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Abstract—In this paper, some hidden aspects of composite 

right-/left-handed (CRLH) transmission lines (TLs) and couplers 
are clarified. Complete and detailed dispersion analysis of an 
isolated CRLH TL is presented including lossless and lossy cases 
on a conventional unit cell, devised formerly. The left-handed 
behavior of such TLs is confirmed. Dispersion analysis of CRLH 
TLs is extended form the conventional to an accurate unit cell. 
Capability of TLs consisting of such unit cells in supporting RLH 
waves is demonstrated. A pure analytical strategy is proposed for 
parameter extraction of CRLH TLs and symmetric couplers based 
on accurate circuit models. 
 

Index Terms—coupler, left-handed, metamaterial, transmission 
line.  

I. INTRODUCTION 
HE purpose of this paper is to clarify some hidden aspects 
of a rather old but still attractive transmission line (TL) 

approach to left-handed metamaterials. This valuable approach, 
introduced in 2003 as a conference paper [1] and then 
developed and presented as a book in 2006 [2], has become a 
powerful engineering tool for design of advantageous 
microwave components [3]-[13].  

Two main issues are revisited; i.e., dispersion analysis of a 
composite right-/left-handed (CRLH) TL and parameter 
extraction of both CRLH TLs and symmetric edge couplers. 
Dispersion analysis of lossless CRLH TL is formerly carried 
out in [2], [14]. For the lossless case, it is not rigorously shown 
how the correct branch of the phase constant can be chosen. For 
the lossy TL, the analysis is restricted to the low-loss case. In 
[2] and [3], parameter extraction is performed for a CRLH TL 
and a symmetric CRLH coupler, respectively. For both of these 
structures, only the lossless case is considered. Additionally, in 
contrast to an isolated CRLH TL, the suggested strategy for 
extracting circuit parameters of the coupler requires curve 
fitting methods and thus is not purely analytic [2],[3], [9]. This 
violates the purpose of the circuit model since curve fitting is 
potentially a time-consuming process and may lead to losing 
the correct phase response of the corresponding scattering (S-) 
parameters. The circuit model not only provides an intuitive 
description of the physical model but also, serves as a valuable 
design tool. Thus, its construction should take less time than a 
full-wave analysis of the complete structure. The said 
deficiencies are resolved in the present work.  Specifically, in 
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section 2, it is shown that for a lossless CRLH TL, it is not 
possible to uniquely determine the phase constant. The situation 
is similar to the uniqueness theorem in electromagnetics that 
cannot be proven in a lossless media [15]. Then, a complete 
dispersion analysis of a lossy CRLH TL is provided and the 
complex propagation constant is uniquely determined. Besides, 
it is shown that the lossless TL can be well described as the 
limiting case of the lossy TL. In section 3, a general strategy is 
suggested to obtain dispersion curves of a CRLH TL using an 
accurate circuit model of the corresponding unit cell. In section 
4, a method for parameter extraction of a CRLH TL is proposed 
based on the said unit cell. Finally, section 5 is devoted to 
detailed parameter extraction of symmetric CRLH edge coupler 
solely based on analytic expressions. Through the paper, the 
unit cell of all physical CRLH TLs is the same as the one 
proposed in [3] that is consisted of cascading an interdigital 
capacitor (IDC) and a short-circuited stub inductor (SI). The 
full-wave simulations are carried out using Keysight® 
Momentum. 

II. REVISITING DISPERSION ANALYSIS 
The unit cell of a conventional CRLH TL is depicted in 

Fig. 1, wherein 𝑍𝑍𝑠𝑠, 𝑌𝑌𝑝𝑝, and 𝛿𝛿 are, respectively, series 
impedance, parallel admittance and physical length [2]. The 
complex propagation constant of a TL consisted from cascading 
infinite number of such a unit cell can be represented by [16]: 

 
 𝛾𝛾 = lim

𝛿𝛿→0

1
𝛿𝛿2 �𝑍𝑍𝑠𝑠𝑌𝑌𝑝𝑝 (1)         

 
that can also be regarded as the dispersion relation. 
Subsequently, real and imaginary parts of the propagation 
constant are derived as a function of angular frequency for  
 

