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Abstract—Anomaly detection in hyperspectral image is affected 

by redundant bands and the limited utilization capacity of 
spectral-spatial information. In this article, we propose a novel 
Improved Isolation Forest (IIF) algorithm based on the 
assumption that anomaly pixels are more susceptible to isolation 
than the background pixels. The proposed IIF is a modified 
version of the Isolation Forest (iForest) algorithm, which 
addresses the poor performance of iForest in detecting local 
anomalies and anomaly detection in high-dimensional data. 
Further, we propose a spectral-spatial anomaly detector based on 
IIF (SSIIFD) to make full use of global and local information, as 
well as spectral and spatial information. To be specific, first, we 
apply the Gabor filter to extract spatial features, which are then 
employed as input to the Relative Mass Isolation Forest (ReMass-
iForest) detector to obtain the spatial anomaly score. Next, original 
images are divided into several homogeneous regions via the 
Entropy Rate Segmentation (ERS) algorithm, and the 
preprocessed images are then employed as input to the proposed 
IIF detector to obtain the spectral anomaly score. Finally, we fuse 
the spatial and spectral anomaly scores by combining them 
linearly to predict anomaly pixels. The experimental results on 
four real hyperspectral data sets demonstrate that the proposed 
detector outperforms other state-of-the-art methods. 

 
 

Index Terms—Hyperspectral image (HSI), anomaly detection, 
isolation forest, spectral-spatial information. 
 

I. INTRODUCTION 

YPERSPECTRAL image (HSI) with hundreds of 
contiguous bands for each pixel can provide abundant 

spectral and spatial information simultaneously [1]. HSI has 
been widely applied in many remote sensing applications, such 
as anomaly detection [2], [3], classification [4], and change 
detection [5]. Among these applications, hyperspectral anomaly 
detection has received extensive attention. A wide variety of 
methods have been developed, which aims at distinguishing 
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outliers, whose spectral and spatial signatures are highly 
distinct from their surrounding pixels or the global background 
in an unsupervised way. 

In the literature, most methods have concentrated on 
examination of the role of HSI spectral signatures in anomaly 
detection, employing exclusively the spectrum of a given pixel 
to determine its outlier status. The statistical model-based 
technique is the first category in hyperspectral anomaly 
detection. One of the most well-known methods is the Reed-
Xiaoli (RX) algorithm [6], proposed by Irving S. Reed and 
Xiaoli Yu, which is considered as the main benchmark method. 
The RX detector assumes that the background can be modeled 
by employing multivariate Gaussian distributions. The RX 
detector has two versions, i.e., the global RX and local RX 
(LRX), where LRX models the background with neighborhood 
pixels. However, most real-world hyperspectral images (HSIs) 
cover different classes of materials and exhibit complex 
backgrounds, which means that the Gaussian distribution 
assumption is oversimplified in real-world HSIs. Therefore, 
several variants of the RX detector have been proposed [7]-[12]. 
For example, the kernel RX [7] detector is a nonlinear version 
of the RX, which calculates the Mahalanobis distance between 
the pixels to be tested and the background in higher dimensional 
feature space with the kernel theory. The cluster-based anomaly 
detector (CBAD) [8] segments the whole HSI into several 
clusters and then detects anomalies in each cluster with the RX 
detector. Zhou et al. proposed a novel cluster kernel RX 
detector [12] to accelerate the kernel RX detector by 
partitioning the whole HSI into several clusters and then 
employing a fast eigenvalue decomposition algorithm to obtain 
detection results. 

In addition to statistical model-based methods, there are many other types of 
detectors. For example, the low-rank and sparse representation detector 
(LRASR) is a typical geometrical modeling-based method proposed in [13], 
which exploits the 
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Fig. 1. A graphical example illustrating the principle of iTrees. Given a 
Gaussian distribution (205 points), (a) an anomaly instance, 𝑥 , is isolated 
through only four random partitions; (b) a normal instance, 𝑥 , requires eleven 
random partitions to be isolated. 

 
low-rank property of background pixels to distinguish sparse 
pixels. The background joint sparse representation (BJSR) [14] 
detector is a representation-based method, that selects the most 
representative background bases with the joint sparsity model, 
and background pixels are then suitably represented with the 
selected bases, whereas anomaly pixels cannot be represented. 
Similarly, collaborative representation-, sparse representation-, 
and tensor representation-based anomaly detectors have also 
received substantial attention. For example, the prior-based 
tensor approximation (PTA) detector is a typical tensor 
representation-based method proposed in [15], which combines 
priors (i.e., low-rank, sparse, and piecewise smooth) with the 
advantages of the tensor representation of HSIs. Then, the 
priors are embedded into the dimensions of a tensor with 
different regularizations according to certain physical meaning 
to preserve the global structure while increasing the gap 
between anomaly and background pixels. Moreover, 
hyperspectral anomaly detectors based on support vector data 
description (SVDD) [16], [17], morphological and attribute 
filters [18], [19], deep learning [20]–[23], etc. have been 
investigated as well. 

Additionally, Li et al. proposed a novel kernel isolation 
forest-based detector (KIFD) [24], [25] according to the 
isolation forest (iForest) algorithm [26], [27] two years ago. 
This was the first time that iForest was introduced into remote 
sensing applications. Subsequently, Wang et al. [28] 
established a hyperspectral anomaly detector that combined 
multiple features and iForest (MFIFD) last year. Both methods 
have been demonstrated to perform well. 

Although both the KIFD and MFIFD have been revealed to 
perform well in hyperspectral anomaly detection, we have 
identified certain weaknesses of iForest in detecting anomalies 
in high-dimensional data and detecting local anomalies. The 
basic motive of our research is to enhance the detection 
accuracy by overcoming those two limitations of iForest-based 
anomaly detectors in hyperspectral anomaly detection. We 
propose a new improved isolation forest (IIF) algorithm. 
Furthermore, in this article, a novel spectral-spatial IIF-based 
detection framework (SSIIFD) is developed. Specifically, the 
main contributions of this article are as follows: 

 

Fig. 2. An example illustrating the structure of an iTree. 

 
1) An SSIIFD is proposed, which can make full use of the 

spectral and spatial information, and the global and local 
information of HSIs. 

2) An IIF algorithm is proposed for the first time which 
effectively improves the poor performance of iForest in the 
detection of anomalies in high-dimensional data and local 
anomaly detection.  

3) Experiments on four real data sets demonstrate that the 
proposed SSIIFD can obtain the best detection accuracy. 
The remainder of this article is organized as follows: 

Section II briefly reviews the iForest and its two variations; 
the extraction of spatial features with the Gabor filter and the 
entropy rate superpixel segmentation (ERS) algorithm are 
briefly reviewed in this section. The proposed method is 
introduced in detail in Section III. In Section IV, experimental 
results are presented. Finally, conclusions are discussed in 
Section V. 

