. However, the assumptions needed for valid inferences are somewhat
different across the methods, and some of these assumptions have testable
implications; therefore examination of the assumptions may lead to favoring
some methods over others, and affect the synthesis and interpretation of re-
sults, and moreover if diagnostics support that some necessary assumptions
are infeasible then certain analyses will be canceled, as described below.

Section 16 summarizes the approach to use and interpretation of the set of
multiple correlates of protection methods. Furthermore, depending on the
number of study endpoints in the vaccine and placebo arms at the time a
trial delivers primary results, some of the Day 57 marker correlates types
defined in Table 1 will be evaluable at the first correlates analyses, whereas
others will not be evaluable until additional evaluable vaccine breakthrough
endpoints have been observed.

As detailed in Table 4, some CoR analyses are done after there are at least
25 evaluable vaccine breakthrough cases, which is considered to be a minimal
number to achieve worthwhile precision. On the other hand, the most non-
parametric/flexible CoR analyses require more cases, as do the CoP analyses
in general, given the need to adjust for all potential confounders in order to
fully identify the causal effects parameters of interest and the greater chal-
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lenge in estimation (compared to CoR analysis) posed by the need to deal
with missing potential outcomes.

Finally, we note that meta-analysis of multiple VE trials will provide im-
portant empirical support for potentially establishing an immunologic sur-
rogate endpoint, which underscores the necessity of standardizing the VE
trials (common study endpoints, common labs and immunoassays, common
statistical methods and data analysis).

4.4 Additional Objectives Not Covered in this SAP

An additional objective that will be assessed, but will be described in a
separate SAP, is to assess antibody markers over time beyond Day 57 through
two years post vaccination, to assess “outcome-proximal correlates.” While
we do not formally develop methods to address this aim in this SAP, here we
very briefly outline approaches that may be pursued to address such aims.
For example, a CoR analysis might assess longitudinal markers in vaccine
recipients through estimation of the hazard ratio of outcome across levels of
the current value of the marker modeled via a linear mixed effects model (e.g.,
Fu and Gilbert (2017)). A CoP analysis might assess longitudinal markers
as mediators of VE (mechanisms of protection), for example by assessing the
proportion of VE mediated by the longitudinal marker(s) profile (e.g., Zheng
and van der Laan (2017)).

To potentially help addressing these aims, antibody markers should be mea-
sured at the time of COV-INF and COVID diagnosis. An open question is
whether and how these measurements may be used in outcome-proximal cor-
relates analyses, for example by assuming that the observed marker values
on or near the day of diagnosis were present on the date of SARS-CoV-2
acquisition. Justification for this assumption for the COVID endpoint would
derive from information that COVID tends to occur within only several days
of SARS-CoV-2 acquisition, implying insufficient time for the infection to
make new antibodies that would complicate the interpretation of the vaccine-
elicited antibodies. It is possible that this condition could only be verified in a
subset of cases, in which case validation-set missing data statistical methods
may be fruitful. More validation work will be required before methods would
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be used treating marker values at diagnosis as present at endpoint diagnosis
and caused solely by the vaccine (i.e., not also caused by natural infection).
For the COV-INF endpoint it is less feasible / possible to use the COV-INF
sampling marker value to infer the marker value at acquisition, given the un-
known period of weeks or months that may have elapsed between acquisition
and seroconversion.

Outcome-proximal correlates analyses may be especially relevant if Day 57
antibody markers tend to be generally high in vaccine recipients and this
fact leads to a failure of the correlates analyses to identify a Day 57 correlate:
if antibodies wane over time then the outcome-proximal correlates analyses
could be more sensitive to detect a correlate.

Additional objectives that may be addressed with the at-diagnosis samples
include: (1) to characterize abnormal responses, possibly relevant for safety
signals; and (2) to assess the effect of pre-existing antibodies on the active
immune response to infection and disease.

5 Applications of Immune Correlates Analyses: Vaccine Approval
Pathways and Standards of Evidence

Suppose that one or more phase 3 trials demonstrates beneficial vaccine ef-
ficacy against the primary clinical endpoint (e.g., symptomatic infection, i.e.
COVID) meeting pre-specified success criteria, and correlates analyses of Day
57 antibody marker data are conducted based on the clinical data and an-
tibody data from the phase 3 trial(s). These correlates analyses, combined
with additional data supporting the role of antibody markers as mechanisms
of protection or as surrogates of mechanisms of protection, can buttress two
potential applications of an antibody marker (Table 2).
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Table 2: Two Potential Vaccine Approval Pathways Based on a Day 57 Antibody Marker Endpoint

Traditional If the marker is scientifically well-established to reliably predict vaccine
Approval vaccine efficacy, then subsequent efficacy trials may use the marker

as the primary endpoint

a. Same vaccine for different populations

b. Possibly new vaccines in the same class for the same or different populations
Accelerated If the marker is judged reasonably likely to predict vaccine efficacy but not yet
Approval scientifically well established, then accelerated approval based on the marker

endpoint may be possible (requires verification of beneficial clinical VE in

post marketing studies)

a. Same vaccine for different populations

b. Possibly new vaccines in the same class for the same or different populations

Fleming and Powers (2012) defined a validated surrogate as a marker that is
appropriate for use as an outcome measure for traditional approval of a spe-
cific class of interventions against a specific disease, when such interventions
are deemed safe and have demonstrated strong evidence that risks from off-
target effects are acceptable. They also defined a non-validated surrogate as
a marker appropriate for use as an outcome measure for accelerated approval
as one established to be “reasonably likely to predict clinical benefit” for a
specific disease setting and class of interventions. These definitions provide
two goalposts for immune correlates analyses of COVID-19 VE trials.

Table 3 summarizes one possible set of requirements for a Day 57 anti-
body marker to be accepted as a wvalidated surrogate for a COVID-19 disease
endpoint for use in approving COVID-19 vaccines for specific populations
(e.g., SARS-CoV-2 seronegative adults) using Fleming and Power’s definition.
These potential requirements are conjectures provided for conceptualization
purposes, and are not based on COVID-19 regulatory guidance documents.
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Table 3: Potential Traditional Approval Requirements for a Day 57 Antibody Marker

Requirements (1.-6. Required)

Endpoints and Evidence Bar

1. Strong evidence for CoR and CoP
in vaccine recipients in animal
and/or human challenge models

COVID and VL endpoints: Highly
significant and predictive

and Severe COVID : Point estimates
in the right direction

and COV-INF, ASYMP-COV-INF: No
countervailing evidence!

2. Strong evidence that the marker

is a mechanistic CoP or tightly
correlated with a mechanistic CoP
(likely deriving from animal challenge
studies of vaccines or passively
transferred antibodies)

Study endpoints used
in challenge models
such as subgenomic
SARS-CoV-2 RNA

3. Supportive evidence from natural history
studies of CoRs of re-infection in
SARS-CoV-2 infected individuals

Same endpoints as in Phase 3 trial
(COVID , severe COVID ,
ASYMP-COV-INF, COV-INF, VL Dx)

4. Phase 3 trial strong evidence as a
CoR in vaccine recipients

COVID and > 1 other endpoint:

Highly significant and predictive

and Point estimates in the right direction
for the other endpoints

Consistent results Day 29, 57 markers

Require consistent results from multiple trials

COVID
Point estimates of association/causal parameters
in the right direction for the other endpoints?

5. Phase 3 trial strong supportive evidence
as CoP, for at least one CoP type,

plus point estimates in the right

direction for the other CoP types

(consistency of evidence) Require consistent results from multiple trials

6. Temporal ordering support for several
of the above results, e.g., CoRs

and CoPs are stronger for COVID
occurrence proximal to vaccination

than distal, synchronized with

pattern of biomarker waning

COVID , severe COVID ,
ASYMP-COV-INF, COV-INF, VL Dx

COVID , severe COVID ,
ASYMP-COV-INF, COV-INF, VL Dx

7. Additional support from non-vaccine
interventions, e.g., demonstration of
a neutralization CoP for a monoclonal Ab

LCountervailing evidence could be any observations that provide evidence against a CoP, e.g.,
relative to Bradford-Hill criteria (see Section 16).
2Because CoPs can differ by study endpoint Plotkin (2010) and vaccine efficacy can differ by
study endpoint, this criterion will not necessarily be important.
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A potential goalpost for a non-validated surrogate for accelerated approval
can be conceptualized as the same as that for traditional approval, with
modifications:

e The package of evidence for the seven sources listed in Table 3 may be
less stringent quantitatively, and not requiring success on all of the first
six categories.

e Source 4 (Phase 3 CoR in vaccine recipients) would need to have strong
evidence (highly statistically significant and highly predictive).

e The support for an immune correlate may be more restricted to a given
study endpoint.

e [t may no longer be required to have replication of results across two or
more Phase 3 trials.

It is hypothesized that a single validated assay will yield a validated or non-
validated surrogate endpoint, e.g., based on binding antibody IgG concentra-
tion or serum ID50 or IDS&O0 titer to viruses pseudotyped with the Spike vaccine
insert protein (or live SARS-CoV-2). However, the goalposts could poten-
tially also be met by a synthesis biomarker aggregated from measurements
from multiple validated assays if this aggregation substantially improves the
correlate (e.g., a co-correlate Plotkin (2010); Plotkin and Gilbert (2018)).
However, the preferred approach, for parsimony and practical utility, would
be to define a correlates of protection as a single biomarker derived from a
single assay.

5.0.1 [With Day 29 markers]

If Day 29 markers are included, then a validated surrogate endpoint or non-
validated surrogate endpoint could be defined based on either a Day 57 time
point or a Day 29 time point, and possibly also requiring both time points
integrated into the same biomarker.
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6 Timeline/Sequencing of Correlates Analyses

The correlates analyses are initiated by the availability of (a) a data set de-
fined at or after the primary analysis data set triggered by the accrual of a
certain number of primary endpoints (typically approximately 150 in U.S.
phase 3 studies); and (b) Day 1, 57 antibody marker data from correlates-
eligible COVID primary endpoint cases from at least 25 baseline negative
vaccine recipients. The latter requirement ensures that there are enough
endpoint cases to achieve worthwhile precision for CoR analyses. The HVTN
505 trial serves as a precedent where 25 evaluable vaccine recipient cases
provided enough data to reasonably characterize correlates of risk for a pre-
ventive candidate HIV vaccine (Janes et al. (2017); Fong et al. (2018); Neidich
et al. (2019); Gilbert et al. (2020b)). In addition, simulation studies show
that correlates analyses at 20 endpoints have notably lower precision.

Table 4 shows the minimum number of baseline negative vaccine recipient
endpoints evaluable for correlates analyses that are required before conduct-
ing the various planned correlates analyses.

Table 4: Minimum Numbers of Evaluable Endpoints in Baseline Negative Vaccine Recipients to
Initiate Correlates Analyses

Correlates Analysis Type Number
CoRs (Risk Prediction Modeling)
a. (Semi)parametric models with strongly parametrized associations:

Cox, hinge/threshold logistic regression 25
b. Flexible parametric models: Generalized additive model 35
c. Nonparametric thresholds: Donovan et al. (2019)/

van der Laan et al. (2020) 35
d. Superlearner estimated optimal surrogate 35
CoP: Correlates of VE 50
CoP: Controlled VE 50
CoP: Stochastic Interventional VE 50
CoP: Mediators of VE 50
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6.1 Timeline of Statistical Analysis Reports

We summarize the plans for analysis reports over the whole period of the
study. When the Day 1, 57 antibody data from the random subcohort are
available, the first immunogenicity report will be produced. When Day 1, 57
antibody data on COVID cases are also available, the first correlates of risk
report will be produced, focusing on Stage 1 data only. When there is enough
follow-up to measure antibody markers at the later time points (i.e., Day
209, Day 394, possibly Day 759), additional immunogenicity and correlates
reports will be made, including those that assess outcome-proximal correlates
of risk and protection based on Stage 2 data. The initial correlates reports
will likely only include the symptomatic infection/COVID study endpoint;
as data sets become available for the other endpoints the reports will add
correlates analyses against the secondary endpoints.

7 General Statistical Issues in Immune Correlates Assessment

Throughout this section, we define the asymptomatic infection endpoint as
seroconversion without prior occurrence of the COVID endpoint.

Issue 1: Timing of endpoint definition, accounting for diagnosis at

presentation (i.e., date of virological confirmation of symptomatic
COVID — COVID diagnosis) or during post-COVID-19 diagnosis
follow-up.

e COV-INF: Defined at presentation (if COVID endpoint) or at first
positive serotest visit, whichever occurs first

e COVID: Defined at presentation/virologic confirmation

e Asymptomatic infection: Defined at first positive serotest (without
prior COVID endpoint)

e Non-severe COVID: Ascertained by post-COVID diagnosis follow-
up, where the failure time could be defined by the time of resolution of
symptoms
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e Severe COVID: Occurs at presentation or at any time during post-
COVID diagnosis follow-up

At COVID endpoint diagnosis, participants rollover onto a post-diagnosis
follow-up track (Figure 2). This is irrelevant for analysis of the first three
endpoints listed above, but for the non-severe COVID endpoint and the se-
vere COVID endpoint special considerations are needed for proper correlates
analyses. Survival analysis theory typically requires predictable processes,
such that non-severe COVID and severe COVID would have failure times
defined when the classification of the endpoint is known. However, alterna-
tively, the analysis could be simplified by defining the failure time for all three
endpoints COVID, severe COVID, and non-severe COVID to be the date of
presentation, even though at that time one needs to look into the future to
determine whether the COVID endpoint is severe or non-severe. Such an
approach could be justified by thinking of the data as a competing risks data
structure, where one observes the time to COVID, and each COVID endpoint
has an associated binary endpoint “type”, severe or non-severe. The analyses
will use this simplified approach. A justification of this simplified approach
is that severe COVID is a very rare event among vaccine recipients, and it is
the fact of having the event that is important, not whether it happened at
or 9 days post COVID diagnosis, such that using a more refined failure time
would be unlikely to carry additional meaningful information. If greater than
10% of COVID endpoint cases are missing the endpoint type, then methods
accounting for missing endpoint types will be used (e.g., Heng et al. (2020)).

Issue 2: Is the endpoint appropriately analyzed using ordinary sur-
vival analysis or competing risks survival analysis?

For this issue, we consider use of a time-to-event method to assess vaccine
efficacy. In general, a competing risk of a given endpoint of interest is an
endpoint that, once it occurs, precludes the possibility of future occurrence
of the other endpoint.

1. COVID is a competing risk for asymptomatic infection

2. Severe COVID is a competing risk for non-severe COVID
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Therefore, the asymptomatic infection and non-severe COVID endpoints may
be best analyzed by competing risks methods. For example, instead of es-
timating cumulative incidence P(T < t|A = a) for a given treatment arm
A = a, where T is the time from enrollment until the endpoint, we analyze
cumulative incidence P(T < t,J = 1|A = a), where T is the time to the
first event of J = 1 (event of interest) and J = 2 (competing event), and
cumulative VE(t) may be assessed using the parameter

P(T<t,J=1A=1)
P(T<t,J=1A=0)

VE(f) =1 -

In addition, hazard-ratio-based VE may be defined as one minus the cause
J = l-specific hazard ratio (Prentice et al., 1978, Gilbert et al., 2000).

1. Asymptomatic infection is not a competing risk for COVID, because
participants experiencing the asymptomatic infection endpoint continue
follow-up for the COVID endpoint (such that at asymptomatic infection
diagnosis it is not known whether the infection is truly asymptomatic
or pre-symptomatic), and it is not certain that seroconversion prevents
future COVID (if future knowledge supports this conclusion, then asymp-
tomatic infection could be treated as a competing risk).

2. Non-severe COVID is not a competing risk for severe COVID. At presen-
tation, if the COVID event does not qualify as severe, then post-COVID
diagnosis follow-up is required to determine whether the endpoint reg-
isters as non-severe or severe. One will only know the endpoint is not
severe after post-COVID diagnosis follow-up is completed (symptoms
resolve), such that the failure time is not known until the end of post
COVID diagnosis follow-up. Therefore, non-severe COVID is not a com-
peting risk for severe COVID, and the severe COVID endpoint can be
analyzed using ordinary survival analysis ignoring the non-severe COVID
endpoint.

In sum, the COV-INF, COVID, and severe COVID endpoints will be analyzed
by ordinary survival analysis methods, whereas the asymptomatic infection
and non-severe COVID endpoints will be analyzed using competing risks
methods. Moreover, adding nomenclature precision, for the parent infection
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endpoint, the daughter endpoints COVID and asymptomatic infection are
semi-competing risks data (nomenclature in the survival analysis literature),
and for the COVID parent endpoint, the daughter endpoints severe COVID
and non-severe COVID are semi-competing risks data.

In addition, one non-clinical endpoint may be important for correlates assess-
ment: SARS-CoV-2 viral load at COVID diagnosis (VL Dx) (e.g., measured
by nasal swab), or alternatively area under the viral load curve (AUC-VL)
from the COVID diagnosis date through to undetectable viral load, or to
an alternative threshold indicating low viral load. Viral load endpoints are
putative surrogates of disease progression and severity for the individual, and
are also putative surrogates for secondary transmission; moreover the quan-
titative nature of viral load endpoints may afford an opportunity to increase
statistical power.

Issue 3: Courseness level of the failure time variable

1. COVID: Event time defined in ‘continuous time’ on the day of virolog-
ical confirmation.

2. Asymptomatic infection: Event time defined only at fixed infrequent
visits (e.g., Month 6, 12, 18, 24).

3. COV-INF': Event time defined as ‘mixed continuous and discrete’, equal
to the day of virological confirmation (if COVID) and by the first sero-
postive visit (if asymptomatic infection).

4. Non-severe COVID: Event time may be defined in continuous time,
as the number of days from enrollment to COVID diagnosis plus the
number of additional days until the COVID event is known to be non-
severe. However, following the decision made for Issue 1, we simplify and
define the event time at COVID diagnosis.

5. Severe COVID: Event time may be defined in continuous time, as the
number of days from enrollment to COVID diagnosis plus the number
of additional days until the COVID event is known to be severe (which
may be zero days). However, following the decision made for Issue 1, we
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simplify and define the event time at COVID diagnosis.

Issue 4: Binary endpoint vs. failure time endpoint

In general, in phase 3 trials with prospective follow-up for event occurrence
where right-censoring occurs (either due to administrative censoring or loss
to follow-up), it can be advantageous to conduct data analysis in a survival
analysis paradigm. Many of the correlates analyses are specified as such.
However, because the endpoints are rare, and the rate of loss to follow-up
is anticipated to be very low, reliable and interpretable answers may be ob-
tained based on simpler methods that use binary endpoints, and deal with
loss to follow-up in a cruder way. If retention is very high, such that bias and
precision may be minimally impacted by use of a binary endpoint, some of
the correlates analyses may use a binary endpoint. In settings with compet-
ing risks, such analyses would treat the endpoint as multinomial and utilize
methodology accordingly.

In sum, correlates methods are needed that consider time-to-event or binary
endpoints, with or without accounting for a competing risk. In addition, the
methods need to be able to handle continuous, discrete, and mixed continu-
ous/discrete failure times.

8 Case-cohort Sampling Design for Measuring Antibody Markers

Figure 3 illustrates the case-cohort (Prentice (1986)) sampling design that is
used for measuring Day 1, 57 antibody markers (and the later time points at
a later point in time) in a random sample of trial participants. The random
sample is stratified by the key baseline covariates: assigned treatment arm,
baseline SARS-CoV-2 status (defined by serostatus and possibly also NAAT
and/or RNA PCR testing), any additional important demographic factors
such as the randomization strata (e.g., defined by age and/or co-morbidities),
and underrepresented minority status within the U.S. Because the design uses
a stratified random sample instead of the simple random sample proposed by
Prentice (1986), the design may also be referred to as a “two-phase sampling
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design” (Breslow et al. (2009b,a)), where “phase one” refers to variables mea-
sured in all participants and “phase two” refers to variables only measured
in a subset (thus the “case-cohort sample” constitutes the phase-two data).

