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Abstract—Bayesian optimization is a popular sequential de-
cision strategy that can be used for environmental monitoring.
In this work, we propose an efficient multi-Autonomous Surface
Vehicle system capable of monitoring the Ypacarai Lake (San
Bernardino, Paraguay) (60 km2) using the Bayesian optimiza-
tion approach with a Voronoi Partition system. The system
manages to quickly approximate the real unknown distribution
map of a water quality parameter using Gaussian Processes
as surrogate models. Furthermore, to select new water quality
measurement locations, an acquisition function adapted to vehicle
energy constraints is used. Moreover, a Voronoi Partition system
helps to distributing the workload with all the available vehicles,
so that robustness and scalability is assured. For evaluation
purposes, we use both the mean squared error and computational
efficiency. The results showed that our method manages to
efficiently monitor the Ypacarai Lake, and also provides confident
approximate models of water quality parameters. It has been
observed that, for every vehicle, the resulting surrogate model
improves by 38%.

Index Terms—Bayesian Optimization, Gaussian Processes,
Data Acquisition, Environmental Monitoring, Multi-robot Infor-
mative Path Planning, Autonomous Vehicles, Voronoi Diagrams

I. INTRODUCTION

Water resources, such as lakes and lagoons, are a vital
component in life. They serve as wildlife bed and act as
water reservoirs. A failure in maintaining water resources
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free from contamination triggers unhealthy situations for the
environment. This is the current state of Ypacarai Lake [1]
(San Bernardino, Paraguay). Its water has periodical blooms
of cyanobacteria caused by the rapid enrichment of nutri-
ents, known as eutrophication [1]. Eutrophication as well as
cyanobacteria are harmful for the fauna and flora; conse-
quently, the current scenario is not desirable and actions to
significantly improve the situation should be taken. The first
step towards eradicating this toxic alga is to continuously
monitor the state of water quality parameters of the Ypacarai
Lake, e.g., levels of pH, turbidity, CO2, Dissolved Oxygen, etc.
Collecting data about such variables can enhance the decision-
making towards cleaning and recovering the Lake.

Traditional monitoring systems of water resources include
manual water sampling and continuous supervision using fixed
stations. Recently, the use of Autonomous Surface Vehicle
(ASVs) has been proposed [2], [3] for continuous monitoring
and water quality measurements. In addition, using ASVs for
monitoring tasks presents various advantages when compared
with monitoring stations and manual water sampling. First,
an ASV can autonomously move to any location within of
a Lake, while fixed stations can only measure in one place.
Second, in hazardous environments (locations with high levels
of toxicity), an ASV may be in direct contact with the water,
while humans cannot. However, a major inconvenient arises
when using ASVs for monitoring: the performance of the
system depends directly on the autonomy of the vehicle [4],
[5]. A practical way to overcome this issue is to monitor the
lake using a multi-robot system.

Using a fleet of ASVs to accomplish the objective of
water quality monitoring greatly improves the results when
compared to single ASV monitoring systems. Nevertheless,
several important aspects should be considered: i) it is required



an appropriate intelligent system that distributes the work
among the available ASVs, ii) redundancy on data collection
should be avoided to speed up the procedure. Therefore, data
acquisition should be cooperative. In this work, we propose
an intelligent multi-ASV system, where the ASVs are in
charge of efficiently performing measurements of a certain
water quality parameter using a Bayesian Optimization-based
approach. Moreover, in order to assure cooperation, a Voronoi
Partition system is included. The Voronoi Partition or Voronoi
Diagram (VD) is a mathematical expression, which defines
regions according to a set of generators. If the positions of the
ASVs serve as generators, each region has an ASV assigned
to it and the Bayesian Optimization (BO) technique can be
utilized seamlessly so that each ASV picks new measurement
locations within each one of the defined regions.