II. RELATED WORKS 

A. Isolation Forest and Its Two Variations 

The isolation forest (iForest) introduced by Liu et al. [26], 
[27] is an outlier detector that does not employ distance or 
density measures. It builds an ensemble of isolation trees 
(iTrees) for a given data set. The main advantage of this 
algorithm is that it does not rely on a determined profile 
representing the data to find samples that do not conform to this 
profile. Rather, it utilizes the fact that anomalies are ‘few and 
different’, which makes them more susceptible to isolation in a 
binary tree structure than normal points. Hence, anomalies are 
isolated closer to the root of the tree, whereas normal points are 
isolated toward the deeper end of the tree. In other words, 
anomalies exhibit shorter average path lengths than those of 
normal points over a collection of iTrees. Here, the principle of 
iForest is briefly reviewed. For more details of the iForest 
algorithm, we refer readers to [26], [27]. 

Specifically, in an iForest, data are subsampled and 
processed in a tree structure based on random cuts in the values 
of arbitrarily selected features in a given data set. Each tree is 
grown until each instance is isolated into a leaf node. Those 
samples that travel deeper into the tree branches are less likely 
to be anomalous, whereas shorter branches are indicative of 
anomalies. As such, the aggregated lengths of the tree branches 
provide a measure of the occurring anomalies or an anomaly 
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Fig. 3. Architecture for our proposal for hyperspectral anomaly detection with 
a spectral-spatial joint optimization scheme. 

 
score for every given point. To demonstrate that anomalies are 
more susceptible to isolation under random partitioning, an 
example of the random partitioning process of a normal point 
versus an anomaly is shown in Fig. 1. We observe that a normal 
instance, 𝑥 , generally requires more separating lines to be 
isolated, while an anomaly instance, 𝑥 , generally requires less 
separating lines to be isolated. 

 On the one hand, unsatisfactory results have often been 
achieved when employing iForest in the detection of local 
anomalies in data sets containing multiple clusters of normal 
instances because the local anomalies are masked by those 
normal clusters of similar density. Hence, they become less 
susceptible to isolation via iTrees. In other words, iForest does 
not detect local anomalies because the path length globally 
measures the degree of anomaly. It does not consider the 
isolation magnitude of an instance from its local neighborhood. 
To address this problem, Aryal and Ting et al. [29], according 
to the mass estimation theory [30], developed ReMass-iForest 
by replacing the global ranking measure based on path length 
with a local ranking measure based on relative mass that takes 
local data distribution into consideration. ReMass-iForest 
applies the same implementation of iTrees as that of iForest. 
Empirical evaluations have indicated that ReMass-iForest 
performs better than iForest in terms of the task-specific 
performance. 

On the other hand, only one data dimension is randomly 
selected in every partition. In other words, the applied branch 
cuts are simply parallel to the coordinate axes, which results in 
certain regions, not necessarily containing many data points, 
ending up with many branch cuts. As such, most dimensions of 
the data are not considered when building iTrees, which reduces 
the reliability of the algorithm, especially in regard to high-
dimensional problems with a large number of attributes. Hariri 
et al. [31] presented an extension to iForest, namely the 
extended isolation forest (EIF), by using hyperplanes with 
random slopes (non-axis-parallel) to split data in the creation of 
iTrees, which resolves the issues associated with the assignment 
of anomaly scores to given data points. The results of EIF are 
more reliable and robust and in some cases more accurate in a 
 

1http://en.wikipedia.org/wiki/Gabor_filter. 

given dataset. 
iForest, in recent years, has been successfully applied in 

remote sensing applications. Specifically, iForest was first 
introduced into the hyperspectral anomaly detection field by Li 
et al. [24], [25]. In addition, Wang et al. [28] proposed a 
hyperspectral anomaly detector combining multiple features 
and iForest. Although both methods are shown to perform well, 
we have identified their weakness in anomaly detection in HSIs 
(aka high-dimensional data) containing hundreds of spectral 
bands and multiple clusters of background pixels. In this article, 
we develop a novel improved iForest method, optimized for 
hyperspectral anomaly detection, namely, IIF-based anomaly 
detector (IIFD), by combining spatial texture information and 
spectral characteristics.  

B. Gabor Filter 

The Gabor filter 1, which is a sinusoidal function modulated 
by a Gaussian envelope, has been widely adopted in various 
applications of computer vision and image processing [32], [33]. 
The Gabor filter captures certain physical structures of an object 
in an image, such as specific orientation information, based on 
a spatial convolution kernel. In recent years, Gabor filters have 
been successfully applied in hyperspectral classification [34], 
[35]. The most important advantage of Gabor filters is their 
invariance to rotation, scale, and translation. Furthermore, they 
are robust against photometric disturbances, such as 
illumination changes and image noise. Hence, considering these 
Gabor features, the spatial texture information of HSIs can be 
effectively represented.  

In a two-dimensional 𝑎, 𝑏  coordinate system, the Gabor 
filter, including real and imaginary components, can be 
represented as: 

𝑔 𝑎, 𝑏; 𝜆, 𝜃, 𝜓, 𝜎, 𝛾 𝑒𝑥𝑝
𝑎 𝛾 𝑏

2𝜎

                                                𝑒𝑥𝑝 𝑖 2𝜋
𝑎
𝜆

𝜓
1  

where, 
𝑎 𝑎 cos 𝜃 𝑏 sin 𝜃 2  

                  
𝑏 𝑎 sin 𝜃 𝑏 cos 𝜃 3  

 
where 𝜆  is the wavelength of the sinusoidal factor, 𝜃  is the 
orientation of the normal to the parallel stripes of the Gabor 
function, 𝜓 is the phase offset, 𝜎 is the standard derivation of 
the Gaussian envelope, and 𝛾  is the spatial aspect ratio 
specifying the ellipticity of the support of the Gabor function. 
𝜓 0  and 𝜓 𝜋/2  return the real and imaginary parts, 
respectively, of the Gabor filter. Parameter 𝜎 is determined by 
𝜆 and spatial frequency bandwidth 𝑏𝑤 as: 
 

𝜎
𝜆
𝜋

𝑙𝑛2
2

2 1
2 1

4  
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Algorithm 1:  𝑅𝑒𝑀𝑎𝑠𝑠 𝑖𝐹𝑜𝑟𝑒𝑠𝑡 𝑋, 𝑡, 𝑤  

Input:  𝑋 - input data, 𝑡 - number of trees, 𝑤 - sub-sampling 
size  
Output:  a set of 𝑡 𝑖𝑇𝑟𝑒𝑒𝑠  

1:  Initialize 𝐹𝑜𝑟𝑒𝑠𝑡 

2:  set height limit ℎ𝑙 = 𝑐𝑒𝑖𝑙𝑖𝑛𝑔 (log 𝑤) 