The case-cohort design enables obtaining marker data (Day 1, 57) for the
random subcohort during early trial follow-up in real-time batches, thereby
accelerating the time until final data set creation and hence data analysis
and results on Day 57 marker correlates. The design allows using the same
random subcohort to assess correlates for multiple endpoints, relevant for
the COVID-19 VE trials with multiple endpoints (Figure 1). This makes the
design operationally simpler than a case-control sampling design.

8.1 Prototype OWS Random Subcohort

Table 5 summarizes the size of the prototype OWS random subcohort, by
baseline factors used to stratify the random sampling. In this subcohort 6
baseline demographic strata are used; if a trial has a different number of
baseline demographic strata, then the table would be modified, holding the
total sample size of the subcohort approximately fixed. For U.S. strata, all
OWS trials specify 50:50 balance by underrepresented minority status Yes:No.
The subcohort sampling is implemented to create representative sampling
across the entire period of enrollment. Non-OWS trial sampling designs would
likely be similar, with different baseline sampling strata perhaps even the
simplest case with no sampling strata and use of simple random sampling.
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Table 5: Random Subcohort Sample Sizes by Baseline Strata for Antibody Marker Measurement

Baseline SARS-CoV-2 Negative?  Baseline SARS-CoV-2 Positive®

Bas. Cov. Stratal 1 2 3 4 5 6 1 2 3 4 5 6
Vaccine 150 150 150 150 150 150 50 50 50 50 50 50
Placebo 20 20 20 20 20 20 50 50 50 50 50 50

IThis schema specifies 6 baseline covariate strata for stratified sampling, for example
1 = U.S. Age 18-64 Minority; 2 = U.S. Age 18-64 non-Minority; 3 = U.S. Age > 65 Minority;
4 = U.S Age > 65 non-Minority; 5 = non-U.S. Age 18-64; 6 = non-U.S. Age > 65.
2The vaccine group baseline negative strata are assigned large sample sizes because the correlates of
risk analysis focuses on baseline negative vaccine recipients. The placebo group baseline negative strata
are assigned small sample sizes given the expectation that almost all Day 57 bAb and nAb readouts
will be negative/zero given the absence of prior exposure to SARS-CoV-2 antigens.
3Equal stratum sizes are assigned for the vaccine and placebo groups in order to compare bAb and
nAb responses in previously infected persons, studying potential differences in natural+vaccine-elicited
responses vs. natural-elicited responses.

If certain strata do not have enough eligible participants available for sam-
pling, then additional sampling is done from other strata to keep the total
random subcohort sample size to close to 1620. A separate OWS Antibody
Marker sampling plan describes the algorithm, available upon request.

8.1.1 Additional sampling of participants missing the second dose

For trials with two doses of vaccine, the set of baseline negative strata for vac-
cine recipients is expanded to also include the subgroup that misses the second
vaccination and minimally has available samples at Day 57, and similarly the
corresponding subgroup to placebo recipients is added; these subgroups are
defined regardless of baseline demographic factors. For the vaccine subgroup,
a random sample of 150 (or the number available, whichever is smaller) par-
ticipants is sampled, and for the placebo subgroup, a random sample of 20
(or the number available, whichever is smaller) participants is sampled. This
additional sample may not be drawn until the last participant reaches 1 or 2
years of follow-up, to be able to ensure that sampled participants have many
samples available.

The two objectives of the additional sampling are: (1) To compare long-term
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antibody responses one dose vs. two doses; and (2) to increase power of the
Stage 2 analysis of outcome-proximal correlates.

8.2 Correlates Objectives Addressed in Two Stages

Figure 4 depicts the two stages of the immune correlates analyses. Stage 1 in-
cludes antibody marker data from all COVID and COV-INF cases diagnosed
through to the last date of: (1) the time that at least 25 evaluable vaccine
breakthrough COVID endpoint cases are available for analysis; and (2) the
time of a data-cut at or after the primary analysis used to define the data
base for the first correlates analysis. Only Day 1, 57 antibody markers, and
COVID and COV-INF diagnosis time point antibody markers, are measured
in Stage 1. The objectives of Stage 1 correlates analyses focus on Day 57
markers, which are the objectives listed in Table 1. Stage 1 focuses on Day
57 markers because in general validated or non-validated surrogate endpoints
for approved vaccines are based on the peak antibody time point, and this
approach fits the priority to develop a validated or non-validated surrogate
endpoint as rapidly as possible.

Stage 2 includes antibody marker data from all COVID and COV-INF cases
diagnosed after the Stage 1 cases through to the end of the trial, including
all available sampling time points (6—7 time points). For random subcohort
participants, the antibody markers at all available time points other than
Day 1, 57 are measured for Stage 2 correlates analyses (4-5 additional time
points). The Stage 2 clinical endpoint data and antibody marker data enable
assessment of longitudinal antibody markers as outcome-proximal correlates
of instantaneous endpoint risk and as various types of outcome-proximal cor-
relates of protection.

The Stage 1 random subcohort sampling plan is finalized prior to or shortly
after study start. The Stage 2 sampling plan is not made until after the results
on vaccine efficacy at the primary analysis are known. The Study Oversight
Group may modify the scope of the set of samples for immunoassay mea-
surements in Stage 2 based on analysis results. The essential distinguishing
mark of Stage 1 vs. Stage 2 is assessment of Day 57 marker correlates that
can be done using antibody data only from Day 1, 57 markers vs. assessment
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of outcome-proximal correlates that requires antibody data longitudinally
including at endpoint diagnosis dates.

8.2.1 Prioritize antibody marker measurement at COVID and COV-INF diagnosis
sampling time points

Conduct of the immunologic assays on diagnosis date samples for all COVID
and all COV-INF endpoint samples is of the highest priority, equal to the
priority of conducting the assays on the Day 1, 57 samples.

8.2.2 [With Day 29 markers]

It Day 29 markers are included, then the case-cohort sampling design is the
same, except all participants in the random subcohort (augmented with in-
fected cases) also have the set of markers measured at Day 29. Thus ‘Day 1,
57" becomes ‘Day 1, 29, 57" throughout.

9 Unsupervised Feature Engineering of Antibody Markers (Stage
1: Day 1, 57)

9.1 Descriptive Tables and Graphics

9.1.1 Antibody marker data

Pseudovirus neutralizing antibody ID50 and ID80 titers, as well as fold-rise
in ID50 and ID80 titers from baseline, are measured at each pre-defined
time point. Indicators of 2-fold rise and 4-fold rise in ID50 titer (fold rise
[post/pre] > 2 and > 4, 2FR and 4FR) are measured at each pre-defined post-
vaccination timepoint. Neutralization responders at each pre-defined time-
point are defined as participants who had baseline values below the LLOQ
with detectable ID80 neutralization titer above the assay LLOQ, or as par-
ticipants with baseline values above the LLOQ with a 4-fold increase in neu-
tralizing antibody titer. While quantitative fold-rise is shown for both ID50
and ID80, response above LLOQ), 2FR and 4FR responder status are shown
only for ID50. (However, for superlearner analysis of multivariable CoRs,
2FR and 4FR responder status variables are included for each of pseud virus-
nAb ID50 and ID8O0, given the objectives of more comprehensive analysis in
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building the estimated optimal surrogate.) For WT live virus-nAb MN50, the
same types of variables are analyzed /reported as for pseudovirus-nAb ID50.

Binding antibody titers to full length SARS-CoV-2 Spike protein, to the RBD
domain of the Spike protein, and to the Nucleocapsid (N) protein will be mea-
sured in all participants in the random subcohort (augmented with infected
cases). N-specific binding antibody titers are not used for correlates analyses
or for graphical reporting; these data are only used for tabular reporting.
Neutralizing antibody titers are not measured to N protein.

The following list describes the antibody variables that are measured from
random subcohort and infection case participants.

1. Individual anti-Spike antibody concentration at each pre-defined time
point

2. Individual anti-Spike antibody fold-rise concentration post-vaccination
relative to baseline at each pre-defined post-vaccination time point

3. Individual anti-RBD antibody concentration at each pre-defined time
point

4. Individual anti-RBD antibody fold-rise post-vaccination relative to base-
line at each pre-defined post-vaccination time point

5. Individual anti-N antibody concentration at each pre-defined time point

6. Individual anti-N antibody fold-rise post-vaccination relative to baseline
at each pre-defined post-vaccination time point

7. 2-fold-rise and 4-fold rise (fold rise in anti-Spike antibody concentra-
tion [post/pre] > 2 and > 4, 2FR and 4FR) at each pre-defined post-
vaccination time point

8. 2-fold-rise and 4-fold rise (fold rise in anti-RBD antibody concentra-
tion [post/pre] > 2 and > 4, 2FR and 4FR) at each pre-defined post-
vaccination time point

9. 2-fold-rise and 4-fold rise (fold rise in anti-N antibody concentration
[post /pre] > 2 and > 4, 2FR and 4FR) at each pre-defined post-vaccination
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time point

10. Pseudovirus-nAb responders, at each pre-defined timepoint defined as
participants who had baseline values below the LLOQ with detectable
pseudovirus-nAb ID50 titers above the assay LLOQ or as participants
with baseline values above the LLOQ with a 4-fold increase in pseudovirus-
nAb ID50 titers

11. Wild type live-virus-nAb responders, at each pre-defined timepoint de-
fined as participants who had baseline values below the LLOQ with de-
tectable WT live virus-nAb MN50 titers above the assay LLOQ or as
participants with baseline values above the LLOQ with a 4-fold increase
in WT live virus-nAb MN50 titers

Summaries of the immunogenicity data will be reported in tables. In partic-
ular, the tables will include, for each pre-defined post-baseline time point:

1. For each binding antibody marker, the estimated percentage of partici-
pants defined as responders, and with concentrations > 2x LLOQ or >
4 x LLOQ, will be provided with the corresponding 95% CIs using the
Clopper-Pearson method

2. For the ID50 pseudo-virus neutralization antibody marker, the estimated
percentage of participants defined as responders, participants with 2-fold
rise (2FR), and participants with 4-fold rise (4FR) will be provided with
the corresponding 95% Cls using the Clopper-Pearson method

3. For the MN50 WT live virus neutralization antibody marker, the esti-
mated percentage of participants defined as responders, participants with
2-fold rise (2FR), and participants with 4-fold rise (4FR) will be provided
with the corresponding 95% CIs using the Clopper-Pearson method

4. Geometric mean titers (GMTs) and geometric mean concentrations (GMCs)
or will be summarized along with their 95% Cls using the t-distribution
approximation of log-transformed concentrations/titers (for each of the 5
Spike-targeted marker types including pseudovirus-nAb ID50 and ID80
and WT live virus-nAb MN50, as well as for binding Ab to N).

5. Geometric mean titer ratios (GMTRs) or geometric mean concentration
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ratios (GMCRs) are defined as geometric mean of individual titers/concentration
ratios (post-vaccination/pre-vaccination for each injection)

6. GMTRs/GMCRs will be summarized with 95% CI (t-distribution ap-
proximation) for any post-baseline values compared to baseline, and
post-Day 57 values compared to Day 57

7. The ratios of GMTs/GMCs will be estimated between groups with the
two-sided 95% ClIs calculated using t-distribution approximation of log-
transformed titers/concentrations

8. The differences in the responder rates, 2FRs, 4FRs between groups will
be computed along with the two-sided 95% Cls by the Wilson-Score
method without continuity correction (Newcombe, 1998).

All of the above estimates will use inverse probability of antibody marker
sampling weighting in order that estimates and inferences are for the popu-
lation from which the whole study cohort was drawn.

Tables will be provided separately for (1) baseline negative individuals, (2)
baseline positive individuals, (3) baseline negative individuals by subgroup
defined as in Table 6, and (4) baseline positive individuals by the same sub-
groups as in (3). Each table will show data for all available time points and
for each of the vaccine and placebo arms.
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Table 6: Baseline Subgroups that are Analyzed (May Vary Slightly by Protocol)!.

Age: <65, > 65

Risk for Severe COVID: At risk, Not at risk

Age x Risk for Severe COVID:

< 65 At risk, < 65 Not at risk, > 65 At risk, > 65 Not at risk

Sex Assigned at Birth: Male, Female

Age x Sex Assigned at Birth:

< 65 Male, < 65 Male, > 65 Female, > 65 Female

Hispanic or Latino Ethnicity: Hispanic or Latino, Not Hispanic or Latino
Race or Ethnic Group:

White?, Black, Asian, American Indian or Alaska Native (NatAmer)

Native Hawaiian or Other Pacific Islander (Paclsl), Multiracial,

Other, Not reported, Unknown

Underrepresented Minority Status in the U.S.:

Communities of color (Comm. of color), White?

Age x Underrepresented Minority Status in the U.S.:

Age > 65 Comm. of color, Age < 65 Comm. of color, Age > 65 White, Age > 65 White

LAll analyses are done within strata defined by randomization arm and baseline positive/negative
status, such that these variables are not listed here as subgroups for analysis.
2For purposes of analysis White is defined as Race=White and Ethnicity=Not Hispanic or Latino.
All of the other Race subgroups are defined solely by the Race variable, with levels Black, Asian,
American Indian or Alaska Native, Native Hawaiian or Other Pacific Islander, Multiracial, Other,
Not reported, Unknown.

For comparing antibody levels between groups, the following groups are com-
pared:

e Baseline negative vaccine vs. baseline negative placebo
e Baseline positive vaccine vs. baseline positive placebo
e Baseline negative vaccine vs. baseline positive vaccine

e Within baseline negative vaccine recipients, compare each of the follow-
ing pairs of subgroups listed in Table 6: Age > 65 vs. age < 65; risk
for severe COVID: at risk vs. not at risk; age > 65 at risk vs. age > 65
not at risk; age < 65 at risk vs. age < 65 not at risk; male vs. fe-
male; Hispanic or Latino ethnicity: Hispanic or Latino vs. Not Hispanic
or Latino; Underrepresented minority status: Communities of color vs.
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White (within the U.S.).

The entire analysis is done in the per-protocol cohort with both Day 1 and
Day 57 marker data available (the two-phase sample).

In addition, if a substantial number of trial participants who missed the sec-
ond dose of vaccine have Day 57 antibody marker data, then similar analyses
will be done in this subgroup, again stratified by randomization arm and
baseline negative/positive status.

9.1.2 [With Day 29 markers|

If Day 29 markers are included, then participants in the random subcohort
and outcome cases will have marker data at Day 1, 29, 57. All immunogenicity
analyses (graphical and tabular) of Day 57 markers are also conducted for
Day 29 markers. In addition, tabular output will include point and 95%
confidence interval estimates of GMT and GMC ratios (Day 57 / Day 29).

9.1.3 Graphical description of antibody marker data

The Day 1, 57 antibody marker data collected from the random subcohort
participants will be described graphically. These data are representative of
the entire study cohort. Importantly, only antibody data from the random
subcohort are included (i.e., no data from cases outside the subcohort are
included). This makes the analyses unsupervised (independent of case-control
status), enabling interrogation and optimization of the antibody biomarkers
prior to the inferential correlates analyses.

Plots are developed for the following purposes. All of the analyses are done
separately within each of the four subgroups defined by treatment arm cross-
classified with baseline negative/positive status. In addition, many of the de-
scriptive analyses will also be done separately for each demographic subgroup
of interest listed above. For descriptive plots of individual marker data points
that pool over one or more of the baseline strata subgroups, two approaches
to plotting will be used. First, plots show all observed data points. The
limitation of this approach is that if the subgroup being plotted aggregates
over multiple baseline sampling strata, then the plot describes the marker
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distribution for a biased sample, not a representative sample. Therefore, a
second set of plots will use weighted random sampling of participants with
replacement, with inverse probability of sampling weights used to make the
plot representative of the subgroup (placed in the Appendix). These plots
will plot the same number of data points as the number of observed data
points.

For each antibody marker readout, both Day 57 and baseline-subtracted Day
57 readouts are of interest. We will refer to the latter as ‘delta.” All readouts,
including delta, will be plotted on the logy( scale, with plotting labels on the
natural scale. As such, delta is logjy fold-rise in the marker readout from
baseline.

The following descriptive graphical analyses are done.

1. The distribution of each antibody marker readout at Day 1 and Day 57
will be described with plots of empirical reverse cumulative distribution
functions (rcdfs) and boxplots (including individual data points) within
each of the four groups defined by treatment arm (vaccine, placebo) and
baseline serostratum (seronegative, seropositive). Inverse probability of
sampling into the subcohort weights are used in the estimation of the
rcdf curves; henceforth we refer to these weights as “inverse probability
of sampling” (IPS) weights. Analyses of Day 1 markers always pool
across vaccine and placebo recipients given that the two subgroups are
the same at baseline.

2. Plots are arranged to compare each Day 57 marker readout between
treatment arms within each of the baseline seropositive and baseline
seronegative subgroups.

3. Plots are also arranged to compare each Day 57 marker readout between
baseline serostatus groups within each treatment arm.

4. Barplots are used to report positive response rates.

5. The correlation of each antibody marker readout between Day 1 and Day
57, and between Day 1 and delta, is examined within each of the base-
line strata subgroups, and within each treatment arm and baseline sero-
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stratum. Pairs plots/scatterplots will be used, annotated with baseline
strata-adjusted Spearman rank correlations, implemented in the PResid-
uals R package available on CRAN. For calculating the correlation within
each treatment arm and baseline serostratum, because PResiduals does
not currently handle sampling weights, the correlation estimates are com-
puted as follows: For each re-sampled data set in the second approach to
graphical plotting, the covariate-adjusted Spearman correlation is calcu-
lated. The average of the estimated correlations across re-sampled data
sets is reported.

6. The correlation of each pair of Day 1 antibody marker readouts are com-
pared within each of the baseline demographic subgroups and baseline
serostratum, pooling over the two treatment arms. Pairs plots/scatterplots
and baseline-strata adjusted Spearman rank correlations are used, with
covariate-adjusted Spearman rank correlations computed as described
above.

7. The correlation of each pair of Day 57 and delta antibody marker read-
outs are compared within each of the baseline demographic subgroups,
treatment arm, and baseline serostratum. Pairs plots/scatterplots and
baseline-strata adjusted Spearman rank correlations are used, with covariate-
adjusted Spearman rank correlations computed as described above.

8. Point estimates of Day 57 marker positive response rates for the vaccine
arm by the baseline demographic subgroups and the baseline serostrata
are provided, as well as pooled over baseline demographic strata. The
point and 95% CI estimates include all of the data and use IPS weights.

9.2 Methods for Positive Response Calls for bAb and nAb Assays

As noted above, binding antibody responders at each pre-defined timepoint
are defined as participants who had baseline concentration values below the
LLOQ with detectable concentration above the assay LLOQ (34 IU/ml), or
as participants with baseline values above the LLO(Q) with a 4-fold increase
in concentration. Therefore, for participants with binding antibody below
the LLOQ, a positive response is defined by concentration > 34 IU/ml, and
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a negative response as the complement (< 34), with value set to 17. This
approach is used for each of the Spike and RBD and N protein antigen targets.

