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History of Computational Social Science?

* Moreno (1934)

* Bott (1957)

* Erdos & Renyi (1959)

* Traverse & Milgram (1969)

* Granovetter (1973)

* Freeman (1970s)

* Holland & Reinhard (1981); Krackhardt (1987)
e Barabasi, Wattz and Strogatz (1990s)

* Newman, Snijders (2000s)



10 Year Anniversary

SOCIAL SCIENCE

Computational Social Science

David Lazer,' Alex Pentland,? Lada Adamic,® Sinan Aral,>* Albert-Laszlo Barabasi,’
Devon Brewer,® Nicholas Christakis,! Noshir Contractor,” James Fowler,? Myron Gutmann,?
Tony Jebara,’ Gary King,' Michael Macy,"® Deb Roy,2 Marshall Van Alstyne?"

e live life in the network. We check

our e-mails regularly, make mobile

phone calls from almost any loca-
tion, swipe transit cards to use public trans-
portation, and make purchases with credit
cards. Our movements in public places may be
captured by video cameras, and our medical
records stored as digital files. We may post blog
entries accessible to anyone, or maintain friend-
ships through online social networks. Each of
these transactions leaves digital traces that can
be compiled into comprehensive pictures of
both individual and group behavior, with the
potential to transform our understanding of our
lives, organizations, and societies.

The capacity to collect and analyze massive
amounts of data has transformed such fields as
biology and physics. But the emergence of a
data-driven “computational social science™ has
been much slower. Leading journals in eco-
nomics, sociology, and political science show
little evidence of this field. But computational
social science is occurring—in Internet compa-
nies such as Gooele and Yahoo. and in govern-

ment agencies such as the U.S. National Secur-
ity Agency. Computational social science could
become the exclusive domain of private com-
panies and government agencies. Alternatively,
there might emerge a privileged set of aca-
demic researchers presiding over private data
from which they produce papers that cannot be

A field is emerging that leverages the
capacity to collect and analyze data at a
scale that may reveal patterns of individual
and group behaviors.

critiqued or replicated. Neither scenario will
serve the long-term public interest of accumu-
lating, verifying, and disseminating knowledge.

What value might a computational social
science—based in an open academic environ-
ment—offer society, by enhancing understand-
ing of individuals and collectives? What are the




Central Question?

e Can we identify a field or a subfield, INSTITUTING
especially if interdisciplinary through eALNCEL

the meta features of the papers A
published in the domain?

* The influence of top journals would be
paramount in defining an
interdisciplinary field.

* Nature and Science are natural targets.

Lenoir, Timothy. Instituting science: The cultural
production of scientific disciplines. Stanford University
Press, 1997.
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Number of Authors

Features

Number of Authors on a Paper (2016-2019) Papers Cited (2016-2019)
100

90
80
70 *

60 Class 100
CS
S0 3 cCss

El Natural

SS

Class
CS

3 Css
‘ EI Natural

40

Papers Cited

30 SS

50

20

10

—— [ ‘ |
CSs CSS Natural SS

Classification CS CSS Natural SS
Classification

0



600

Google Citations
N
3

N
o
o

Features

Citations (2016-2019)

Class
CS
L ]
4 CsS
. EI Natural
SS
§
|
CS CSS Natural SS

Classification

Citation Rate [Adjusted] (per week) (2016-2019)

Citation Rate [Adjusted] (per week)

(o4]

(o)]

N

N

[

CS CSS Natural
Classification

SS

Class
CS

3 CSS
F Natural

SS



Length (pages)

12.5

10.0

7.5

5.0

2.5

Features

Length (2016-2019)

|

CS CSS Natural
Classification

Class
CS

£ CSS
EI Natural

SS

SS



Features (Manual & Qualitative)

Manually Collected Features (2016-2019)
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Non-Gaussian Features

e Citations (article/author) have been
shown to follow highly skewed
distributions (exponential, log-normal,
power law)

e Constraints and bounds from below and
above. e.g. Length, Number of Authors,
Time to Acceptance

* Possible violations of central tendency
assumptions

D. J. de S. Price, Networks of scientific
papers. Science 149, 510-515 (1965).



Highly Skewed Features
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Highly Skewed Features
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Constraints
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at top journals.

* Incentive to add material
online

* Necessary not to be careless
with claims.
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Do we need a model?

* All models are bad, but some are...worse..
* Violations of non-normality

* General Linear Model is still robust, but it’s not clear if it would scale
well when adjusting for a larger sample when considering the non-
linearity of our features.

* Binary (dichotomized) variables restrict our choices
* Non-parametric, classification, or clustering.



K-Nearest Neighbors (KNN)
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Error Rate

0.4+ ocp &

K-Nearest Neighbors (KNN) —2 or 3 Groups
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Dropping the Manual Features + Extracting
the Population
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Result: Distinct Groups of 3

Error Rate
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Future Work

* Our model does discriminate between groups/clusters of Nature
articles, but it’s not clear what those groups are.

 The model has a long way to go:
* Inconclusive
 Data Difficult to collect
* NLP will play a big role but full text articles are hard to come by.



