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Introduction

The FEniCS 2021 conference was held online in March 2021, using a combination of Zoom and Gather
Town. This document collects the abstracts and slides for the talks presented at FEniCS 2021.

The following picture was taking during the Gather Town evening session on Thursday 25 March.

Prizes

Three prizes were given at FEniCS 2021. These were awarded to:

• Best talk by a PhD student or undergraduate: Rémi Delaporte-Mathurin

• Best talk by a PhD student or undergraduate (runner up): India Marsden

• Best talk by a postdoc: Marc Hirschvogel

The prizes were kindly provided by Rafinex.

1



Patient specific brain simulations with FEniCS and
Freesurfer

Vegard Vinje, Simula Research Laboratory, Norway

22 March 2021

Patient-specific simulations of physical processes within the brain requires detailed grid construction
from image data, typically MR-images. In this talk I will present the pipeline developed by our group
on how to go from MRI images to finite element simulations. In many aspects of neuroscience there is
particular focus on distinct regions within the brain. The new pipeline allows for efficient analysis of
different brain regions and a more robust comparison with experimental results found in the literature.

Freesurfer is a software developed to identify the brain tissue found in the MR images as well as seg-
menting it into several different subregions. Each subregion will be assigned a unique number according
to a look-up-table with the corresponding name of the region. This information can be translated into
FEniCS Meshfunctions with the Python package SVMTK (Figure). With the Meshfunction, we may assign
different physical parameters to different regions of the brain. In addition, analysis and visualization of
different regions in post-processing may also be performed.

In this talk I show the general usage of this pipeline along with a few examples of relevant simulations
for transport phenomena within the brain.

You can cite this talk as:

Vegard Vinje. “Patient specific brain simulations with FEniCS and Freesurfer”. In: Proceedings of FEniCS 2021,
online, 22–26 March (eds Igor Baratta, Jørgen S. Dokken, Chris Richardson, Matthew W. Scroggs) (2021), 2. DOI:
10.6084/m9.figshare.14494593.

BibTeX for this citation can be found at https://mscroggs.github.io/fenics2021/talks/vinje.html .
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A finite element model of electric fields in the brain

Vyassa Baratham, University of California, Berkeley, United States

22 March 2021

In recent years, simulation of neural tissue at subcellular resolution has become an important tool for
understanding the electrophysiological signals that neuroscientists and physicians record from the brain.
These simulations use precise chemistry and physics to generate true-to-life predictions of neural activity,
but employ simplifying assumptions to propagate that activity from neuron to recording electrode, a
problem which could be solved exactly using finite element modeling. In this talk, I will summarize the
biophysics of neural simulation, present the widely-used simplified model of electric field propagation in
the brain, and share my ideas for implementing a more exact model in FEniCS. I welcome any feedback
or tips on my proposed approach. I believe that a freely available implementation of this problem in an
open source FEM solver is an important next step in the development of neural simulators. We must
understand in detail how electric fields propagate through neural tissue before we can develop neural
interfaces capable of reading and stimulating the brain at high resolution.

You can cite this talk as:

Vyassa Baratham. “A finite element model of electric fields in the brain”. In: Proceedings of FEniCS 2021, on-
line, 22–26 March (eds Igor Baratta, Jørgen S. Dokken, Chris Richardson, Matthew W. Scroggs) (2021), 3–17. DOI:
10.6084/m9.figshare.14494656.

BibTeX for this citation can be found at https://mscroggs.github.io/fenics2021/talks/baratham.html .
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A finite element model of 
electric fields in the brain

Vyassa Baratham
vbaratham@berkeley.edu

PhD Candidate
University of California, Berkeley

22 Mar 2021
FEniCS 2021
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The brain is composed of 
billions of neurons

Neurons are cells with branching 
extensions which reach out and connect 
to other neurons

5



Neurons are electrically active

An electrode near/on a neuron in vivo 
will periodically see transient (~1ms) 
spikes in electrical potential

The rate of spikes usually depends on 
what the animal is doing, or seeing, or 
hearing, thinking, etc.

https://www.youtube.com/watch?v=Qz40mdaDYTU

Electrode attached to speaker
Pattern drifts down/left: few spikes
Pattern drifts up/left: lots of spikes

(sound on)
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Many studies record from large populations of neurons

Electroencephalography (EEG) Electrocorticography (ECoG)

EEG and ECoG recordings reflect a superposition of the activity of ~10 5 ± 1 neurons
Population-level recordings sacrifice resolution in favor of coverage

7



Population-level data contains detailed information

In order to understand exactly how this information is represented in the brain, we 
need to “invert” the population-level signal to reconstruct the activity of the 
underlying neuronal sources. A detailed forward model may help.

Example: Inferring speech from neural activity Joseph G. Makin, David A. Moses, & Edward F. Chang (2020) 
https://doi.org/10.1038/s41593-020-0608-8
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EEG and ECoG recordings reflect a superposition of signals from 
all nearby neurons

In order to understand exactly how information is represented in 
the brain, we need to “invert” the population-level signal to 
reconstruct the activity of the underlying neuronal sources.

This inverse problem is ill-posed: there may be different 
distributions of source activity which give rise to the same 
observed signal

A detailed forward model may provide insight into which of these 
distributions is consistent with biology.