In the context of this work, BO can be defined as a
sequential decision strategy that manages to optimize a black-
box or unknown real function, in our case, water quality profile
of the Ypacarai Lake (e.g., spatial distribution maps of pH,
temperature, turbidity, etc.). BO infers a supposed model of the
real function and uses it to define a point where the function
is optimized according to an exploration/exploitation balance.
Given these two main characteristics, BO for environmental
monitoring can be used not only as an intelligent informative
path planning system but also as a water quality mapping
system. In general, BO provides results with the use of i) a
surrogate model and ii) an acquisition function. The surrogate
model corresponds to an expression that approximates or mim-
ics the real distribution (water quality parameter distribution)
using functions that are less expensive to evaluate than the
original [6]. Without any prior information, a Gaussian Process
(GP) as surrogate model can offer a supposed response of the
black-box function, or in this case, of a certain water quality
model. However, if any information (i.e., measurements of a
water quality parameter of the Ypacarai Lake) is known, GPs
can be updated in order to infer a more realistic surrogate
model. Finally, due to the fact that GP Regressions (GPR) are
based on normal distributions [6], GPs as surrogate models
have the additional value of providing uncertainty levels or
confidence measures of the produced regressions.

In order to provide GPs with updated information, new
measurements locations within the Ypacarai Lake should be
chosen. The process of selecting new informative measurement
locations is a task executed by Acquisition Functions (AFs).
AFs are commonly used in BO approaches because they can
weight the future rewards of selecting points for evaluation.
For ASVs monitoring systems, classical AFs (Expected Im-
provement, Probability of Improvement, etc. [6]) can provide
unreachable locations (due to energy constraints), so adapta-
tions of the AFs are needed in this system. A study of possible
adaptations is shown in a previous work [7], and, here, the
selection is based on its conclusions. Moreover, this work is
based on the mentioned previous work [7], which proposes
a BO approach for environmental monitoring using a single
ASV.

The ASV team can use the mentioned system as is and

start monitoring the Lake, but eventually, they will start to
perform measurements on the same locations (or very near
locations). To solve this issue, the VD is used to avoid redun-
dant information gathering and also to allow robustness and
scalability. Our implementation carries out this task through a
Centralized Coordinator (CC), designed so that the multi-robot
system cooperates and performs asynchronous measurements
of the water quality of the studied Lake.

The proposed system includes the CC in order to maintain
an organized sequential decision-making system: i) VD parti-
tioning, ii) GP regression iii) AF evaluation and iv) perform-
ing new measurements. But only the last step is performed
asynchronously, i.e., each ASV can perform measurements
independently of the state of the other vehicles.

The main contributions of this work are:
• A Voronoi-based coordination system for multiple ASVs

goal definition.
• A multi-ASV BO-based system for environmental mon-

itoring and parameter modelling.
The present paper continues as follows: First, the related

works are included in Section II. Next, Section III describes
the problem as well as some assumptions and the roadmap
to real life applications. Section IV defines our proposed
approach, the mathematical and the algorithmic design. In
Section V, the simulation setup and the performed tests are
presented and discussed. Finally, Section VI contains the
conclusion and future works.

II. RELATED WORK

Using autonomous vehicles for environmental monitoring
is an ongoing research topic. Usually, the vehicles are used
to execute Multi-robot Informative Path Planning (MIPP)
[5], [8], which describes paths that maximize information
gathering. For example, in [8], a MIPP under continuous
connectivity constraints is designed, In [5], the MIPP is
used for explicit environmental monitoring applying adaptive
routing. Another environmental monitoring MIPP design is
presented in [4], where continuous region partitioning is used.
Region partitioning helps the multi-robot system to achieve
better workload balance [4]. A recent study [9] shows that
the design of a Multi-Autonomous Underwater Vehicle (AUV)
coordinator can be based on dynamic VD as well as GPs.
The mentioned work uses Root Mean Squared Error and
Negative Log-Likelihood to test their proposed method. In
[10], accurate inference and prediction of plants phenotype
is made using a multi-Autonomous Ground Vehicle (AGV)
system based on GPs and MIPPs. Multiple-ASV are used for
large-scale environmental monitoring in [11], where a Trav-
elling Salesman Problem (TSP) based algorithm is proposed.
Table I shows a brief summary of Multi-Robot Environmental
Monitoring systems using autonomous vehicles. The works
present different types of MIPPs. As shown in Table I, while
they all manage to acquire information, the specific objective
requires different monitoring approaches.