 
 

Fig. 1.  The unit cell of a conventional CRLH TL. 
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lossless and lossy TLs. Note that due to the conservation of 
energy, the real part of the propagation constant must be non-
negative. All derivations of this section are at the level of high-
school mathematics and thus only the final results are included. 
Besides, following [2], 
 
 𝜔𝜔𝑠𝑠𝑠𝑠 = 1 �𝐿𝐿𝑅𝑅𝐶𝐶𝐿𝐿⁄ , 𝜔𝜔𝑠𝑠ℎ = 1 �𝐿𝐿𝐿𝐿𝐶𝐶𝑅𝑅⁄   (2a)                                     
 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 = min(𝜔𝜔𝑠𝑠𝑠𝑠 ,𝜔𝜔𝑠𝑠ℎ), 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 = max(𝜔𝜔𝑠𝑠𝑠𝑠 ,𝜔𝜔𝑠𝑠ℎ)  (2b)                                     

 

A. Lossless CRLH TL 
In this case, the series impedance and parallel admittance are: 
 

 𝑍𝑍𝑠𝑠,𝑙𝑙𝑙𝑙 = 𝑗𝑗𝜔𝜔𝐿𝐿𝑅𝑅 + 1 (𝑗𝑗𝜔𝜔𝐶𝐶𝐿𝐿)⁄ , 𝑌𝑌𝑝𝑝,𝑙𝑙𝑙𝑙 = 𝑗𝑗𝜔𝜔𝐶𝐶𝑅𝑅 + 1 (𝑗𝑗𝜔𝜔𝐿𝐿𝐿𝐿)⁄   (3)                                     
 
and the dispersion equation is: 
 
 𝛾𝛾𝑙𝑙𝑙𝑙2 = (𝛼𝛼𝑙𝑙𝑙𝑙 + 𝑗𝑗𝛽𝛽𝑙𝑙𝑙𝑙)2 = 𝑓𝑓1(𝜔𝜔)  (4)                                     
 
wherein the subscript “ll” stands for lossless. Also, according 
to [2],  
 
 𝑓𝑓1 = −[(𝜔𝜔 𝜔𝜔𝑅𝑅⁄ )2 + (𝜔𝜔𝐿𝐿 𝜔𝜔⁄ )2 + 𝜅𝜅𝜔𝜔𝐿𝐿

2]  (5) 
                         > 0,       𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 < 𝜔𝜔 < 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚  
                         < 0,      𝑜𝑜.𝑤𝑤. 

 
Since 𝛼𝛼𝑙𝑙𝑙𝑙 ≥ 0 and 𝛽𝛽𝑙𝑙𝑙𝑙 ∈ ℝ, it can be concluded that: 
 

 𝛼𝛼𝑙𝑙𝑙𝑙 = �+�|𝑓𝑓1|,                𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 < 𝜔𝜔 < 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚
0,                            𝑜𝑜.𝑤𝑤.                         

  (6)                                                      

 
and 
 

      𝛽𝛽𝑙𝑙𝑙𝑙 = �
0,                          𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 < 𝜔𝜔 < 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚     
±�|𝑓𝑓1|,               𝑜𝑜.𝑤𝑤.                                

  (7)                                                      

 
which defines two pass-bands and one stop-band. Note that in 
the stop-band, the amplitude of the voltage wave is non-zero. 
Though, its gradient is zero due to the zero value of the phase 
constant. Besides, 𝛽𝛽𝑙𝑙𝑙𝑙 cannot be uniquely determined in pass-
bands. The characteristic impedance of the TL is: 
 

 𝑍𝑍𝑐𝑐,𝑙𝑙𝑙𝑙 = �𝑍𝑍𝑠𝑠,𝑙𝑙𝑙𝑙 𝑌𝑌𝑝𝑝,𝑙𝑙𝑙𝑙⁄ = 𝑍𝑍𝑅𝑅�
𝜔𝜔2−𝜔𝜔𝑠𝑠𝑠𝑠2

𝜔𝜔2−𝜔𝜔𝑠𝑠ℎ
2  (8) 