3:  for 𝑖 = 1 to 𝑡 do 

4:        𝑋 ← 𝑠𝑎𝑚𝑝𝑙𝑒 𝑋, 𝑤  

5:        𝐹𝑜𝑟𝑒𝑠𝑡 ← 𝐹𝑜𝑟𝑒𝑠𝑡 ∪ 𝑖𝑇𝑟𝑒𝑒 𝑋 , 0, ℎ𝑙  
6:  end for 

7:  return 𝐹𝑜𝑟𝑒𝑠𝑡 

 
Algorithm 2:  𝑖𝑇𝑟𝑒𝑒 𝑋, 𝑐ℎ, ℎ𝑙  

Input:  𝑋 - input data, 𝑐ℎ - current tree height, ℎ𝑙 - height 
limit 
Output:  an 𝑖𝑇𝑟𝑒𝑒  

1:  if 𝑐ℎ ℎ𝑙 or |𝑋| 1 then 

2:       return 𝑒𝑥𝑁𝑜𝑑𝑒 𝑆𝑖𝑧𝑒 ← |𝑋|  

3:  else 

4:       let 𝐷 be a list of bands of 𝑋 

5:       randomly select a band 𝑑 ∈ 𝐷 

6:     randomly select a split value 𝑒 from 𝑚𝑎𝑥 and 𝑚𝑖𝑛 
values of the 𝑑th band of 𝑋 

7:       let 𝑋  be the value of the 𝑖th row and 𝑑th column 
of 𝑋 

8:       𝑋 ← 𝑓𝑖𝑙𝑡𝑒𝑟 𝑋, 𝑋 𝑒  

9:       𝑋 ← 𝑓𝑖𝑙𝑡𝑒𝑟 𝑋, 𝑋 𝑒  
10:       return 𝑖𝑛𝑁𝑜𝑑𝑒 𝐿𝑒𝑓𝑡 ← 𝑖𝑇𝑟𝑒𝑒 𝑋 , 𝑐ℎ 1, ℎ𝑙 , 

                                  𝑅𝑖𝑔ℎ𝑡 ← 𝑖𝑇𝑟𝑒𝑒 𝑋 , 𝑐ℎ 1, ℎ𝑙 , 

                                  𝑆𝑝𝑙𝑖𝑡𝐵𝑎𝑛𝑑 ← 𝑑, 

                                  𝑆𝑝𝑙𝑖𝑡𝑉𝑎𝑙𝑢𝑒 ← 𝑒  

11:  end if 

 

C. Entropy Rate Superpixel Segmentation 

A superpixel segmentation algorithm, as a preprocessing step, 
should exhibit a low computational complexity and adhere well 
to the object boundaries. Liu and Tuzel et al. [36] proposed the 
ERS algorithm with the graph topology that maximizes the 
objective function under the matroid constraint. Specifically, 
the objective function comprises two components: the entropy 
rate of a random walk on a graph and a balancing term. The 
matroid is a combinatorial structure that generalizes the concept 
of linear independence in vector space. Furthermore, in [36], 
regarding an undirected graph 𝐺 𝑉, 𝐸  where 𝑉 is the vertex 
set and 𝐸  is the edge set, the graph is partitioned into a 
connected subgraph by choosing a subset of edges 𝐴 ⊆ 𝐸 such 
that the resulting graph 𝐺 𝑉, 𝐴  consists of smaller 
connected components or subgraphs. The objective function of 
the ERS algorithm is optimized with both the entropy rate 𝐻 𝐴  
and balancing term 𝐵 𝐴 : 

 

Algorithm 3:  𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑑 𝑖𝐹𝑜𝑟𝑒𝑠𝑡 𝑋, 𝑡, 𝑤, 𝑘  

Input:  𝑋 - input data, 𝑡 - number of trees, 𝑤 - sub-sampling 
size, 𝑘 - high-value band subset size 
Output:  a set of 𝑡 𝑖𝑇𝑟𝑒𝑒𝑠  

1:  Initialize 𝐹𝑜𝑟𝑒𝑠𝑡 

2:  set height limit ℎ𝑙 = 𝑐𝑒𝑖𝑙𝑖𝑛𝑔 (log 𝑤) 

3:  for 𝑖 = 1 to 𝑡 do 

4:        𝑋 ← 𝑠𝑎𝑚𝑝𝑙𝑒 𝑋, 𝑤  

5:        𝐹𝑜𝑟𝑒𝑠𝑡 ← 𝐹𝑜𝑟𝑒𝑠𝑡 ∪ 𝐼𝑖𝑇𝑟𝑒𝑒 𝑋 , 0, ℎ𝑙, 𝑘  
6:  end for 

7:  return 𝐹𝑜𝑟𝑒𝑠𝑡 

 
Algorithm 4:  𝐼𝑖𝑇𝑟𝑒𝑒 𝑋, 𝑐ℎ, ℎ𝑙, 𝑘  

Input:  𝑋 - input data, 𝑐ℎ - current tree height, ℎ𝑙 - height 
limit, 𝑘 - high-value band subset size 
Output:  an 𝐼𝑖𝑇𝑟𝑒𝑒  

1:  if 𝑐ℎ ℎ𝑙 or |𝑋| 1 then 

2:       return 𝑒𝑥𝑁𝑜𝑑𝑒 𝑆𝑖𝑧𝑒 ← |𝑋|  

3:  else 

4:       randomly select a normal vector �⃗� ∈ ℝ  by 
          drawing each coordinate of �⃗�  from a standard 

Gaussian distribution 
5:       randomly select an intercept vector 𝑒 ∈ ℝ  in 
          the range of 𝑋 
6:       calculate 𝑠𝑒𝑝 𝑋  according to (7) 

7:       obtain redundant band subset 𝐶  according to 𝑘 

8:       set the coordinates of 𝑛, corresponding to 𝐶 , to 
zero

9:       𝑋 ← 𝑓𝑖𝑙𝑡𝑒𝑟 𝑋, �⃗� 𝑒 ⋅ �⃗� 0  

10:       𝑋 ← 𝑓𝑖𝑙𝑡𝑒𝑟 𝑋, �⃗� 𝑒 ⋅ �⃗� 0  

11:       return 𝑖𝑛𝑁𝑜𝑑𝑒 𝐿𝑒𝑓𝑡 ← 𝐼𝑖𝑇𝑟𝑒𝑒 𝑋 , 𝑐ℎ 1, ℎ𝑙, 𝑘 , 

                                 𝑅𝑖𝑔ℎ𝑡 ← 𝐼𝑖𝑇𝑟𝑒𝑒 𝑋 , 𝑐ℎ 1, ℎ𝑙, 𝑘 , 

                                 𝑁𝑜𝑟𝑚𝑎𝑙 ← �⃗�, 

                               𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 ← 𝑒  

12:  end if 

 
𝐴∗ argmax 𝑡𝑟 𝐻 𝐴 μ𝐵 𝐴 , 𝑠. 𝑡.  𝐴 ⊆ 𝐸 5  

 
where μ 0  is the weight of the balancing term, and 𝑡𝑟 ⋅  
denotes the trace of a square matrix. The entropy rate 𝐻 𝐴  
favors the formation of compact and homogeneous clusters, 
whereas the balancing term 𝐵 𝐴  encourages clusters of similar 
sizes. A greedy optimization scheme for the problem expressed 
in (5) is given in [37]. 

