
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=kepi20

Epigenetics

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/kepi20

Hypoxia and hypoxia mimetics differentially
modulate histone post-translational modifications

Kuo-Feng Hsu , Sarah E. Wilkins , Richard J. Hopkinson , Rok Sekirnik , Emily
Flashman , Akane Kawamura , James S.O. McCullagh , Louise J. Walport &
Christopher J. Schofield

To cite this article: Kuo-Feng Hsu , Sarah E. Wilkins , Richard J. Hopkinson , Rok Sekirnik ,
Emily Flashman , Akane Kawamura , James S.O. McCullagh , Louise J. Walport & Christopher J.
Schofield (2021) Hypoxia and hypoxia mimetics differentially modulate histone post-translational
modifications, Epigenetics, 16:1, 14-27, DOI: 10.1080/15592294.2020.1786305

To link to this article:  https://doi.org/10.1080/15592294.2020.1786305

© 2020 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

View supplementary material 

Published online: 01 Jul 2020. Submit your article to this journal 

Article views: 1207 View related articles 

View Crossmark data Citing articles: 1 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=kepi20
https://www.tandfonline.com/loi/kepi20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/15592294.2020.1786305
https://doi.org/10.1080/15592294.2020.1786305
https://www.tandfonline.com/doi/suppl/10.1080/15592294.2020.1786305
https://www.tandfonline.com/doi/suppl/10.1080/15592294.2020.1786305
https://www.tandfonline.com/action/authorSubmission?journalCode=kepi20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=kepi20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/15592294.2020.1786305
https://www.tandfonline.com/doi/mlt/10.1080/15592294.2020.1786305
http://crossmark.crossref.org/dialog/?doi=10.1080/15592294.2020.1786305&domain=pdf&date_stamp=2020-07-01
http://crossmark.crossref.org/dialog/?doi=10.1080/15592294.2020.1786305&domain=pdf&date_stamp=2020-07-01
https://www.tandfonline.com/doi/citedby/10.1080/15592294.2020.1786305#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/15592294.2020.1786305#tabModule


RESEARCH PAPER

Hypoxia and hypoxia mimetics differentially modulate histone post-translational 
modifications
Kuo-Feng Hsu a,b, Sarah E. Wilkins a, Richard J. Hopkinson a,c, Rok Sekirnika, Emily Flashman a, 
Akane Kawamura a,d,e, James S.O. McCullagh a, Louise J. Walport a,f,g, and Christopher J. Schofield a

aChemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK; bTri-Service General Hospital, National Defense 
Medical Center, Taipei, Taiwan; cLeicester Institute of Structural and Chemical Biology and School of Chemistry, University of Leicester, 
Leicester, UK; dRadcliffe Department of Medicine, Division of Cardiovascular Medicine, BHF Centre of Research Excellence, Wellcome Trust 
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ABSTRACT
Post-translational modifications (PTMs) to the tails of the core histone proteins are critically 
involved in epigenetic regulation. Hypoxia affects histone modifications by altering the activities 
of histone-modifying enzymes and the levels of hypoxia-inducible factor (HIF) isoforms. Synthetic 
hypoxia mimetics promote a similar response, but how accurately the hypoxia mimetics replicate 
the effects of limited oxygen availability on the levels of histone PTMs is uncertain. Here we report 
studies on the profiling of the global changes to PTMs on intact histones in response to hypoxia/ 
hypoxia-related stresses using liquid chromatography-mass spectrometry (LC-MS). We demon
strate that intact protein LC-MS profiling is a relatively simple and robust method for investigating 
potential effects of drugs on histone modifications. The results provide insights into the profiles of 
PTMs associated with hypoxia and inform on the extent to which hypoxia and hypoxia mimetics 
cause similar changes to histones. These findings imply chemically-induced hypoxia does not 
completely replicate the substantial effects of physiological hypoxia on histone PTMs, highlighting 
that caution should be used in interpreting data from their use.
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Introduction

In response to hypoxia in animals, adaptive pro
cesses take place in cells and tissues that work to 
maintain oxygen supply and/or increase the effi
ciency of its use. Such processes include erythro
poiesis, angiogenesis, and the partial shutdown of 
high-energy consuming processes[1]. Many of 
these responses involve changes in expression pat
terns, as mediated by the hypoxia-inducible tran
scription factor isoforms [2,3]. In humans, 
hypoxia-inducible factor-α (HIF-α) is regulated 
by two types of 2-oxoglutarate- (2OG)/Fe(II)- 
dependent oxygenases: the HIF prolyl hydroxy
lases (PHD1, PHD2 and PHD3) and the asparagi
nyl hydroxylase, factor inhibiting HIF (FIH) [1,4– 
6]. In hypoxia, reduced oxygen availability limits 
catalysis by the HIF hydroxylases, which promotes 
HIF target gene transcription, both by stabilizing 

HIF-α and by hindering its interaction with the 
histone acetyltransferases CBP/p300.