Some of the environmental monitoring approaches using a
single vehicle found in the literature can also be adapted to



TABLE I: Brief summary of MIPP using autonomous vehicles.

Ref. Specific Objective Monitoring Algorithm Vehicle Year
[8] Exploration under Bipartite Graph Generic 2019

Connectivity Formulation Robot
Constraints

[5] Ocean temperature Dynamic graph-based Underwater 2018
environmental routing Vehicle
monitoring

[9] Algae Bloom Decentralized adaptive Underwater 2017
Monitoring informative sampling Vehicle

[10] Plant Entropy-based Ground 2018
phenotyping MIPP Vehicle

[11] Complete coverage Traveling salesman ASV 2018
of known problem k-TSP
environments -formulation

multi-ASV systems. Such is the case of the work found in [12],
where an adaptive Informative Path Planning (IPP) system
is proposed using a single ASV and a roadmap to multi-
ASV implementation. In [13], a single Autonomous Aerial
Vehicle (AAV) is used to monitor terrain environments using
a covariance matrix adaptation evolution strategy as main
algorithm and GPs as the underlying surrogate model.

Using a single ASV for monitoring the Ypacarai Lake are
proposed by several works. In [14], the problem is solved by
applying a TSP modelling with evolutionary algorithms. The
mentioned work is expanded in [15], using Eulerian circuits
so that efficient continuous monitoring is performed. In [3], a
Deep Reinforcement Learning method is proposed so that an
optimal patrolling policy provides efficient monitoring. These
works proposes that multi-robot systems can benefit from their
proposed methods due to the fact that large-scale water bodies
such as Ypacarai Lake cannot be exhaustively monitored using
a single ASV. In [7], a single ASV uses BO approach to
efficiently perform measurements on the Ypacarai Lake. The
present work is based upon [7].

The related works included in this section provide theo-
retical bases to design and implementation of our proposed
method. Although most of the MIPPs shown in Table I
proposed GP as surrogate models, none of them implement
BO procedures to obtain information. This work also takes into
account energy constraints, so that the performance evaluations
can provide insights for real life experiments.

III. STATEMENT OF THE PROBLEM

The water quality parameters of the Ypacarai Lake must
be sampled efficient and intelligently, so that confident water
quality models can be obtained using a system of multiple
ASVs. The region to be monitored corresponds to a sub-
space of the R2 space. Therefore, the vehicles can be located
anywhere within the boundaries defined by the model of the
Ypacarai Lake. The proposed system provides (see (1)) a
confident approximation f̂(x) of a real water quality behavior
f(x), where x is the full set of locations (x, y) within the map
model.

f(x) ≈ f̂(x) (1)

In order to acquire data, there is a total of k available ASVs
for the mission. They are equipped with positioning systems
that provide their location p ∈ x within the mentioned map
model. Each ASV is also equipped with a sensor that measures
and stores the value s of a water quality parameter, as well as
the position where the measurement has been performed. For
performance evaluations, the measurement is stored in a set
D = {(pi, si) | i = 1, 2, . . . , N}, which contains a total of
N collected data. Additionally, the data is used to represent
discrete values of the real function, as shown below

si = f(pi) (2)

If the surrogate model regression is appropriately fitted with
data D, the complete water quality map can be approximated
using (1) and (2). The fitness level can be expressed using the
Mean Squared Error (MSE) function, as shown in (3). This
expression returns the inverse value of how well the surrogate
model behaves, accentuating on the differences between good
and bad approximations.