9



Simulating the brain
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Models of neural activity are precise, accurate
1. Hodgkin & Huxley (1952) show that cell membranes behave like electrical circuits

Lipid bilayer = capacitor        Ion channels = resistors*          Electrochemical gradients = batteries

2. Cable equation describes spread of electrical potentials through neurons:

11



Color indicates difference in electrical potential 
between the inside and outside of the cell

Models of neural activity are precise, accurate

Computers can accurately simulate 
neural activity:

12



We can simulate the 
activity of neurons in a 
chunk of brain.

Next: what would an 
electrode near these 
neurons read?

13



Models of extracellular potential are drastically simplified

Given an electrical current I(t) through one segment of a neuronal membrane, 
what signal V(r, t) would an external electrode located at point r read?

Assume extracellular 
space is:

- Homogeneous
- Isotropic
- Purely Ohmic (no 

capacitance)

14



The extracellular medium is inhomogenous

7 um

Kasthuri, Narayanan et al.
Cell, Volume 162, Issue 3, 648 - 661
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FEM handles full complexity of extracellular space

Interior and exterior of cells are separate, 
but coupled by the membrane (6)

(7) gives the time evolution of the 
membrane potential

Alessio Paolo Buccino et al 2019
J. Neural Eng. 16 026030
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Overview

Electrical input → Neural activity → Extracellular potential → “Useful” information

Hodgkin-Huxley 
membrane model, 
cable equation 
simulations

Point source 
approximation

FEM

Point source 
approximation

(Population recordings)

Principal 
Components 
Analysis, Neural 
Networks, etc.
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Astrophysical tests of gravity using FEniCS

Andrius Tamosiunas, University of Nottingham, United Kingdom

22 March 2021

Various theories of gravity are described by non-linear differential equations, which are difficult to
solve analytically in all but a few simple cases. In this talk I will present the work done by myself and
my colleagues at the University of Nottingham towards developing a FEniCS code for solving differential
equations describing theories of gravity in laboratory and astrophysical environments.

You can cite this talk as:

Andrius Tamosiunas. “Astrophysical tests of gravity using FEniCS”. In: Proceedings of FEniCS 2021, online, 22–
26 March (eds Igor Baratta, Jørgen S. Dokken, Chris Richardson, Matthew W. Scroggs) (2021), 18–32. DOI:
10.6084/m9.figshare.14494716.

BibTeX for this citation can be found at https://mscroggs.github.io/fenics2021/talks/tamosiunas.html .
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Astrophysical Tests of
Gravity Using FEniCS

CAPT, Nottingham University

Andrius Tamošiūnas

andrius.tamosiunas@nottingham.ac.uk

In collaboration with:

Clare Burrage, Chad Briddon, Adam Moss
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1 Introduction
1.1 The Standard Model of Cosmology
1.2 Theories of Modified Gravity
1.3 The Chameleon Mechanism
1.4 Fifth Forces in Cosmology and the Laboratory

2 Numerical Tests of Modified Gravity
2.1 Numerical Methods using FEniCS
2.2 FEniCS in Astrophysics and Cosmology
2.3 Current Work: Realistic Galaxy Clusters

3 Conclusions and Future Plans

Contents

2/14 Andrius Tamošiūnas University of Nottingham
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Fig.: The Universe according to the standard model of cosmology (NASA).

The Context: The ΛCDMModel

3/14 Andrius Tamošiūnas University of Nottingham
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1 Gravity is described by the theory of
general relativity (GR):

'`a −
1

2
6`a' + Λ6`a =

8c�

24
)`a . (1)

2 The Universe is dominated by dark
matter and dark energy.

Fig.: The mass-energy content of the Universe
(Chandra).

Key Questions:

1 Dark matter?

2 Dark energy?

3 Galaxy-scale
problems?

4 The Hubble
constant problem?

5 The theory of
quantum gravity?

The ΛCDMModel

4/14 Andrius Tamošiūnas University of Nottingham
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• It is possible that some of these problems could be
tackled by modifying Einstein’s general relativity.

• General relativity can be modified in a variety ways:

1 Some of the assumptions can be relaxed ( 5 (') gravity);
2 Extra spacetime dimensions (Kaluza Klein);
3 Non-local theories (Infinite derivative gravity);
4 Extra (scalar, vector, tensor) fields.

• Modifying GR results in an extra fundamental force
("fifth" force).

Possible Solution: Modified Gravity

5/14 Andrius Tamošiūnas University of Nottingham
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• An example of a scalar-tensor theory: Chameleon
gravity;

• An extra scalar field interacting with matter in a special
way is introduced;

• A "fifth" force arises from the interactions between the
field and matter in a density-dependentway.

Key Equation to Solve:

∇2q = −
=Λ=+4

q=+1
+

Vd

"pl

, (2)

where: q- Chameleon field, d-density, =, Λ, V, "pl-constants.

An Example: Chameleon Gravity

6/14 Andrius Tamošiūnas University of Nottingham

24



• A fifth force could potentially
explain dark energy;

• A fifth would not be relevant in the
Solar System;

• Modifying gravity would change
the properties of galaxy clusters:

Fig.: Galaxy cluster Abel 2744 (NASA). Fig.: Clusters in X-ray (ESA).

