Cosmic-ray Irradiation Study of a Space **Medicine for Future On-Orbit Manufacturing**

Q.D. Trana, N. Spoonerb, S. Geogheganc, J. Stoudemired, N.N. Trana, I. Fiska, V. Hessela, g

aSchool of Chemical Engineering and Advanced Materials & Andy Thomas Space Centre, University of Adelaide, Australia; bSchool of Physical Sciences, University of Adelaide, Australia; Department of Radiation Oncology, SA Health, Australia; Space Tango, Inc., Kentucky, United State of America; Department of Chemical Engineering, Can Tho University, Vietnam; Faculty of Science, University of Nottingham, United Kingdom; School of Engineering, University of Warwick, United Kingdom.

Problems with Space Medicine

Medicines are commonly used between all crew member during a space mission

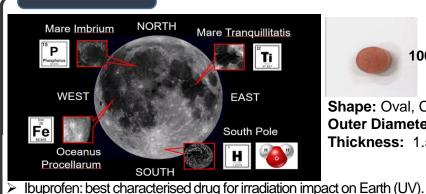
Medicines used by Astronauts

- Instability with cosmic ray
- Short shelf-life
- Reduce effect on disease

Our Solution

Space medicine which can self-stabilized under radiation via:

- **Drug-excipient interaction**
- High atomic number elements in the coating


Manufacturing

iii. High atomic number elements in the matrix

20% to 5%.

at 10%.

Formulation

100 mg tablet

Shape: Oval, Convex Outer Diameter: 6 mm

Thickness: 1.5 mm

Earth-stimulated Radiation Study

Implementing step-wise mixing:

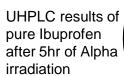
Ibuprofen deviation is reduced from

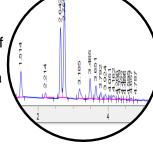
Compressing with improved evenness: Tablet thickness deviation is controlled

*Radiation levels are similar to the real space conditions

- ➤ Mild UV-C and low LET-beta source isn't creating a detectable damage population under current condition.
- > Alpha radiation decomposed ibuprofen

Particle radiation:


Moon abundance materials, e.g., Iron and Titanium is used for coating.

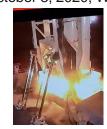

Raw materials for all excipients can be found on the moon in abundant volumes.

- Alpha
- Beta
- Proton

> X-ray irradiated samples show up to 20% reduction of Ibuprofen after 0.6-60 Gy radiation.

Sample	X-ray Dose (rad)	Reduction (%)
Base case	0.6	4
	60	10
Low Iron content	0.6	17
	60	14
High Iron	0.6	9
content	60	12
Low titania	0.6	9
	60	21
High Titania	0.6	6
	60	3

Energy radiation: • UV-C


- X-ray
- Gamma

Real Space Investigations

NG-14 Mission

ISS National Lab Provider: Space Tango Launch Provider: Northrup Grumman Launch Date: October 3, 2020, Wallops Island

NG-15 Mission

ISS National Lab Provider: Alpha Space Launch Provider: Northrup Grumman

Launch Date: 20 February, 2021, Wallops Island