Another layer of hypoxic gene regulation is 
provided by histone post-translational modifica
tions (PTMs) [7–9]. Different patterns of histone 
PTMs are proposed to regulate the expression of 
different sets of HIF target genes in a context- 
dependent manner[10]. Many of the enzymes 
responsible for modifying these PTMs are them
selves HIF target genes (e.g. G9a, KDM3A), and 
thus their levels, and thereby activity, are also 
regulated by oxygen availability [9,11]. 
Furthermore, some histone-modifying enzymes 
are directly dependent on oxygen for catalytic 
activity, adding an additional potential for hypoxic 
regulation [12–16]. The transcriptional response to 
hypoxia and its regulation is therefore both com
prehensive and highly complex.
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Histone demethylation is mediated by two 
families of enzymes. Like the HIF hydroxylases, 
the larger of these families, the JmjC histone lysine 
demethylases (KDMs), are 2OG/Fe(II)-dependent 
oxygenases, which require oxygen as an essential 
cosubstrate to catalyse histone demethylation 
[17,18]. As such, their enzymatic activity has the 
potential to be compromised by hypoxia [12–16]. 
On the other hand, transcriptional upregulation of 
specific JmjC KDMs is reported to be mediated by 
HIF[11]. Increasing evidence suggests that hypoxia 
has the potential to induce global changes in his
tone methylation both through directly compro
mising the enzymatic activity of JmjC KDMs and 
by altering the expression levels of JmjC KDMs 
and lysine methyltransferases.

Iron also plays a critical role in the activities of 
the PHDs and FIH and in some contexts its avail
ability is proposed to regulate HIF signalling[19]. 
Iron chelators are commonly used to mimic 
hypoxia by inhibiting PHDs and FIH (and likely 
other 2OG oxygenases), so hindering HIF-α degra
dation/inhibition of HIF transcription [20,21]. 
Iron chelators such as desferrioxamine (DFO, 
Desferal®), deferiprone (CP20) and deferasirox 
(Exjade) are used clinically to treat human iron 
overload diseases (Supplementary Figure S1) 
[22,23].

Unlike iron chelators, dimethyloxalylglycine 
(DMOG) is a cell-permeable 2OG analogue 
which acts as a broad-spectrum inhibitor of 
many 2OG/Fe(II)-dependent oxygenases[24]. 
DMOG treatment stabilizes HIF-α in normoxia, 
likely predominantly via inhibition of the HIF-α 
prolyl hydroxylases (PHDs), and it is consequently 
used as a hypoxia-mimetic agent [24,25]. Cobalt 
chloride (CoCl2) is also used to create hypoxia- 
mimetic stress by inducing the accumulation of 
HIF-α, likely in part via inhibition of the PHDs 
[26]. More specific PHD inhibitors, such as IOX2 
and FG4592 (Roxadustat, which has been 
approved for use in some countries and is in late 
stage clinical trials in others for treatment of renal 
anaemia) [27,28], are used to replicate aspects of 
reduced oxygen availability on PHD activity. 
Hypoxia and hypoxia mimetics are reported to 
affect epigenetic regulation by changing the activ
ities of histone modifying enzymes and the levels 
of HIF isoforms [8,12,29,30]. However, differences 

between the effects of hypoxia and hypoxia 
mimetics on the levels of histone PTMs have not 
been determined.

Mass spectrometry (MS) is increasingly used to 
investigate chromatin/chromatin-modifying 
enzymes [31–33]. MS-based identification of 
PTMs on intact histones (a ‘top-down’ approach) 
can provide insights into combinatorial modifica
tion patterns[34]. Coupled with proteolytic diges
tion (a ‘bottom-up’ approach), MS is a useful 
method for elucidating the exact positions of 
PTMs observed on histones[35]. However, 
although protocols have been developed, the quan
titative interpretation of proteomic MS data on 
heavily modified histone tails is challenging 
[31,36,37].

We have thus been interested in pursuing liquid 
chromatography-MS (LC-MS) as a relatively sim
ple method for separating the different core his
tones (histones H3, H4, H2A and H2B) and 
simultaneously profiling their intact PTM status. 
Whilst previous studies have demonstrated the 
possibility of using LC-MS to study the global 
PTM status of core histones [38–40], there have 
been relatively few reports investigating these 
changes in the context of cellular stimuli [41–43].

Here we report a rapid, reliable LC-MS method 
to profile intact histone proteins and use it to 
compare the effects of hypoxia, and commonly 
used hypoxia mimetics, including iron chelators, 
PHD inhibitors and CoCl2, on the PTM profiles of 
intact histones. The results provide insights into 
the profile of histone PTMs in hypoxia and imply 
that the influences of hypoxia and so-called 
‘hypoxia mimetics’ on epigenetic changes are not 
identical. These insights have implications of rele
vance for the development of new approaches to 
transcriptional regulation and clinical studies.