Fifth Force in Cosmology

7/14 Andrius Tamošiūnas University of Nottingham
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Atom Interferometry Tests:

• Fifth forces could be potentially
detected in laboratory tests;

• Recent tests have not found evidence
for a fifth force;

• Such tests allow putting strong
constraints on the Chameleon model
parameters.

Fig.: A vacuum chamber
experiment (Hamilton et al. 2015).

Fig.: Key results from the
experiment (Hamilton et al. 2015).

Fifth Force in the Lab

8/14 Andrius Tamošiūnas University of Nottingham
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• Normalizing the eq.: q̂ = q/q∞, d̂ = d/d∞,

∇2q = −
=Λ=+4

q=+1
+

Vd

"?;

→ U∇̂2q̂ = −q̂−(=+1) + d̂, (3)

• Rewriting the eq. in the variational form:

U

∫

Ω

∇̂q̂ · ∇̂E 93G =

∫

Ω

(

q̂−(=+1) − d̂
)

E 93G, (4)

• Rewriting using Taylor expansion:

q̂−(=+1) ≈ (= + 2)q̂
−(=+1)

:
− (= + 1)q̂

−(=+2)

:
q̂ + O

(

q̂ − q̂:

)2

(5)

• The eq. is solved using the Newton/Picard methods:

U

∫

Ω

∇̂q̂·∇̂E 93G+

∫

Ω

(=+1)q̂
−(=+2)

:
q̂E 93G =

∫

Ω

(=+2)q̂
−(=+1)

:
E 93G−

∫

Ω

d̂E 93G

(6)

Solving the Chameleon Eq. in FEniCS

9/14 Andrius Tamošiūnas University of Nottingham
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• Using FEniCS allows to simulate the mentioned vacuum
chamber experiment;

• The mesh is generated and refined using Gmsh;

• Complex source shapes can be easily handled:

Fig.: A vacuum chamber simulation using FEniCS (Chad Briddon).

Numerical Solutions Using FEniCS

10/14 Andrius Tamošiūnas University of Nottingham
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• Galaxy and galaxy cluster density distribution:

dNFW (A) =
d0

A
'B

(

1 + A
'B

)2
; (7)

• Galaxy cluster Chameleon field simulation:

Fig.: Left: a typical galaxy cluster (X-ray); center the density distribution and
the Chameleon field right: the field gradient.

FEniCS in Astrophysics and Cosmology

11/14 Andrius Tamošiūnas University of Nottingham
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• An analogous method allows finding
the 3D solutions;

• The typical size of the residuals:
∼ 0.1 − 1 %;

• Finding the solution typically takes
10-40 min depending on the model
parameters.

Fig.: Left 3D NFW distribution; right: Chameleon
field solution.

Fig.: Comparing the
numerical and analytic

solutions.

3D Solutions

12/14 Andrius Tamošiūnas University of Nottingham
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• Realistic galaxy clusters based on
simulations:

Fig.: Cluster density distribution (Project 300
simulation).

Key Questions

1 Optimal cluster
form?

2 Optimal galaxy
form?

3 Time-dependent
density
distributions?

Realistic Galaxy Clusters

13/14 Andrius Tamošiūnas University of Nottingham
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The long-term goal:

An open-source FEniCS code for modelling experimental
and observational tests for a variety of gravity models.

Key problems:

• Other gravity theories: Symmetron Gravity, 5 ('),
Vainshtein screening models;

• Other cosmology/astrophysics questions: stars, galaxies,
cosmic voids;

• Other laboratory setups: spinning sources, multiple
sources, more complicated vacuum chambers.

Summary and Future Plans

14/14 Andrius Tamošiūnas University of Nottingham

32



A study of the time independent grade two model in a
2D contraction rheometer

Måns Andersson, KTH Royal Institute of Technology, Sweden
Ridgway Scott, University of Chicago, United States
Johan Jansson, KTH Royal Institute of Technology, Sweden

22 March 2021

Non-Newtonian fluids are found in many fields of science: food, medicine, engineering, etc, properties
of these fluids are studied with rheometers. Not all rheometers can properly describe each model and we
aim to evaluate if a contraction rheometer can distinguish the model parameters of the Grade two model.

This is first done in 2D with a simplified well studied algorithm and then with a general method
proposed in [1]. Both methods are based on transforming the problem into a coupling between a Stokes-
like system and a transport equation.

Incompressibility is enforced by penalty iteration and Scott–Vogelius elements since it is hypothesised
that divergence free elements are advantageous when solving the coupled transport equation. The trans-
port is solved with linear polynomials with different stabilizations investigated. We discuss preliminary
results and limitations.

This non-Newtonian modeling is part of a larger predictive Real Unified Continuum framework for
modeling full systems of eg swallowing (part of the Swallow project), plant-based food production, blood
flow, gastrointestinal modeling, etc.