Pseudovirus neutralization responders at each pre-defined timepoint are de-
fined as participants who had baseline ID50 values below the LLOD with
detectable ID50 neutralization titer above the assay LLOD (value 20), or as
participants with baseline values above the LLOD with a 4-fold increase in
neutralizing antibody titer. Therefore, for participants with ID50 baseline
values below the LLOD, a positive response is defined by serum ID50 titer
> 1: 20, and a negative response as the complement (< 1 :20). The same
approach is used based on IDS&0 titer, again based on the LLOD of 1:20 titer.
Similarly, for the WT live virus-nAb MN50 marker, WT live virus neutral-
ization responders at each pre-defined timepoint are defined as participants
who had baseline MN50 values below the LLOD with detectable MN50 above
the assay LLOD (value 62.16), or as participants with baseline values above
the LLOD with a 4-fold increase in neutralizing antibody titer. Otherwise a
value is negative for WT live virus neutralization.

9.3 SARS-CoV-2 Antigen Targets Used for bAb and nAb Markers

The homologous vaccine strain antigens are used for the immune correlates
analyses.

9.4 Score Antibody Markers Combining Information Across Individual bAb
and/or nAb Readouts

Depending on the number and features of antigens that are selected for defin-
ing antibody marker variables, feature extraction/selection techniques may
be employed to determine score/synthesis marker variables that are optimized
according to some criterion that would reflect maximum signal-relevant diver-
sity (e.g., He and Fong (2019)). In addition, the unsupervised dimensionality
reduction techniques such as principal components analysis (PCA) and non-
linear extensions of PCA (e.g. FSDAMI1 and FSDAM2; Fong and Xu (2020))
may also be used to define score variables that maximally capture the main
immune response signal and to study whether there are more than one distinct
signals that are associated with the outcome. If such synthesis features are
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defined, then they will be included as input features in the machine learning
(superlearning) prediction modeling (multivariable CoR, objective).

9.4.1 Systematic ranking of Day 57 antibody markers by signal-to-noise ratio

The signal-to-noise ratio of each Day 57 antibody marker is defined as the
ratio of biological variability over technical variability. The technical vari-
ability will be estimated as the median of the variances across two technical
replicates for each test sample, and the biological variability will be estimated
as the variance of the average of the two technical replicates across all test
samples (without weighting for simplification) minus the technical variabil-
ity (analysis done in the cohort of interest such as baseline negative vaccine
recipients).

The ranking of the set of Day 57 antibody markers will be taken into account
in the interpretation of results.

9.5 Decisions on Antibody Markers to Advance to Correlates or Risk and Cor-
relates of Protection Analyses

The vaccine immunogenicity analysis characterizes SARS-CoV-2 directed an-
tibody levels based on five antibody biomarkers measured at each blood
storage time point: IgG concentration to Spike, IgG concentration to RBD,
pseudovirus-nAb ID50, pseudovirus-nAb ID80, WT live virus-nAb MN50. It
is likely that all five of the biomarkers at each of the Day 57 and Day 29 time
points will be advanced to study as CoRs and CoPs for the initial correlates
reports, given that all of the assays are validated. However, an objective
of the unsupervised learning immunogenicity characterization is to deter-
mine if some markers should be prioritized (for example based on broader
biologically-relevant dynamic range), such that p-values and multiplicity ad-
justment for tests of correlates of risk would only be done for the prioritized
markers. In addition, it is possible that the unsupervised learning could lead
to decisions to pare down the list of markers (e.g., eliminating markers that
are very highly correlated with other markers, or eliminating markers that
are revealed to have unexpected technical issues). Because the unsupervised
learning is done based on random subcohort data and is thus independent
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of case/non-case status, decisions made based on this learning do not com-
promise the validity of the CoR and CoP analyses. Decisions about the set
of antibody makers to use in the CoR and CoP analyses — and their priority
level — will be made and documented in the SAP prior to implementing the
CoR and CoP analyses.

10 Baseline Risk Score (Proxy for SARS-CoV-2 Exposure)

A list of baseline covariates potentially relevant for SARS-CoV-2 exposure
and infection risk will be specified. Based on these covariates, a baseline
risk score is developed and controlled for in correlates analyses to adjust
for potential confounding. The risk score is developed using placebo arm
data only. The risk score is defined as the logit of the predicted outcome
probability from a regression model estimated using the ensemble algorithm
superlearner (i.e. stacking). The settings of superlearner (i.e., loss function,
cross-validation technique, library of learners) that are used for implementa-
tion of superlearner for building a baseline risk score are described in Section
12.5. A separate risk score will be developed for each study endpoint used in
correlates analyses. If the risk score is highly similar across a set of endpoints,
then a single risk score may be selected for application to each endpoint in
the set.

Independent of the superlearner risk score, important individual risk factors
will also be specified for inclusion as adjustment factors in correlates analy-
ses, such as age, status of having a high-risk condition, and underrepresented
minority status. For example, all of the baseline demographic strata used in
the two-phase sampling design will be adjusted for, or a coarsened categori-
cal variable derived from the baseline strata will be adjusted for, where the
amount of coursening may depend on the number of endpoints in the vaccine
arm. Henceforth we refer to the baseline variables that are adjusted for in
correlates analyses as “baseline factors” which, depending on the risk score
results and performance, will consist of only the individual key risk factors,
or key individual risk factors plus the baseline risk score.
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11 Correlates Analysis Descriptive Tables by Case/Non-Case Sta-
tus

The key tables summarizing the distribution of each of the five antibody
markers are listed below. For each table, for each time point Day 1, Day 57
separately, the positive response rate with 95% CI, and the GMT or GMC
with 95% CI, is reported for each of case and non-case groups. In addition,
the point and 95% CI estimate of the difference in positive response rate (non-
cases vs. cases) and the GMT or GMC ratio (non-cases/cases), is reported.

1. Antibody levels in the baseline SARS-CoV-2 negative per-protocol co-
hort (vaccine recipients). Cases are baseline negative per-protocol vac-
cine recipients with the symptomatic infection COVID-19 primary end-
point diagnosed starting 7 days after the Day 57 study visit. Non-
cases/Controls are baseline negative per-protocol vaccine recipients sam-
pled into the random subcohort with no evidence of SARS-CoV-2 infec-
tion up to the time of data cut.

2. Antibody levels in the baseline SARS-CoV-2 positive per-protocol cohort
(vaccine recipients). Cases are baseline negative per-protocol vaccine re-
cipients with the symptomatic infection COVID-19 primary endpoint di-
agnosed starting 7 days after the Day 57 study visit. Non-cases/Controls
are baseline negative per-protocol vaccine recipients sampled into the
random subcohort with no evidence of SARS-CoV-2 infection up to the
time of data cut.

3. Antibody levels in baseline SARS-CoV-2 positive placebo recipients.
Cases are baseline positive per-protocol placebo recipients with the symp-
tomatic infection COVID-19 primary endpoint diagnosed any time af-
ter D1, after D29, or after D57 (by time of antibody measurement).
Non-cases/Controls are baseline negative per-protocol vaccine recipients
sampled into the random subcohort with no evidence of SARS-CoV-2
infection up to the time of data cut.

4. Repeat Table 2 above for fold-rise from baseline (of interest given the
analysis cohort is baseline positive).
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5. Repeat Table 3 above for fold-rise from baseline (of interest given the
analysis cohort is baseline positive).

12 Correlates of Risk Analysis Plan

At first, this analysis plan for CoRs and CoPs as currently written focuses
on the COVID primary endpoint, with its continuous failure times (failure
time defined by the day of the event) and no competing risks. Later, it will
be extended to handle the special issues with secondary endpoints.

12.1 CoR Objectives

The following CoR objectives are assessed in baseline seronegative vaccine
recipients:

1. Univariable CoR To assess each individual Day 57 antibody marker
as a CoR of outcome in vaccine recipients, adjusting for baseline factors

2. Multivariable CoR To build models predictive of outcome based on a
set of Day 57 antibody marker readouts, adjusting for baseline factors

12.1.1 [With Day 29 markers]

If Day 29 markers are included, then a Univariable CoR objective is added,
the same as above, except using the Day 29 versions of the markers instead
of the Day 57 versions.

In addition, the Multivariable CoR objective is repeated to build models
predictive of outcome based on a set of Day 29 antibody marker readouts. It
is also repeated to build models predictive of outcome based on a set of Day
29 and 57 antibody marker readouts used together.

12.2 Outline of the Set of CoR Analyses

The univariable CoR objective is addressed by Cox proportional hazards
regression and nonparametric threshold regression. The multivariable CoR
objective is addressed by superlearning. All of these analyses are implemented
in automated and reproducible press-button fashion.
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In addition, supportive exploratory analyses of the univariable CoR objective
are conducted using flexible parametric regression modeling: hinge /threshold
regression and generalized additive model regression.

12.3 Day 57 Markers Assessed as CoRs and CoPs

The following five Day 57 markers are assessed as CoRs and CoPs, usually
as quantitative variables and in some analyses as ordered trinary variables or
binary variables, all of which do not subtract Day 1 (baseline) values:

1. binding Ab to Spike

2. binding Ab to RBD

3. pseudovirus neutralization ID50
4. pseudovirus neutralization 1D80
5. live virus neutralization MN50

For all univariable CoR analyses (first objective), the non-baseline subtracted
versions of the Day 57 antibody markers are studied; the baseline-subtracted
versions are not studied given that the analyses are done in the baseline
negative cohort for which Day 1 readouts will generally be negative. The
multivariable machine learning CoR analyses include synthesis markers that
combine information across the individual markers listed above, as well as
including 2FR and 4FR versions of variables.

12.3.1 Inverse probability sampling weights used in CoR analyses

For CoR analyses that use inverse probability weighted complete-case (IP-
WCC) methodology, only individuals in the case-cohort sample (i.e., with Day
1, 57 antibody markers measured) are included in the analysis. These meth-
ods incorporate inverse probability sampling (IPS) weights, defined based
on the subcohort sampling strata (Table 5) and case/non-case status. Let
m(X) = P(R = 1|X,Y = 0), where R is the indicator that the phase-two
marker data are available, X are the baseline demographic strata defining
the stratified sampling, and ¥ = 0 means that the probability conditions
on being a non-case. For sampling stratum x, the IPS weight w, assigned
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to a non-case participant in stratum x is defined by w, = 1/7(z) = N,/n,,
where N, is the number of stratum x vaccine recipient non-cases in the Per-
Protocol Baseline Negative Cohort and n, is the number of these participants
that also have Day 1, 57 marker data available. For non-case participant 7 in
the random subcohort, w; = 1/7(X;) denotes the weight w, for this individ-
ual’s sampling stratum. All cases are assigned sampling weight Nj/n; where
N is the total number of vaccine recipient cases in the Per-Protocol Baseline
Negative Cohort and n; is the number of these participants that also had the
Day 1, 57 markers measured.

12.3.2 [With Day 29 markers]

If Day 29 markers are included, then the criterion for individuals being in-
cluded in IPWCC analyses is expanded to also require that they have Day 29
markers measured (as well as Day 1, Day 57 markers measured). The same
sampling weights are used for correlates analyses of Day 29 markers and of
Day 57 markers.

12.3.3 Choice of regression methods

Time-to-event methods use the Day 57 visit date as the time origin.

The IPWCC Cox regression model designed for case-cohort sampling designs
will be used for estimation and inference on hazard ratios of outcomes by Day
57 marker levels, and for estimation and inference on marginalized marker-
conditional cumulative incidence over time. The models will be fit using the
survey R package available on CRAN, and will adjust for the baseline factors.
We use a method from the survey package that assumes without replacement
two-phase sampling and not Bernoulli sampling, which matches the sampling
design and approach to weight estimation (Lumley, 2010).

For models with a single antibody marker, a two-phase Cox model with im-
proved efficiency through calibrated weights (Breslow et al., 2009b,a) will be
used if there are baseline covariates that predict the antibody marker with
R? > 0.4. Based on the phase-two sample, a superlearner model will be
fit (using the library specified in Table 7) to predict the antibody marker
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from the set of collected baseline covariates. The criterion R? > 0.4 will be
checked based on the association of the fitted values from superlearner and
the marker, where the association uses held-out marker values.

Based on the Cox model fit to all available data, a final time point ¢tz near
the time of the last observed outcome will be defined. Let T be the failure
time, S a Day 57 marker of interest, and X the vector of baseline factors
that are adjusted for. With S;(t|s,z) = P(T > t|S = s, X =x,A = 1), the
Cox model fit yields an estimate of S1(t|s, X;) for each individual 7 in the
phase-two sample. The marginalized conditional risk risk(t|s) = Ex[P(T <
t|s, X, A = 1)] through time t (for all times ¢ through ¢z simultaneously) is
estimated based on the equation

risky(tls) = /(1 — Si(t|s,x))dH (x) (1)

where H(+) is the distribution of X in A = 1 individuals.

The function risk(t|s) can be estimated by

S s (1= Sa(t]s, X))
Zn 1 ) (2)
i=1 7(X;)

riski(t|s) =

where n is the number of participants with phase-two data.
The bootstrap is used to obtain 95% pointwise confidence intervals for risk;(tp|s).

The bootstrap process will be performed by stratifying on the two-phase
sampling strata and random subcohort. Across all bootstrap samples, the
number of subjects in each stratum in the random subcohort remains fixed,
but the number of cases does not stay the same.

The results of the above Cox modeling will be output in a variety of ways:

1. Plot @1“5“8) vs. s with 95% Cls for continuous S = s varying over its
whole range. Include on the plot the estimate of @O(tp) with a 95%
CI for the placebo arm (horizontal bands), computed by IPS weighted
Kaplan-Meier analysis.
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2. Based on a fit of the Cox model to a nominal categorical antibody marker
defined as the tertiles of S, plot riski(t|s) for each category of S values
with 95% Cls, for all time points ¢ from Day 57 through tr. If more
than 20% of vaccine recipients have S below the LLOQ of the assay,
then the categories instead will be (1) values < LLOQ); (2) values below
the median of values > LLOQ); (3) values above the median of values >
LLOQ. Include on the plot the estimated curve @o(t) with 95% Cls
for the placebo arm, computed by IPS weighted Kaplan-Meier analysis.

3. Tabular reporting of the hazard ratio per 10-fold change in the quanti-
tative Day 57 antibody marker with 95% confidence interval and 2-sided
p-value

4. Tabular reporting of the hazard ratio for the Middle and Upper categories
of the categorical Day 57 antibody marker vs. the Lower category, with
95% confidence interval and 2-sided p-value, as well as a global general-
ized Wald two-sided p-value for whether the hazard rate of the endpoint
varies across the three categories. The table includes a point estimate
and 95% CI for the cumulative incidence of the endpoint through ¢ for
the placebo arm.

5. Report point and 95% CI estimates for the hazard ratio per 10-fold
change in the Day 57 antibody marker, for the entire baseline negative
vaccine cohort and for each of the baseline demographic strata subgroups
defined in Table 6 (reported via forest plotting).

Grambsch and Therneau (1994) tests are applied to test veracity of the pro-
portional hazards assumption. This testing is done to aid interpretation of
results, but not as a gateway to trigger the fitting of a more flexible version of
the Cox model, as we seek to avoid computing new confidence intervals and
p-values contingent on goodness-of-fit-testing, as they would not have their
correct interpretations. Other correlates of risk methods explicitly model risk
flexibly as a function of the marker.

The bootstrap is used to calculate 95% pointwise Cls for risk;(tp|s) in s.
The 2-sided Wald p-value for testing the regression coefficient of the marker
in the Cox model provides a valid test of the null hypothesis Hy : risk;(tp|s) =
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riski(tp) for all s, and is reported.

In addition, the same Cox model analysis will be used to estimate the alterna-
tive marginalized conditional risk parameter defined by risk;(t|S > s) where
riski(t|S > s) = Ex|[P(T <t|S > s,X,A=1)], which can be estimated by

S (- 5118 = 5, X))

>t 7

This parameter is useful because typically subgroups of interest are defined by
having marker response above a threshold. We will plot risk(tz|S > s) vs. s
with 95% Cls for continuous S with s varying over the range of S in which the
number of cases to estimate S;(¢|S > s, X;) is 5 or more. This type of analysis
is also included because it analyzes the same parameter as the nonparametric
threshold estimation method described below, providing a way to address the
threshold question both by Cox modeling and by nonparametric analysis.

riski(t|S > s) =

If the outcome under study is subject to competing risks, then the Cox model
is fit in the same way, except counting the competing risk as right-censoring.
Now the parameter being estimated is the marginal conditional cumulative
incidence function riski(t,1|s) = Ex[P(T < t,J = 1|s,X, A = 1)] where
J =1 is the outcome of interest. Now, riski(t, 1|s) can be written as

t
risky(t1]s) = / / Mt 1|5, 2)8y(¢'|s, 2)dt dF) (x]5)
0

_ | fot M (t, 1s, z)S1(t|s, z)dt fi(s|z)dH (z) 3)
| fi(s|z)dH (z)

where A (¢, 1]s, ) = A1 (t|A = 1) 57) is the cause-specific hazard function
(Prentice et al., 1978). Estimation of riski(t, 1|s) could be done by non-
parametric kernel smoothing for estimation of Ay (¢t|A = 1). To avoid kernel
smoothing (and bandwidth dependence), we will instead base estimation on
the equation

[ riski(t,1]s,x) fi(s|z)dH (x)

risky(t, 1|s) = T F(sle)dH (z) (4)
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where the Fine-Gray proportional subdistribution hazards model is used to
estimate risky(t, 1|s,z) (implemented in the cmprsk R package available on
CRAN). While we prefer the interpretation of cause-specific hazards to sub-
distribution hazards as in Fine-Gray, in a (very) rare event situation such as
in the COVID-19 VE trials (vaccine arm), the Fine-Gray method is expected
to give similar answers, except it is more easily implemented. Therefore, we
estimate risk;(t, 1]s) by

Z?:l ﬁmgkl (tv 1|87 Xz)fl(‘S’Xl))

2im1 ﬁ(ﬁ(i)fl(s‘Xi)

riski(t,1]s) =

(5)

As for the analyses without competing risks, the bootstrap is used for calcu-
lating 95% confidence intervals and for testing Hy : risk; (tp, 1|s) = risk;(tp, 1)
for all s.

Similarly, point and 95% Cls for risk;(tp, 1|S > s) are computed.

12.3.4 Univariate CoR: Nonparametric threshold regression modeling

The van der Laan et al. (2020) extension of the nonparametric CoR threshold
estimation method of Donovan et al. (2019) is applied to each of the five non-
baseline subtracted Day 57 antibody markers, using the version accounting
for right-censoring of some follow-up times, assessing failure through the fixed
time point tp. The analyses adjust for the same baseline factors X as used
in the Cox model CoR analyses.

The extension adjusts for baseline covariates by estimating the conditional
mean function E[I(T < tp)|S > s,X, A = 1] using discrete-SuperLearner
and then empirically averaging over the baseline covariates X to estimate
the marginal risk riski(tp|S > s) = Ex[I(T < tp)|S > s, X, A = 1] for each
threshold s of the the antibody marker in a specified discrete set. We do
not perform pooled regression across the thresholds s, which ensures we are
totally nonparametric in estimating the threshold dependence of Ex|[I(T <
tr)|S > s,X,A = 1] on s. The SuperLearner library includes a range of
increasingly flexible parametric learners including logistic regression (glm),
bayesian logistic regression (bayesglm), and L1-penalized logistic regression
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(glmnet). (Two of each learner is included in the library, one with only
main-term variables and another with main-term and interaction variables.)

An advantage of the nonparametric CoR threshold method compared to Cox
modeling that specifies a log linear hazard ratio with the marker is that it
can potentially detect a threshold of very low risk.