Results

MS profiling for histones analysis under 
optimized LC conditions

Based on previous procedures [38,43,44], chroma
tographic conditions were optimized to enable 
rapid and efficient separation of intact histones 
from human cells. Based on a desired combination 
of sufficient histone separation and a reasonably 
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rapid run time, a 20 minute gradient was selected 
for our subsequent studies (Supplementary Figures 
S2,3). Although co-elution of histones H2B and 
H4 was observed, LC-MS enabled identification 
of H2B and H4 due to their mass differences 
(Supplementary Figure S4). As previously 
observed[40], most histone PTMs, e.g. methylation 
(+14 Da), acetylation (+42 Da) and phosphoryla
tion (+80 Da), appear to have only small effects on 
the chromatographic behavior of individual pro
teins, and thus modified histone isoforms tend to 
co-elute with their unmodified precursors. 
Provisional assignments for the observed peaks 
and mass shifts were made based on histone var
iants identified to date (Supplementary Tables 
S1-6).

The interpretation of results in the context of 
intact histone protein molecular weight measure
ments is complicated by near mass redundancies, 
such as for trimethylation (+42.0470 Da) and acet
ylation (+42.0106 Da). To simplify discussion of 
the results, in description of mass shifts we there
fore use the term methyl equivalent (m.e.) corre
sponding to a mass shift of 14 Da, though note 
3 m.e. also corresponds to 1 acetylation, and hence 
multiple m.e. mass shifts do not necessarily corre
late to methylation events. Mass shifts for H3.1 are 
given relative to the value for the unmodified 
protein (minus N-terminal methionine), and for 
H4 relative to the N-terminally acetylated protein. 
Note also that the intact histone method does not 
inform on positions of PTMs and that, in most 
cases, each modified peak (e.g. +1 m.e.) will cor
respond to a collection of histones, each singly 
modified, but at different residues. Tentative 
assignments (e.g. N-terminal acetylation and cer
tain phosphorylation sites) are made on the basis 
of previous reports[45].

Cells were treated with compounds 
(Supplementary Figure S1) for varied time periods, 
before histone extraction followed by LC-MS ana
lysis. To investigate the range of concentrations 
that could be used without decreases in cell viabi
lity, following compound treatment, membrane 
integrity was assessed using a trypan blue exclu
sion assay (Supplementary Figure S5)[46]. Our 
extraction and LC-MS protocol manifested low 
variability based on analyses of all core histone 
variants and their PTMs (Supplementary Figure 

S6), and was feasible with different cell types: 
histones from HeLa (human cervical carcinoma), 
RKO (human poorly differentiated colon carci
noma) and MCF-7 (human breast adenocarci
noma) cells were analysed (Supplementary 
Figure S7).

To validate the protocol, we conducted studies 
with an HDAC inhibitor, Vorinostat (Zolinza™, 
SAHA). RKO cells were treated with SAHA 
(1 µM, 24 hours). Consistent with previous studies 
[43,47], substantial changes in the global histone 
PTM patterns were observed (Supplementary 
Figure S8). Increases in the relative intensity of 
higher molecular weight peaks were observed for 
all the core histones relative to the histones from 
untreated cells. On histone H4, mass increases in 
units of 42 Da (3 m.e., corresponding to acetyla
tion) were particularly evident. Notably, the 
observed changes in H2A and H2B were more 
substantial than those observed in previous studies 
using K562 and HT-29 cells [41,43]. These results 
suggest that SAHA treatment triggers extensive 
increases in N-acetylation of core histones, consis
tent with substantial HDAC inhibition.

Detection of hypoxia-induced PTMs on intact 
core histones

Having validated our protocol, we investigated the 
effects of hypoxia and hypoxia mimetics on his
tone PTMs. Initially, we analysed histones from 
HEK 293T, HeLa and RKO cells grown under 
normoxia (21% O2) or severe hypoxia (0.1% O2) 
for 24 hours (Figure 1). The profiles of all histones 
shifted towards higher molecular weights, imply
ing more highly modified states. In all cases, the 
most substantial changes in the mass profiles of 
intact histones in hypoxia were observed for his
tones H3 (shown for H3.1 in Figure 1) and H4. In 
the control cells, MS profiles of intact H3.1 dis
played many peaks separated by 1 m.e.. Hypoxic 
treatment resulted in increases in the relative 
intensity of peaks at incremental shifts of 1 and 
3 m.e. from the parent peak at 15273 Da in all cell 
lines, particularly for RKO cells (Figure 1, H3.1), 
with peaks visible at molecular weights as high as 
15525 Da (+18 m.e., Figure 1(a,b)). The average 
molecular weight of H3.1 in RKO cells substan
tially increased (Figure 1(c)). The major peak 
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observed for H4, in both normoxia and hypoxia in 
all cell types, remained around 11306 Da (+2 m.e.), 
which corresponds to the mass change associated 
with N-acetylated (N-Ac) H4 with an additional 
two methyl groups [40,48]. Changes in the inten
sities of other H4 peaks, relative to the 11306 Da 
peak, were observed between the hypoxic and 

normoxic samples. With the RKO cell samples, 
peaks corresponding to N-Ac H4 (11278 Da) and 
at 11292 Da (+1 m.e., mono-methylation) were 
decreased in severe hypoxia compared to nor
moxia (Figure 1(c), H4). The same trend was 
observed in HEK 293T cells, along with 
a concurrent increase of a peak at 11348 Da 
(+3 m.e.), likely corresponding to acetylation of 
the major H4 peak at 11278 Da (N-Ac H4). In 
severe hypoxia, no significant change in the PTM 
profiles were observed for H2A or H2B in all three 
cell lines, with the exception of H2A.X, where 
a substantial peak was observed at 15136 (+80) 
Da (Supplementary Figure S9); this corresponds 
to phosphorylation, a known marker of DNA 
damage [49]. Overall, the RKO cells exhibited 
more significant changes in their PTM profiles 
compared to the HEK 293T and HeLa cells.