References

[1] Nadir Arada, Paulo Correia, and Adélia Sequeira. “Analysis and finite element simulations of a
second-order fluid model in a bounded domain”. In: Numerical Methods for Partial Differential Equa-
tions: An International Journal 23.6 (2007), 1468–1500. DOI: 10.1002/num.20236 .
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contraction rheometer”. In: Proceedings of FEniCS 2021, online, 22–26 March (eds Igor Baratta, Jørgen S. Dokken,
Chris Richardson, Matthew W. Scroggs) (2021), 33. DOI: 10.6084/m9.figshare.14494791.
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Multiscale‐in‐time modeling of myocardial growth &
disease progression

Marc Hirschvogel (http://www.deepambit.com ), King’s College London, United Kingdom

22 March 2021

A multiscale-in-time framework for simulation of maladaptive growth and remodeling (G&R) in the
heart is presented. G&R is assumed to be driven by a deviation of mechanical stress or strain with respect
to a homeostatic baseline state. Since ventricular loads vary on a much shorter time scale than processes
of G&R occur, a staggered solution scheme discriminating between “small scale” heart beat dynamics and
“large scale” G&R is chosen.

On the small scale, a coupled monolithic problem of 3D finite strain elasticity for the heart and 0D
lumped-parameter flow is solved, using a closed-loop systemic and pulmonary circulation model to ac-
count for physiologic loading conditions on the myocardium. After computing a homeostatic reference
state, the system is perturbed by introducing a cardiovascular disease (ie regurgitation of the mitral valve
or aortic stenosis), eventually leading to a state of chronic volume or pressure overload for the ventricle.

On the large scale, the spatial field of fiber overstretch or tissue overstress is then imposed, and a
pure solid mechanics problem of strain- or stress-mediated volumetric growth is solved together with a
remodeling law that allows for change in elastic material parameters depending on the amount of growth.

Small and large time scales are mutually revisited until no further volume change occurs. Physiologi-
cally meaningful changes in ventricular pressure-volume relationship are obtained for ventricular volume
and pressure overload and comply with general observations.

Nonlinear deformation-dependent growth requires local Newton updates at integration point level and
is implemented in FEniCS by expressing growth residual and increments as forms at quadrature points. In-
ner virtual work is expressed explicitly with help of the fourth-order material tangent operator to account
for all tangent contributions arising from the nonlinear G&R model.

This talk was awarded a prize: Best talk by a postdoc (runner up).

You can cite this talk as:

Marc Hirschvogel. “Multiscale-in-time modeling of myocardial growth & disease progression”. In: Proceedings
of FEniCS 2021, online, 22–26 March (eds Igor Baratta, Jørgen S. Dokken, Chris Richardson, Matthew W. Scroggs)
(2021), 34–50. DOI: 10.6084/m9.figshare.14494809.
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3M arc Hirschvogel M ultiscale-in-Tim e M odeling of M yocardial G row th & D isease Progression
22 M ar 2021

1.1 Heart M odels and the C ardiac C ycle

Healthy heart Eccentric grow th after
volum e overload

C oncentric grow th after
pressure overload

• C ardiovascular disease entities m ost prevalent in industrialized w orld [D im m eler 2011, Luepker 2011]

• D iseases of the m yocardium  (heart m uscle) are m ultifactorial and yet to be fully understood

➢ A ltered m echanical loads
➢ N eurohorm onal changes

• Heart m ay undergo adaptations in structure and shape if loading conditions are
chronically above a certain physiological level, referred to as
G row th and Rem odeling (G  & R) [Rossi et al. 1991]

• Volum e overload (Fig. (b)):

➢ Heart adapts by eccentric grow th (systolic heart failure)

• Pressure overload (Fig. (c)):

➢ Heart adapts by concentric grow th (diastolic heart failure)
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2.1 Patient-specific G eom etric 3D -0D  Heart M odel

Rule-based fiber directions
Transm ural variation (-60°, 60°)

[D oste et al. 2019, Bayer et al. 2012]

• Heart m uscle: N onlinear nearly-incom pressible hyperelastic, anisotropic solid [G uccione et al. 1991]

• C ontraction: Tim e- and fiber stretch-dependent active stress law  [Bestel et al. 2001]

• C irculatory system  is m odeled w ith a lum ped-param eter 0D  flow  m odel (com pliances,
resistances inertances) [Hirschvogel et al. 2017, Trenhago et al. 2016, U rsino and M agosso 2000a,b]

Frank-Starling m echanism  [Solaro 2007]

Free heart STL geom etry from  https://w w w .icm m .ru/tom ogram -to-fem
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2.2 C ontinuum  M echanical M odeling of G &R

• G &R com puted in a kinem atic grow th fram ew ork w ith m ultiplicative split of
deform ation gradient into elastic and inelastic (grow th) part
[Lee et al. 1969, Rodriguez et al. 1994]

• G row th deform ation gradient is function of grow th stretch     and possibly
of preferred directions       :

• G row th stretch usually is governed by an evolution equation and can depend on
m echanical or other stim uli:

• Rem odeling is taken into account by additively decom posing the stress response into a part governing the reference 
and one describing the rem odeled m aterial (sim ilar to [Thon et al. 2018]):

: Fraction of grow n m aterial
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3.1 3D -0D  C oupled Elastodynam ics

• N onlinear elastodynam ics using G eneralized-alpha tim e integration [C hung and Hulbert 1993]