III. PROPOSED METHOD 

Given an HSI, in practical applications, the detection result 
will be improved when considering both spatial and spectral 
information [38], which is beneficial for noise suppression and 
discrimination enhancement between anomalies and the 
background in HSIs. The proposed SSIIFD framework is 
designed to detect anomaly pixels by measuring spectral and 
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spatial anomaly scores for every pixel. A schematic of the 
proposed framework is shown in Fig. 3, which consists of the 
following three parts: 

1) The Gabor filter is applied to extract spatial information 
from the principal component analysis (PCA)-projected 
subspace. Gabor features are then employed as the input to the 
ReMass-iForest detection algorithm to obtain the spatial 
anomaly score (Part Ⅰ). 

2) The original HSI is divided into several homogeneous 
regions via the ERS algorithm [36], which are denoted by 
matrices whose rows are spectral vectors of pixels. The 
proposed IIFD is then applied to these high-dimensional 
matrices to obtain the spectral anomaly score (Part Ⅱ). 

3) Finally, we fuse the detection results by linearly 
combining the obtained spatial and spectral anomaly scores to 
predict the anomaly pixels given the input HSI (Part Ⅲ). 
 

A. Gabor Feature Extraction 

Let 𝑋 ∈ ℝ  denote the input HSI data, where 𝑁  is the 
number of pixels, and 𝐷 is the number of spectral bands. To 
extract the Gabor feature [34] of each pixel, we first obtain the 
projection matrix 𝑃 ∈ ℝ  by solving the following PCA 
model: 

 
max 𝑡𝑟 𝑃 𝑋 𝑋𝑃 5  

 
where 𝐼 ∈ ℝ  denotes the identity matrix, and 𝑡𝑟 ⋅  denotes 
the trace of a square matrix. The top 𝐶 principal components 
of the HSI are defined as: 
 

𝑋 ∈ ℝ 𝑋 𝐸 𝑋 𝑃 6  
 
where 𝐸 ⋅  denotes the mean function. 𝑋  are then 
convolved with a Gabor filter [39] with different orientations 
and scales. Finally, filtering coefficients are extracted as the 
Gabor feature of each pixel. The Gabor feature matrix is 
represented as 𝑋 ∈ ℝ , where 𝐷  is obtained 
based on the number of principal components C and the 
orientations and scales of the Gabor filter. In this article, we 
employ forty Gabor filters in five scales and eight orientations 
and then apply these filters to the top principal component 𝑋  
of the input HSI. Hence, 𝐷  5  8  1  40. 

 

B. Constructing ReMass-iForest for Anomaly Detection in 
the Spatial Domain of HSIs 

Given input HSI data 𝑋 ∈ ℝ , as mentioned before, 
ReMass-iForest applies exactly the same implementation of 
iTrees as that of iForest [29]. Each iTree is constructed from a 
small random subsample 𝑋 ∈ ℝ , 𝑊 𝑁 , where 𝑊 
denotes pixels randomly selected from the input 𝑋 . Let 𝑋  
denote all the 𝑑 th band pixels of 𝑋 , and let 𝑒  denotes a 
randomly selected value between the minimum and maximum 
of 𝑋 . We recursively divide 𝑋  into two nonempty child 
nodes by randomly selecting a band 𝑑 and a split value 𝑒, where 
𝑑 is a number between 1 and 𝐷. Specifically, if 𝑋  is smaller 

than 𝑒, the 𝑤th selected pixel is divided into the left node, and 
vice versa (0 𝑤 𝑊). A branch stops splitting when the 
height of the iTree reaches the height limit log 𝑊  or the 
number of pixels in each node equals 1. The iTree construction 
process is repeated 𝑡  times, which indicates that the iForest 
comprises 𝑡 iTrees.  

Here, we give a graphical interpretation for the structure of 
an iTree as in Fig. 2 inspired by [24]. Each node represents a 
single pixel or a number of pixels with similar spectral values. 
Furthermore, we provide details of the construction of ReMass-
iForest in Algorithms 1 and 2. 

C. Constructing Improved Isolation Forest for Anomaly 
Detection in the Spectral Domain of HSIs 

As we have reviewed in the previous section, the ReMass-
iForest method addresses the problem whereby iForest does not 
detect local anomalies by using a local ranking measure based 
on relative mass. The EIF method resolves the poor iForest 
performance given high-dimensional data by using hyperplanes 
with random slopes to split data in iTree construction. Because 
HSI data possess the characteristics of high dimensions and a 
complex background, iForest-based hyperspectral anomaly 
detectors face two key challenges: 1) the detection of local 
anomaly pixels in a complex background; 2) the selection of 
more separable bands during iTree construction. Aiming at the 
first challenge, the proposed IIF algorithm shares the 
consideration of relative mass to formulate anomaly scores with 
ReMass-iForest; they are different in terms of how they 
construct their iTrees.  

Regarding the second challenge, the proposed IIF algorithm 
selects a subset of bands that contains more discriminative and 
informative features between the anomaly and background at 
each branching step in the process of building an iTree. 
Specifically, let 𝑋  denote all the 𝑑th band pixels of HSI data 
𝑋, and 𝑋  and 𝑋  denote the anomaly pixels and background 
pixels, respectively, of 𝑋 , while a threshold 𝑡𝑑 is required to 
separate all pixels into 𝑋  and 𝑋 . We propose a separability 
criterion inspired by [40], which is defined as: 

 

𝑠𝑒𝑝 𝑋
𝜎 𝑋 𝑎𝑣𝑔 𝜎 𝑋 , 𝜎 𝑋

𝜎 𝑋
7  

 
where 𝑋 ∪ 𝑋 𝑋 ; 𝜎 ⋅  is the standard deviation function 
and 𝑎𝑣𝑔 𝑥, 𝑦  simply returns 𝑥 𝑦  2. This criterion is 
normalized using 𝜎 𝑋 , and in terms of the standard deviation 
calculation, a reliable one-pass solution with low computational 
cost can be found in [41]. As a result, we obtain a separability 
index for each band to determine its separability in the 
identification of background and anomaly pixels. Let 𝑠𝑒𝑝 𝑋  
denotes the separability index of the 𝑖th band, and 𝑡𝑑  denotes 
the best corresponding threshold, where 1 𝑖 𝐷. Once every 
band separability index in the given HSI data has been 
calculated with (7), these separability indexes can be ranked in 
descending order of their 𝑠𝑒𝑝 ⋅  value. The bands among the 
top 𝑘  of the list are chosen as the high-value band subset, 
denoted as 𝐶 , whereas the other bands are regarded as the  
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Fig. 4. San Diego-I data set. (a) Pseudocolor image, (b) ground truth map, and detection maps of (c) RXD, (d) LRASR, (e) PTA, (f) KIFD, (g) MFIFD, and (h) 
SSIIFD. 