                                 ∈ 𝕀𝕀,           𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 < 𝜔𝜔 < 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚   
                                 ∈ ℝ+,        𝑜𝑜.𝑤𝑤.                

 
and thus, the corresponding reflection coefficient with respect 
to a real characteristic impedance is: 
 
                            S11(dB) = 0,      𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 < 𝜔𝜔 < 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚  (9) 
                                           < 0,      𝑜𝑜.𝑤𝑤. 
 

This shows complete reflection at the stop-band. Note that at 
the stop-band, there is no thermodynamic loss. Also, the 
attenuation constant is finite.  

B. Lossy CRLH TL 
In this case, the series impedance and parallel admittance are: 
 

 𝑍𝑍𝑠𝑠,𝑙𝑙 = 𝑅𝑅 + 𝑍𝑍𝑠𝑠,𝑙𝑙𝑙𝑙 , 𝑌𝑌𝑝𝑝,𝑙𝑙 = 𝐺𝐺 + 𝑌𝑌𝑝𝑝,𝑙𝑙𝑙𝑙 (10)                                     
 
and the dispersion equation is: 
 
 𝛾𝛾𝑙𝑙2 = (𝛼𝛼𝑙𝑙 + 𝑗𝑗𝛽𝛽𝑙𝑙)2 = 𝑓𝑓2(𝜔𝜔) + 𝑗𝑗𝑓𝑓3(𝜔𝜔)  (11)                                     
 
wherein the subscript “l” stands for lossy and 
 
 𝑓𝑓2 = 𝑅𝑅𝐺𝐺 + 𝑓𝑓1  (12a)                                     
 𝑓𝑓3 = 𝑅𝑅𝐶𝐶𝑅𝑅(𝜔𝜔 −𝜔𝜔𝑠𝑠ℎ

2 𝜔𝜔⁄ ) + 𝐺𝐺𝐿𝐿𝑅𝑅(𝜔𝜔 −𝜔𝜔𝑠𝑠𝑠𝑠2 𝜔𝜔⁄ )  (12b)                                     
 

By defining ∆ and 𝜔𝜔𝑏𝑏 as  
                                            
    ∆ = [(𝜔𝜔𝑠𝑠𝑠𝑠 + 𝜔𝜔𝑠𝑠ℎ)2 − 𝑅𝑅𝐺𝐺𝜔𝜔𝑅𝑅

2][(𝜔𝜔𝑠𝑠𝑠𝑠 − 𝜔𝜔𝑠𝑠ℎ)2 − 𝑅𝑅𝐺𝐺𝜔𝜔𝑅𝑅
2] (13a)                                     

 𝜔𝜔𝑏𝑏 = �(𝑅𝑅𝐶𝐶𝑅𝑅𝜔𝜔𝑠𝑠ℎ
2 + 𝐺𝐺𝐿𝐿𝑅𝑅𝜔𝜔𝑠𝑠𝑠𝑠2 ) (𝑅𝑅𝐶𝐶𝑅𝑅 + 𝐺𝐺𝐿𝐿𝑅𝑅)⁄      (13b)                                     

                                     
it can be shown that: 

 
 𝑓𝑓2 < 0, ∆ < 0,    ∀𝜔𝜔 (14) 
                                       > 0, ∆ ≥ 0,   𝜔𝜔1 < 𝜔𝜔 < 𝜔𝜔2 
                                      < 0, 𝑜𝑜.𝑤𝑤. 
and  
 
 𝑓𝑓3 ≷ 0, 𝜔𝜔 ≷ 𝜔𝜔𝑏𝑏 (15) 
 
where  

 𝜔𝜔1,2 = √2
2
�[(𝜔𝜔𝑠𝑠𝑠𝑠2 + 𝜔𝜔𝑠𝑠ℎ

2 ) − 𝑅𝑅𝐺𝐺𝜔𝜔𝑅𝑅2] ∓ √∆  (16) 