The results are reported in the same way that Donovan et al. (2019) re-
ports results in its Figure 2, where point estimates and simultaneous 95%
confidence bands for risk;(tp|S > s) are plotted for a range of threshold
values (the simultaneous confidence bands cover the entire curve in s with
at least 95% probability). The method uses the same empirical two-phase
sampling estimated weights (IPS weights) as used for the other univari-
able IPWCC CoR analyses. In addition, for each pre-specified risk thresh-
old ¢ set to take values over a grid between 0 and the estimated outcome
rate in placebo recipients, the method is applied to estimate the inverse
function s, = inf{s : Ex[[(T < tp)|S > s,A = 1,X] < ¢}, where s,
is estimated by substitution of the marginal risk function estimate. Note
that the substitution estimator of s. requires that the marginal risk func-
tion is estimated for all thresholds, which is computationally infeasible. In-
stead, we estimate the marginal risk function on a sufficiently large dis-
crete set and linearly interpolate to obtain marginal risk estimates for all
thresholds outside the discrete set. In order for this estimand to be well
defined, we operate (for this estimand only) under the assumption that
s — Ex[I[(T < tp)|S > s,A = 1,X] is monotone. For the substitution-
based estimator of the inverse function s. to be well-defined, we require the
estimate of s — Ex[I(T < tp)|S > s,A =1, X] to be monotone as well. If
there is evidence that the function estimate is not monotone then we replace
the estimate with its monotone projection, which preserves its theoretical
properties (Westling, van der Laan, Carone, 2020).

A plot of point and simultaneous 95% confidence interval estimates of s,
(over the grid of ¢ values) is provided to help indicate marker thresholds
defining subgroups with very low risk of outcome. The confidence interval
estimates for s, are derived directly from the simultaneous 95% confidence
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band estimates for the marginal risk function s — Ex[I(T < tp)|S > s, A =
1, X], and therefore its estimates and inference are compatible with those of
the marginal risk function. In particular, no multiple testing adjustments are
needed.

The analysis is done using targeted maximum likelihood estimation (TMLE)
as described in van der Laan, Zhang, and Gilbert (2020), and the simulta-
neous confidence bands are of the Wald-type, obtained from the asymptotic
distribution of the TMLE.

12.4 Univariable CoR: Supportive Exploratory Flexible Parametric Risk Mod-
eling

For each of the five non-baseline subtracted Day 57 antibody markers, flexible
nonlinear modeling of outcome risk studied as a dichotomous outcome Y will
be conducted, as exploratory supportive analyses. Again, the analyses adjust
for the same baseline factors X as used in the Cox model CoR analyses.

The nonlinear relationship between the logit of risk and markers will be mod-
eled using two-phase polynomial regression models (Son and Fong, 2020; Fong
et al.; 2017), e.g., hinge model, or three-phase segmented models (Chen,
2020). The mean function of a ¢'" order two-phase polynomial regression
model can be expressed as follows:

n(s, X)=ar+ayz+p1(s—e) +pfri(s—e)+Po(s—e) + Por(s —e)
+o B (s —e)L + Bi(s —e)l,

where X is the baseline covariate vector, s is a fixed value of the immunologic
marker of interest, e is the threshold parameter, (s —e), = s—eif s > e and
0 otherwise, and (s —e)_ = 0 if s > e and s — e otherwise.

In addition, a generalized additive model with degree of smoothing estimated
by cross-validation will be employed (Wood, 2017).

12.4.1 [With Day 29 markers]

For CoR analyses of Day 29 markers, the same analyses are done, except
using the Day 29 visit date as the time origin and counting events starting 7
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days after the Day 29 visit.

12.4.2 P-values and Multiple hypothesis testing adjustment for CoR analysis

In general, p-values are only reported from pre-specified and automated
(press-button) analyses. For the CoR analyses, p-values are reported for
the univariable Cox regression analyses of the five specified Day 57 antibody
marker variables. Two-sided p-values for hypothesis testing of a Day 57
marker CoR are calculated both for the Cox regression of quantitative mark-
ers (two-sided Wald tests), and for the Cox regression of markers binned into
tertiles (two-sided Generalized Wald tests). Therefore a total of ten 2-sided
p-values for CoRs are calculated.

It is not completely clear whether to perform multiple hypothesis testing
adjustment, given the expectation that the correlations among the markers
are high, and possibly very high, meaning that multiplicity correction could
incur a relatively high cost on the false negative error rate.

However, given that robust evidence supporting an antibody marker as a CoR
will be required for qualifying a marker, we will conduct multiplicity adjust-
ment for CoR analysis, as the ability to make an inference that a marker
passed pre-specified multiplicity adjusted criteria should aid an overall ev-
idence package for establishing a validated or non-validated surrogate end-
point. Therefore, multiplicity adjustment is performed across the ten 2-sided
p-values.

A permutation-based method (Westfall et al., 1993) will be used for both
family-wise error rate (Holm-Bonferroni) and false-discovery rate (g-values;
Benjamini-Hochberg) correction. 10* replicates of the data under the null hy-
potheses will be created by randomly resampling the immunologic biomarkers
with replacement. For each Cox regression CoR analysis the unadjusted p-
value, the FWER-adjusted p-value, and the g-value is reported for whether
there is a covariate-adjusted association, where all p-values and g-values are
2-sided. As a guideline for interpreting CoR findings, markers with FWER-
adjusted p-value < 0.05 are flagged as having statistical evidence for being
a CoR. Additionally, markers with unadjusted p-value < 0.05 and g-value <
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0.10 are flagged as having a hypothesis generated for being a CoR.

As described in this SAP, the FWER adjustment is done for all advanced
Day 57 markers abong bAb Spike, bAb RBD PsV nAb ID50, PsV nAb IDSO0,
and WT LV MN50. If the antibody data set available for correlates analysis
does not yet contain the WT LV MN50 data (due to a longer time horizon
on performing the assay), then no multiplicity adjustment will be performed
in the report. That is, the first report with multiplicity adjustment will wait
until data from all three assay types are included. This is done so as to
avoid repeated multiplicity adjustment that would introduce complexity in
interpretation.

12.4.3 [With Day 29 markers]

If Day 29 markers are included, the same multiplicity adjustment approach is
used as for Day 57 markers. The multiplicity adjustment is done separately
for Day 29 markers and for Day 57 markers, given the high degree of corre-
lation of the analysis results (given that all endpoint cases starting 7 days
post Day 57 are common among the two analyses). The results on Day 29
markers is considered to be a supportive analysis.

12.5 Multivariable CoR: Superlearning of Optimal Risk Prediction Models

12.5.1 Objectives

The multivariable CoR objective is addressed through two sub-objectives:
first to build an ‘estimated optimal surrogate,” (Price et al., 2018) a model
that best predicts the outcome from Day 57 antibody markers and baseline
factors. The second sub-objective is estimation and inference on variable im-
portance measures for each Day 57 antibody marker, for ranking of antibody
markers by their importance/influence on predicting risk. The analysis plan
is patterned off of the analysis of the HVTN 505 HIV-1 vaccine efficacy trial
(Neidich et al., 2019). For these analyses both baseline-subtracted and non-
baseline subtracted versions of the Day 57 markers are used, in a broader
unbiased analysis to build models most predictive of outcome.
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12.5.2 Input variable sets

Day 57 antibody markers are classified into the following four antibody
marker variable sets, with individual variables listed within categories:

1. Binding antibody anti-Spike (S-bAb)
a Day 57 anti-Spike IgG concentration
b delta anti-Spike IgG concentration
¢ indicator 2FR anti-Spike IgG concentration
d indicator 4FR anti-Spike IgG concentration
2. Binding antibody anti-RBD (RBD-bAb)
(a) Day 57 anti-RBD concentration
(b) delta anti-RBD concentration
(¢) indicator 2FR anti-RBD concentration
(d) indicator 4FR anti-RBD concentration
3. Pseudovirus neutralizing antibody anti-Spike (pseudovirus-nAb)
a Day 57 anti-Spike ID50
b Day 57 anti-Spike ID80
¢ delta anti-Spike ID50
d delta anti-Spike ID80
e indicator 2FR anti-Spike ID50
f indicator 4FR anti-Spike ID50
g indicator 2FR anti-Spike ID80
h indicator 4FR anti-Spike ID80

4. Wild Type Live virus neutralizing antibody anti-Spike (WT live virus-
nAb)

a Day 57 anti-Spike MN50
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b delta anti-Spike MN50
¢ indicator 2FR anti-Spike MN50
d indicator 4FR anti-Spike MN50

The baseline factors comprise a fifth set of variables to include in the super-
learner modeling.

12.5.3 Missing data

We expect a very small amount of missing data from the five antibody marker
types (bAb Spike, RBD; pseudovirus-nAb ID50, ID80; WT live virus-nAb
MN50). However, there may be a small amount of missing data, with pos-
sibly different participants missing data for different markers. We take the
following approach to handle any missing data that occurs.

First, we define the two-phase sampling indicator € as taking value of one if a
participant has Day 1 and Day 57 bAb data for both Spike and RBD, where
here we assume that the MSD platform is highly robust such that it will have
nearly 100% complete data for sampled participants. Second, for the other
four marker types (pseudovirus-nAb ID50, ID80; WT live virus-nAb MN50),
for participants with e = 1 but the Day 1 and/or Day 57 marker value
is missing, we use single imputation to fill in any missing values, ignoring
the uncertainty in the imputations in the analysis, because it should have
negligible impact on results given the (very) small amount of missing data.
Multiple linear regression will be used to impute missing values, separately
for each antibody marker, based on the set of individuals with that antibody
marker measured at Day 1 and 57. Accurate imputations are possible given
the high correlations of the markers, especially between ID50 and ID80 within
the same immunoassay. This process means that the two-phase data set has
a simple ‘all-or-nothing’ missing data pattern where participants with ¢ =1
have all markers with Day 1 and Day 57 data, and are included in IPWCC
analyses, and participants with e = 0 have some or all markers missing and are
excluded from IPWCC analyses. This means that all IPWCC data analyses
can use the same empirical frequency (IPS) sampling weights.
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For analysis methods that use the whole cohort (phase-one plus phase-two
data), the same phase-two data as described above are used. If some of
the phase-one baseline factors that are adjusted for variables are missing
with only a small amount of missing values, then single imputation will be
used to fill in the values, and, as for the immunologic marker imputations,
the uncertainty in the imputations will be ignored in the analyses. Simple
average values will be used to fill in baseline covariate missing values of the
baseline factors.

12.5.4 Implementation of superlearner

For risk score development, Superlearner is applied to the placebo arm only.
For multivariable immune correlates of risk/estimated optimal surrogate de-
velopment, Superlearner is applied to the vaccine arm only. The following
details are used in the implementation of superlearner of the vaccine arm
only:

e Pre-scale each quantitative and ordinal variable to have empirical mean
0 and standard deviation 1.

e For the immune correlates analysis, the final library of learners is selected
accounting for the number of phase-two endpoint cases in the vaccine
arm. If the number of cases is limited, at or near 25 evaluable endpoint
cases, then the modeling will only allow learning algorithms to have a
maximum of 5 Day 57 antibody marker variables, and will use leave-
one-out cross-validation and the negative log-likelihood loss function, a
combination that tends to provide good performance in small sample
size settings. On the other hand, if there are larger numbers of endpoint
cases in the vaccine arm, then 5-fold cross-validation will be used, and
no more than floor(n,/6) input variables will be used in the model where
n, is the number of evaluable vaccine endpoint cases. The choices will
be finalized prior to case/control unblinded analysis.

e Include learning algorithms with and without screening of variables.
Screens used will be: 1) glmnet (lasso) pre-screening (with default tun-
ing parameter selection), 2) logistic regression univariate 2-sided p-value
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screening (at level p < 0.10), and 3) high-correlation variable screening
(described below). The adaptive algorithms (SL.randomForest, SL.xgboost,
SL.gam, SL.polymars) are only used with these screens, given that the
limited number of endpoint cases may challenge use of these methods
with no variable screening. Moreover, the adaptive algorithms are not
used if there are only 25 (or close to it) endpoint cases. All of the selected
learners are coded into the SuperLearner R package available on CRAN.

Include high-correlation variable screening, not allowing any pair of input
variables to have Spearman rank correlation » > 0.9. When a pair of
variables has r > 0.9, the variable with the highest ranked signal-to-
noise ratio (i.e., biological dynamic range) is selected; if these data are
not available or there is a tie then variables are selected in the following
order of priority: first WT live virus-nAb, second pseudovirus-nAb, third
bAb.

The superlearner is conducted averaging over 10 random seeds, to make
results less dependent on random number generator seed.

All of the learners are implemented with weighting (by the IPS weights
w; = 1/7(X;) described in Section 9.1) to account for the two-phase
sampling design.

Two levels of cross-validation are used:

— Outer level: CV-AUC computed over 5-fold cross-validation repeated
10 times to improve stability

— Inner level: leave-one-out CV used to estimate ensemble weights (if
n, is near 25) and 5-fold CV if n, is larger.

Results for comparing classification accuracy of different models are
based on point and 95% confidence interval estimates of cross-validated
area under the ROC curve (CV-AUC) and difference in CV-AUC as a
predictiveness metric (Hubbard et al., 2016; Williamson et al., 2020).
Results are presented as forest plots of point and 95% confidence inter-
val estimates similar to those used in Neidich et al. (2019) (Figure 3) and
Magaret et al. (2019). CV-AUC is estimated using the R package vimp
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available on CRAN;, including the IPS weights that are used for other
data analyses.

For the risk score SuperLearner analysis of the placebo arm, the same ap-
proach is used, with the following modifications: (1) 5-fold cross-validation
will be used with no more than max(20,floor(n,/20)) input variables included
in each model, where n, is the number of evaluable placebo arm cases; (2)
no IPS weighting is needed.

Table 7 lists the learning algorithms that are applied to estimate the con-
ditional probability of the outcome based on the input variable sets con-
sidered above. Most of the algorithms are non-data-adaptive type learning
algorithms, such as parametric regression models (e.g., glms), which are sim-
ple and stable and advantageous for an application with limited number of
endpoint events. Data-adaptive type algorithms are also included, for in-
creasing flexibility of modeling: SL.randomForest, SL.gam, SL.polymars, and
SL.xgboost. All of the selected learners are coded into the SuperLearner R
package.

Before fitting the superlearner models to the vaccine arm data, a decision will
be made on how to define the “baseline risk factors” input variable set. To
define this set, the performance of the SuperLearner model for all individual
baseline demographic/potential exposure variables will be compared to that
of the Superlearner model baseline risk score built as described above. Ex-
amining the results, the set of baseline risk factors will include a subset of
individual risk factors and/or the baseline risk score itself.

For the immune correlates objective the superlearner model is fit to each of

the following 12 variable sets, with immunological variables listed in Section
12.5.2:

1. Baseline risk factors
2. Baseline risk factors and the bAb anti-Spike markers
3. Baseline risk factors and the bAb anti-RBD markers

4. Baseline risk factors and the pseudovirus-nAb ID50 markers
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10.

11.
12.

. Baseline risk factors and the pseudovirus-nAb ID80 markers

Baseline risk factors and the live virus-nAb MNbH0 markers

Baseline risk factors and the bAb markers and the pseudovirus-nAb ID50
markers

Baseline risk factors and the bAb markers and the pseudovirus-nAb ID80
markers

Baseline risk factors and the bAb markers and the live virus-nAb MN50
markers

Baseline risk factors and the bAb markers and the combination scores
across the five markers [PCA1, PCA2, FSDAM1/FSDAM2 (the first two
components of nonlinear PCA), and the maximum signal diversity score
He and Fong (2019)].

Baseline risk factors and all individual marker variables

Baseline risk factors and all individual marker variables and all combi-
nation scores (full model)

Therefore in total, 12 variable sets are studied. The reason to include the first
variable set is to investigate how much incremental improvement in predicting

outcome is obtained by adding antibody marker variables on top of baseline
demographic/exposure factors. The other variable sets are designed to com-
pare the four immunoassay types by their predictiveness, to compare the two
pseudovirus neutralization readouts ID50 and ID80 for their predictiveness,

and to investigate incremental predictive value in using multiple immunoas-
says. The final variable set is included as the full model that considers all
variables together, which serves as another reference model.
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Table 7: Learning Algorithms in the Superlearner Library of Estimators of the Conditional Prob-
ability of Outcome!.

Screens/
Algorithms Tuning Parameters
SL.mean None
SL.glm Low-collinearity and (All, Lasso, LR)
SL.bayesglm Low-collinearity and (All, Lasso, LR)
SL.glm.interaction Low-collinearity and (All, Lasso, LR)
SL.glmnet Low-collinearity and (alpha=0, 0.33, 0.67, 1; All, Lasso LR)
SL.gam Low-collinearity and (Lasso, LR)
SL.nnet Low-collinearity and (Lasso, LR)
SL.ksvm Low-collinearity and (kernel=*“rbfdot”, “polydot”) and (Lasso, LR)
SL.polymars Low-collinearity and (Lasso, LR)
SL.xgboost Low-collinearity and (maxdepth,shrinkage)=(2,0.05),(2,0.1),(4,0.05),(4,0.1)

and (Lasso, LR)
SL.randomForest ~ Low-collinearity and (Lasso, LR)

LAll continuous and ordinal covariates are pre-standardized to have empirical mean 0 and
standard deviation 1.
2All = include all variables; Lasso = include variables with non-zero coefficients in the standard
implementation of SL.glmnet that optimizes the lasso tuning parameter via cross-validation;
Low-collinearity = do not allow any pairs of quantitative variables with Spearman rank
correlation > 0.90; LR = Univariate logistic regression Wald test 2-sided p-value < 0.10.

In order to evaluate the relative performance of the superlearner estimated
models for each of the 12 variable sets, derived using the learning algorithms
specified in Table 7, the CV-AUC is estimated with a 95% confidence interval
(Hubbard et al., 2016; Williamson et al., 2020). The point and 95% confidence
interval estimates of CV-AUC are reported in a forest plot, which provide
a way to discern which Day 57 antibody assays and readouts provide the
most information in predicting COVID or other outcomes. The specified
library of learners may be modified prior to SAP finalization (before breaking
the blind of case/non-case status). As noted above CV-AUC is estimated
using the R package vimp available on CRAN, which uses augmented inverse
probability weighting to properly estimate CV-AUC accounting for the two-
phase sampling design.

In addition, for selected variable sets, similar forest plots will be made com-
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paring performance of the various estimated models (e.g., by individual learn-
ing algorithm types such as lasso), including discrete superlearner and super-
learner models. The plot will be examined to determine which individual
learning algorithm types are performing the best. If there is an interpretable
algorithm that has performance close to the best-performing algorithm (which
is most likely to be the superlearner), then it will be fit on the entire data
set of vaccine recipients and the estimated model presented in a table.

Cross-validated ROC curves are plotted for the superlearner estimated models
for each of the input variable sets. In addition, boxplots of cross-validated
estimated probabilities of outcome by case-control status (as estimated from
the superlearner models) are plotted.

12.5.5 [With Day 29 markers]

If Day 29 markers are included, then all multivariable CoR models continue
to use the primary analysis cohort and to count events starting 7 days after
the Day 57 visit. Therefore, participants identified to be cases anytime be-
fore 7 days after the Day 57 visit are excluded from all multivariable CoR
superlearning analyses.

Regarding the 12 variable sets listed above, additional variable sets will be
included to represent Day 29 markers as input variables. In particular, vari-
able sets 2-12 will only include Day 57 markers. These variable sets will be
cloned into 11 new sets (13-23) including Day 29 markers in place of Day
57 markers. Lastly, another 11 variable sets (24-34) will be formed with
the same structure, where each input variable set includes both Day 29 and
Day 57 markers. This allows the Superlearning modeling to address whether
including markers from both time points improves prediction of outcome.
Therefore, if Day 29 markers are included, the number of input variable sets
is 34 instead of 12.