Effects of hypoxia mimetics on histone H3

We next compared the effect of hypoxia mimetics 
on the histones from HEK 293T cells with those 
we observed for hypoxia itself (Figure 2(a,b)). We 
focused our analyses on H3 and H4, because 
PTMs on H3 and H4 were most influenced by 
hypoxia (Figure 1). HEK 293T cells were treated 
with a range of concentrations of compounds over 
24 hours before analysis. Very little reduction in 
cell viability was observed at any of the concentra
tions tested (Supplementary Figure S5). Dose- 
dependent effects of varying magnitudes were 
observed with each compound (Figure 2).

Hypoxia mimetics: iron chelators
We investigated the changes in histone PTM profiles 
observed on treatment of cells with the iron chelating 
drugs, DFO and CP20 (Supplementary Figure S1). 
Histone mass profiles were obtained from HEK 293T 
cells treated with five different concentrations of 
DFO (50, 75, 100, 125 and 150 μM) for 24 hours 
(Figure 2(c,d)), which revealed clear dose-dependent 
effects. In the untreated histone H3.1 mass profile, 
the most abundant peak was observed at 15343 Da 
(+5 m.e.), with a clear shift to 15357 Da in the treated 
cells (+6 m.e. – a change in mean ion intensity of 
~7% between the untreated cells and those treated 
with 150 µM DFO, Figure 2(c,d)). The unmodified 

Figure 1. Deconvoluted MS profiles from LC-MS analysis of 
intact core histones under normoxia and hypoxia. Intact histone 
profiles from (a) HEK 293T, (b) HeLa and (c) RKO cells cultured 
for 24 hours under normoxia (21% O2) or severe hypoxia (0.1% 
O2). Coloured traces indicate the sample from control cells 
grown in normoxia (black) or cells treated under severe hypoxia 
for 24 hours (red).
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form (15273 Da) of H3.1 was not observed in any cell 
type under any of the DFO treatment concentra
tions. The apparent monomethylated form of H3.1 
was not observed after treatment with more than 

75 µM DFO either; the apparent dimethylated form 
was also not observed after treatment with 150 µM 
DFO. In general, the treatment with DFO induced 
large apparent changes in the abundance of species 

Figure 2. Histone H3.1 PTM profiles following treatment of cells with hypoxia or hypoxia mimetics. Histones were extracted from 
HEK 293T cells treated for 24 hours with: (a,b) normoxia (21% O2), hypoxia (1% O2), or severe hypoxia (0.1% O2); (c,d) 50, 75, 100, 
125 and 150 μM DFO; (e,f) 25, 50, 75, 100 and 125 μM CP20; (g,h) 50, 100, 150 and 200 μM CoCl2. (a,c,e,g) The ion count for each 
mass spectral peak is expressed as a percentage of the total ion count. (b,d,f,h) The ion count for each peak as a percentage of the 
total ion count is expressed as a change relative to the peak intensity in control cells in each experiment. Data are expressed as 
mean ion counts ± SEM (n = 3). m.e.: number of methylation equivalents.
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in the mass range of 15273 Da (unmodified) to 
15,399 Da (+9 m.e.); however, no obvious abun
dance changes were observed in the species contain
ing more than 11 m.e. (Figure 2(d)).

Analysis of HEK 293T cells treated with five 
different concentrations of CP20 (25, 50, 75, 100 
and 125 μM) for 24 hours was carried out (Figure 
2(e,f)). Dose-dependent effects on the histone 
PTM profile were again observed. At the highest 
two concentrations of CP20, unmodified H3.1 was 
not observed. With 125 μM CP20, the most abun
dant species was at 15357 Da (+6 m.e.), whereas 
with 0–100 μM CP20 the most abundant species 
was at 15343 Da (+5 m.e.) (Figure 2(e)). Overall, 
treatment with CP20 at 100–125 μM biased the 
intact H3.1 mass pattern towards more highly 
modified forms.

Overall, the magnitude of the observed changes 
differed significantly between compound treat
ments. In no cases did the iron chelators exactly 
replicate the effects of hypoxia on the distribution 
of histone PTMs.