MSE(f(x), f̂(x)) =
1

n

n∑
i=1

(f(xi)− f̂(xi))
2 (3)

A. Assumptions, Considerations and Design

Some assumptions are considered so that the scope of the
work is appropriately defined. Fig. 1. shows the system design,
where two main components are defined: i) the centralized
coordinator and ii) the ASV system. Next, the system design
as well as the assumptions and considerations are explained
in detail.
• Ypacarai Lake Model: A matrix M is used to model

the monitoring space. The matrixM assumes a grid-like
configuration model so that each element Mi,j of the
matrix corresponds to a square with side d. Each square
has an associated real-world location which corresponds
to the center of the square and also has a occupancy
state value. It is set with a value of 1 if the real square
is occupied by an obstacle or it is terrain and a value of
0 if the square corresponds to a navigable water surface
area. The map model of the Ypacarai Lake is shown in
the next section (Fig. 2.) where it is in use by system.

• Multi-robot coordinator system: Fig. 1 shows the
components of the CC. The CC is responsible for data
storage, surrogate model or Gaussian process fitting,
and evaluation of acquisition functions. As a result,
new measurement locations are chosen. This centralized
coordination ensures that all vehicles share the same
information, and as a consequence, the vehicles will not
make redundant measurements. It can be observed that
the proposed multi-robot system is decentralized only for
performing measurements (each vehicle should perform
measures independent of the state of the other vehicles)
so that the system has an increased robustness.

• Guidance, Navigation and Control (GNC) system:
Each vehicle has a dedicated GNC system (as shown in
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Fig. 1: Proposed multi-ASV system. The centralized coordinator is in charge of obtaining new measurement positions. The
coordinator receives and processes the information but the guidance, navigation and control is processed on each of the vehicles.

Fig. 1.) that ensures that the vehicle can travel between
locations on the surface of the Lake. The Navigation
subsystem allows for positioning, but not perfectly (
it is assumed to have a resolution ≈ d), as real life
positioning systems are susceptible to errors. For sim-
ulation purposes, the positioning error is simulated by
shifting the final position of vehicles before performing
a measurement by a few meters (< 25).

• Water quality measuring system: The ASV has a
subsystem that can measure several water quality param-
eters (power of Hydrogen, Dissolved Oxygen, Turbidity,
etc.) and store their values in a database. However, in
this work only one value is used by the BO system.
Moreover, the si value is the result of preprocessing the
measurement performed so that all the possible values
si , ∀ i ∈ N conform a set with standard attributes
(µ(x) = 0, σ(x) = 1). The preprocessing algorithm
should follow the Central Limit Theorem (CLT) so that
this assumption is true for real cases.

• ASV autonomy: The vehicle is equipped with a battery
that provides enough autonomy for 2.1 hours, which
translates to approximately 15000 linear meters of au-
tonomy, according to [7]. An ASV that travels a total
distance of 15000 meters cannot perform any movement
nor measurements.

IV. PROPOSED APPROACH

The general procedure of our centralized monitoring system
is shown in Algorithm 1. Whenever an ASV needs a new
goal (line 4), a Voronoi region is defined using the positions
of the available ASVs (line 5). Next, with the available data
D the surrogate model is obtained (line 6) and used to find
the optimal measurement location within the Voronoi region
of each ASV (line 7). Additionally, the CC stores new data

Di+1 ← (si+1, pi+1) = (sk, pk) if it is available and proceeds
to fit the model (lines 9-11).

Algorithm 1: Centralized Coordinator procedure.

1 initialize: D ←Database , M← Map Data;
2 while ASV s available() do
3 for asv in ASVs do
4 if asv.needs new goal() then
5 k ← asv.id;
6 Rk ← VD(ASV s, asv, M);
7 f̂(x)← GPR(x);
8 pk ← find max(AF(f̂(x)), Rk);
9 end

10 if asv.performed new measurement() then
11 Di+1 ← asv.measurement;
12 GP.fit(D);
13 end
14 end
15 end

Finally, each vehicle executes asynchronously Algorithm
2. Whenever a new goal location is obtained (line 4), an
ASV manages to perform a movement in order to reach the
destination goal (line 10). If the ASV reaches the optimal
position, it performs a measurement and sends the data to
update the general water quality model of the lake (lines 6-8).