• Strongly coupled 3D -0D  m onolithic solution of solid m echanics and lum ped flow  m odels
[Hirschvogel et al. 2017]

• U se of direct solver (SuperLU ) or block-pre-
conditioned G M RES [Elm an et al. 2008]

• ~90’000 linear displacem ent-based tetrahedral elem ents, ~60’000 unknow ns

➢ Exam ple healthy heart cycle sim ulation:

https://github.com /m archirschvogel/am bit
O pen-source Python FEniC S-based solver for cardiac m echanics
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3.2 Inelastic D eform ation-D ependent G row th & Rem odeling

• Fiber stretch-driven anisotropic grow th in fiber direction

• Stress in inner virtual w ork depending on deform ation and internal variable    , w hich is
deform ation-dependent itself in a nonlinear w ay (needs local N ew ton to solve)

• Full m aterial tangent operator reads:

➢ FEniC S U FL can only take care of first term , since no analytic expression                  possible

➢ Express virtual w ork linearization directly as form  w ithout using “derivative” and add second term  m anually to

➢ D epending on grow th law , can render excessive FFC -X com pilation tim es! (betw een 5 and 30 m inutes!)

 

Elastic part of
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3.3 M ultiscale-in-Tim e A nalysis: Volum e O verload and Eccentric G row th in the Heart

• Hom eostatic healthy heart beat com putation

• Acute disease state (e.g. m itral valve regurgitation)
com putation, evaluation of end-diastolic volum e
overload

• Set state “large tim e scale”:

➢ Q uasi-static grow th com putation

• Set state “sm all tim e scale”:

➢ C om pute new  hom eostatic heat beat state

• M utually revisit sm all and large scale until grow th
falls below  a certain tolerance
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4.1 Eccentric G row th in the Heart: Results for M itral Regurgitation (M R)

• G &R after m itral valve regurgitation

➢ Loss of isovolum etric contraction
phases

➢ Right-shift of pressure-volum e
relationship

➢ LV w all thinning

• “Heart failure w ith reduced ejection
fraction”

• Rem odeling: A ssum ption that only active m aterial is reduced w ith grow th (cardio-
m yocytes are elongated, degradation and disruption of fibrillar collagen, im paired
contractility [Aurigem m a et al. 2006]):

Acute M R G &R and M R
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5 Sum m ary & O utlook

• M ultiphysics and m ultiscale approach to cardiac grow th and rem odeling using FeniC S-X

➢ 3D -0D  coupled nonlinear elastodynam ics and reduced-dim ensional flow

➢ Inelastic deform ation-dependent grow th solved at integration point level

• Physiological results and grow th patterns, but ...

• N eed of fine-tuning to m atch experim ental data

• N eed for higher-order spatial approxim ation to avoid spurious effects of low -order finite elem ents, but ...

➢ M issing Q uadrature function spaces in FEniC S-X! For linear elem ents w ith one integration point (C G 1), grow th m aterial 
is specified as discontinuous D G 0 function pace

➢ N o quadratic convergence for grow th m aterial living on D G 1 space for higher-order m esh (C G 2)

• N eed for strategies of reducing FFC -X com piler tim es for com plex constitutive U FL expressions
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Thank you for your attention!
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External operators in UFL and Firedrake

Nacime Bouziani (https://www.imperial.ac.uk/people/n.bouziani18 ), Imperial College
London, United Kingdom

David Ham (https://www.imperial.ac.uk/people/david.ham ), Imperial College London,
United Kingdom

22 March 2021

High level domain specific languages based on the Unified Form Language (UFL) such as FEniCS or
Firedrake enable one to write down PDE-based problems in a very productive way. UFL equips FEniCS
and Firedrake with a highly expressive interface to specify the variational forms and discrete function
spaces, providing the abstractions needed for code generation. However, one of the limitations of UFL is
that it does not take into account operators that are not directly expressible in the vector calculus sense.
In a nutshell, the UFL abstraction is not rich enough to encompass these operators. We refer to these
operators as external operators.

This limitation is critical in many applications where PDEs are not enough to accurately describe the
physical problem of interest. These applications include nonlinear implicit constitutive laws such as the
Glen’s flow law for glacier flow, the use of neural networks to include features not represented in the
differential equations, or closures for unresolved spatiotemporal scales. Example applications of neural
networks include regularization of inverse problems such as in seismic inversion and subgrid parameter-
ization of atmospheric or oceanographic processes like clouds or turbulence.

We present extensions to the Unified Form Language (UFL) and Firedrake that enable the inclusion
of arbitrary external operators. This external operator feature composes seamlessly with the automatic
differentiation capabilities of Firedrake.

You can cite this talk as:

Nacime Bouziani and David Ham. “External operators in UFL and Firedrake”. In: Proceedings of FEniCS 2021,
online, 22–26 March (eds Igor Baratta, Jørgen S. Dokken, Chris Richardson, Matthew W. Scroggs) (2021), 51–67.
DOI: 10.6084/m9.figshare.14495187.
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PDEs are not enough in many cases !

We often need terms not 

directly expressible in the 

vector calculus sense !