Cobalt chloride (CoCl2)
Unlike the results for the iron chelators, treatment 
of HEK 293T cells with CoCl2 up to 200 μM 
resulted in only small apparent changes in the 
global PTM patterns on intact histone H3.1 
(Figure 2(g,h,)). This observation suggests that, 
under the tested conditions, the changes in histone 
PTMs induced by Co(II) ions are less extensive 
than for the iron chelators, especially Exjade and 
DFO. Since all these treatments are reported to 
induce HIF-α at the tested concentrations, the 
combined results imply that changes in histone 
PTMs, including by the iron chelating drugs, are 
not directly mediated by HIF-α upregulation.

Oxygenase inhibitors: dimethyloxalylglycine 
(DMOG), IOX2 and FG4592
Given the ability of PHDs to regulate HIF levels, to 
investigate their (and other 2OG oxygenases) con
tribution to the observed histone PTM changes, we 
treated cells with the broad spectrum 2OG oxyge
nase inhibitor, DMOG (a prodrug form of 

Figure 3. Histone H3.1 PTM profiles following treatment of cells with 2OG oxygenase inhibitors. Histones were extracted from HEK 
293T cells treated for 24 hours with various concentrations of: (a) DMOG; (b) IOX2; (c) FG4592. The ion count for each peak as 
a percentage of the total ion count is expressed as a change relative to the control cells in each experiment. Data are means ± SEM 
(n = 3). m.e.: number of methylation equivalents.
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N-oxalylglycine, a close 2OG isostere), and more 
specific PHD2 inhibitors, IOX2 and FG4592 
(Supplementary Figure S1) [27,28,50].

On treatment of cells with DMOG, discernible 
changes in the abundance of H3.1 PTMs were 
observed, with the most noticeable dose- 
dependent changes being for species containing 
+3 and +4 m.e. (Figure 3(a)). By contrast with 
the results for the iron chelating drugs and 
hypoxia, at even the highest concentration 
(1.25 mM), the unmodified form of H3.1 was 
observed, whilst the most highly modified H3.1 
species was observed at 15511 Da (+17 m.e.) in 
cells treated with DMOG (0.5–1.25 mM), but not 
in the control cells. This observation is similar to 
that observed for cells grown under mild hypoxia 
(Figure 2(a,b)). As with hypoxia and the iron che
lators, DMOG treatment slightly biased the overall 
H3 intact mass profile to more highly modified 
states in a dose-dependent manner.

Similarly to the results with Co(II) ions (Figure 
2(g,h)), with IOX2 (50 and 250 µM) or FG4592 
(25, 50, 75 and 100 µM), only very small changes 
were observed in the abundance of differently 
modified H3.1 peaks. All changes were much less 
prominent than for cells grown under hypoxia or 
treated with the iron chelating drugs or DMOG 
(Figure 2,3, Supplementary Figure S10). These 
results suggest that the majority of changes in 
H3.1 PTMs observed under hypoxia or with the 
other mimics tested are not directly caused by 
PHD-mediated HIF upregulation.

Effect of hypoxia and hypoxia mimetics on 
histone H4

Analysis of the intact H4 mass profile was also 
performed (Figure 4, Supplementary Figure S11). 
In hypoxia, the largest change was observed for the 
H4 species at 11348 Da (+5 m.e.), followed by the 
unmodified histone at 11278 Da (0 m.e.) (Figure 4 
(a)). Of note, the observed changes in the intact 
H4 mass profile were different between treatments 
with hypoxia and the three iron chelators (DFO 
and CP20). With the iron chelators, the abundance 
of the species at 11306 Da (+2 m.e.) increased 
most substantially. As for cells grown under 
hypoxia, treatment with CP20 also resulted in an 

increase in the +5 m.e. state (Figure 4(c)), but this 
was not observed for DFO (Figure 4(b)).

The overall results reveal the extent and direc
tion of changes to H4 modifications caused by 
hypoxia and iron chelators differ substantially 
under the tested conditions. The change in pattern 
of the H4 mass profile on DMOG treatment was 
most similar to that observed in hypoxia (Figure 4 
(a,e)). As for H3.1, changes in H4 PTMs on treat
ment with IOX2 and FG4592 were fairly small 
(Figure 4(f,g), Supplementary Figure S11(f,g))

Based on previous reports it is likely that the 
species at 11306 Da, N-Ac H4 +2 m.e., correlates 
with the reported dimethylation of K20, and the 
species at 11348 Da (N-Ac H4 +5 m.e) correlates 
with N-Ac H4 +K20me2 plus a further acetylation 
(probably K16Ac)[51]. The results indicate that 
the hypoxia and DMOG treatments similarly man
ifest a higher population of this N-Ac H4 +5 m.e. 
peak, possibly due to inhibition of histone modify
ing enzymes (e.g. histone deacetylases, demethy
lases, acetyltransferases). Iron chelators and CoCl2 
have comparable effects, causing a higher popula
tion of the species corresponding to N-Ac 
H4 +2 m.e. (11306 Da), again possibly due to 
enzyme inhibition. Interestingly, based on analysis 
of changes to both H3.1 and H4, treatment of cells 
with DMOG appears to be the best mimic of 
hypoxia on histone PTMs.