A. Initial Vehicle Positioning

Due to the fact that VDs will be used to define regions of
coverage, the ASVs should be positioned so that the initial
regions of all the vehicles are similar in size and shape. A
mathematical approach to solve this problem is to distribute the
vehicles in the perimeter of a circle of radius r centered at the



Algorithm 2: Mission planning component of the
Guidance subsystem of the ASV.

1 initialize: k ← asv.id;
2 while asv.is online() do
3 if asv.has no goal() then
4 asv.goal← pk;
5 else
6 if asv.reached goal() then
7 sk ← obtain new measurement();
8 asv.measurement← (sk, pk);
9 else

10 asv.perform movement(goal);
11 end
12 end
13 end

center of the Lake, evenly separated angle-wise, in an attempt
to have each vehicle aimed to cover different regions. Due to
the fact that the ASVs will be evenly spaced, the VD will
provide similar initial regions for all the vehicles. However,
for real scenarios, it is not desirable that the ASVs start the
mission at the center of the Lake, therefore this work extends
the proposed idea and relocates the initial positions to the
shore of the Lake taking into account the spacing between
vehicles, having all vehicles are evenly separated angle-wise
but with different distances in respect to the center of the
lake according to the shoreline. In Fig. 2., four vehicles are
located in the shoreline of the Ypacarai Lake, they are evenly
distributed angle-wise. The regions, to be discussed in the next
sub-section, are similar in size and shape.

Fig. 2: Example of initial positioning using four ASVs. The
vehicles are evenly distributed and, when used as generators,
they generate similar Voronoi Regions. The sum of the surface
of the regions is equal to the surface of the model of the
Ypacarai Lake.

B. Voronoi Diagram

Having appropriately defining the initial positioning, the
next procedure is to define the regions of the vehicles so that
each one can obtain an optimal measurement location. In this
work, we propose that this partition is done using the Voronoi
partitioning or Voronoi Diagram (VD).

VD is a partition of a n-dimensional space into regions of
the same dimension. In this work, the 2D space of the map
M is partitioned into m regions. Each region has a generator
Vk, which corresponds to the position pk of the k ASV. The
VD expression has the form of

Rk = {x ∈ R2 | d(x, Vk) ≤ d(x, Vj)∀j 6= k} (4)

To adjust the generated regions so that all of them contain
only points that are within the sub-space M, more formally
x ∈ M, additional virtual generators are introduced in such
form that the initial regions contain all the points that define
M and only them. For example, for a set of 4 vehicles, the
resulting initial VD is shown in Fig. 2. As mentioned, the
regions are bounded to the map. However, these regions are
updated when needed.

C. Bayesian Optimization

Once a vehicle Vk obtained a region Rk to monitor, the next
step is to obtain an informative position of measurement. This
position xi = (xi, yi) corresponds to the maximum value of
a function of our supposed model of the Lake. The surrogate
water quality function of the Lake is modelled as a GP, as it
can easily fit real data and produce an output regression with
an associated uncertainty [6].

1) Gaussian Process Regressions: Gaussian Processes are
stochastic or random processes, where each variable (or fea-
ture) has a multivariate random distribution. In this work,
we define the variables as the components of 2-D plane
that represent the locations on the real world. The main
components of GP are the mean function µ(x) and the kernel
or covariance function k(x,x′). The former represents the
expected output of the black-box function, while the latter
defines the correlations of the features or inputs [6].

Kernel Functions define similarities/covariances between
different input values considered as random variables (x). The
kernel is usually presented as a semipositive definite matrix,
where each element corresponds to the covariance value of
two inputs kx,x′ . The hyperparameters of the kernel plays an
important role and they are set up by using marginal likelihood
maximization [16]. Our previous work [7] shows that for
smooth functions, the best kernel for this particular matter
is the Radial Basis Function (RBF), which has the following
expression

kx,x′ = exp (−|| x− x′ ||
2`2

) (5)

RBF has a single hyperparameter `, which defines the
smoothness of the function. This characteristic length-scale
provides a measure of how far apart two different locations



can be so that they influence each other. With higher values
of `, the posterior model regression is smoother and has a
slower rate of change.