13 Correlates of Protection: Generalities

In general, for all of the correlate of protection analyses, the same antibody
markers are assessed that were analysed as correlates of risk: the Day 57
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antibody markers not subtracting for the Day 1 baseline readout are used.
Each of the five Day 57 antibody biomarkers are separately studied as CoPs
by the different analysis approaches summarized below.

13.0.1 [With Day 29 markers]

If Day 29 markers are included, then the same CoP analyses are done as for
each of the five Day 57 markers, where, as for the CoR analyses, now the
time origin is the Day 29 visit date and endpoint cases are counted starting
7 days after the Day 29 visit date.

14 Correlates of Protection: Correlates of Vaccine Efficacy Anal-
ysis Plan

For each of the five Day 57 antibody biomarkers, the method of Gilbert,
Blette, Shepherd, and Hudgens (2020) will be used to estimate V E(1), V E(0),
and VE(1)—V E(0), each with a 95% confidence interval and a 95% estimated
uncertainty interval (EUI), where V E(1) is vaccine efficacy for the subgroup
of vaccine recipients with Day 57 marker if assigned vaccine above a specified
cut-point value s, and V E(0) is vaccine efficacy for the subgroup of vac-
cine recipients with Day 57 marker if assigned vaccine not greater than s.,;.
The analysis will be done under the NEE assumption (“no early-effect”) of
Gilbert et al. (2020), unless the data support positive vaccine efficacy before
Day 57, in which case the analysis will be done under the NEH assump-
tion (“no early harm”) of Gilbert et al. (2020). The cut point is defined
as the percentile equal to one minus the estimated vaccine efficacy in the
primary analysis, with logic that a maximally simple version of a perfect
CoP would have binary marker with S = 1 corresponding to protection and
S = 0 corresponding to no protection. We will repeat the analysis using two
additional cut-points that creates greater balance in frequencies of S = 1
and S = 0 in the vaccine group random subcohort. This analysis method
does not require closeout placebo vaccination (CPV) (Follmann, 2006) or a
good baseline immunogenicity predictor of the Day 57 antibody marker. The
method is implemented using Bryan Blette’s R package “psbinary” posted at
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his Github repository.

A limitation of the Gilbert et al. method is that it only assesses a bi-
nary biomarker. Other analyses will be considered to estimate V E(s) over
biomarker values s over the entire range, treating S as a quantitative or
categorical variable, and gaining efficiency by incorporating CPV and/or pu-
tative baseline immunogenicity predictors (BIPs). Because of the rarity of
the COVID-19 event in vaccine recipients, simulations suggest limited ability
of CPV to enhance statistical power (as seen in many simulation studies,
e.g., Follmann, 2006; Huang et al., 2013), such that the key for improving
efficiency will be the availability of a BIP. VE curve analysis for continuous
S will thus be conducted contingent on the availability of a BIP that satisfies
the R? criterion outlined in Table 8.

Let Y (a) denote the potential binary outcome of interest if receiving inter-
vention a, with a = 1,0 standing for assignment to vaccine and placebo,
respectively. Let S(a) denote the potential biomarker value if receiving inter-
vention a. The vaccine efficacy curve (Follmann, 2006; Gilbert and Hudgens,
2008) is defined as the curve of vaccine efficacy as a function of the immune re-
sponse biomarker if assigned vaccination (i.e., S(1)): VE(s) =1—-P(Y (1) =
11S(1) = s)/P(Y(0) = 1]S(1) = s). It characterizes the percentage re-
duction in clinical risk under vaccine assignment compared to under placebo
assignment conditional on S(1) and informs about the magnitude of potential
immune response associated with certain levels of VE. Consider the existence
of BIPs X correlated with S(1) and/or a CPV component in the trial where
a subset of placebo recipients free of the outcome are vaccinated and have
their immune response biomarkers measured as substitutes for S(1). Under
the NEE assumption and assuming the set of participants with S(1) available
is nested within the set of participants with BIP measures, the pseudo-score
estimation method (Huang et al., 2013; Zhuang et al., 2019) based on discrete
BIP measures allowing for adjustment of X will be adopted for estimating the
risk model P(Y (z2) = 1]S(1), ) and subsequently VE(s) =1— [ P(Y (1) =
115(1), z)dFx(z|S(1))/ [ P(Y (0) = 1]|S(1), z)dFx(x|S(1)). Hypothesis test-
ing will be conducted for testlng the null hypothesis that the VE curve is
constant (Zhuang et al., 2019). Estimated parametric (Gilbert and Hudgens,

65



2008), semiparametric (Huang and Gilbert, 2011), or nonparametric (Li and
Luedtke, 2020) likelihood estimators of VE curves will be applied to contin-
uous BIPs. In scenarios where some BIPs are not measured from all trial
participants, VE curve estimators accounting for this monotone missingness
in X and S(1) will be adopted (Huang, 2018). If the data support positive
vaccine efficacy before Day 57, sensitivity analysis approaches will be con-
ducted for VE curve estimation under the NEH assumption. In the presence
of multiple candidate biomarkers and when a CPV component is present, a
multiple imputation approach as proposed in Dasgupta and Huang (2019) will
be utilized to impute missing S(1) data for selecting markers from multiple
candidates and deriving a univariate marker score for VE curve estimation.

Finally, for scenarios with very rare events such that methods described above
lack precision even with a CPV component but where the available BIP still
satisfies the R? criterion outlined in Table 8, we will adopt sensitivity analysis
methods that model the placebo risk conditional on the counterfactual S(1)
based on a sensitivity parameter that varies over some pre-specified range.

Among different strategies to identify BIPs, the following will be tried. First,
for vector vaccines, we will study Day 1 bAb or nAb response to the vector
as a BIP for the Day 57 markers of interest. Second, we will check whether
Day 1 bAb or nAb to Nucleocapsid protein is a BIP for the anti-Spike/anti-
RBD Day 57 markers of interest. The rationale for this latter analysis is that
some studies have shown cross-reactive responses to Nucleocapsid protein and
to common circulating human coronaviruses. We will also evaluate using a
multivariate BIP that corresponds to all of these aforementioned candidate
univariate BIPs, which may help to achieve the target R? (see Table 8).

15 Correlates of Protection: Interventional Effects

In these analyses, we seek to understand whether, how, and to what ex-
tent Day 57 antibody markers impact vaccine efficacy in causal ways. We
describe three approaches to this problem. Each involves consideration of
a binary counterfactual outcome Y (a,s) (e.g., indicator of the COVID dis-
ease endpoint by a pre-specified time) under a hypothetical intervention that
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both sets randomization assignment A = a and sets the Day 57 immunologic
marker S to a fixed value or based upon a random draw from a analyst-
specified distribution. Below, we assume that S is scalar-valued, but some
of the approaches below naturally extend to the case where a vector of im-
munologic markers are considered (currently such analyses are not planned).
Given the central goal to develop a parsimonious surrogate endpoint based
on a single immunoassay, the main analysis will use each of the methods to
assess each of the five quantitative readouts (not baseline-subtracted) sepa-
rately as CoPs, adjusting for the same set of baseline covariates as used in
the CoR analyses previously described in Section 12.

15.1 CoP: Controlled Vaccine Efficacy

We first describe the controlled vaccine efficacy curve defined as

P(Y(1,5) = 1)

CVE(s) =1 - PO (0) = 1)

The value CVE(s) takes represents the relative decrease in endpoint frequency
achieved by administering vaccine and setting Day 57 immunologic marker
level to s compared to the placebo control intervention. Under our approach,
the value of CVE(s) is assumed to be monotone non-decreasing in s; in other
words, vaccine efficacy can only potentially be improved by setting greater
marker levels. The extent to which the marker plays a role in determining

vaccine efficacy can be determined by the degree of flatness of the graph of
CVE(s) versus s.

In addition, because the primary study cohort for correlates analysis is naive
to SARS-CoV-2, each of the Day 57 markers S has no variability in the
placebo arm [all values are ‘negative,” below the assay lower limit of detection
(LLOD)]. Therefore, advantageously in this setting CVE(s) has a special
connection to the mediation literature, where CVE(s = LLOD) is the natural
direct effect, and vaccine efficacy is 100% mediated through S if and only if
CVE(s = LLOD) = 0. Thus inference on CVE(s = LLOD) evaluates full
mediation.

Since P(Y(0) =1) = P(Y = 1| A = 0) in view of vaccine versus placebo ran-
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domization, the controlled vaccine efficacy CVE(s) at level s can be identified
using the fact that

P(Y(1,s)=1)=E[P(Y =1|S=s,A=1,X)

whenever Y (1,s) and S are independent given A = 1 and a vector X of
covariates, and P(S = s|A = 1,X) > 0 almost surely. In other words,
identification of the controlled vaccine efficacy requires that a rich enough
set of covariates be available so that deconfounding of the relationship be-
tween endpoint Y and marker S is possible in the subpopulation of vaccine
recipients, and that marker level S = s may occur within each subpopulation
defined by values of the covariates X (positivity).

For each s, the identified parameter corresponding to CVE(s) is an irregular
parameter within nonparametric models, making its estimation at root-n rate
impossible; this significantly complicates estimation and inference on CVE(s).
Fortunately, the monotonicity of s — CVE(s) provides an opportunity to cir-
cumvent these difficulties. Similarly to Westling et al. (2020a)’s approach for
the causal dose-response function, we will use the general methodological
template proposed in Westling and Carone (2020) to derive (i) a nonpara-
metric Grenander-type estimator of CVE(s) and (ii) a plug-in confidence
interval for CVE(s) based on an asymptotic Chernoff limit. This estimator
will require, as an intermediate step, estimation of several nuisance functions,
including the outcome regression P(Y = 1|S = s,A = 1, X = ) and the
propensity score P(S = s| X =z, A = 1). These nuisance functions will be
estimated using the Superlearner ensembling algorithm with a rich library
including both parametric regression methods as well as flexible machine
learning tools.

The monotonicity-based procedure we will develop facilitates statistical in-
ference for CVE(s) for each s separately, where point estimates and 95%
confidence intervals for CVE(s) will be presented. However, it is also of in-
terest to investigate whether the Day 57 marker plays a role in determining
vaccine efficacy. To do so, we will formally test the null hypothesis

Hy : CVE(s) is constant in s
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against various alternatives. We will first adapt the approach of Westling
(2020) to devise a nonparametric omnibus test of this null hypothesis. We
will also construct a nonparametric directional test of this hypothesis tailored
to alternatives under which CVE(s) is monotone in s, along the lines of Hall
and Heckman (2000), for example. Leveraging the known monotonicity of
the controlled vaccine efficacy will provide greater power than omnibus tests.

15.1.1 Conservative (upper bound) sensitivity analysis for the Cox model correlates
of risk analysis

While the above nonparametric approach is considered to be the best sci-
entific approach because it takes the greatest care to avoid the correctness
of inferences depending on parametric modeling assumptions that cannot
be fully verified, we also apply the same Cox modeling approach described
in Section 12.3.3 augmented with a sensitivity analysis, with advantages of
harmonization with the CoR analysis, sensitivity analysis that is generally
warranted when a no unmeasured confounders assumption is made, and ef-
ficiency gain achieved via the added modeling assumptions. The sensitivity
analysis quantifies the rigor of evidence for a controlled VE CoP after ac-
counting for potential bias from unmeasured confounding.

Gilbert et al. (2020a) details the sensitivity analysis approach, which was
applied to the CYD14 and CYD15 dengue phase 3 data sets (Moodie et al.,
2018); we plan to apply it in the same way to the COVID-19 data sets (as
the structure of the problem is the same). We summarize here the essential
details needed for application to the COVID-19 data sets.

We define S to be a controlled risk CoP if P(Y'(1,s) = 1) is monotone non-
increasing in s with P(Y'(1,s) = 1) > P(Y(1,s") = 1) for at least some s < &',
where point and 95% confidence interval estimates of P(Y (1,s) = 1) versus
s, with built in robustness to unmeasured confounding, describe the strength
of the CoP in terms of the amount and nature of decrease. Suppose the CoR
analysis based on the Cox model is conducted as described in Section 12.3.3.

Let marginalized conditional risk
TM(S> = Tiskl(tp|8)
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and controlled risk
roe(s) = P(Y(1,s) =1).

Given that CoR analysis is based on observational data — the biomarker
value is not randomly assigned — a central concern is that unmeasured or
uncontrolled confounding of the association between S and Y could render
rav(s) # ro(s), biasing estimates of the controlled risk curve ra(s) and of
controlled risk ratios of interest

RR¢(s1,82) = ro(s2)/ro(s1) -

Because we can never be certain that confounding is adequately adjusted
for, sensitivity analysis is warranted, as considered in extensive literature —
see, e.g., VanderWeele and Ding (2017) and references therein. Sensitivity
analysis is useful to evaluate how strong unmeasured confounding would have
to be to explain away an observed causal association, that is, to determine the
strength of association of an unmeasured confounder between S and Y needed
for the observed exposure-outcome association to not be causal, ry/(s) #
ro(s). We follow the recommendation of VanderWeele and Ding (2017) to
report the E-value as a summary measure of the evidence of causality, or,
in our application, evidence of whether S is a controlled risk CoP based on
variation in the controlled risk curve. We also include other closely related
measures of sensitivity.

The E-value is the minimum strength of association, on the risk ratio scale,
that an unmeasured confounder would need to have with both the exposure
(S) and the outcome (Y') in order to fully explain away a specific observed
exposure—outcome association, conditional on the measured covariates [Van-
derWeele and Ding (2017); VanderWeele and Mathur (2020)]. If, as in CoP
analyses, the estimated marginalized risk ratio ERM(sl, So) = Tam(S2)/Tm(s1)
for s1 < s9 is less than one, then the E-value for EEM(S;[, S9) is calculated as

1+ \/1 - ﬁM(Sl, 82)
ﬁM(SlaSQ) '

(6)

err(s1,52) =
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We include the argument (1, s9) in the notation, with s; < so by convention,
to be clear that the E-value depends on specification of two specific marker-
level subgroups.

To illustrate the interpretation of an E-value, suppose S is binary and re-
gression analysis yields an estimate RRy(0,1) = 7y(1)/71,(0) = 0.40 with
95% confidence interval (CI) (0.14,0.78). An E-value e(0,1) of 4.4 means
that a marginalized risk ratio RRy/(0, 1) at the observed value 0.40 could be
explained away (i.e., RRc(0,1) = 1.0) by an unmeasured confounder associ-
ated with both the exposure and the outcome by a marginalized risk ratio
of 4.4-fold each, after accounting for the vector X of measured confounders,
but that weaker confounding could not do so.

In addition, we follow the recommendation of VanderWeele and Ding (2017)
to also report the E-value eyp(s1,s2) for the upper limit (72}(31, S9) of the
95% CI for the observed marginalized risk ratio ﬁM(sl, S9), computed as 1
if (71(51, S9) > 1 and, otherwise, as

1+ \/1 — ﬁ(sl,SQ)
lj\L(sl, S9)

Y

which in the example equals eyp(0,1) = 1.88. This E-value for the upper
limit indicates, for given s; < s, the strength of unmeasured confounding at
which statistical significance of the inference that RRc(s1,s2) < 1 would be
lost. The two E-values above are useful for judging how confident we can be
that an immunologic biomarker is a controlled risk CoP, with E-values near
one suggesting weak support and evidence increasing with greater E-values.

It is also useful to provide conservative estimates of controlled risk ratios
and of the controlled risk curve, accounting for unmeasured confounding.
We approach these tasks based on the sensitivity analysis, or bias analysis,
approach of Ding and VanderWeele (2016). We give their main result and
refer readers to the paper for details. We begin by defining two (possibly
context-specific) fixed sensitivity parameters. First, we set RRyp(si, s2) to
be the maximum risk ratio for the outcome Y comparing any two categories
of the unmeasured confounders U, within either exposure group S = s; or
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S = s9, conditional on the vector X of observed covariates. Second, we set
RRgy(s1,s2) to be the maximum risk ratio for any specific level of the un-
measured confounder U comparing individuals with S = s; to those with
S = 59, with adjustment already made for the measured covariate vector X.
Thus, RRyp(s1, $2) quantifies the importance of the unmeasured confounder
U for the outcome, and RRpgy(s1,$2) quantifies how imbalanced the expo-
sure/marker subgroups S = s; and S = sy are in the unmeasured confounder
U. The values RRyp(s1, s2) and RRgy(s1, se) are always specified as greater
than or equal to one. We suppose that RRjys(s1,s2) < 1 for the fixed values
s1 < sy — this is the case of interest for immune correlates. Defining the bias
factor (or bounding factor)

B(sy, 52) = RRyp(s1, s2)RRpu(s1, s2)
b2 RRUD(Sl, 82) + RREU(Sl, 82) —1

for s; < sy, and letting RRY,(s1, s2) be defined in the same way as RRy/(s1, s2),
except with marginalization over the distribution of the joint distribution
of X and U, then the result of Ding and VanderWeele (2016) states that
RRY,(s1,52) < RRys(s1,52) X B(sq, s2), where

RRY,(s1,59) = E{ri(tr|ss, X, U)}/E{r(tp|s1, X,U)}

with r1(+|-) conditional risk r(t|s1,z,u) = P(T < t|S = 1, X = 2, U =
u, A = 1), and the expectations are over the distribution of (X, U).

Translating this result to our problem context, under the positivity assymp-
tion, we have that RRY,(s1,s2) = RRc(s1, s2) and so, it follows that

RRO(31, 82) S RRM(Sl, 82) X B(Sl, 82) . (7)

This inequality states that the causal risk ratio is bounded above by the
marginalized risk ratio multiplied by the bias factor. It follows that a conser-
vative (upper bound) estimate of RR¢(s1,S2) is obtained as ﬁM(Sl, S9) X
B(s1, s2), and a conservative 95% CI is obtained by multiplying each con-
fidence limit for RRy;(s1,$2) by B(s1,$2). These estimates for RR¢(s1, S2)
account for the presumed-maximum plausible amount of deviation from the
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no unmeasured confounders assumption specified by RRyp(s1, s2) and
RRgy(s1,82). An appealing feature of this approach is that the bound (7)
holds without making any assumption about the confounder vector X or the
unmeasured confounder U.

The above approach does not directly provide a conservative estimate of the
controlled risk curve r¢(s), because additional information is needed for abso-
lute versus relative risk estimation. We consider an approach that selects the
value s of S such that 73;(s°") matches the proportion of vaccinees with
outcome Y = 1. This value is a ‘central’ marker value at which the observed
marginalized risk equals the observed overall risk. Then, the controlled risk
curve is estimated by

1

7/”\0(8) = ?M(S) B(Scent, S)I(S Z Scent) + B(Tsce"t)

I(s < s“™)|. (8)
The bias factor B(sy, s9) should have greater magnitude for a greater distance
of s1 from sy, as determined by specifying RRyp(s1,s2) and RRgy(s1, S2)
each with magnitude increasing with sy — s1 (for s; < s3). The expression
above uses bias B(s", s) for s above s, pulling the observed risk 7y/(s) up
for subgroups with high biomarker values, and uses 1/B(s, s") for s below
s pulling the observed risk 7)/(s) down for subgroups with low biomarker
values. In other words, it makes the controlled risk curve flatter, closer to
the null curve.