 
 

 
 

Fig. 5. San Diego-II data set. (a) Pseudocolor image, (b) ground truth map, and detection maps of (c) RXD, (d) LRASR, (e) PTA, (f) KIFD, (g) MFIFD, and (h) 
SSIIFD. 

 
 
redundant band subset, denoted as 𝐶 . Therefore, for a given 
𝐷-band HSI, inspired by [31], the branching criterion in terms 
of data splitting for a given pixel 𝒙 𝑥 , 𝑥 , ⋯ , 𝑥  is as 
follows:  

 

𝒙 𝑒 ⋅ 𝒏 0 8  
 
Where 𝑒  denotes a randomly selected value between the 
minimum and maximum of 𝒙, and 𝒏 is a 𝐷-dimensional normal 
vector, which is obtained by drawing a random number for each  
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Fig. 6. Texas Coast data set. (a) Pseudocolor image, (b) ground truth map, and detection maps of (c) RXD, (d) LRASR, (e) PTA, (f) KIFD, (g) MFIFD, and (h) 
SSIIFD 

 
 

 
 

Fig. 7. Gulfport data set. (a) Pseudocolor image, (b) ground truth map, and detection maps of (c) RXD, (d) LRASR, (e) PTA, (f) KIFD, (g) MFIFD, and (h) SSIIFD 

 
 
coordinate of 𝒏 from the standard normal distribution 𝑁 0, 1 . 
Then, the coordinates of 𝒏, corresponding to 𝐶 , are set to zero 
e.g., if the fifth, ninth, and seventieth band are regarded as 
redundant bands with (7), the fifth, ninth, and seventieth 
component of vector 𝒏  are set to zero. Furthermore, if the 
condition is satisfied, pixel 𝒙  is divided into the left node. 
Otherwise, it is moved down to the right node. These processes 

are described in more detail in Algorithms 3 and 4. 
The proposed IIF method can work directly on the original 

HSI data. Here, to fully utilize the local information, the 
original HSI data are segmented into several subregions via the 
ERS approach before feeding them to the IIF. This 
preprocessing step exerts a positive influence on local anomaly 
detection and computational burden reduction, which is  



SONG et al.: SSIIFD FOR HYPERSPECTRAL ANOMALY DETECTION 8

 
Fig. 8. Influence of parameter 𝜂 and parameter 𝜔 on the detection performance 
of the proposed SSIIFD on each HSI data set. (a) Number of superpixels, 𝜂. (b) 
Value of the balance parameter, 𝜔. 

 
demonstrated with experimental results. Specifically, the 
original data 𝑋  are transformed into 𝜂  submatrices: 

𝑋 , 𝑋 , ⋯  , 𝑋 , where 𝑁 𝑁 ⋯

𝑁 𝑁, i.e., 𝑋 ∪ 𝑋 ∪ ⋯ ∪ 𝑋 𝑋.  

D. Anomaly Detection Using the Proposed Framework 

This subsection focuses on anomaly detection in both the 
spatial and spectral domains. As shown in Fig. 1, Gabor features 
and an HSI marked via ERS are fed to the constructed ReMass-
iForest and IIFD, respectively, to detect anomalies. As 
mentioned before, the proposed IIF and ReMass-iForest 
algorithms share the same measure to detect anomaly pixels, 
namely, both algorithms rely on the relative mass to formulate 
anomaly scores. In each iTree 𝑇 , the anomaly score of a pixel 
𝑥 w.r.t its local neighborhood, 𝑠 𝑥 , can be estimated as the 
ratio of the data mass as follows: 

 

𝑠 𝑥
𝑚 𝑇 𝑥

𝑚 𝑇 𝑥 𝑤
9  

 
where 𝑇 𝑥  denotes the leaf node in 𝑇  in which 𝑥 falls, 𝑇 𝑥  
denotes the immediate parent of 𝑇 𝑥 , and 𝑚 ⋅  denotes the 
data mass of a tree node. Moreover, 𝑤 is a normalization term, 
which is the subsample size used to construct 𝑇 . Obviously, 
𝑠 ⋅  occurs in 0, 1 . The higher the score the higher the 
likelihood of 𝑥 being an anomaly pixel. In contrast to the path 
length in iForest, 𝑠 𝑥  measures the degree of anomaly locally. 
Then, the anomaly score 𝑆 𝑥  of a test pixel 𝑥 can be calculated 
as the average of the local anomaly scores over 𝑡  iTrees as 
follows: 
 

𝑆 𝑥
1
𝑡

𝑠 𝑥 10  

 
By performing the operations mentioned above for each pixel 

in the Gabor features and HSI data segmented by ERS, the 
spatial anomaly score 𝑆  and the spectral anomaly score 𝑆  
can be obtained. In order to take full advantage of the spatial 
and spectral detection results, 𝑆  and 𝑆  are linearly  

 

Fig. 9. San Diego-II data set. (a) Detection map without employing spatial 
information. (b) Detection map considering spatial information. 

 
combined to precisely distinguish anomaly pixels from the 
background as follows: 

 
𝑆 𝜔𝑆 1 𝜔 𝑆 11  

 
where 𝜔 is a balance parameter. As known, the spectral domain 
in HSI data contains more precise information than the spatial 
domain. Obviously, when the value of 𝜔 is greater than 0.5, this 
suggests that the spectral features play a more important role in 
the final detection result than the spatial features.  

IV. EXPERIMENTS 

In this section, we carry out several experiments to evaluate 
the detection performance of the proposed SSIIFD method, and 
comparison results against five state-of-the-art detectors are 
presented. All experimental algorithms are implemented on a 
PC with Windows 10, Intel Core i7-9700 CPU @ 3.00 GHz and 
16 GB RAM, and MATLAB 2017b. 

A. Hyperspectral Data Sets 

Here, four real hyperspectral data sets captured at different 
scenes are employed to evaluate the effectiveness of the 
proposed SSIIFD method, which are listed as follows: 

1) San Diego-I Data Set: The first data set was captured by 
the Airborne Visible/Infrared Imaging Spectrometer 
(AVIRIS) over the airport area of San Diego, CA, USA. 
The spatial resolution is approximately 3.5 m/pixel, and 
the spectral resolution is 10 nm. It contains 224 spectral 
channels in wavelengths ranging from 370 to 2510 nm. 
After the removal of water absorption and noisy bands (1-
6, 33-35, 97, 107-113, 153-166, and 221-224), 189 bands 
are retained in the experiments. The whole image scene 
covers an area of 400  400 pixels. A region with a size of 
100  100 pixels is selected from the top left of the image, 
denoted as San Diego-I. Three airplanes, denoted by 58 
pixels, are the anomalies to be detected in this scene. The 
sample image and ground truth map are shown in Fig. 4(a) 
and (b), respectively. 