 
Additionally, 
 

 ∆ < 0 ⟺ ��𝐿𝐿𝑅𝑅
𝐿𝐿𝐿𝐿
− �𝐶𝐶𝑅𝑅

𝐶𝐶𝐿𝐿
� < √𝑅𝑅𝐺𝐺 < ��𝐿𝐿𝑅𝑅

𝐿𝐿𝐿𝐿
+ �𝐶𝐶𝑅𝑅

𝐶𝐶𝐿𝐿
�  (17a)                                     

 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝜔𝜔𝑏𝑏 ≤ 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚  (17b)                                     
 
Since 𝛼𝛼𝑙𝑙 ≥ 0 and 𝛽𝛽𝑙𝑙 ∈ ℝ, solving (11) for 𝛼𝛼𝑙𝑙 and 𝛽𝛽𝑙𝑙 leads to: 
 

 𝛼𝛼𝑙𝑙 = √2
2
�𝑓𝑓2 + �𝑓𝑓22 + 𝑓𝑓32� > 0,    ∀𝜔𝜔  (18)           

                                            
and 
 

 𝛽𝛽𝑙𝑙 =

⎩
⎨

⎧−√2
2
�−𝑓𝑓2 + �𝑓𝑓22 + 𝑓𝑓32,      𝜔𝜔 < 𝜔𝜔𝑏𝑏

+ √2
2
�−𝑓𝑓2 + �𝑓𝑓22 + 𝑓𝑓32,      𝜔𝜔 > 𝜔𝜔𝑏𝑏

  (19)                                                      

 
Thus, the line is LH for 𝜔𝜔 < 𝜔𝜔𝑏𝑏 and is RH for 𝜔𝜔 > 𝜔𝜔𝑏𝑏.  
 

C. Lossless CRLH TL as limiting case of lossy CRLH TL 
As a familiar technique, a lossless TL can be considered as 

the limiting case of the lossy TL when loss parameters approach 
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zero. Note that the limit of 𝜔𝜔𝑏𝑏 does not exist when (𝑅𝑅,𝐺𝐺 ) →
(0, 0 ) but (17b) guarantees that its limiting value is bounded by 
𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 and 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚. Thus, at the limit, the sign of 𝛽𝛽𝑙𝑙 cannot be 
determined when 𝜔𝜔1 < 𝜔𝜔 < 𝜔𝜔2. Also, (12) and (16) lead to: 

 
 lim

(𝑅𝑅,𝐺𝐺 )→(0,0 )
𝑓𝑓2 = 𝑓𝑓1, lim

(𝑅𝑅,𝐺𝐺 )→(0,0 )
𝑓𝑓3 = 0  (20a)                                                      

 lim
(𝑅𝑅,𝐺𝐺 )→(0,0 )

𝜔𝜔1 = 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚, lim
(𝑅𝑅,𝐺𝐺 )→(0,0 )

𝜔𝜔2 = 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚  (20b)                

                                      
Consequently, 
 

 lim
(𝑅𝑅,𝐺𝐺 )→(0,0 )

𝛼𝛼𝑙𝑙 = √2
2

(𝑓𝑓1 + |𝑓𝑓1|),    ∀𝜔𝜔  (21)   

                                            = √2|𝑓𝑓1|,   𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 < 𝜔𝜔 < 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚  
                                             = 0,            𝑜𝑜.𝑤𝑤.  

 
and  
 

 lim
(𝑅𝑅,𝐺𝐺 )→(0,0 )

𝛽𝛽𝑙𝑙 = �
+ √2

2
�−𝑓𝑓1 + |𝑓𝑓1|,      𝜔𝜔 > 𝜔𝜔𝑏𝑏

−√2
2
�−𝑓𝑓1 + |𝑓𝑓1|,      𝜔𝜔 < 𝜔𝜔𝑏𝑏

  (22)                                                      

                                   = −√2|𝑓𝑓1|,                        𝜔𝜔 < 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚         
                                   = 0,                      𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 < 𝜔𝜔 < 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚  
                                   = +√2|𝑓𝑓1|,                         𝜔𝜔 > 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚  
 

Therefore, in contrast to the lossless case, the phase constant 
of a lossy TL is uniquely determined. Note that in the stop-band, 
the sign of 𝛽𝛽𝑙𝑙 is unknown but its value is known.  