Time-dependent experiments of hypoxia and 
hypoxia mimetics
The time-dependent effects of hypoxia and 
hypoxia-mimetic agents on histones were then 
investigated. HEK 293T cells were treated with 
severe hypoxia (0.1% O2), or a single concentration 
of a hypoxia mimetic (150 μM DFO, 1.25 mM 
DMOG, or 200 μM CoCl2), for between 1 and 
24 hours prior to analysis (Figure 5, 
Supplementary Figure S12). In all cases the extent 
of changes in the PTM profiles increased over the 
time period studied. In severe hypoxia, changes in 
PTM profiles became obvious after 6-h exposure, 
while the maximum effects were observed between 
12 and 24 hours, suggesting cells might tolerate 
hypoxic stress for a short time, with more signifi
cant changes/adaptions appearing only over 
a longer stress exposure period (Figure 5(a)). 
Similarly, treatment of cells with DFO (150 μM) 
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induced alterations in the intact H3.1 PTM profile 
after a 6-h exposure. Unlike the observations under 
severe hypoxia, however, dramatic changes contin
ued to occur between the 12- and 24-h exposure 
(Figure 5(b)). With DMOG, changes in the H3.1 
mass profile were detected more quickly, with evi
dence of significant changes after only a 
2-h exposure; again the maximum effect was 
observed after a 24-h exposure (Figure 5(c)). 
Following CoCl2 treatment (200 μM), obvious 

changes were observed at all timepoints between 
15315 Da (3 m.e.) and 15385 Da (8 m.e.) and 
above 15455 Da, while the other species changed 
only slightly in abundance over time (Figure 5(d)). 
These results indicate that the extent of time- 
dependent effects of hypoxia and hypoxia-mimetic 
agents (DFO, DMOG and CoCl2) on the global 
histone modification profiles also varies between 
stresses.

Figure 4. Analysis of histone H4 following treatment of cells with hypoxia, hypoxia mimetics or 2OG oxygenase inhibitors. Histones 
were extracted from HEK 293T cells treated for 24 hours with various concentrations of (a) hypoxia, (b) DFO, (c) CP20, (d) CoCl2, (e) 
DMOG, (f) IOX2 or (g) FG4592. The ion count for each peak as a percentage of the total ion count is expressed as a change relative to 
the control cells in each experiment. Data are means ± SEM (n = 3). No. of m.e.: number of methylation equivalents.
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Discussion

Whilst ‘bottom-up’ MS approaches (involving pro
teolytic fragmentation) can enable identification of 
histone PTMs at specific residues, their use for the 
analysis of multivalent, combinatorial PTMs and 
histone variants, is technically complicated and 
frequently ineffective. This is because digested 
peptides may not contain all the modified residues 
in trans, the rates and positions of digestion may 
differ with PTM patterns, peptide ionization effi
ciencies may vary, and because the same peptide 
sequences may coexist in different histone var
iants, which prevents their mapping back onto 
the full protein sequence [32,35,37,52]. Thus, com
plementary MS strategies, including analysis of 
intact histones, as employed in this study, have 
the potential to provide a useful perspective on 
global histone PTM profiles[53]. Limitations of 
intact protein analyses include lack of identifica
tion of specific PTMs (though these can sometimes 
be inferred) and their locations. A caveat to most 

strategies is that labile PTMs may be lost in the 
acidic histone extraction procedure.

We were interested to extend the intact protein 
protocol to profiling the global effect of cellular 
stresses on histone PTMs. Our protocol shows 
good reproducibility and coverage suggesting it is 
robust for detection of a range of histone isoforms 
and to profile their PTMs, consistent with the 
results from previous studies [39,54,55]. LC-MS 
analysis of intact histones may be of general use 
in selectivity studies on oxygenase and other 
enzyme inhibitors, including when histone mod
ification is undesirable, i.e. one would look for 
compounds that do not cause changes in histone 
profiles.

The method was used to analyse global changes 
in histone PTM profiles resulting from hypoxia 
and commonly used hypoxia mimetics in human 
cell lines. Substantial changes of intact histone H3 
and H4 PTMs were observed following the treat
ment of HEK 293T, HeLa and RKO cells with

Figure 5. Changes in H3.1 PTM profiles over time following a range of hypoxic stresses. Histones were extracted from HEK 293T cells 
treated with (a) severe hypoxia (0.1% O2), (b) DFO (150 µM), (c) DMOG (1.25 mM), (d) CoCl2 (200 µM) for various times. The ion count 
for each peak as a percentage of the total ion count is expressed as a change relative to the control cells in each experiment. Data 
are means ± SEM (n = 3). No. of m.e: number of methylation equivalents.
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hypoxia. By contrast, much smaller changes in 
PTM profiles were observed on H2A and H2B. 
The exception to this was H2A.X; 
Phosphorylation at S139 of H2A.X (γ-H2AX) is 
a marker of DNA damage which can occur in 
severe hypoxia[49]. Interestingly, an increased 
level of (apparent) phosphorylation (+80 Da) was 
observed for H2A.X in RKO cells in severe 
hypoxia in our study, with a ratio of nearly 1:2 γ- 
H2AX:H2AX, whereas no increased level of phos
phorylated H2A.X was noted in HEK 293T cells 
under the same hypoxic conditions 
(Supplementary Figure S9). Our findings suggest 
that different cell types may have varied H2A.X 
mediated responses to hypoxic stress.