2) San Diego-II Data Set: The second data set has been 
widely used in related publications [25], [28], and [38]. 
Compared to the San Diego-I data set, this region exhibits 
a size of 100  100 pixels located at the center of the 
whole image, which is selected for anomaly detection and 
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denoted as San Diego-II. Three airplanes, denoted by 134 
pixels, are the anomalies to be detected in this scene. The 
sample image and ground truth map are shown in Fig. 5(a) 
and (b), respectively. 

3) Texas Coast Data Set: The third data set was captured by 
the AVIRIS sensor over an urban area of Texas Coast, TX, 
USA. This urban scene consists of 100  100 pixels, with 
207 spectral channels in wavelengths ranging from 450 to 
1350 nm. The spatial resolution is 17.2 m/pixel. The scene 
mainly consists of a stretch of meadow and three highways. 
Houses are regarded as the anomalies in this scene. This 
HSI is corrupted by serious strip noise, which resulted in 
challenges in the detection of the above anomaly pixels. 
The sample image and ground truth map are shown in Fig. 
6(a) and (b), respectively. 

4) Gulfport Data Set: The fourth data set was captured by the 
AVIRIS over the airport area of Gulfport, MS, USA. This 
airport scene consists of 100  100 pixels, with 191 
spectral channels in wavelengths ranging from 550 to 1850 
nm. The spatial resolution is 3.4 m/pixel. This scene 
mainly comprises an airport runway, highway, and some 
vegetation. Three airplanes of different sizes are the 
anomalies to be detected. The sample image and ground 
truth map are shown in Fig. 7(a) and (b), respectively. 

B. Parameter Tuning 

Here, we investigate the influences of the parameters 𝜂 and 𝜔 
on the detection performance of the proposed SSIIFD method. 
Parameter 𝜂  controls the number of subregions in the 
preprocessing step. Parameter 𝜔 controls the proportion of the 
spectral anomaly scores in the final detection results. Fig. 8 
shows the effect of parameters 𝜂 and 𝜔 on the area under the 
curve (AUC) of the receiver operating characteristic (ROC) of 
the IIF given each data set. Based on the parameter tuning 
results, we can draw three conclusions, which are listed as 
follows: 

1) The detection performances, represented by AUC values, 
tend to increase and then decrease with increasing number 
of superpixels. This is mainly because that excess 
superpixels will lead to oversegmented regions and cannot 
fully utilize all samples that belong to the homogeneous 
area, whereas a too small number of superpixels will lead 
to undersegmentation and introduce some samples from 
different homogeneous areas and cannot make full use of 
local information. Moreover, an excessively large number 
of superpixels results in each region containing a limited 
number of pixels, which does not guarantee the reliability 
and stability of the detection results, e.g., all the pixels in 
a given region may be anomaly pixels, which introduces a 
high missed detection rate.  

2) The detection performance, considering a proper value of 
𝜂, is always better than that when the 𝜂 value is set to 1 
(which indicates that the proposed method is directly 
performed on the original HSI data without preprocessing). 
Hence, the proposed method, which takes the local 

homogeneity of HSIs into account, is more effective than 
the method without segmentation preprocessing. 

3) As shown in Fig. 8(b), when parameter 𝜔 ranges from 
0.01 to 1, the AUC values initially increase, then slightly 
decrease, and finally reach their peaks at approximately 
0.6 for the San Diego-II and Texas Coast data sets. In 
regard to the San Diego-I and Gulfport data sets, we can 
observe that maximum AUC values occur at 0.8 and 0.2, 
respectively.  

In summary, based on the experiments and analysis 
mentioned above, we obtain the optimal fundamental 
superpixel number 𝜂 for the Texas Coast, San Diego-II, and the 
other two data sets, at 3, 5, and 4, respectively. Additionally, in 
this article, we, inspired by [42], set ω to 0.618 for each data set 
under the guidance of the golden section method. 

C. Analysis of the Detection Performance With and Without 
Employing Spatial Information 

In this section, we investigate the influence of spatial 
information on the detection performance of the proposed 
method. As shown in Fig. 9(a), the proposed IIFD detects most 
anomaly pixels in the original San Diego-II data set, and the 
AUC score of the detection result is 0.9891, from which we can 
draw two conclusions: 1) the IIFD effectively detects most 
anomalies without relying on spatial information; 2) a high false 
alarm rate is the main problem. Therefore, we apply the Gabor 
filter to extract spatial information in the PCA-projected 
subspace, and the extracted Gabor features are then employed 
as input to the ReMass-iForest detector to obtain the spatial 
anomaly score. In addition, the original San Diego-II data set is 
segmented into five subregions with the ERS approach, and 
each subregion is fed to the IIF detector to obtain the spectral 
anomaly score in turn. Finally, we fuse the detection results by 
linearly combining the obtained spatial and spectral anomaly 
scores to predict the anomaly pixels given the input San Diego-
II data set. As such, some false alarms are effectively removed. 
Fig. 9(b) shows the final detection map, and the AUC score of 
the final detection map is 0.9922. 

Based on this experiment, we observe that both spectral and 
spatial information play an important role in the detection of 
anomaly pixels. 

D. Comparison Methods and Evaluation Indexes 

In our experiments, the anomaly detection performance of 
the proposed SSIIFD is evaluated and compared to that of five 
state-of-the-art detectors: RX [6], LRASR [13], PTA [15], 
KIFD [24], and MFIFD [28]. Specifically, RX is a 
representative statistical modeling-based technique. LRASR is 
a typical geometrical modeling-based technique based on low-
rank representation and sparse representation theories. PTA is 
a typical tensor representation method. The KIFD and MFIFD 
methods are representative iForest-based techniques. 
Furthermore, the parameters of dictionary learning in LRASR 
are set the same as those reported in [13], i.e., the number of 
clusters 𝐾  15, the number of atoms in each cluster is set to 
20, and parameters 𝜆 and 𝛽  range from 0.01 to 1. The PTA 
parameters are set according to the suggestions in [15], i.e., the  
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Fig. 10. ROC curves of the methods for. (a) the San Diego-I data set, (b) San Diego-II data set, (c) Texas Coast data set, and (d) Gulfport data set.  

 
 

 

Fig. 11. Background-anomaly separability maps of the algorithms for (a) the San Diego-I data set, (b) San Diego-II data set, (c) Texas Coast data set, and (d) 
Gulfport data set. 