III. REVISITING CRLH TL UNIT CELL 
A systematic method to design and analysis of a CRLH TL 

is decomposing its unit cell into two cascaded sub-cells; one to 
provide the series capacitance and the other, to provide the 
parallel inductance (Fig. 2) [2]. In almost all such designs, each 
of the sub-cells can be modeled by a symmetric Π or T network. 
From the circuit theory standpoint, the order of such a 
combination is greater than that of the conventional CRLH unit 
cell and thus, those are not equivalent in the strict sense. 
However, the validity of such cells in providing CRLH 
behavior is certain. In this section, it is shown that desired 
equivalence holds when the cell size approaches zero. In so 
doing, the following steps were carried out using MATLAB® 
Symbolic Computation Toolbox. First, the ABCD-matrix of 
cascade combination of the T-networks corresponding to each 
sub-cell was computed.  

 

 
Fig. 2.  The unit cell of a CRLH TL consisted of cascading of two sub-cells. 

Second, by using the said matrix and applying periodic 
boundary conditions, the determinantal equation governing the 
corresponding uniform TL was developed [2]; i.e.,  

 
   𝐴𝐴𝐴𝐴 − (𝐴𝐴 + 𝐴𝐴)𝑒𝑒𝛾𝛾𝛿𝛿 + 𝑒𝑒2𝛾𝛾𝛿𝛿 − 𝐵𝐵𝐶𝐶 = 0. (23)                                     

 
Third, the exponential functions in (23) were replaced by the 

first  three terms of their Taylor’s series expansion. Forth, the 
leading term of the resulting polynomial in 𝛿𝛿 was extracted 
which contains the desired dispersion equation. The derived 
dispersion relation exactly matches that of the conventional 
CRLH unit cell with: 

 

 𝑍𝑍𝑠𝑠
(𝑠𝑠𝑒𝑒) = �2

3
�𝑍𝑍𝑠𝑠

(1) + 𝑍𝑍𝑠𝑠
(2)�, 𝑌𝑌𝑝𝑝

(𝑠𝑠𝑒𝑒) = �2
3
�𝑌𝑌𝑝𝑝

(1) + 𝑌𝑌𝑝𝑝
(2)� (24)                                     

                                   
wherein the superscript “eq” stands for “equivalent” and 
 
𝑍𝑍𝑠𝑠

(1) = 𝑅𝑅(1) + 𝑗𝑗𝜔𝜔𝐿𝐿𝑠𝑠
(1) + 1 �𝑗𝑗𝜔𝜔𝐶𝐶𝑠𝑠

(1)�⁄ ,𝑌𝑌𝑝𝑝
(1) = 𝐺𝐺(1) + 𝑗𝑗𝜔𝜔𝐶𝐶𝑝𝑝

(1) (25a) 
𝑍𝑍𝑠𝑠

(2) = 𝑅𝑅(2) + 𝑗𝑗𝜔𝜔𝐿𝐿𝑠𝑠
(2),𝑌𝑌𝑝𝑝

(2) = 𝐺𝐺(2) + 𝑗𝑗𝜔𝜔𝐶𝐶𝑝𝑝
(2) + 1 �𝑗𝑗𝜔𝜔𝐿𝐿𝑝𝑝

(2)�⁄ . (25b) 

IV. REVISITING PARAMETER EXTRACTION OF                              
CRLH TRANSMISSION LINES 

In [2], an analytic method is proposed for parameter 
extraction of CRLH TLs. The attained circuit model is 
beneficial from two aspects. First, it simplifies the design and 
analysis of such TLs. Second, dispersion analysis of the line 
becomes straightforward. Yet, three simplifications have been 
considered. First, the devised closed-form formulas are based 
on the lossless line. Second, the circuit elements are extracted 
at a single frequency. Third, the unit cell of the physical TL is 
forced to be equivalent to the lossless version of Fig. 1.  