We consider one simple specific approach, which we use in the illustrative
application. First, we set RRyp = RRgy and take RRy to be the common
value. Second, we set RRy(s1,s2) to be log-linear in the distance sy — s,
that is, log RRy(s1,s2) = v(s2 — s1) for s; < so. Third, for any pair of values
(s1,52), we fix a sensitivity parameter RRy(s{™, s3") to some value above
one. It follows then that

log RRy(s1, 89) = (%) log RRU(s{ix, 55“7)
Sy TS

for all s; < s5.
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The sensitivity analysis is done for each of the two Cox model CoR analyses
described in Section 12.3.3, first for tertiles of the Day 57 marker and sec-
ond for the quantitative marker. For the former, E-values are reported for
both the point estimate and the upper 95% confidence limit for RRx(0, 1),
where category 1 is the upper tertile, category 0 is the lower tertile, and the
intermediate middle tertile subgroup of vaccine recipients is excluded from
the analysis. In addition, setting RRyp(0,1) = RRpy(0,1) = 2, such that
B(0,1) = 4/3, we report conservative estimation and inference on the causal
risk ratio RR¢(0,1).

Next we repeat the analysis treating S as a quantitative variable, where
P(T <t|S=s,X,A=1) is again estimated by two-phase Cox partial likeli-
hood regression and now RR);(s1, S2) is the marginalized risk ratio between
s1 and s9. We will plot point and 95% confidence interval estimates of the
observed marginalized risk and controlled risk curves, for the latter using the
sensitivity analysis described in Section 15.1.1.

For validity the method requires the positivity assumption, and thus the
method will only be applied if the data are reasonably supportive of the
positivity assumption. To check positivity, we study the antibody marker
distribution in vaccine recipients within each subgroup of the covariates X
that are adjusted for. For the tertiles analysis we require evidence that within
each subgroup some vaccine recipients have lower tertile responses and some
vaccine recipients have upper tertile responses. For the quantitative S anal-
ysis, we look for evidence that S varies over its full range within each level
of the potential confounders that are adjusted for.

15.2 CoP: Stochastic Interventional Effects on Risk and Vaccine Efficacy

Another approach to studying correlates of protection involves estimating the
effect of shifting the immune response distribution in the vaccinated individ-
uals (Hejazi et al., 2020a). Specifically, we can consider the effect on risk of
a given endpoint of a controlled intervention that shifts the distribution of
an immune response by d units, where ¢ is an analyst-specified real number.
Considering a counterfactual scenario in which we are able to intervene so as
to modify the immune response induced by the vaccine (e.g., a hypothetical
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change in dose or other re-formulation of the vaccine), we take this hypo-
thetical intervention to lead to an improved (if § > 0) or lessened immune
response (if 6 < 0) relative to the current vaccine (at 6 = 0). Using this
framework, we can query the counterfactual risk of the endpoint under this
hypothetical vaccine. Using notation established above, this quantity can be
expressed as the mean of the counterfactual variable Y (1,5(1) + 9).

This approach is similar to the controlled effects approach described in Sec-
tion 15.3, but with an important distinction. In the controlled effects ap-
proach, one assumes that it is possible to set S = s for all individuals in
the population. For high values of s, this assumption may be unrealistic if
the vaccine fails to be strongly immunogenic for some subpopulations. On
the other hand, with the interventional approach, it is only required that
individuals’ immune responses be shifted relative to their observed immune
response, which may be more plausible for some vaccines.

Under assumptions (Hejazi et al., 2020a), the main two of which being
no unmeasured confounders and positivity (forms of both are also required
for the Controlled VE CoP analyses), the counterfactual risk of interest
E[Y(1,S5(1) + 9)] is identified by

ElP(Y=1|A=1,8=8+6X=1)| A=1,X].

Examining this quantity across a range of o provides insight into the relative
contribution of a given immune response marker in preventing the endpoint
of interest.

Hejazi et al. (2020a) proposed nonparametric estimators that rely on esti-
mates of the outcome regression (as described above) and the conditional
density of the immune response marker in vaccinated participants. Their es-
timators efficiently account for two-phase sampling of immune responses and
are implemented in the txshift package (Hejazi and Benkeser, 2020) for the
R language and environment for statistical computing (R Core Team, 2020),
available via both GitHub at https://github.com/nhejazi/txshift and
the Comprehensive R Archive Network at https://CRAN.R-project.org/
package=txshift.
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These estimators will be applied to each of the five Day 57 antibody markers
(without baseline adjustment) controlling for the same set of baseline risk
factors controlled for in other analyses previously discussed. As with the
mediation analysis approach described in Section 15.3, the procedure will
leverage low-dimensional risk factors alongside parametric regression strate-
gies and flexible conditional density estimators for endpoints with fewer than
100 observed cases (pooling over the treatment arms); however, more flexible
learning techniques will be employed for modeling the outcome process for
endpoints with a greater number of observed cases.

In particular, conditional density estimates of immune response markers will
be principally based on a nonparametric estimation strategy that reconstructs
the conditional density through estimates of the conditional hazard of the
discretized immune response marker values (Hejazi et al., 2020a,d,c); this ap-
proach is an extension of the proposal of Diaz and van der Laan (2011). A
Super Learner ensemble (van der Laan et al., 2007) of variants of this nonpara-
metric conditional density estimator and semiparametric conditional density
estimators based on Gaussinization of residuals will be constructed using the
s13 R package (Coyle et al., 2020). In settings with limited numbers of case
endpoints, the outcome process will be modeled as a Super Learner ensem-
ble of a library of parametric regression techniques (as recommend by Gruber
and van der Laan, 2010), while the library will be augmented with flexible re-
gression techniques — including lasso and ridge regression (Tibshirani, 1996;
Tikhonov and Arsenin, 1977; Hoerl and Kennard, 1970), elastic net regres-
sion (Zou and Hastie, 2003; Friedman et al., 2009), random forests (Breiman,
2001; Wright et al., 2017), extreme gradient boosting (Chen and Guestrin,
2016), multivariate adaptive polynomial and regression splines (Friedman
et al., 1991; Stone et al., 1994; Kooperberg et al., 1997), and the highly
adaptive lasso (van der Laan, 2017; Benkeser and van der Laan, 2016; Hejazi
et al., 2020b) — as the number of endpoint cases grows. These algorithm
libraries will be coordinated to match those used in other CoP analyses.

Additionally, we note that P(Y(0) = 1) is estimated in the same way as
for the analysis of controlled vaccine efficacy, thus yielding an estimate of
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stochastic intervention VE defined by

E[P(Y=1|A=1,S=8+6X=x)|A=1,X]
PY(0) = 1)

SVE() =1—

Output of the analyses will be presented as point and 95% confidence interval
estimates of E[Y (1, S5(1)+ )] and of SV E(s) over the values of s for each of
the Day 57 antibody markers, for each of a range of § spanning -2 to 2.

Lastly, just as for the controlled VE CoP analyses, these analyses will only
be performed if diagnostics support plausibility of the positivity assumption.
Importantly, however, the positivity assumption for the stochastic interven-
tional effects differs from that usually required. That is, where the positivity
assumption for effects defined by static interventions requires a positive prob-
ability of treatment assignment across all strata defined by baseline factors
(i.e., that a discretized immune response value be possible regardless of base-
line factors), the positivity assumption of these effects is

s, €S = Si+5ES|A:1,X:£C

for all z € X and ¢+ = 1,...n. In particular, this positivity assumption does
not require that the post-intervention exposure density, ¢ s(S—6 | A =1, X),
place mass across all strata defined by X. Instead, it requires that the post-
intervention exposure mechanism be bounded, i.e.,

P{QOS(S_(S | A= 17X)/QO,S(S ‘ A= 17X) > 0} - 17

which may be readily satisfied by a suitable choice of 9.

More importantly, the static intervention approach may require consideration
of counterfactual variables that are scientifically unrealistic. Namely, it may
be inconceivable to imagine a world where every participant exhibits high
immune responses, given the phenotypic variability of participants’ immune
systems. This too may be resolved by considering an intervention §(X),
allowing the choice of d to be a function of baseline covariates X (Hejazi
et al., 2020a; Diaz and van der Laan, 2012; Haneuse and Rotnitzky, 2013;
Diaz and van der Laan, 2018).
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15.3 CoP: Mediator of Vaccine Efficacy

A classic application of mediation is to decompose the overall VE into so-
called natural direct and indirect effects. We will estimate this decomposition
for each Day 57 antibody marker individually (focusing on the non-baseline
subtracted markers as for the other CoP analyses described above), as well as
when considering all antibody markers together (although this SAP currently
restricts to analysis of the individual markers). For simplicity, as before, we
describe this approach using a binary outcome, noting that extensions to
time-to-event (with competing risks) are possible. The total effect of the
vaccine can be represented by the risk ratio RR = (1 - VE),

(Y(,5(1)) =1)
(Y(0,5(0)) =1)
The natural direct and indirect effects are, respectively,
P(Y(1,5(0)) =1 P(Y(1,5(1)) =1
Hhpr = PEYEO,SEOQ = 1§ and RRipr = PEYELSEO;; - 1; |
Note that RR = RRpgRRpg, showing that the total effect decomposes into
the direct times indirect effect. Another quantity of interest is the proportion
mediated, which could be expressed as
log(RRDE)
log(RR)
We note that PM=1 if and only if RRpg = 1, i.e., no direct effect means that
the marker fully mediates VE. We will estimate PM defined in this way.

P
RR =
P

PM=1-

As above, we must assume all confounders X of S and Y have been mea-
sured. We also assume there is sufficient overlap of the immunologic marker
distributions, and no confounders of the mediator-outcome relationship that
are affected by treatment. Moreover, we require the assumption

P(S=5/A=0,X =x) >0 implies P(S=s/A=1,X=2) >0 (9)

for all subgroups X = z (i.e., a.e.). Under these assumptions, P(Y (a, S(a’) =
1) is identified by

E[P(Y=1|A=0a,8 X)|A=d, X].
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In our immune CoP application it is expected that, for analyses restricting to
baseline negative individuals, the conditional density of the immune response
marker in the placebo arm will be a point mass at 0, that is with S below
the LLOQ. In other words, we do not expect any placebo recipients to have a
positive value of the immune response marker. This implies the identification
result that for a = 0,1, P(Y(a,S(0))=1)=E[PY =1|A=4a,5=0,X)].
Therefore, all of the needed terms P(Y(a,S(a") = 1) are identified; while
P(Y(0,S5(1) = 1) is not identified, it is not necessary to estimate this term
in order for estimation of the parameters of interest (natural direct effect,
natural indirect effect, PM).

Zheng and van der Laan (2012) provide a multiply robust targeted minimum
loss-based plug-in estimator of natural direct and indirect effects. Their es-
timator will be consistent if either the estimated outcome regression or the
estimated mediator distribution is consistent for their respective targets. We
will utilize a modified version of this estimator that accounts for missing
outcomes and for the two-phase sampling design. The estimator requires
estimation of several regressions including:

e the outcome regression: a regression of Y onto A, S, and X amongst
those with both Y and S recorded (the phase two sample);

e the propensity score: the known randomization probability for vaccine;

e the propensity for vaccination given the immune response marker: a
regression of A onto X and S among those in the phase two sample;

e the probability of missing outcomes: a regression of the indicator of
having missing endpoint status onto A, X, and S among those in the
phase two sample; and

e a series of sequential regressions that de-confound the relationship be-
tween vaccine receipt, immune response, case-status, and sampling de-
sign.

The estimator provides a means of mapping these estimators into estimates
of RRpg, RRipg and PM. This estimator is robust, in that it only relies
on consistently estimating certain combinations of the above regressions, and
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efficient, in that it utilizes data on the entire trial population rather than
only those included in the random sub-cohort.

For endpoints with fewer than 100 observed cases (pooled over the random-
ization arms), we will leverage logistic and linear regression models, as ap-
propriate, to estimate each of the above regressions and only include a low-
dimensional set of pre-specified characteristics in X. In these cases, 95%
confidence intervals for RRpgr, RRypr and PM will be constructed using the
percentile-based nonparametric bootstrap.

For endpoints with more than 100 observed cases (pooled over the random-
ization arms), we will instead employ super learning to estimate the above
regression quantities and include a higher dimensional set of potential con-
founders in X; the same set of baseline potential confounders adjusted for in
other analyses will be included. In this case, the super learner library would
include a diversity of pre-specified algorithms. In these cases, the nonpara-
metric bootstrap cannot be used to construct confidence intervals, and we
will instead rely on Wald-style confidence intervals with standard errors esti-
mated based on the empirical variance of the estimators’ estimated influence
functions.

There may arise situations in which there is insufficient overlap of the im-
mune response distribution. For example, if all individuals in the vaccinated
arm have a non-zero response (i.e., response above the LLOQ), while all in-
dividuals in the placebo arm have no measured response (i.e., value below
the LLOQ), then the assumption (9) of the above methods will be violated.
In fact, the assumption (9) implies that within every subgroup X = z, there
needs to be some vaccinated participants with S below the LLOQ. There-
fore, for each Day 57 marker, the mediation analysis of the quantitative S
will only be done if diagnostics support this assumption. We will also plan
to conduct an analysis using a three-category ordinal version of S with the
marker threshold defining the lowest category selected to ensure that some
vaccine recipients have values in the lowest category, across the subgroups;
the default for this categorical S will be tertiles and matched to the way
that the three-category variable is analyzed for Cox model correlates of risk
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analysis.

16 Summary of the Set of CoR and CoP Analyses and Their Re-
quirements and Contingencies, and Synthesis of the Results,
Including Reconciling Any Possible Contradictions in Results

Table 8 summarizes all of the Stage 1 / Day 57 marker correlates analyses
that are done, including contingencies for whether and when each analysis is
done. The quantitative version of each marker S, and the tertiles version of
each marker S, is common across all of the analyses. All of the Day 57 mark-
ers are the versions that are not baseline subtracted, given that the cohort
for analysis is baseline negative. Most of the analyses focus on univariate
Day 57 markers. The primary reason to do this is the goal to identify a
parsimonious correlate based on a single marker without needing to run the
set of assays, and secondary reasons are: (1) the assay readouts are expected
to be highly correlated, especially for the ID50 and ID80 readouts from the
same pseudovirus neutralization assay, and (2) there is ample precedent for
univariate markers being accepted as immunological surrogate endpoints for
approved vaccines (Plotkin, 2010).
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Table &:

ments/Contingencies for Conduct of the Analysis

Summary of Stage 1 Day 57 Marker CoR and CoP Analyses with Require-

Structure Requirements/Contingencies
of Min No. Vaccine
Analysis Day 57 Marker(s) Endpoints Other
CoR Cox Model Tertiles of S* 25 None
Quant. S = s? 25 None
Quant. S > s! 25 None
CoR Nonpar. threshold Quant. S > s! 35 None
CoR GAM Quant. S = s° 35 None
CoR threshold log. regr. Quant. S = s? 25 None
CoR Superlearner® Quant. S = s, 2FR, 4FR 35 None
CoP: Correlates of VE Binary S 50 None
Quant. S = s 50 BIP with R? > 0.25
CoP: Controlled VE Quant. S =s 50 Feasibility of positivity*
Tertiles of S = s 50 Feasibility of positivity*
CoP: Stoch. Interv. VE Quant. S =s 50 Feasibility of positivity*
CoP: Mediators of VE Quant. S =s 50 Feasibility of positivity?
Tertiles of S 50 Feasibility of positivity*

I'These analyses are harmonized in addressing the same scientific question of how does endpoint
risk vary over vaccinated subgroups defined by S above a threshold.
2These exploratory supportive analyses are harmonized in addressing the same scientific question
of how does endpoint risk vary over vaccinated subgroups defined by S equal to a given marker
value.
30nly this Superlearner analysis uses data from multiple assays and multiple readouts as input
features; the other analyses consider one Day 57 biomarker at a time. *The positivity
assumptions are as follows. Controlled VE: P(S = s|A =1, X) > 0 almost surely. Stochastic
Interventional VE: s, € S = s;+0€S|A=1,X =z forallx € X and i =1,...n. Mediators
of VE: P(S=s|A=1,X) > 0 almost surely and
P(S=5slA=0,X =z)> implies P(S =s|A=1,X =) > 0. Graphical diagnostic analyses are
used to assess feasibility of each positivity assumption, where the assumption may be more
feasible for S as tertiles than as a quantiative variable. For quantitative S, the assumption is
weaker for the Stochastic Interventional VE analysis, such that it is possible that only this
analysis of the three will be done.

Some of the analyses include parametric assumptions for characterizing asso-
ciations (Cox model and threshold analyses, Cox model versions of Controlled
VE analyses) and others are nonparametric or approximately so (all other
analyses). If parametric and nonparametric analyses of the same type (e.g.,
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Cox model vs. nonparametric CoR analysis of the same association param-
eter; Controlled VE Cox model vs. nonparametric monotone dose-response)
suggest contradictory results, then the interpretation from the nonparamet-
ric analysis will be prioritized, given it is more robust and less likely to be
an incorrect result. The diagnostic testing of the parametric assumptions
will aid this interpretation. As noted above, if the nonparametric analysis
suggesting a contradictory result requires a positivity assumption, then its re-
sults will only be prioritized if diagnostics support feasibility of the positivity
assumption.

16.1 Synthesis Interpretation of Results

To structure the interpretation of the whole set of CoR and CoP results, we
consider the Bradford-Hill criteria for supporting causality assessments:

1. Temporal sequence of association (vaccination causes generation of an-
tibodies, which precede occurrence of the clinical disease outcome)

2. Strength of association (CoR magnitude)
3. Consistency of association (across studies and methods)

4. Biological gradient (may be interpreted as dose-response with greater
Day 57 antibody corresponding to lower risk and greater VE)

5. Specificity (that the antibody marker is induced by vaccination not nat-
ural infection, and the antibody impacts the particular clinical endpoint
being analyzed)

6. Plausibility [(supported by other COVID vaccines through study in effi-
cacy trials and challenge (animal or human) trials, and by other potential
studies such as natural history re-infection studies and monoclonal an-
tibody prevention efficacy studies that could be challenge (animal or
human) or field trials])

7. Coherence (the causality assumption does not appear to conflict with
current knowledge)

8. Experimental reversibility (if VE wanes to a low level then the antibody
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marker also wanes coincidently; if the Day 57 marker is a strong correlate
for outcome during the period of high VE, then it becomes a weaker
correlate against endpoints occurring during the later period of low VE;
also could be supported if vaccine breakthrough cases tend to occur early
in follow-up when antibody levels are known to be relatively low)

9. Analogy (supported by other respiratory virus vaccines, and natural his-
tory studies or challenge studies of other respiratory virus vaccines)

On temporal sequence, because the analyses are done in baseline negative
individuals, generally the Day 57 antibody responses must be generated by
the vaccine, and if the outcome occurs well after Day 57, then there is clear
temporal ordering of vaccination causing antibodies followed by outcome.
The nuance is outcome cases with event times near 7 days post Day 57, some
of which could have been infected with SARS-CoV-2 prior to Day 57 and have
relatively long incubation periods, possibly perturbing temporal ordering by
creating naturally-induced rather than vaccine-induced antibody. However,
the knowledge about the distribution of the time period between SARS-CoV-
2 acquisition and symptomatic COVID, and the time needed for an infection
to create an adaptive immune response, suggests that this issue could only
haves a minor impact, and overall the temporal sequence criterion readily
holds. Yet, the correlates analysis that stringently only includes cases with
documented antigen negativity at both Day 29 and Day 57 may be helpful
for evaluating the temporal sequence criterion.

On strength of association, this is directly quantified in all of the analyses as a
core output of each method, quantified by point estimates and confidence in-
terval estimates of covariate-adjusted association parameters or causal effect
parameters.