 
TABLE I 

AUC SCORES OF THE METHODS FOR THE EXPERIMENTAL DATA SETS 

 
Dataset SSIIFD MFIFD [28] KIFD [24] PTA [15] LRASR [13] RX [6] 

San Diego-I 0.9930 0.9768 0.9786 0.9791 0.9869 0.9219 

San Diego-II 0.9922 0.9738 0.9838 0.9292 0.9209 0.9423 

Texas Coast 0.9976 0.9969 0.9866 0.9771 0.9278 0.9946 

Gulfport 0.9993 0.9717 0.9904 0.9956 0.9651 0.9526 

 
 
truncated low-rank 𝑟 is set to 1, and hyperparameters 𝛼, 𝛽, 𝜇, 
and 𝜏 are set to 1, 0.01, 0.001, and 1, respectively. In terms of 
the KIFD method, the subsample size is set to three percent of 
all pixels in the image, the number of trees 𝑞  1000, and the 
number of principal components 𝜉  300, which are consistent 
with the original work [24]. The parameters of MFIFD method 
are set the same as those given in [28], i.e., the subsample size 
𝜓  256, and the number of trees is set to 25. In summary, the 
parameters of the five baselines are defined in accordance with 
the original works [6], [13], [15], [24], [28]. 

In the experiments, both qualitative and quantitative 
evaluation approaches are employed to evaluate the detection 
performance. Specifically, we report the qualitative analysis of 
the detection performance with the detection map, whereas 
quantitative evaluation is conducted by using the ROC curve, 
AUC value, and separability range. The ROC curve reflects the 
relationship between the probability of detection (PD) and the 
false alarm rate (FAR), which are obtained via thresholds 
ranging from 0 to 1. The PD and FAR are defined as follows: 

 

𝑃𝐷
𝑁
𝑁

          𝐹𝐴𝑅
𝑁
𝑁

12  

 
where 𝑁  denotes the number of detected object pixels, 𝑁  
denotes the total number of real object pixels, 𝑁  denotes the 
number of false alarm pixels, and 𝑁 denotes the total number of 
pixels in the image. If a detector attains a higher PD than that 
of the other detectors at the same FAR, this illustrates that this 
detector outperforms the others. In other words, an ROC curve 
located near the upper leftmost corner suggests that the detector 
obtains a better detection result. Furthermore, a better detector 
usually achieves a larger AUC value, which is calculated based 
on the whole area under the ROC curve. More details on these 
two metrics have been reported in [43]. Moreover, the 
separability range clearly describes the ability of a detector to 
distinguish anomaly pixels from the background [44]. 
Specifically, a good detector typically features a distinct gap 
between the anomaly pixels and the background, meanwhile,  
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TABLE II 

RUNNING TIME (SECONDS) OF THE METHODS FOR THE EXPERIMENTAL DATA SETS  
 

Dataset SSIIFD MFIFD [28] KIFD [24] PTA [15] LRASR [13] RX [6] 

San Diego-I 8.78 2.46 222.27 26.61 4.03 0.16 

San Diego-II 8.67 2.54 219.18 24.35 3.75 0.13 

Texas Coast 7.12 2.45 222.03 27.17 3.64 0.11 

Gulfport 7.26 2.62 218.91 24.12 3.45 0.14 

 
 
the anomaly scores of the background are suppressed within a 
small range. 

E. Detection Performance 

In this section, we first qualitatively investigate the detection 
performance via detection maps. Based on the detection maps 
shown in Figs. 4-7, we observe that the proposed SSIIFD 
detects anomaly pixels more clearly and accurately at lower 
FARs over the five comparison methods. For example, in Figs. 
4 and 5, the proposed SSIIFD, PTA, KIFD, and MFIFD detect 
the locations and shapes of the three airplanes accurately. 
However, PTA, KIFD, and MFIFD also falsely detect many 
anomalies, whereas there are few false alarms in the detection 
result obtained with SSIIFD. LRASR detects the locations of 
the three airplanes, but the shapes of these three airplanes are 
not determined. RX obtains a poor separation between the 
anomaly pixels and background. Additionally, the proposed 
SSIIFD achieves a robust detection performance in images 
corrupted by serious strip noise. As shown in Fig. 6, the 
proposed SSIIFD, KIFD, and MFIFD effectively detect most 
anomalies, while only SSIIFD effectively removes the 
interference of strip noise and suppresses most of the 
background into low-detection outputs. In other words, KIFD 
and MFIFD perform poorly in both background suppression 
and noise reduction. RX and PTA realize satisfactory 
background suppression, while RX misses many anomaly 
pixels and PTA does not mitigate the influence of strip noise as 
effectively as does LRASR. Regarding anomaly targets with 
relatively different and irregular shapes and sizes, as shown in 
Fig. 7, RX does not obtain detection results with a low contrast 
between the anomaly pixels and background. MFIFD fails to 
detect two small airplanes clearly due to the blurring effect 
produced in the filtering operation. The LRASR, PTA, and 
KIFD methods detect all three airplanes, while some 
background pixels are mistakenly detected as anomalies. 

Moreover, the detection performances of the compared 
methods were quantitatively evaluated based on AUC scores as 
summarized in Table I, and the highest AUC scores were 
highlighted for each data set. It is obvious that SSIIFD achieved 
the highest scores on all data sets. RX and LRASR attained the 
lowest detection accuracy for the San Diego-I and Texas Coast 
data sets, respectively. Although the MFIFD and KIFD 
methods yielded a relatively stable detection performance, they 
failed to achieve the highest AUC scores in any experiment. 
Additionally, the ROC curves of the different methods are 
shown in Fig. 10. As mentioned before, a better detector occurs 
nearer to the upper left corner (0, 1) and achieves a higher PD 

at the same FAR. Fig. 10 shows that the SSIIFD method is 
superior to the MFIFD, KIFD, PTA, LRASR, and RX methods 
under most conditions. The proposed SSIIFD method obtains 
much better ROC curves than those of the other methods, as 
shown in Fig. 10(a), (b), and (d), i.e., the PD value of SSIIFD, 
in every case, is higher than that of other methods with FAR 
ranging from 0.0001 to 1. Regarding the Texas Coast data set, 
the proposed SSIIFD method achieves a higher PD value than 
that of the other compared methods under most conditions, as 
shown in Fig. 10(c).  