Especially, the last simplification is not possible in the strict 
sense as explained in section 3. The benefits of the circuit model 
are preserved by including loss parameters without overloading 
of computational resources. Noting to the previous section, the 
accurate circuit model exactly matches its conventional 
counterpart at the limit. Thus, there is no need to enforce the 
conventional circuit to the physical model. As well, even when 
low-loss dielectrics are exploited in the physical realization of 
CRLH TLs, the values of lossy elements are not necessarily 
negligible. It is well-known that CRLH TLs are potentially 
good radiators are their application as antennas are justified 
long ago [2]. In such cases, including the series resistance in the 
circuit model is judicious to properly model the radiation loss. 
Also, performing dispersion analysis based on the accurate 
circuit model is straightforward. For this purpose, one can first 
transform (23) to a quadratic equation in variable 𝑋𝑋 with 
𝑋𝑋 = 𝑒𝑒𝛾𝛾𝛿𝛿 and then, since 𝛼𝛼𝑙𝑙𝑙𝑙 ≥ 0, select the desired solution 
such that |𝑋𝑋| ≤ 1. This procedure is both general and accurate. 
Another simplification that has been followed thus far, is 
restricting the parameter extraction to a single frequency. Full-
wave analysis of a unit cell is not computationally costly and 
thus, frequency-dependent circuit parameters can be computed 
in the whole frequency band to provide an accurate description 
of the real structure. At last, providing closed-form formulas is 
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simple for lossy TLs. Without loss of generality, consider Fig. 2 
as the desired circuit model. The impedance matrices of sub-
cells are: 

 

 𝐙𝐙(𝑘𝑘) = �
𝑍𝑍𝑠𝑠

(𝑘𝑘) + 1 𝑌𝑌𝑝𝑝
(𝑘𝑘)⁄ 1 𝑌𝑌𝑝𝑝

(𝑘𝑘)⁄

1 𝑌𝑌𝑝𝑝
(𝑘𝑘)⁄ 𝑍𝑍𝑠𝑠

(𝑘𝑘) + 1 𝑌𝑌𝑝𝑝
(𝑘𝑘)⁄
� , 𝑘𝑘 = 1,2 (26)                                     

 
that can be obtained from full-wave simulation. Following the 
parameter extraction strategy proposed in [2], it can be shown 
that: 
 
 𝑅𝑅(1) = Re�𝑍𝑍𝑠𝑠

(1)� (27a)                                     

 𝐿𝐿𝑠𝑠
(1) = 1

𝑗𝑗2𝜔𝜔
�𝑗𝑗 ∙ Im�𝑍𝑍𝑠𝑠

(1)� + 𝜔𝜔 𝜕𝜕𝑍𝑍𝑠𝑠
(1)

𝜕𝜕𝜔𝜔
� (27b)                                     

 𝐶𝐶𝑠𝑠
(1) = 𝑗𝑗𝜔𝜔

2
�𝑗𝑗 ∙ Im�𝑍𝑍𝑠𝑠

(1)� − 𝜔𝜔 𝜕𝜕𝑍𝑍𝑠𝑠
(1)

𝜕𝜕𝜔𝜔
�
−1

 (27c)                                     

 𝐺𝐺(1) = Re�𝑌𝑌𝑝𝑝
(1)� (27d)                                     

 𝐶𝐶𝑝𝑝
(1) = 1

𝜔𝜔
Im�𝑌𝑌𝑝𝑝

(1)� (27e)                                     
 
and 
 
 𝑅𝑅(2) = Re�𝑍𝑍𝑠𝑠

(2)� (28a) 
 𝐿𝐿𝑠𝑠

(2) = 1
𝜔𝜔

Im�𝑍𝑍𝑠𝑠
(2)� (28b) 