Hypoxia is reported to induce changes in his
tone PTMs, both in local chromatin environments, 
but also, in some cases, globally [10,11,14,56]. 
Hypoxia induces context-dependent HIF target 
gene expression, but in general causes 
a reduction in transcription [10,56]. Hypoxia- 
mediated histone PTM changes (especially to H3) 
appear to be complex and may occur in a gene- 
specific manner. The global level of histone lysyl 
Nε-methylation is mediated by the activities of two 
functionally opposed enzyme families; the histone 
methyltransferases and demethylases (KDMs), the 
latter of which include both flavin-dependent 
enzymes and the 2OG-dependent JmjC KDMs. 
Increased activity of the methyltransferase G9a 
and the decreased activity of JmjC KDMs in 0.2% 
O2 have both been reported [14,15,57,58]. Some 
2OG-dependent JmjC KDMs have also been iden
tified to be transcriptionally induced by HIF in 
hypoxia [11,59,60]. As a result, in some cases, the 
induction of JmjC KDMs under hypoxic condi
tions may, at least in part, compensate for their 
reduced activity due to limiting oxygen [16,56]. 
Thus, the relationship between hypoxia and his
tone PTMs is complex.

Our results inform on the effects of hypoxia and 
hypoxia mimetics on histone PTM profiles. Two 
clinically used iron chelators (DFO and CP20), 
cobalt chloride, and 2OG oxygenase inhibitors, 
along with several different concentrations of oxy
gen were profiled. Overall, the results support pre
vious work on hypoxia-/hypoxia-mimic-induced 
alterations in chromatin structure. All cellular stres
ses induced alterations to the global histone PTM 

profiles, but to different extents, as revealed by our 
LC-MS-based analyses of intact histones. Note, we 
have recently shown that Exjade also causes altera
tions in histone PTMs, at least in part through 
inhibition of the JmjC KDMs[30]. The dose- and 
time-dependencies of these effects were investigated 
to gain further insight into the effects of hypoxic/ 
hypoxia-mimetic stresses. In most cases, H3.1 and 
H4 were found to shift to more highly modified 
states on hypoxia/compound treatment, likely sub
stantially due to increased methylation. However, 
the results imply that, at least in cell culture, the 
extent of these changes varies widely between 
hypoxia and different hypoxia mimetics. Of the 
compounds tested, DMOG appeared to most closely 
mimic hypoxia. The precise reasons for the differ
ences in histone PTMs observed are unknown, and 
likely reflect the complexity of epigenetic regulation.

Although care should be taken in assuming these 
cellular results apply in vivo, they imply that there 
are clear differences in the effects of physiological 
hypoxia and hypoxia mimetics. The magnitude of 
the observed changes from intact mass profiles dif
fer considerably among hypoxia and chemical inter
ventions. Given the complexity of the mammalian 
hypoxic response, these differences are not surpris
ing, but they are nonetheless striking[1].

Materials and methods

Cell lines and cell culture

HEK 293T, HeLa, RKO and MCF-7 human cell 
lines were from the American Type Culture 
Collection (ATCC, Manassas, VA). Cells were cul
tivated in Dulbecco’s modified Eagle’s medium 
(DMEM, Lonza) supplemented with 10% foetal 
bovine serum (FBS, Invitrogen) and L-glutamine 
(Invitrogen) with/without penicillin (100 U/mL) 
and streptomycin (0.1 mg/mL). Cells were main
tained in a Binder BD 53 incubator with 5% CO2 at 
37°C. For experiments at reduced O2 concentra
tions, cells were cultured in a Baker Ruskinn 
Invivo2 400 hypoxic chamber with 5% CO2 at 37°C.

Trypan blue exclusion assay

Cells were treated with variable levels of hypoxia 
or concentrations of compounds for 24 hours. 
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Trypan blue exclusion assays were then carried out 
following literature procedures to assess changes 
in membrane integrity[46]. Briefly, cells were 
resuspended to a density of 5 × 105 cells/mL. 
10–20 µL cell suspension was mixed with 0.4% 
trypan blue and incubated for 3 min at room 
temperature. A drop of this cell mixture was 
placed onto a haemocytometer and stained (dead 
cells) and unstained (viable cells) counted sepa
rately using a binocular microscope. Individual 
counts were averaged over four 0.1 mm3 squares. 
Three biological replicates were carried out for 
each condition.