2
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Implicit constitutive laws : Glen’s flow law

Let’s consider the following standard model for isothermal flow

where we have to find (u, p, τ) ∈ V × Q × X with appropriate

function spaces such that ∀ (w , φ) ∈ V × Q we have :





∫
φ∇ · u = 0 incompressibility

∫
−w · ∇p + (∇ · τi ,j) · w − f · w = 0 stress balance

1

2

(
∇u + ∇uT

)
= A|τ |2τi ,j Glen flow law

(1)

where f =

(
0

−ρg

)
refers to the gravity force and A ∈ R.

3
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A Firedrake example: Pointwise solve operator

1 import sympy as sp

2 . . .

3 # D e f i n e the f u n c t i o n s p a c e s

4 V1 = VectorFunct ionSpace ( mesh , ”CG” , 2)

5 V2 = Funct ionSpace ( mesh , ”CG” , 1)

6 V3 = TensorFunct ionSpace ( mesh , ”DG” , 2)

7 . . .

8 # Mixed f u n c t i o n space

9 W = MixedFunctionSpace ( ( V1 , V2 ) )

10 w, ph i = TestFunct ions (W)

11 s o l n = Funct ion (W)

12 u , p = s p l i t ( s o l n )

13 . . .

14 A = Constant ( 1 . )

15 f = Funct ion (V1 ) . i n t e r p o l a t e ( a s v e c t o r ( [ 0 , −rho ∗g ] ) )

16 . . .

17

18 ps = p o i n t s o l v e ( lambda tau , eps ,A : A∗ sp . Mat r i x ( tau )∗ sp . Mat r i x ( tau ) . norm ()∗∗2 − eps ,

19 f u n c t i o n s p a c e=V3 ,

20 s o l v e r p a r a m s={ ' x0 ' : u0 , ' m a x i t e r ' : 2 5 , ' t o l ' : 1 . e−7})

21 tau = ps ( sym ( grad ( u ) ) , A)

22 F = d i v (w)∗ p∗dx − i n n e r ( grad (w) , tau )∗ dx − ph i ∗ d i v ( u )∗ dx − i n n e r ( f ,w)∗ dx

23 . . .

24 # S o l v e

25 s o l v e (F==0, so ln , bcs = . . . )

4
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Glen’s flow law: velocity field

τ = E(u) A|τ |2τi ,j = E(u)

with E(u) = 1
2

(
∇u + ∇uT

)

5

56



Framework

Let’s consider the function space V and the parameter space M,

which can be a function space or a subspace of Rm for m ∈ N

depending on the applications. We introduce the so-called external

operator

N : V × M → X (2)

where X is the external operator space, it is a function space. N is

external in the sense that it can be defined externally with

respect to Firedrake.

6
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Assembly

Let N be an ExternalOperator,

F (u, m, N(u, m); v) = 0 ∀v ∈ V ′

Assembly steps

. . .

u
X
h ,mX

h = i n t e r p o l a t e (uh , X ) , i n t e r p o l a t e (mh , X )

. . .

N̂ = N(uX
h , m

X
h ) . assemble ( )

. . .

assemble (F (uh, mh, N̂ ; vh))

7
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Assembly

Let N be an ExternalOperator,

F (u, m, N(u, m); v) = 0 ∀v ∈ V ′

Assembly steps

. . .

u
X
h ,mX

h = i n t e r p o l a t e (uh , X ) , i n t e r p o l a t e (mh , X )

. . .

N̂ = N(uX
h , m

X
h ) . assemble ( )

. . .

assemble (F (uh, mh, N̂ ; vh))

N̂ gets evaluated inside the operation of evaluating F (uh, mh, N̂ ; vh) !

7
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Differentiation rules

• Need to compute dF
du

, we have: dF
du

= ∂F
∂u

+ ∂F
∂N

∂N
∂u

• Need to extend UFL to handle : ∂F
∂N

and ∂N
∂u

• The external operator subclass is responsible for computing ∂N
∂u

:

SymPy, UFL, PyTorch...

8
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Differentiation rules

• Need to compute dF
du

, we have: dF
du

= ∂F
∂u

+ ∂F
∂N

∂N
∂u

• Need to extend UFL to handle : ∂F
∂N

and ∂N
∂u

• The external operator subclass is responsible for computing ∂N
∂u

:

SymPy, UFL, PyTorch...

F (u,N(u); v)

N(u)

̂N

d
d u dF (u,N(u),N ′(u;û);û,v)

d u

N(u) N ′(u; û)

̂N ̂N ′

8
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New Firedrake subclasses of ExternalOperator :

1. Pointwise solve operator : An operator that handles pointwise

nonlinear relationships. More precisely, the pointwise solve

operator is applied on a given UFL expression and provides

the root of the function(al) defined by this expression.

2. Neural Network : The neural network operator takes an input

and returns the output of the associated neural network

model.

3. Layer potentials : This single (resp. double) layer potential

operator computes the single (resp. double) layer potential

(see Nonlocal UFL’s talk (B. Sepanski) Thursday -

15:00−16:30 GMT ).

9
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Example: PDE-constrained optimization

Let N1 and N2 be two external operators,

min
m∈M

J(u, m, N1(u, m)) (3)

subject to F (u, m, N2(u, m); v) = 0 ∀v ∈ V ′ (4)

where J : V × M → R is the objective function, m ∈ M the control

variable, and u ∈ V is the weak solution of the parametrised PDE.