 𝐺𝐺(2) = Re�𝑌𝑌𝑝𝑝
(2)� (28c)                     

 𝐶𝐶𝑝𝑝
(2) = 1

𝑗𝑗2𝜔𝜔
�𝑗𝑗 ∙ Im�𝑌𝑌𝑝𝑝

(2)� + 𝜔𝜔
𝜕𝜕𝑌𝑌𝑝𝑝

(2)

𝜕𝜕𝜔𝜔
� (28d)                                     

 𝐿𝐿𝑝𝑝
(2) = 𝑗𝑗𝜔𝜔

2
�𝑗𝑗 ∙ Im�𝑌𝑌𝑝𝑝

(2)� − 𝜔𝜔
𝜕𝜕𝑌𝑌𝑝𝑝

(2)

𝜕𝜕𝜔𝜔
�
−1

 (28e)                                     

 
 Other variants of the circuit model can be used wherein a Π-
network is replaced for each sub-cell. The 9-cell CRLH TL 
presented in [2], [3] was analyzed with different methods to 
validate the claims of this section. The first and second sub-cells 
corresponds to, respectively, IDC a SI. The approximate circuit 
simulations are based on the parameter values reported in [2]. 
The accurate circuit simulations are based on (27) and (28). The 
attenuation constant and transmission characteristic is reported 
in Figs. 3 and 4, respectively, that clearly show the superiority 
of the accurate model over its conventional counterpart. A 
perfect match between full-wave and circuit simulations is 
impossible since mutual coupling between sub-cells of each 
unit cell and between different unit cells are not included in the 
circuit model. Note, also, that parameter extraction of each sub-
cell must be carried out separately. All the attempts of the 
author to extract the circuit parameters from the combined unit 
cell failed. Probably, this is due to the resonance nature of the 
whole unit cell. It is suitable to modify all of the matrices 
describing the unit cell such that to satisfy symmetry and 
reciprocity. Although the real structure is both symmetric and 
reciprocal, the obtained network representation from the full-
wave simulation may not exactly satisfy these properties due to 
numerical error. It is also useful to take the advantage of 
averaging, whenever possible. Say, replace 𝑧𝑧11 and 𝑧𝑧22 by 
(𝑧𝑧11 + 𝑧𝑧22) 2⁄ . Similarly, replace 𝑧𝑧12 and 𝑧𝑧21 by (𝑧𝑧12 + 𝑧𝑧21) 2⁄ . 

 
Fig. 3.  Attenuation constant of a 9-cell CRLH TL designed in [2]. 
 

 
Fig. 4.  Transmission characteristics of a 9-cell CRLH TL designed in [2]. 

V. REVISITING PARAMETER EXTRACTION OF                         
CRLH SYMMETRIC COUPLERS 

In [3], the theory of CRLH TLs has been extended to a 
symmetric edge coupler. A complete analysis is reported that is 
validated by both full-wave simulation and measurement. Yet, 
all of the simplifying assumptions pointed out in the previous 
section have been used for developing the circuit model. 
Besides, details of the parameter extraction are not included. 
Especially, coupling parameters are extracted using curve 
fitting. It is worth mentioning that switching to curve fitting 
violates the purpose of the circuit model due to two main 
reasons. First, it is generally time-consuming, and second, it 
may degrade the phase response. Note that the value of the 
circuit model for a coupler is much more compared to that of an 
isolated TL since the full-wave analysis of the former is 
significantly more time-consuming compared to that of the 
latter. As a result, easy access and an accurate circuit model can 
speed up the design and optimization of CRLH couplers. 