Having a defined kernel and a set of measured data, the GPR
is developed by first fitting the input data [6], [16]. Finally, the
unknown response µ(x∗), σ(x∗) of our surrogate model f̂(x∗)
given data D can be inferred using the next expressions:

µf̂(x∗)|D = KT
∗ K

−1f(x) (6)

σf̂(x∗)|D = K∗∗ −KT
∗ K

−1K∗ (7)

Where K, K∗∗ and K∗ are taken from the fitted (hyper-
parameters updated with marginal likelihood maximization)
kernel that includes covariances between known data k(x,x),
unknown data k(x∗,x∗) and between the known and unknown
data k(x,x∗).

K =

[
K K∗
KT
∗ K∗∗

]
=

[
k(x,x) k(x,x∗)
k(x∗,x) k(x∗,x∗)

]
(8)

2) Acquisition Function: Once the surrogate posterior
model of the water quality parameter is obtained, the next
step is to select a new measurement location according to a
function that evaluates the information gain from the possible
measurement locations within the lake. In the general case, the
GP regression is used as argument of the Acquisition Function
(AF) as GPs provide both an inference and uncertainty of the
result. There are several AFs found in the literature [6], but
our previous experiments found in [7] show that one of the
best acquisition functions for water quality monitoring of the
Ypacarai Lake is the Expected Improvement (EI). EI evaluates
the improvement optimization by weighting current values
of the surrogate model according to the Cumulative Density
Function Φ(x) and the Probabilistic Density Function φ(x).
In order to use these functions, the next expression is used to
normalize the input arguments

Z =
f(x+)− µ(x)− ξ

σ(x)
(9)

Where f(x+) corresponds to the best value so far and ξ is
an exploration/exploitation explicit parameter. Z appropriately
normalizes the input and, with the use of (10), the EI(x) of
performing a water quality measurement on location x can be
obtained.

EI(x) =


0 if σ(x) = 0

(f(x+)− µ(x)− ξ)Φ(Z)

+φ(Z)σ(x) else

(10)

The predictive mean (found in the first term of (10)) man-
ages the exploitation weights, while the predictive uncertainty
σ(x) provides more exploration weight as it increases.

In order to find the optimal location, usually an optimizer
like the limited-memory Broyden-Fletcher-Goldfarb-Shanno
algorithm (L-BFGS) is used, but in our case, the use of

efficient optimizers is discarded. The main reason is due to
the fact that optimizers rely on continuous and unbounded
functions. But our map M is not only undefined in terrain
zones but also presents discontinuity on the shores of the Lake.
In that sense, the practical method of finding an optimal next
measurement position is to value all navigable locations in
M∩ Rk and select the maximum value as the optimal next
location.

Furthermore, EI function as other classical AFs presents
issues when used for monitoring tasks due to the fact that
it does not account for distance travelled by the ASVs. If
the locations are very far from each other, the potential
total amount of measurements decreases. To overcome this
situation, our previous work [7] studied different adaptations
so that the ASV can perform multiple measurements. The
truncated adaptation performed very well in the performance
tests and it is the selected adaptation in this work. It consists
on stopping the movement of the ASV after a distance l
when travelling in the direction of the best position according
to the AF. Whenever the ASV travels the defined distance,
the ASV performs a measurement on its current position
and updates the data. Generally, the new data modifies the
generated surrogate regression, which provides a new optimal
measurement location.

V. PERFORMANCE EVALUATION

The multi-ASV proposed system is evaluated in this section.
The evaluation consists mainly on observing how well the GP
fits the data and produces the surrogate posterior model using
the MSE for comparison. First, the setup for the simulations is
defined, next the results are shown. The code for this section
was developed in Python 3.8.4 and is available online 1. The
simulations have been performed in a laptop computer with
32GB RAM, Intel i7 3.2 GHz processor.