⇒ Key objective : Compute dJ
dm

10
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Adjoint equation

Using chain rule we get

dJ

dm
= − λ∗

(
∂F

∂m
+ µ∗

1

)
+ µ∗

2 +
∂J

∂m
(5)

λ∗, µ∗

1 and µ∗

2 are the adjoint variables, they are obtained by the

following relations:





(
∂F

∂u
+

∂F

∂N2

∂N2

∂u

)∗

λ =
∂J

∂u

∗

+
∂N1

∂u

∗ ∂J

∂N1

∗

µ1 =
∂N2

∂m

∗ ∂F

∂N2

∗

, µ2 =
∂N1

∂m

∗ ∂J

∂N1

∗
(6)

⇒ Adjoint computation depends on ∂Ni

∂u

∗

and ∂Ni

∂m

∗

for i = 1, 2
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Conclusion

In a nutshell:

1. The ExternalOperator project enables you to include any operators provided that you can define how the

operator and its derivatives are evaluated. That can be anything that can be evaluated (e.g. Gaussian

process, FFT, external libraries...)

2. Some classes of operator have already been implemented: PointsolveOperator, PytorchOperator,

SingleLayerPotential and DoubleLayerPotential.

3. External operators play well with Pyadjoint, i.e. you can add in these operators in a PDE or

PDE-constrained optimisation problem.

4. For neural networks, coupling with PyTorch to get derivative with respect to inputs/weights. Extensions to

Tensorflow are straightforward.

5. External operators play well with matrix free methods.
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Conclusion

In a nutshell:

1. The ExternalOperator project enables you to include any operators provided that you can define how the

operator and its derivatives are evaluated. That can be anything that can be evaluated (e.g. Gaussian

process, FFT, external libraries...)

2. Some classes of operator have already been implemented: PointsolveOperator, PytorchOperator,

SingleLayerPotential and DoubleLayerPotential.

3. External operators play well with Pyadjoint, i.e. you can add in these operators in a PDE or

PDE-constrained optimisation problem.

4. For neural networks, coupling with PyTorch to get derivative with respect to inputs/weights. Extensions to

Tensorflow are straightforward.

5. External operators play well with matrix free methods.

What are the practical takeaways ?

➢ To build your own external operator: subclass the AbstractExternalOperator class in firedrake and equip

your operator with an evaluate method (i.e. how your operator and its derivatives are evaluated).

➢ Code accessible via the pointwise-adjoint-operator firedrake branch

➢ Related talks:

• External operators depend on dual spaces (see I. Marsden talk: Tuesday - 13:00−14:40 GMT).

• LayerPotential operators (see B. Sepanski talk: Thursday - 15:00−16:30 GMT).
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Linear multipoint constraints in FEniCSx

Jørgen Schartum Dokken (https://jsdokken.com , r jorgensd), University of Cambridge,
United Kingdom

Garth Wells (r garth‐wells), University of Cambridge, United Kingdom
Chris Richardson (r chrisrichardson), University of Cambridge, United Kingdom

22 March 2021

In the finite element method, it is common to encounter boundary conditions such as the Dirichlet,
Neumann and Robin boundary condition. However, the zero-slip condition, 𝑢 ⋅ 𝑛 = 0 does not fall un-
der either of these categories when the domain boundary is not aligned with the coordinate axes. For
this problem the boundary condition can be written as a linear combination of the degrees of freedom
collocated at a boundary coordinate. In this talk, we present a method for enforcing linear multipoint
constraints in the FEniCSx framework using master-minion matrix reduction. The multipoint constraint
framework is written as a separate module that can be used alongside FEniCSx, supporting all variational
forms written in the unified form language. The main components of the module is the multipoint con-
straint class, which handles communication of non-local degrees of freedom for parallel execution, and
custom assemblers for the element-wise matrix reduction operation. Additionally, the module includes
several specialized constructors for boundary conditions such as the periodic and zero-slip boundary con-
dition. We illustrate the applicability of the module to non-trivial constraints by solving a contact problem
on a non-conforming mesh.
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What is a linear multipoint constraint (MPC)?

A linear combination of degrees of freedom:

• Periodic conditions: u(0, y , z) = u(L, y , z)
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What is a linear multipoint constraint (MPC)?

A linear combination of degrees of freedom:

• Periodic conditions: u(0, y , z) = u(L, y , z)

• Slip boundary conditions: u · n = 0

• Frictionless contact: u1 · n1 = u2 · n1, ui ∈ Ωi

2/ 12

72



To solve a system of linear equations, we eliminate degrees of freedom by
using the additional constraints

Find u = (u0, . . . , u3)
T such that

Au = b u3 = ζu0
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To solve a system of linear equations, we eliminate degrees of freedom by
using the additional constraints

Find u = (u0, . . . , u3)
T such that

Au = b u3 = ζu0

Define the prolongation matrix P

Pû =









1 0 0
0 1 0
0 0 1
ζ 0 0













u0
u1
u2



 = u

We solve the reduced system

(PTAP)û = PTb

where

(PTAP) =





ζ2a3,3 + ζa0,3 + ζa3,0 + a0,0 ζa3,1 + a0,1 ζa3,2 + a0,2
ζa1,3 + a1,0 a1,1 a1,2
ζa2,3 + a2,0 a2,1 a2,2
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A linear combination gives rise to mixed terms between the master nodes