In the present section, the said deficiencies are removed. The 
circuit model of the unit cell for the symmetric coupler is 
depicted in Fig. 5. It is well known that the systematic method 
for analysis of such structure is even-odd mode decomposition 
[16] by which it becomes possible to use analysis formulas of 
an isolated CRLH TL by properly modify the unit cell 
immittances [3]. Specifically, the circuit model of the TL 
corresponding to the even mode is the same as the one depicted 
in Fig. 2 wherein 𝐿𝐿𝑠𝑠

(𝑘𝑘) is replaced by 𝐿𝐿𝑠𝑠
(𝑘𝑘) +  𝐿𝐿𝑚𝑚

(𝑘𝑘) for 𝑘𝑘 = 1,2. 
Similarly, the circuit model of the odd mode, is the same as the 
one depicted in Fig. 2 wherein 𝐶𝐶𝑝𝑝

(𝑘𝑘) is replaced by 𝐶𝐶𝑝𝑝
(𝑘𝑘) +  𝐶𝐶𝑚𝑚

(𝑘𝑘) 
for 𝑘𝑘 = 1,2. Note that, compared to an isolated TL, one new 
parameter is added to each of the said even and odd TL circuit 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

5 

models; i.e., coupling inductors and coupling capacitors. 
Likely, the addition of the corresponding unknowns was the 
reason for using carve fitting methods for parameter extraction 
in [3]. By assuming that common parameters in even and odd 
modes have equal values, it is still possible to extract all circuit 
parameters, analytically. For instance, since the total series 
inductance of the first sub-cell in even and odd TLs is, 
respectively, 𝐿𝐿𝑠𝑠

(1) +  2𝐿𝐿𝑚𝑚
(1) and 𝐿𝐿𝑠𝑠

(1), computing of 𝐿𝐿𝑚𝑚
(1)  is trivial 

assuming that 𝐿𝐿𝑠𝑠
(1) in the even mode equals 𝐿𝐿𝑠𝑠

(1) in the odd mode. 
To validate the said claim, extracted parameters of the sub-cells 
of the coupler with the unit cell proposed in [3] is reported in 
Figs. 6 and 7 wherein subscripts “e” and “o” stands for “even” 
and “odd”, respectively. Similar to the case of isolated TL, the 
first and second sub-cells correspond to, respectively, IDC a SI. 
As can be seen, values of the reactive parameters are essentially 
the same in even and odd modes. Nevertheless, loss parameters 
differ significantly for different modes. Besides, although a low 
loss substrate has been used for microstrip realization of the 
coupler, huge values for loss parameters are obtained which is 
due to even-odd mode decomposition. Similar to the case of an 
isolated TL, parameters of each sub-cell are extracted 
separately. Also, symmetry and reciprocity conditions together 
with averaging are imposed on simulation results.  

 

 
Fig. 5. Circuit model of the unit cell for the symmetric edge coupler. 
 

 
(a) 

 
(b) 

Fig. 6. Extracted parameters of the first sub-cell for even and mode TLs: (a) 
reactive elements, (b) lossy elements. 
 

 
(a) 

 
(b) 

Fig. 7. Extracted parameters of the second sub-cell for even and odd modes: (a) 
reactive elements, (b) lossy elements. 

 
S-parameters computed by full-wave and circuit simulations 

are reported in Fig. 8 that are in good agreement. Results of the 
circuit simulations reported in [3] are not included since the 
author was unable to regenerate them based on the reported 
model parameters (I think there are some typos in [3].). Note 
that expecting “excellent agreement” is not realistic due to 
various couplings between components of the unit cell which 
are not included in the circuit model; i.e., coupling between sub-
cells of each branch of the coupler and cross-couplings between 
sub-cells of different branches. Also, note that the circuit 
parameters obtained in [3] have not led to such a good 
agreement. Specifically, two sets of S-parameters (|S21| and 
|S31|) are in very good agreement. However, two other sets 
(|S11| and |S41|) are far apart. 
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(a) 

 
(b) 

Fig. 8.  S-parameters of the CRLH coupler: (a) |S11| & |S31|, (b) |S21| & |S41|. 

VI. CONCLUSION 

Complete and unambiguous presentation of CRLH TLs is 
possible only when loss parameters are taken into account. 
Lossless CRLH TLs can be well described as the limiting case 
of lossy TLs. Developing an accurate circuit model for both 
CRLH TLs and couplers is possible without exploiting curve 
fitting methods and using analytic expressions, solely.  
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