On consistency of association, checking for similar estimates and inferences
across the multiple vaccine efficacy trials will be relevant. The fact that
all of the tested vaccines are designed to protect through induction of an-
tibody to Spike protein suggest that consistency is plausible. The vaccine
platform needs to be accounted for in this evaluation, where consistency may
be expected for vaccines of a given type (e.g., mRNA vaccines, Spike protein
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vaccines, viral vector vaccines with a similar vector), whereas across types
a consistent body of evidence would be very helpful, but not a requirement.
FDA guidance has stipulated that a surrogate endpoint for one vaccine plat-
form is not necessarily expected to hold for another, and that evidence for one
platform would not be seen on its own as support for a surrogate endpoint
for another.

In addition, we will plan to study predictiveness of the estimated optimal
surrogate built on each single trial data set applied to the other trial data
sets, quantified by AUC on new data sets. Moreover, consistency of associ-
ation may be assessed in another sense - by studying whether the different
CoR methods tend to reveal a consistent directionality and pattern of an an-
tibody marker correlated with risk, and whether the different CoP methods
tend to reveal a consistent directionality and pattern of an antibody marker
connected to vaccine efficacy (as measured by the various causal effect pa-
rameters) and with different versions of vaccine efficacy. A common core
element of all of the CoR and CoP methods is covariate-adjusted estimation
of marker-conditional risk in vaccine recipients, e.g. of marginal conditional
risk Ex[P(T < tp|S = s,A =1,X)] or Ex|P(T < tp|S > s,A=1X)].
Generally, if an estimate of this function shows strongly decreasing risk with
s, then likely all of the CoR analyses will detect such a decrease, and the CoP
analyses will detect a version of vaccine efficacy increasing in s. A nuance
in looking for consistency of results across methods stems from the fact that
different methods have different power to detect the same effect; because of
this consistency in magnitude (point estimate) and directionality are more
important than consistency in inference/statistical significance.

The fact that all of the methods adjust for the same set of baseline covari-
ates X will aid the ability to compare the results across methods in an in-
terpretable manner. This discussion highlights the relevance of adjusting for
the same set of baseline covariates across the different efficacy trials, although
our choice to do covariate-adjustment through marginalization (rather than
through conditional association parameters) lends some resilience to this is-
sue.
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Our comments on consistency of association have supposed a given study
endpoint, such as COVID. Another dimension of consistency evaluation could
include comparing results across endpoints. On the one hand, consistency in
evidence across endpoints could strengthen the case for a CoP, especially for
endpoints in the same ‘class’ such as moderate disease and severe disease.
On the other hand, the greater the difference between endpoints, the less
relevant consistency may be, because the vaccine may protect through differ-
ent mechanisms against each endpoint (one potential example is prevention
of asymptomatic infection vs. prevention of severe disease). Thus evidence
for a CoP for a given endpoint should not necessarily be down-graded based
on evidence that the same marker does not appear to be a CoP for another
endpoint.

On biological gradient, many of the methods are flexible and designed to
detect a dose-response pattern of antibody with risk or antibody with vaccine
efficacy, with tabular and graphical output of point and confidence interval
estimates designed to reveal dose-response.

On specificity, as noted above antibodies generally are almost surely vaccine-
induced given the analysis is done in baseline negative individuals, although
with nuance that care is needed to evaluate whether some vaccine break-
through cases may have had SARS-CoV-2 acquisition unusually early in
follow-up (e.g., prior to second vaccination). In addition, the assays are val-
idated for measuring specific anti-SARS-CoV-2 antigen response. Moreover,
the Day 57 antibody markers can be verified to be negative in all or almost
all baseline negative placebo recipients. Therefore, the specificity criterion
should readily hold, with the proviso of the complication of the possible in-
clusion of unusually early infections as vaccine breakthrough cases in some
analyses.

On coherence, the results will be interpreted in the light of knowledge of im-
mune correlates of protection for the same vaccine in animal challenge stud-
ies (and human challenge studies as available), where multiple studies have
demonstrated that both binding and neutralizing antibodies are a correlate
of protection.
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The results will also be interpreted in light of any knowledge available on
passively administered SARS-CoV-2 monoclonal antibodies for prevention of
SARS-CoV-2 infection or COVID disease, either in challenge studies (animals
or humans) or efficacy trials. In addition, the results will be interpreted in
light of results on the antibody markers as correlates of re-infection in natural
history studies. Note we are cautious to not use correlates studies in already-
infected individuals, because the fact of infection may readily change the
nature of a correlate of protection.

On experimental reversibility, we will evaluate whether the strength of asso-
ciation of the Day 57 CoRs and CoPs weakens when restricting to outcomes
occurring more distal to vaccination. If the vaccine efficacy is found to wane
over time, and the antibody marker wanes over time, then this decrease in the
strength of association would be consistent with antibody as a correlate of
protection. In contrast, if vaccine efficacy and antibody waned over time, but
the strength of a Day 57 CoR and CoP was the same regardless of the timing
of outcomes, it might call into question the role of the antibody marker as a
CoP. The Stage 2 correlates analyses will also be helpful, where experimen-
tal reversibility could be supported simply by coincident waning of VE and
waning antibody.

Experimental reversibility may also be supported by “population-level” cor-
relates analyses, a term sometimes used in reference to meta-analysis that
associates the level of VE with the population-level of a Day 57 marker across
subgroups or trials; e.g. the population-level Day 57 marker response may be
summarized by the geometric mean titer or geometric mean concentration.

On analogy, perhaps the most relevant vaccines are vaccines against other
respiratory viruses, including influenza vaccine and RSV vaccines. The fact
that neutralizing antibodies are a CoR and CoP for both inactivated and
live virus vaccines supports that neutralizing antibodies can be a CoP for
SARS-CoV-2. In addition, there is ongoing correlates of protection analysis
of Novavax’s Phase 3 RSV vaccine efficacy trial, that is evaluating binding
antibody and neutralizing antibody CoRs and CoP correlates for severe respi-
ratory disease in infants of vaccinated pregnant mothers. Once those results
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are available, they will aid in checking the analogy (and coherence) criterion.

The univariate CoR analyses essentially assess four Day 57 antibody biomark-
ers (lumping ID50, ID80 within each neutralization assay into the same class
based on very high correlation to arrive at the five total). The questions arise
as to how do we select which biomarker seems to be the best-supported CoP,
and do we need to be concerned about multiplicity adjustment issues? Given
the multifactorial nature of the assessment involving biology and statistics,
we for the most part avoid an approach that tries to pre-specify a quantitative
ranking system; rather our approach presents the results of each marker side
by side and allows human synthesis and interpretation. To guard against
errors in this subjective process, we suggest that consistent results across
analyses of a given trial, and consistent results (and predictive validation)
across multiple trials, will provide particularly strong guidance for interpret-
ing results. For example, if a particular Day 57 antibody marker shows
remarkably consistent results in being a strong CoR and supported CoP but
the other readouts do not, it may emerge as the best-supported CoP. In ad-
dition, the superlearning CoR estimated optimal surrogate objective has a
special place of importance, because it includes variable importance quantifi-
cation, providing some quantitative guidance on ranking the predictivneness
of markers. This variable importance will be defined both internal to a given
trial and based on external validation on the other efficacy trials. The met-
rics of CV-AUC and AUC on new trials quantifies evidence for signal in the
data in a way that is protected from risk of false positive results, by virtue
of having two layers of cross-validation used to estimate CV-AUC and hence
avoid over-fitting. In addition, the CoR analyses use multiple hypothesis
testing adjustment to help ensure clear signals and not false positive results
(see Section 12.4.2). We also need a plan for minimizing the risk of false
positive results for CoP analyses, which we now address.

16.2 Multiple Hypothesis Testing Adjustment for CoP Analysis

For the univariable CoP analyses of the prioritized set of Day 57 antibody
markers among the five specified marker variables, the analysis plan seeks
evidence of a CoP through four different causal effect approaches. Because of
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this looking for evidence through different lenses, for CoP analysis we do not
focus on family-wise error rate adjustment, because FWER-adjustment aims
to control the risk of making even a single false rejection. Rather, in an effort
to build a body of consistent evidence and to ensure that a large fraction of
that evidence is reliable, for CoP analysis we focus on false discovery rate
correction. To do this, we use the same permutation-based method (Westfall
et al., 1993) that is used for CoR analysis. The multiplicity adjustment is
performed across the Day 57 markers and across the set of CoP methods that
are applied, in a single suite of hypothesis tests with calculation of g-values.
As a guideline for interpreting CoP findings (but not meant to be a rigid
gateway), markers with unadjusted p-value < 0.05 and g-value < 0.10 are
flagged as having statistical evidence for being a CoP.

17 CoP: Meta-Analysis Analysis Plan

We provide a brief summary of the overall plan, where the details will be de-
veloped closer to the time that data are available for meta-analysis of multiple
phase 3 vaccine efficacy trials.

Once data sets are available from the set of OWS phase 3 trials, the data sets
will be combined for additional analyses to support development of immune
CoPs. Data analysis of the combined data sets provides interpretable results
based on the standardization of the OWS phase 3 trial protocols — includ-
ing harmonized study endpoints, follow-up, and blood storage time points —
and on the common statistical analysis plan and laboratories/immunoassays
(where the use of the Duke pseudovirus assay in some OWS trials and the
Monogram pseudovirus assay in other OWS trials implies that the statistical
analysis will make use of concordance testing data for making results inter-
pretabile referenced to one of the assays.) Meta-analysis surrogate endpoint
evaluation methods will be applied to the combined data sets, both for assess-
ing Day 29 and Day 57 antibody markers (Stage 1) as surrogate endpoints for
COVID and for secondary outcomes, and for assessing the antibody mark-
ers over time (Stage 2) as surrogate endpoints for COVID and for secondary
outcomes.
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Both individual-level and trial-level meta-analysis will be applied, where the
latter studies the association of vaccine effects on an antibody marker with
vaccine effects on a study outcome, for example assessing how GMT nAb
ID80 titer associates with the level of vaccine efficacy against COVID. Meta-
analysis has a special role in being the only correlates approach that can
potentially assess immunologic markers as CoPs that are measured using
sampling types that were not stored from most trial participants (e.g., PBMC
for measuring T cell responses). While the current statistical analysis plan
focuses on assessing antibody markers as correlates, in the future plans may
be devised to incorporate T cell response data (and potentially other data
types) from phase 1-2 studies into meta-analysis evaluation.

In addition to applying formal meta-analysis surrogate endpoint evaluation
methods, some of the CoR and CoP statistical methods applied to the indi-
vidual phase 3 trial data sets will be adapted for application to the combined
data sets. This will allow addressing the following objectives: (1) to as-
sess consistency of CoRs and CoPs across trials, subpopulations, and vaccine
platforms; (2) to evaluate how well an antibody marker CoR for an outcome
developed in one phase 3 trial predicts the same outcome in the other phase
3 trials (cross-validation prediction accuracy); and (3) to provide data for
prediction modeling of what would be the efficacy of a new vaccine based on
its distribution of antibody markers. Objective (2) provides some empirical
data for considering appropriateness of use of a CoP across vaccine platforms.

18 Estimating a Threshold for Predicting High Vaccine Efficacy
Based on an Established /Putative CoP

For each antibody marker studied as a CoP, we will apply the Chang-Kohberger
(2003) / Siber (2007) method to estimate a threshold of the antibody marker
associated with the estimate of overall vaccine efficacy observed in the trial.

This method makes two simplifying assumptions: (1) that a high enough
antibody marker value s* implies that individuals with .S > s* have essentially
zero disease risk (protection) regardless of whether they were vaccinated; and
(2) PY = 1|S < s5,A=1)/P(Y = 1|S < s5,A = 0) = 1 (zero vaccine
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efficacy if S < s*). Based on these assumptions, s* is calculated as the value
equating 1 — P(S < s*|A = 1)/P(S < s*|A = 0) to the estimate of overall
vaccine efficacy. This estimate is supplemented by estimating the reverse
cumulative distribution function (RCDF) of S in baseline negative vaccine
recipients and calculating a 95% confidence interval for the threshold value
s* as the points of intersection of the estimated RCDF curve with the 95%
confidence interval for overall vaccine efficacy (as in the Figure in Andrews
and Goldblatt, 2014).

This method essentially assumes that S has already been established as a coP,
and under that assumption estimates a threshold that may be considered
as a benchmark / study endpoint for future immunogenicity vaccine trial
applications.

19 Considerations for Baseline Positive Study Participants

As stated above, if enough COVID cases in baseline positive vaccine and/or
placebo recipients occur, then additional correlates analyses may be planned
in baseline positive individuals. For example, the same or similar correlates
of risk analysis plan that is used to analyze Day 57 marker correlates of risk in
baseline negative vaccine recipients could be applied to assess Day 0 marker
correlates of risk in baseline positive placebo recipients. In addition, analyses
could be done to assess how vaccine efficacy in baseline positive participants
varies with Day 0 markers. It is straightforward to make this analysis rigorous
because Day 0 markers are a baseline covariate, such that regression analyses
are valid based on the randomization.

20 Avoiding Bias with Pseudovirus Neutralization Analysis due
to HIV Positivity

Because the lentivirus-based pseudovirus neutralization assay uses an HIV
backbone, the presence of anti-retroviral drugs in serum will give a false pos-
itive neutralization signal. This can be easily screened for using an MuLV
pseudotype control. Therefore, baseline samples of all infection endpoint
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cases will be tested for HIV antibodies, as will a random sample of the OWS
random subcohort that constitutes an approximate 5:1 non-cases:cases sam-
pling for Stage 1 data analysis.

21 Accommodating Crossover of Placebo Recipients to the Vac-
cine Arm

We consider how the SAP would be impacted by a scenario where at some
point most placebo recipients receive the study vaccine. The plan for assessing
correlates of risk in vaccine recipients would be minimally affected, because
the analysis is based on vaccine recipients alone. If crossed over placebo
recipients have study visits and blood sample storage on the same schedule
as if they had originally been assigned to the vaccine arm, then the new
follow-up data from the crossed over placebo recipients will be included in
correlates of risk analyses, which is expected to yield improved power and
precision given the expanded sample size of vaccine recipients. The plan for
assessing correlates of protection, on the other hand, would be altered based
on crossover. The plan would be revised to only assess correlates of protection
over follow-up through to the point that the size of the remaining placebo
arm is small, for example when less than 20% of the original placebo arm
remains.

22 COVID Correlates Analysis Report

This SAP is being implemented over time on a mock/practice COVID-19
vaccine efficacy trial data set, as discussed in the Prelude. The report is
provided at Dr. Youyi Fong’s public GitHub repository CovidCorrSAP.
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SARS-CoV-2 infection

COVID
(Symptomatic infection)

Asymptomatic infection

Severe COVID Non-severe COVID

B

Clinical Endpoint Definition

SARS-CoV-2 infection Positive RNA PCR test or SARS-CoV-2 seroconversion*,
whichever occurs first

COVID (Symptomatic Meeting a protocol-specified list of COVID-19 symptoms with

infection) virological confirmation of SARS-CoV-2 infection (symptom triggered)

Asymptomatic infection SARS-CoV-2 seroconversion* without prior diagnosis of the COVID
endpoint

Severe COVID COVID endpoint with at least one protocol-specified severe disease
event

Non-severe COVID COVID endpoint with zero protocol-specified severe disease
events

*Seroconversion is assessed via a validated assay that distinguishes natural vs vaccine-induced
SARS-CoV-2 antibodies

TAlternatively, the asymptomatic infection endpoint can also include an RNA PCR+ test result obtained
through testing regardless of symptoms (e.g., as a requirement for travel, return to school or work, or
elective medical procedures) and follow-up to confirm the participant remains asymptomatic

Figure 1: A) Structural relationships among study endpoints in a COVID-19 vaccine efficacy trial.
B) Study endpoint definitions.
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COVID Diagnosis

Day 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28* 29 30 31 32 33 34 35

All ............0.........:0.............‘--'(Or””“'res°'““°“
Vaccine - O O O O | of symptoms)
ad|lO O O O O O (@) (@) O b fSARS-Gov:2 :
I

Placebo ‘, positive on Day 21 — Continue safety
Cases s m— T monitoring through
study completion

If SARS-CoV-2 negative

Continue safety
on Day 21 o

—> monitoring through
study completion

@ Collection of data on disease severity (signs, symptoms) via e-Diary
QO Obtain sample (nasopharyngeal swabs, anterior nasal swabs, or saliva cups) for SARS-CoV-2 detection by NAAT or antigen testing

‘ Blood draw

*Timed to be as close to Day 28 post-symptom onset as possible
NAAT = nucleic acid amplification test

Figure 2: Example at-COVID diagnosis and post-COVID diagnosis disease severity and virologic
sampling schedule, in a setting where frequent follow-up of confirmed cases can be assured. Partic-
ipants diagnosed with virologically-confirmed symptomatic SARS-CoV-2 infection (COVID) enter
a post-diagnosis sampling schedule to monitor viral load and COVID-related symptoms (types,
severity levels, and durations).
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Whole Study Cohort

COV-DIS
and
COV-INF
Cases

Random
Subcohort

Figure 3: Case-cohort sampling design (Prentice, 1986) that measures Day 1, 57 antibody markers
in all participants selected into the subcohort and in all COVID and COV-INF cases occurring
outside of the subcohort.
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Specified numbers of
endpoints reached:

For primary analysis v v Follow up completed
. L for last enrolled
= 25 primary endpoints in -
the vaccine arm * v pamclpant
. Perform Perform
Primary
anaiysis | | S0 s oreals
y, triggered N correlat_es
VA analysis analysis
Day 1 29 57 209 394 739
| | | | | | | | o _______ | ________________________________ 1
I I I I I I I I
D1 D29 D57 D209 D394 D759
6 6 0 é é é

[— All participants: Baseline
NAAT/PCR and serostatus tests

Sampling into random
subcohort once baseline
SARS-CoV-2 status data are
available

‘ Blood storage

bAb and nAb data

measurement 1 bAb and nAb data

(close to real time)

measurement 11

D29, D209,
D1, D57 Random Subcohort ] L Random Subcohort ’» D394, D759
+ +
'D1, D.57, Allinfection cases (baseline negative, ‘ A D1, D29, D57, D209,
infection —| baseline positive, vaccine, and placebo) All other infection cases
diagnosis diagnosed in Stage 1 D394, D759
Stage 1 Stage 2

Analyses of Day 57 markers as correlates of risk

‘ > " * Analyses of Day 57 markers as correlates of risk and of
and of protection of the primary endpoint

protection of longer term endpoints
* In a timely manner shortly after the primary
analysis

» With worthwhile precision

* Analyses of longitudinal markers as outcome proximal
correlates of risk and protection

*These 2 25 cases must have available Day 1, Day 57 antibody marker data and be baseline SARS-CoV-2 negative. Case-cohoq ) .
fIbAb and nAb data are measured in all cases, regardless of baseline status. Immunogenicity Analysis
$And also potentially of some shorter-term secondary endpoints. Set (cclAS)

NAAT = nucleic acid amplification test; PCR = polymerase chain reaction; bAb = binding antibody; nAb = neutralizing antibody.

