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Biological processes are orchestrated by complex networks of molecules. Conventional ap-
proaches for studying the action of biomolecules operate on a population level, averaging
out any inhomogeneities within the ensemble. Investigating one biological macromolecule
at a time allows researchers to directly probe individual behaviours, and thus characterise
the intrinsic molecular heterogeneity of the system. Single-molecule methods have unrav-
elled unexpected modes of action for many seemingly well-characterised biomolecules and
often proved instrumental in understanding the intricate mechanistic basis of biological pro-
cesses. This collection of reviews aims to showcase how single-molecule techniques can
be used to address important biological questions and to inspire biochemists to ‘zoom in’ to
the population and probe individual molecular behaviours, beyond the ensemble average.
Furthermore, this issue of Essays in Biochemistry is the very first written and edited entirely
by early career researchers, and so it also highlights the strength, diversity and excellence
of the younger generation single-molecule scientists who drive this exciting field of research
forward.

Macromolecules and their biochemical reactions govern subtle and mechanistically complex processes
that are fundamental to life; e.g. protein folding, cargo trafficking, DNA replication, transcription and
translation. Classic biochemical studies describe the behaviour of a large ensemble of macromolecules,
and thus report the mean value of the measured parameter, averaged over the entire molecular popula-
tion. Ensemble-based approaches cannot distinguish molecules with different properties within the pop-
ulation (e.g. different conformations) nor can they reveal how an individual molecule behaves over time.
By contrast, single-molecule approaches allow us to investigate biological features ‘one molecule at a time’
and directly monitor such heterogeneous behaviours. Single-molecule measurements report the proba-
bilistic distribution of values for a measured parameter, and so characterise not only the mean behaviour
but also the likelihood of fluctuations about the mean. These fluctuations provide a direct access to the
molecular heterogeneity of a biological system, which can be of static or dynamic origin. Static hetero-
geneity is observed when an ensemble of molecules contains subpopulations that do not change over the
observation timescale whereas dynamic heterogeneity is characteristic of molecules that interconvert over
the observation timescale. Hence, single-molecule studies provide insight into the dynamics, kinetics and
mechanisms of biomolecular processes that are unattainable by traditional ensemble approaches.

Since the development of the first single-molecule technique, i.e. single-ion channel recordings us-
ing patch-clamp [1], the single-molecule toolkit has expanded considerably and continues to evolve.
Single-molecule detection and manipulation techniques can broadly be divided into the following cat-
egories: (i) light microscopy approaches, including fluorescence imaging and spectroscopy [2–7], and
interferometric scattering [8], (ii) electrical conductance measurements, including patch-clamp and
nanopore-based detection [9,10], and (iii) force-based approaches, including optical [11] and magnetic
tweezers [12], and atomic force microscopy [13]. Different single-molecule methods have different ca-
pabilities, applications and throughput, and offer different time and spatial resolutions. For example,
super-resolution fluorescence microscopy can achieve localisation precision of a few tens of nanome-
tres, breaking the diffraction limit of optical microscopy, whereas atomic force microscopy reaches
atomic level spatial precision (Ångström resolution) [14,15]. In addition to the three basic groups of
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single-molecule techniques listed above, approaches that integrate different modalities, such as force and
fluorescence-based detection, have also been described [12,16–18] and continue to be developed. These hybrid ap-
proaches enable new multiplexing possibilities, which cannot be accessed through individual methods alone. More-
over, theoretical tools utilising intensive computational analysis, such as molecular simulations [5] and modelling
[10], add further insight into our understanding of single-molecule biophysics.

As the temporal and spatial resolutions of single-molecule methods have been improving over the years, the com-
plexity of analysed samples has also increased, opening up new avenues for scientific discovery. Single-molecule
studies within cells [7] or cell extracts [3] are now routinely conducted, in addition to in vitro assays using puri-
fied components. The in vivo single molecule approaches mostly involve fluorescence detection [19–23] however
force-based technologies are also being developed [24,25]. Indeed, recent advances in super-resolution techniques
have transformed single-molecule imaging in living cells [19–23]. By their very nature, single-molecule methods
are not typically high throughput, which can present a major challenge when a large number of observations are
needed to adequately characterise the system’s diversity. Many recent advances (e.g. DNA curtain technology [26])
have addressed this issue, allowing the recording of large volumes of data in single experiments and automation of
data collection and downstream analysis [27].

Implementation of single-molecule approaches to study a biological system is not an easy task as it requires over-
coming a variety of challenges. The difficulties are associated not only with bespoke instrumentation and sophisticated
data analysis of often noisy signals but also chemical modification of macromolecules and target-specific surface im-
mobilisation. Some of these aspects have been aided by commercially available single-molecule instruments, data
processing and analysis software, as well as more efficient and user-friendly protein engineering and labelling tech-
nologies. Nevertheless, to carry out a successful single-molecule experiment one needs a broad range of skills, which
go far beyond the classic biochemist’s toolkit and typically involve basic engineering, knowledge of surface and protein
chemistry, operation of optical instruments, complex image and data analysis, and computer programming. For re-
search students and postdoctoral researchers, the use of single-molecule approaches as part of their scientific journey
provides an exciting and rigorous training in multiple fields at the interface of life and physical sciences.

Our understanding of biochemistry has been largely gained through investigating ensembles of macromolecules.
The single-molecule approaches enable us to ask and answer entirely new types of questions, which truly probe the
complexity of biological systems. The goal of this issue of Essays in Biochemistry, focused on Biochemistry: One
Molecule at a Time is three-fold. First, it showcases different types of single-molecule techniques and their applica-
tions to investigate processes that are fundamental to life. Second, it aims to encourage and enthuse junior biochemists
to embark on the journey of single molecules in their scientific training, as it is an exciting area of truly interdisci-
plinary research at the forefront of modern molecular bioscience. Third, this issue emphasises the excellence and
maturity of the early career single-molecule bioscientists (Ph.D. students, postdoctoral researchers and junior princi-
pal investigators), who wrote and edited this collection of essays and who are currently helping to develop this exciting
field of research. I hope that this pioneering, early career researcher focused issue of Essays in Biochemistry will pave
the way for other initiatives celebrating the contribution and importance of junior molecular bioscientists.
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