Hypoxia and hypoxia mimetic experiments

Cells were incubated in optimal condition (95% air 
and 5% CO2, 37°C) and grown to approximately 
75% confluence before exposure to different O2 
concentrations (21%, 5%, 1% and 0.1% O2) at 37° 
C for 24 h. Cells were also exposed to 0.1% O2 and 
were harvested at 2, 6, 12, and 24-h timepoints 
after 0.1% O2 exposure to test the time-dependent 
effect of hypoxia. In experiments with hypoxia 
mimetics, varying concentrations of DFO (25–
150 μM, Sigma-Aldrich), CP20 (25–125 μM, 
Sigma-Aldrich), DMOG (250–1250 μM, Sigma- 
Aldrich) and CoCl2 (50–200 μM, Sigma-Aldrich) 
were used to treat cells at approximate 75% con
fluence (95% air and 5% CO2 incubator at 37°C, 
24 hours). In addition, for time-dependent experi
ments, DFO (150 μM), DMOG (1250 μM) and 
CoCl2 (200 μM) were used to treat cells before 
harvesting at 2, 6, 12, and 24-h post compound 
treatment. Compounds (dissolved in doubly dis
tilled water or DMSO) were added directly into the 
cell culture medium to the desired final 
concentrations.

Preparation of histones for LC-MS analysis

Histones were extracted from cells and prepared 
for LC-MS analysis based on literature procedures 
[44,54]. Prepared cell pellets (HEK 293T, HeLa, 
MCF-7, or RKO cells) were resuspended in ice- 
cold hypotonic lysis buffer (10 mM Tris-Cl pH 8.0, 
1 mM KCl, 1.5 mM MgCl2, 1 mM dithiothreitol 
and 1 mM phenylmethanesulfonylfluoride, supple
mented with 1x protease and phosphatase 

inhibitors (Thermo Fisher Scientific) then incu
bated on a rotator at 4°C for 30 minutes. The 
nuclei were pelleted by centrifugation (10,000 
x g, 4°C, 10 min), and the supernatant discarded. 
The pellets were resuspended in 400 μL 0.4 N ice- 
cold HCl. Samples were centrifuged (16,000 x g, 4° 
C, 10 min) and the supernatant containing his
tones transferred into an Eppendorf tube. 
Following acid extraction, ~400 μL supernatant 
was added to a 15 mL falcon tube with 4 mL 
acetone and placed at −20°C overnight for preci
pitation. The sample was then centrifuged (2,500 
x g, 4°C, 10 min), the supernatant discarded, and 
the pellet transferred into the fresh 1.5 mL 
Eppendorf tube. Three washes with ice-cold acet
one were carried out by centrifugation (16,000 x g, 
4°C, 5 min) and the pellet dried at room tempera
ture. The appropriate volume of 0.1% (v/v) aqu
eous formic acid (typically 100 μL) was added to 
dissolve the final pellet and the solution was stored 
at −20°C.

LC-MS histone analyses

Samples of histones, extracted as described above, 
were separated by reversed phase ultra- 
performance liquid chromatography (RP-UPLC) 
and analysed by electrospray ionization time-of- 
flight mass spectrometry (ESI-TOF MS) using 
a Waters Acquity UPLC system connected directly 
to a Waters LCT ESI-TOF mass spectrometer. 
UPLC separation was carried out at a flow rate of 
0.25 mL/min on a Waters BEH C4 reversed phase 
column (2.1 x 150 mm, 1.7 μm particle size, 300 Å 
pore size) at 40°C. The column was equilibrated 
with solvent A (0.5% (v/v) formic acid in doubly 
distilled water) and solvent B (0.5% (v/v) formic 
acid in acetonitrile). 5 μL of histone sample was 
injected into the column and histones were eluted 
using a stepped gradient from solvent A to solvent 
B (Supplementary Figure S3).

The LCT-TOF MS (Waters Corp, Manchester, 
UK) parameter settings were as follows: polarity 
mode: ES+; capillary voltage: 3,000 V; sample cone 
voltage: 35 V; extraction cone voltage: 2.5 V; des
olvation temperature: 250°C; cone gas flow rate: 
10 L/hour; desolvation gas flow (N2): 500 L/hour. 
The acquisition mass range was 200 to 2000 m/z 
using MassLynx 4.1 instrument control software 
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(Waters Corp, Manchester, UK). Mass spectral 
charge state envelopes were deconvoluted to deter
mine histone molecular weights using Maxent 1 
(MassLynx application manager that uses an 
entropy-based deconvolution algorithm to esti
mate molecular mass from multiple-charge state 
protein mass spectra) [61,62], using with mass 
accuracy 70 ppm with continuum mode data 
acquired at a rate of 1 spectrum/s. Masses were 
validated by manual analysis. Leu-Enkephalin was 
used as a lock spray reagent for calibration of the 
mass spectrometer at the monoisotopic mass of 
556.277 [M + H]+.

Deconvoluted MS profiles are presented as the 
intensity of each species normalized relative to 
the intensity of the most abundant species. To 
allow comparison of species from different sam
ples and treatment conditions, MS profiles were 
also transformed such that the ion count of each 
species is expressed as a percentage of the total 
ion count.

Results are presented as the means ± SD or SEM 
of three independent replicates.
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