Figure 4: Two-stage correlates analysis. Stage 1 consists of analyses of Day 57 markers as correlates
of risk and of protection of the primary endpoint and potentially also of some secondary endpoints,
and includes antibody marker data from all COVID and SARS-CoV-2 infection cases (COV-INF)
through to the time of the data lock for the first correlates analyses. Stage 2 consists of analyses
of Day 57 markers as correlates of risk and of protection of longer term endpoints and analyses
of longitudinal markers as outcome-proximal correlates of risk and of protection, and includes
antibody marker data from all subsequent COVID and COV-INF cases. Stage 1 measures Day 1,
57 antibody markers and COV-INF and COVID diagnosis time point markers; Stage 2 measures
antibody markers from all sampling time points and COV-INF plus COVID diagnosis sampling
time points not yet assayed. The same random subcohort is used for both stages. If Day 29
markers are included, then Day 29 markers are included for the same participants with Day 57
markers measured.
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23 Appendix: Simulation of COVID-19 Vaccine Efficacy Trial
Data Sets

24 Simulating COVID VE Trial Data Sets
24.1 Notation

1. A: randomization assignment to vaccine or placebo (1=vaccine, 0=placebo)

2. B: baseline SARS-CoV-2 status (0 if all SARS-CoV-2 diagnostic tests by
Day 1 are negative and 1 if some are positive: 0=negative, 1=positive)

3. X: baseline covariate vector with components X, --- , X5
(a) Xi: Indicator At-risk for COVID
(b) Xs: Sex assigned at birth (1=female, 0O=male)

)
)
¢) X3: Indicator of minority
) X4 Age in years (> 18)
(€) X5: BMI

4. Sy1: Vector of antibody markers measured at Day 1 (dose 1 visit), with
components IgG Spike, IgG RBD, PsV ID50, PsV ID80, WT LV MN50

5. Seg: Vector of the same antibody markers measured at Day 29 (dose 2
visit)

6. Ss7: Vector of the same antibody markers measured at Day 57 (& peak
immunogenicity time point)
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7. R: Indicator a participant is randomly sampled into the subcohort for
measurement of (S, Sag, S57)

8. Thy: Number of days from Day 29 visit until COVID endpoint starting
7 days post Day 29 visit (failure time of interest for studying Day 29
markers as correlates)

9. Cy: Number of days from Day 29 visit until right-censoring
10. Asg: Indicator of Thy < Cog
11. TQQ = mz’n(ng, 029)

12. Ts7: Number of days from Day 57 visit until COVID endpoint starting
7 days post Day 57 visit (failure time of interest for studying Day 57
markers as correlates)

13. C57: Number of days from Day 57 visit until right-censoring
14. Ag7: Indicator of Ty; < Csy
15. T57 = min(T57, 057)

Next, in turn we describe the three steps for simulating a data set. First,
we simulate the covariates in all participants, second we simulate the Day
57 onwards failure time information in all participants, third we fill in the
Day 29 to Day 57 failure time information, and fourth we define R and set
(51, S29, S57) values to NAs for those with R = 0 and Ay = 0 (non-cases).

24.2 Simulation of the covariates

First, A and B are drawn as independent Bernoulli random draws with suc-
cess probabilities P,—; and P,—1, respectively specified by the user. Then, for
each of the four baseline strata A = a, B = b with (a,b) € {0,1} x {0, 1}, the
20-vector

W = (x7,sT, 8k, Si)T

is simulated. As X, X5, and X3 are the only binary variables, for simplicity
we first simulate them as independent Bernoulli random variables.
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1. X; is drawn from a Bernoulli distribution with specified success proba-
2. Xy is drawn from a Bernoulli distribution with specified success proba-
3. X3 is drawn from a Bernoulli distribution with specified success proba-

Next, we define a latent 17-vector variable W’ that has a multivariate normal
distribution with mean vector.

uL = (MX4, HUxs, M?s:p Mgzga M£57)T

with variance elements Y4, = 17-vector of variances for the elements of Wk,
The covariance elements are defined by specifying the correlation parameters
pli,j] foralli =1,--- 17,5 =1,--- ,17 such that the (i, )" element of the
variance-covariance matrix ¥ of W7 is

p[zuj] * \/Zdiag[i]zdiag[j]'

Based on specification of all of the input parameters, W* is drawn. Then the
following steps are done to attain W based on WF:

1. X, is taken to be W{ rounded to the nearest year at enrollment
2. Xj is taken to be W

3. Sij is taken to be ng_j for j =1,---,5, and in the analysis one follows
the convention that values below the LLOQ are set to LLOQ/2 and
values above the ULOQ are set to ULOQ.

4. Sy ; and Ss7; are also taken to be Wég’j and WSLE)?.j? respectively, for
j=1,---,5, again following the convention that values below the LLOQ
are set to LLOQ/2 and values above the ULOQ are set to ULOQ.

24.2.1 Input parameters for simulating covariates

The following lists the set of input parameters that are needed to simulate
the covariate data, and indicates default values.
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(NN

N ove

. N = Total number of enrolled trial participants

. P.—1: P(A = 1) = Probability an individual is randomized to vaccine
A=1 (default 0.5)

. B—y: P(B = 1) = Probability an individual is baseline SARS-CoV-2
positive (default 0.10)

: P(X7 =1) (default 0.3)
: P(Xy =1) (default 0.5)
: P(X3=1) (default 0.3)
p” (defaults listed below)

F P

~

Vaccine baseline negative (a = 1,b = 0):

ur = ¢(55,30,0,0,0,0,0,4.4,4.2,2.2,1.8,2.2,5.9,5.7,3.2,2.8,3.2)

Placebo baseline negative (a = 0,b = 0):

ul = ¢(55,30,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

Vaccine baseline positive (a = 1,b = 1):

il = ¢(55,30,3.9,3.7,1.8,1.5,1.7,4.5,4.3,2.3, 1.9, 2.3, 6.0, 5.8, 3.3, 2.9, 3.3)
Placebo baseline positive (a = 0,b = 1):

= ¢(55,30,3.5,3.3,1.4,1.3,1.5,4.1,4.0,2.0, 1.8, 2.0, 5.6, 5.5, 3.0, 2.7, 3.1)
Ydiag (defaults listed below)

Vaccine baseline negative (a = 1,b = 0):

Yaiag = ¢(22.3%,7%,0.2,0.2,0.2,0.2,0.2,0.6%,0.7% 0.8%,0.8%,0.82,
0.72,0.82,0.982, 0.982, 0.942)

Placebo baseline negative (a = 0,b = 0):

Sdiag = €(22.32,72,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2, 0.2,
0.2,0.2,0.2,0.2,0.2)

Vaccine baseline positive (a = 1,0 = 1):
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Siag = ¢(22.32,72,0.62,0.72,0.82,0.82,0.82,0.62,0.72, 0.8, 0.82, 0.82,
0.7%,0.8%,0.98%,0.98%,0.94%)
Placebo baseline positive (a = 0,b = 1):
Siiag = c(22.32,72,0.62,0.72,0.82,0.82,0.82, 0.6, 0.72, 0.82, 0.82, 0.82,
0.72,0.82,0.982, 0.982, 0.942)

9. Correlation parameters p (defaults listed below)
Vaccine baseline negative (a = 1,b = 0):
pli,j] = 025+ 0.1I1(i=3,j=4)+02+I(i=57=6):i=1--,6,5 >
pli,j] = 0640.11(i=8,j=9)+02x1(i=10,7=11):i=7,--- 11,5 > i
plij] = 0.7+01I(i=13,5=14)+02% (i =15j=16):i=12,---,16,j > i

Placebo baseline negative (a = 0,b = 0):

plij] = 0.15+0.05I(i=3,j=4)+01%I(i=5j=6):i=1-,6j>i
plij] = 0.2+0.05[(i=8,7=9)+01I(Gi=10j=11):i=7,---,11,j >
pli,j] = 0.25+0.05I(i =13,5 = 14) + 0.1 [(i = 15, = 16) 1 i = 12,--- , 16, >

Vaccine baseline positive (a = 1,0 = 1):

plisj] = 055+ 011(i=3,j=4)+02%[(i=57=6):i=1,--,6,]>i
plij] = 06+011(i=87=9)+02%I(=10,j=11):i=7,-- 11,5 >
pli,j] = 07+0.1I(i=13,5=14) + 02+ (i =15,j = 16) : i = 12,--- ,16,j > i

Placebo baseline positive (a = 0,b = 1):
pli,j]l = 0554+0.11(i=3,j=4)4+02%x1(i=5,j=6):i=1,---,6,j >1
pli,j] = 064+0.11(i=8,7=9)+02x1(i=10,7=11):a=7,--- 11,5 > 1
pli,j] = 0.74011(:=13,j =14)+ 02 [(i =15, =16) : i = 12,--- ;16,7 > i
In the above correlation specification, note that extra correlation is added to
IgG Spike and RBD readouts (same assay), as well as to PsV ID50 and ID80

(same assay). After p[i, j| is define for all i < j, we set p[j, ] = pl[i, j] for all
j <.
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24.3 Simulation of the failure time data

The failure time variables to simulate are Tog, Cog, ng, Aog, Ts7, Cs7, T: 57, As7.
First, in the placebo arm the event time T5; is simulated dependent on
A, B, X}, where X is a standardized version of age X, that has empiri-
cal mean 0 and empirical standard deviation 1. Second, in the vaccine arm
Ts7 is simulated dependent on A, B, X, S;-,, where S;-, is the first Day 57
marker (IgG Spike). The positive correlations among the different marker
variables implies that 757 depends on the other Day 57 markers as well, but
for a simple simulation model we only specify dependence on S%- ;. Alterna-
tively, the simulations could be designed with the failure time connected to
a latent variable that is an average of the markers.

Third and fourth, we implement a parallel approach to simulate 759 in the
placebo arm and Thg in the vaccine arm, now using 534 ; instead of S, ;. These
new simulations add intercurrent failures between the Day 29 visit and the
Day 57 visit. Then calculations are made to enforce structural relationships
between Thy and T57.

24.3.1 Input parameters for simulating the failure time information

Let W* be the vector W with each of the 17 normally distributed variables
(elements 4 through 20) centered and scaled to have empirical mean zero
and standard deviation one. The following parameters simulate failure time
information starting from the Day 57 visit.

1. 7: final time point (in days) for analysis post Day 57 visit (default 180)

2. Py(1): P(Ts7 < 1|A=0,B = b,W* = 0) = placebo arm baseline cu-
mulative failure probability for baseline status group b (default Py(7) =
010, P()l(’T) = 005)

3. VE,=1-— ﬁ for b= 0,1, where A0 = A(t|A =a, B =b,W* = 0) for
a=0,1 (default VE, =V E; =0.90)

4. Bop = Placebo group log hazard ratio per year increase in age X, for
baseline stratum b. Once [y, and Xgq4[1] are specified, the parameter

By, in the Cox model (10) below is calculated as 85, = Bop/Sdiag|l]-
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(default: By, = logl0(1.1) for each b =0,1)

5. By = Vaccine group log hazard ratio per year increase in age X, for
baseline stratum b. Once 5y, and Xg44[1] are specified, the parameter
By, in the Cox model (11) below is calculated as (), = Bip\/Zdiag[l]-
(default: By, = log10(1.1) for each b= 0,1)

6. 1, = Vaccine group log hazard ratio per unit change in the marker Ss7
(i.e., per 10-fold change in the marker on the natural/antilogl0 scale).
Once 71 and Xiq-[13] are specified, the parameter 77, in the Cox model
(11) below is calculated as 7}, = Yip\/ Zaiag[13]. (default: 7y, = 0 for
each b = 0,1 (null case))

7. FollowupRange = range of days since enrollment until the date of data
cut for the analysis, accounting for staggered enrollment (default Fol-
lowupRange = ¢(4*7, 6.5%7))

8. Prpy(7): Probability loss to follow-up (prematurely) by 7 (default Pppy (1) =

0.05)

The following parameters simulate failure time information between the Day
29 and Day 57 visits (“intercurrent” failure defined in terms of Ty), specified
in parallel fashion to the failure time information for 75;. With the exception
of the intercurrent vaccine efficacy parameter, the following parameters are by
default defined according to the Day 57 failure time simulation parameters.

1. Popinteur(57): P(Tog < 28|A =0, B =b,W* = 0) = placebo arm baseline
cumulative intercurrent failure probability for baseline status group b

(default Pop.inteur (D7) = Pou(7) * 28 /7, which specifies the same placebo
arm incidence of failure from Day 29 to Day 57 as after Day 57)

2. VEb inteur = 1 — )\lbo zztzu: for b = Oa 17 where )\abO intcur — (t|A = a, B =
b, W* =0) for a = 0 1 (default V Ey jntewr = 0.7 % V E}, for each b =0, 1)

3. Bop.intewr = Placebo group log intercurrent hazard ratio per year increase
in age X4 for baseline stratum b. Once By inteur and Xgiqq[1] are specified,
the parameter [, ., i the Cox model (12) below is calculated as

ﬁgb.intcur - 50b.intcur Ediag[l]' (default: Bov.inteur = 50[; for each b =0, 1)
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4. Bip.intewr = Vaccine group log intercurrent hazard ratio per year increase
in age X, for baseline stratum b. Once Bip.inteur and Xgiqg[1] are specified,
the parameter (3}, ..., i the Cox model (13) below is calculated as

By intewr = B/ Ldiag[1]- (default: Bipintewr = S1p for each b =0, 1)

5. Vip.intewr = Vaccine group log intercurrent hazard ratio per unit change
in the marker Sy (i.e., per 10-fold change in the marker on the nat-
ural/antilogl0 scale). Once Yipintewr and Xgiqq[8] are specified, the pa-
rameter Yy, ;e i1 the Cox model (13) below is calculated as vy, ;s =
Tb.intcur Zdiag [8] (defalﬂt: Tb.intcur = V1b for each b = 07 1)

24.3.2 Exponential /proportional hazards models for T5;

For the placebo arm, we assume the following simple proportional hazards
models for T57, separately by baseline status:

)\Ob(t’W) = )\Ob()eﬁgbx‘T (10)

where, assuming an exponential distribution, Apyg = A(t|A =0,B =0, W* =
0) is determined by the equation

1 — ™ = Pyy(r)

and the parameters fj, and 33, specify how strongly X (standardized age)
associates with COVID.

For the vaccine arm, we assume the following proportional hazards models
for T57, again separately by baseline status:

A (tW) = >\15065be5+%25§71 (11)
where A0 is determined by the equation

A
VE,=1- %
A0b0

where V E, (proportional hazards vaccine efficacy at central covariate level
W* =0) is input by the user.
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24.3.3 Simulating T,

Once a participant’s values A, B, X}, S5, are generated, then we simulate
the participant’s T57; value from an exponential distribution with rate param-
eter defined by the input parameters and the Cox model (10) or (11).

24.3.4 Simulating 057 and A57

First, a random variable C'157 is simulated from a Uniform distribution over
the range FollowupRange. Second, an exponential random variable Cys7 is
simulated with rate parameter \..,s; determined by

1— G_ACS”ST = PLFU(T)-

Then, we set Cs; = min(Cisz, Cas7), and next set T3, = min(Ts7, Cs57) and
As7; = I(Ty; < Cs7). Note that, because in the analysis outcomes for Day
57 correlates analyses are only counted starting 7 days post Day 57 visit,
cases with Ts; < 7 are excluded from the analysis (this is handled in the data
analysis code, not in the data set construction code).

24.3.5 Exponential/proportional hazards models for Ty9 intercurrent failure

For the placebo arm, we assume the following simple proportional hazards
models for Ty, separately by baseline status:

)\Ob.intcur (t‘W> - AObO.intcureﬁgb'mtcwXZ (12)

where, assuming an exponential distribution, Agpointewr = A(E[A = 0, B =
b, W* = 0) is determined by the equation

—A0b0.inteur*dT
1 — o Aobv.int — P()b_mtcur(57)

and the parameters B nteur a0 531 intenr SPeCify how strongly X (stan-
dardized age) associates with COVID. For the vaccine arm, we assume the
following proportional hazards models for Thg intercurrently, again separately
by baseline status:

Alb.intcu?“ (t|W) = AlbO.intcureﬂikb‘mtcmXI+7Tbmtcur5;91 (13)
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where A1pg.intcur 1S determined by the equation

A1b0 intcur
VEb.intcur =1 5

- )
)\ObO.mtcur

where V Ej intewr (proportional hazards vaccine efficacy at central covariate
level W* = 0) is input by the user.

24.3.6 Simulating Tbg

Once a participant’s values A, B, X}, 5%y, are generated, then we initially
simulate the participant’s T5g value from an exponential distribution with
rate parameter defined by the input parameters and the Cox model (12) or
(13). If Thg < Ts7 + 28, then the value of Thg is kept. If Tog > T57 + 28, then
we set the final value of Tog = T5; + 28 plus a a draw from a random uniform
distribution over -3 to 3 days rounded to the nearest day (to account for visit
window variability).

24.3.7 Simulating Cy9 and Asg

For simplicity, we do not allow dropout between the Day 29 visit and the Day
57 visit. Therefore, we set Cog = Cs7 4+ 28. Then we set Agg = I(Thg < Clyg).

Note that, because in the analysis outcomes for Day 29 correlates analyses
are only counted starting 7 days post Day 29 visit, cases with 159 < 7 are
excluded from the analysis (this is handled in the data analysis code, not in
the data set construction code).

24.4 Simulating the subcohort indicator R

The subcohort indicator R is one if a participant is sampled for measurement
of (S1, 52, S57).

24.4.1 Input parameters for simulating R

We simulate R following Table 5 in this SAP, where the six baseline demo-
graphic strata are:

1. X4y > 65 and X3 = 0 (minority)
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2. X4 > 65 and X3 = 1 (non-minority)

3. Xy <65 and X; =1 (at-risk) and X3 =10

4. Xy <65 and X; =1 (at-risk) and X5 =1

5. X4 < 65 and X; = 0 (not at-risk) and X3 =10
6. X4 < 65 and X; = 0 (not at-risk) and X3 =1

For each of the 24 subgroups/cells defined by (a,b) cross-classified with the
above 6 demographic subgroups (as in Table 5), define the total numbers to
be sampled into the random subcohort, n2(a,b,c) for a = 0,1,6 = 0,1,¢ =
0,---,6. Then, for each subgroup (a,b,c), R is set to 1 for a random sample

of size n2(a,b,c) without replacement. Lastly, all non-cases (with A = 0)
and R = 0 have all three values (S, Sa9, S57) set to NA.

The default settings for n2(a, b, ¢) to match Table 5 in the SAP are as follows:
e n2(1,0,¢) =150 forc=1,--- ,6
e n2(0,0,¢) =20 forc=1,---,6
e n2(1,1,¢) =50 forc=1,---,6
e n2(0,1,¢) =50 forc=1,---,6

24.4.2 Per-protocol indicator

Lastly, we simulate the per-protocol (PP) indicator variable, which is 1 if
both immunizations at Day 0, 29 were received and there were no specified
protocol violations.

Input parameter:
Ppp—1 = Probability a participant is per-protocol (default = 0.99)

Ppp_; is simulated from a Bernoulli random variable with success probability
Ppp_1. The Day 57 marker correlates analyses are done in individuals with

Ppp_;.
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24.4.3 Variables output for the data set

The following collates all of the variables defined for the simulated data set.
o A
o B
o X1, -, X5
e PP
o R
® 511, , 515
® 5.1, ;525
® S57.1,7 " 5575
o Thy, Aoy
o Th7, sy

25 Appendix: Notes on Planning for Stage 2 Correlates Analyses

The paper Sun, Zhou, Gilbert (submitted) “Analysis of Cox model with Lon-
gitudinal Covariates with Measurement Errors and Partly Interval-Censored
Failure Time, with Application to an AIDS Clinical Trial” may be a suitable
method for assessing antibody markers over time as correlates of the SARS-
CoV-2 infection endpoint, once there is follow-up data for more than a year
with antibody markers measured at all time points up to at least a year.
The paper extends Fu and Gilbert (2017) from right-censored failure time
data to partly interval-censored failure time data, which means a compos-
ite endpoint is analyzed with one component subject to right-censoring and
the other component subject to interval censoring. In our application, the
COVID primary endpoint is subject to right-censoring, and seroconversion is
subject to interval-censoring.
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