A. Simulation Setup

The Ypacarai Lake map is modelled asM with dimensions
1000×1500, where each elementMi,j corresponds to a square
with side d ∼ 10[m], centered at position x. The associated
real function of water quality maps, such as temperature, pH,
turbidity levels, will be smooth due to the real-life behavior
of fluid dynamics and wind conditions [1], [7]. In that sense,
a simulated ground truth should be based on a smooth bench-
mark function such as the Bohachevsky or Shekel functions.
The latter is very useful for testing generalized solutions, as
the Shekel Function (SF) is a multimodal, continuous, mul-
tidimensional function. Additionally, the maximum locations
are defined with two input arguments.

The SF has the expression shown in (11), where ci and
aij correspond to the elements of two given set of matrices
c and A. This input matrices define the number and positions
of the maximum locations (matrix A with size M × N ,
M as the number of maximum locations, which are N -
dimensional points) and their respective inverse importance
value ci grouped in vector c with size M × 1.

1https://github.com/FedePeralta/BO ASVs

https://github.com/FedePeralta/BO_ASVs


fShekel(x) =

M∑
i=1

1

ci +
∑N

j=1(xj − aij)2
(11)

For generalization, we tested 10 different ground truth
scenarios using the SF with M ∈ [2, 6] random number
of maximum locations. As for the ci values, we chose a
constant value of 5. However, the simulated values receive the
same treatment as the assumption for real values explained in
Section III-A. In Fig. 3, three out of the ten different ground
truth scenarios are shown.

Fig. 3: Three examples of the random Shekel functions taken
as ground truth for performance evaluations

The simulations were performed 50 times for each ground
truth, using 1, 2, 3, 4 and 5 ASVs. The initial positions
were randomized with the same seed. Therefore, for every
scenario the same set of 50 initial positions were used. The
initial positions also correspond to the first locations where
the ASVs perform measurement so that the more ASVs are
available at the start, the more initial data the system has. Each
simulation stops whenever the average distance travelled by all
the considered ASVs is greater than 15000m, but while this
condition is not met, if an ASV travels a distance greater than
15000m, it will not be allowed to move any longer.

B. Simulations results

1) Environmental Monitoring and obtaining the real water
quality parameter function: The resulting MSE per number of
measurements performed is shown in Fig. 4. Provided with the
VD, our method efficiently distributes the monitoring using
all the available ASVs. For the initial measurements, there
exists some advantages while using a low number of ASVs,
but as the number of measurements increases, with more ASVs
available, a better monitoring is achieved.

It has been observed that the system decreases the MSE
by an average of 38% with every new ASV added to the
system. Fig. 5 shows an example of the proposed method
using different number of ASVs. It can be observed in Fig. 5
that the GPs manage to correctly fit the data and approximate
the real function with ease. Furthermore, the VD enhances
robustness and provides scalability. Without the VD, the
vehicles will perform measurements on the same locations,
and consequently, provide redundant information. With the
proposed VD system, the fleet cooperates while monitoring.

Fig. 4: MSE using different number of ASVs.

2) Computational Efficiency: For time efficiency compar-
isons, the computational time from measurement to measure-
ment have also been evaluated. The obtained results are shown
in Fig. 6. This time takes into account the full process of the
proposed method (VD, GPR, AF). Therefore, the required time
increases with the number of measurements performed, as GPs
are non-parametric models with O(n3) complexity.

VI. CONCLUSIONS AND FUTURE WORKS

To the best off the authors knowledge, the present work
is the first one proposing a BO-based multi-ASV system for
water quality monitoring. We improved our previous work
[7] by including a centralized coordinator capable of defining
Voronoi regions for each one of the available ASVs. The
system has proven to be robust against redundancy since the
search regions are continuously adapting to the locations of
the available ASVs. Moreover, it has been shown that the
proposed approach is scalable with the number of vehicles.
For future works, the proposed method can be enhanced by
taking into account noisy data from the sensors. Additional
tests with ASV availability and communication constrains can
also be performed.
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