Furthermore, another quantitative evaluation aspect of the 
proposed SSIIFD, separability map, is exploited to investigate 
its ability in anomaly background separation, as shown in Fig. 
11. There are two boxes for each detector. The green and red 
boxes indicate the distributions of the background and 
anomalies, respectively. The position of the boxes reflects the 
separability between the background and anomaly pixels. In 
other words, the greater the distance between these two boxes, 
the better the detector is. As shown in Fig. 11, it is obvious that 
the proposed SSIIFD offers the best performance in terms of the 
separability between the anomalies and background, whereas 
the other methods exhibit more or less overlap between the 
anomaly and background boxes. For example, as shown in Fig. 
11(b), the proposed SSIIFD, RX, and LRASR effectively 
suppress the background within a small range. However, for 
both RX and LRASR, overlap occurs between the anomaly and 
background boxes, which suggests that they do not efficiently 
distinguish anomaly pixels from background pixels. In contrast, 
the background boxes of PTA and MFIFD reflect that these two 
methods do not suppress most of the background into low-
detection outputs. In other words, the PTA and MFIFD falsely 
detect many anomalies, which corresponds to their detection 
maps, as shown in Fig. 5(e) and (g), respectively. In terms of 
the KIFD method, although the background anomaly score is 
suppressed within a small range, the value of the background 
class is relatively high, which indicates that the KIFD does not 
efficiently distinguish anomaly pixels from the background. 

ReMass-iForest and iForest exhibit the same time complexity, 
i.e., Ο 𝑡 𝑁 𝑊 log 𝑊 . The time complexity to construct IIF 
consists of three major components: 1) computation of the band 
separability according to (7), 2) sorting of the band separability 
values, and 3) calculation of the branching criterion according 
to (8). The time complexity associated with IIF construction of 
𝑡  trees is Ο 𝑡𝑊 𝐷𝑊 log 𝑊 𝐷 , where 𝑊  is the 
subsample size and 𝐷 is the number of bands in the input HSI. 
The time complexity of anomaly score evaluation is Ο 𝑡𝑊𝑁 , 
where 𝑁 is the number of pixels in the input HSI. Hence, the  
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Fig. 12. Effect of the number of iTrees on each data set. (a)AUC value, (b) 
running time.  

 

 

Fig. 13. Effect of the subsample size on each data set. (a)AUC value, (b) 
running time.  

 
time complexity of the proposed IIF is Ο 𝑡𝑊 𝐷𝑊 log 𝑊
𝐷 𝑁 . Additionally, the compared methods are implemented 
in MATLAB, and the running times given the four data sets are 
listed in Table II. It should be noted that RX is the fastest 
method, whereas KIFD is the slowest. This principally occurs 
because KIFD employs kernel-PCA during preprocessing, and 
numerous iTrees are constructed to obtain stable anomaly 
scores. The running time of the proposed SSIIFD method is 
similar to that of the MFIFD method, which is much more 
efficient than the PTA and KIFD methods. 

F. Sensitivity to the Parameters and Discussion 

In this section, we perform experiments to reveal the effect 
of the parameters of the proposed SSIIFD method on the 
detection performance. There are three parameters in the 
proposed SSIIFD method, i.e., the number of the used bands 𝑘, 
the number of iTrees 𝑡, and the size of subsample 𝑊. Parameter 
𝑘 controls the number of spectral bands to be employed in the 
construction of the proposed IIF. Fig. 12 shows the influence of 
different numbers of iTrees 𝑡 on the detection performance and 
the running time on each data set. As shown in Fig. 12(a), the 
AUC value for the Gulfport data set remains nearly stable, 
whereas the AUC value for the San Diego-II data set slightly 
fluctuates within a small range. Regarding the other two data 
sets, the AUC values initially increase and then fluctuate within 
a small range. Moreover, as shown in Fig. 12(b), the running 
time of the proposed SSIIFD method achieves a nearly linear 
growth with increasing number of iTrees. In addition, Fig.13  

 
Fig. 14. Influence of the number of used spectral bands 𝑘  on the detection 
performance of the proposed SSIIFD on each HSI data set. 

 
shows the influence of different subsample sizes 𝑊  on the 
detection performance and running time on each data set. As 
shown in Fig. 13(a) the AUC value for the Texas Coast data set 
remains nearly stable, whereas the AUC values for the other 
three data sets slightly fluctuate within a small range, i.e., from 
0.96 to1. Furthermore, as shown in Fig. 13(b), the running time 
of the proposed SSIIFD method achieves a nearly linear growth 
with increasing subsample size 𝑊. Hence, considering both the 
performance and efficiency of the proposed SSIIFD method, we 
set 𝑡  32 and 𝑊 𝑐𝑒𝑖𝑙𝑖𝑛𝑔 2.5% 𝑁  (𝑁 is the number of 
pixels in the input HSI) for each data set as default parameter 
values. 

Moreover, Fig. 13 shows the effect of parameter 𝑘 on the 
detection performance given each data set. Regarding the San 
Diego-I and San Diego-II data sets, the AUC values gradually 
increase and tend to remain stable when the parameter 𝑘 ranges 
from 1 to 100. In contrast, the AUC values obtained for the 
Gulfport and Texas Coast data sets exhibit a larger fluctuation 
with increasing 𝑘. This mainly occurs because pretreatment of 
water absorption and noisy bands is applied to the two San 
Diego data sets, and almost all 189 bands exhibit a high signal-
to-noise ratio (SNR), whereas the Gulfport and Texas Coast 
data sets, without pretreatment, exhibit low-SNR and poor-
quality bands, especially the Texas Coast data set. As a result, 
in terms of the two San Diego data sets, by calculating the 𝑠𝑒𝑝 
value for each band with (7), we obtain the separability index 
as expected, which accurately measures how separable each 
band is in the identification of background and anomaly pixels. 
For the other two data sets with no pretreatment, too large or 
too small value of 𝑘 leads to the usage of those noisy and water 
absorption-affected bands with a high probability. In other 
words, in low-SNR and noisy bands, the 𝑠𝑒𝑝 value does not 
accurately measure how separable the band is in distinguishing 
anomaly pixels from the background. Therefore, parameter 𝑘 is 
set as 𝑘 𝑐𝑒𝑖𝑙𝑖𝑛𝑔 𝐷/3  for each data set in this article.  
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V. CONCLUSION 

In this article, we propose a novel IIF algorithm to address 
the poor performance of iForest in regard to high-dimensional 
data and detecting local anomalies. Then, a novel spectral-
spatial anomaly detection framework based on IIF (SSIIFD) is 
proposed. Gabor features and segmented HSI data are 
employed to construct ReMass-iForest and IIF, respectively. 
The advantages of the proposed SSIIFD method are threefold: 
first, the method fully utilizes spectral and spatial information 
in HSIs; second, this method fully employs global and local 
information in HSIs; third, this method detects anomaly pixels 
more clearly and accurately at lower FAR. The experiments on 
four real hyperspectral data sets reveal that SSIIFD is stable and 
superior to other state-of-the-art methods in terms of both 
objective and subjective evaluations. In the future, the 
application of SSIIFD in other remote sensing applications will 
be investigated (e.g., change detection and shadow detection). 
In addition, how to classify and recognize the detected anomaly 
pixels will be the focus of our future research. 
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