Au = b

u1 = αu0 + βu2
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A linear combination gives rise to mixed terms between the master nodes

Au = b

u1 = αu0 + βu2

(PTAP)0,0 = α2a1,1 + αa0,1 + αa1,0 + a0,0

(PTAP)0,1 = αβa1,1 + αa1,2 + βa0,1 + a0,2

(PTAP)0,2 = αa1,3 + a0,3

(PTAP)1,0 = αβa1,1 + αa2,1 + βa1,0 + a2,0

(PTAP)1,1 = β2a1,1 + βa1,2 + βa2,1 + a2,2

(PTAP)1,2 = βa1,3 + a2,3

(PTAP)2,0 = αa3,1 + a3,0

(PTAP)2,1 = βa3,1 + a3,2

(PTAP)2,2 = a3,3

4/ 12

77



We apply both the conditions we have considered so far

Au = b

u1 = αu0 + βu2

u3 = ζu0

With prolongation matrix P

Pû =









1 0
α β

0 1
ζ 0









(

u0
u2

)

= u
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We obtain cross terms between the two constraints

Au = b

u1 = αu0 + βu2

u3 = ζu0

(PTAP)0,0 =α2a1,1 + αa0,1 + αa1,0

+ζ2a3,3 + ζa0,3 + ζa3,0 + αζa1,3 + αζa3,1 + a0,0

(PTAP)0,1 =αβa1,1 + αa1,2 + βζa3,1 + βa0,1 + ζa3,2 + a0,2

(PTAP)1,0 =αβa1,1 + αa2,1 + βζa1,3 + βa1,0 + ζa2,3 + a2,0

(PTAP)1,1 =β2a1,1 + βa1,2 + βa2,1 + a2,2
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To make the assembly feasible for large systems, we compute the product
P

T
AeP

Compute element kernel Ae

Prepare Ae for Dirichlet BCs

Contains constrained DoFs?

Insert into Global A = A + Ae

Repeat for next cell

Local MPC modification

Ae = SMPC (Ae)

Insert adjustments into global

A = A + MMPC (Ae)

For each cell

n

y
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Contact constraint between non-matching meshes
Linear elasticity where a displacement is described on the top (coarse) cube, and the
bottom (fine) cube has a slip condition.
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The matrix reduction operation introduces new non-diagonal entries to the
sparsity pattern
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Strong scaling with 221 million cells
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The implementation is written as an add-on to DOLFINx

# Slip constraint on space W using facet -markers

mpc = dolfinx_mpc.MultiPointConstraint(W)

mpc.create_slip_constraint ((mt , 1), n, ...)

mpc.finalize ()

# Define variational problem using UFL

# ...

# Assemble matrix and vector

A = dolfinx_mpc.assemble_matrix(a, mpc , bcs)

b = dolfinx_mpc.assemble_vector(L, mpc)

A.assemble ()

# Solve system using PETSc

# ...

# Backsubstitute from master to puppet dofs

mpc.backsubstitution(uh)
11/ 12
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Thank you for your attention

https://github.com/jorgensd/dolfinx_mpc
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Implementation of p‐multigrid and approximate fast
diagonalization methods in Firedrake

Pablo Brubeck, University of Oxford, United Kingdom
Patrick Farrell (https://pefarrell.org ), University of Oxford, United Kingdom

22 March 2021

For problems with smooth solutions, high-order methods have very good convergence properties,
and in some cases they do not exhibit locking phenomena found in low-order methods. Moreover, due to
data-locality and high arithmetic intensity, they are better suited to make efficient use of modern parallel
hardware architectures. Unfortunately, the conditioning of the Galerkin matrices is severely affected by
𝑝, the polynomial degree of the approximation. In order to obtain practical iterative solvers, we require
good preconditioners.

In the 𝑝-variant of multigrid, the problem is often coarsened by rediscretizing on the same mesh with
a lower 𝑝. We implement a general 𝑝-multigrid (𝑝-MG) method that can deal with general finite elements
and custom coarsening schedules in Firedrake using PETSc. As relaxation, we employ a novel combination
of an approximate fast diagonalization method and subspace correction. The scheme is essentially point-
block Jacobi in the space of eigenfunctions of a separable approximation to the local stiffnessmatrix of each
cell. The relaxation depends on the tensor-product structure of quadrilateral and hexahedral elements, in
a similar manner to sum factorisation.

We employ this relaxation method in two algorithms: a 𝑝-MG preconditioner and a full approxima-
tion scheme nonlinear solver. We demonstrate how to combine these two efficiently in a nested iteration
with a cascadic outer cycle and inner V-cycles. All available solvers, including geometric and algebraic
multigrid, may be employed for the 𝑝-coarse level. The associated computational costs are 𝑂(𝑝𝑑 ) to ap-
proximate the local stiffness matrix in 𝑑 dimensions, and 𝑂(𝑝𝑑+1) to apply or update the relaxation, while
memory requirements are kept at 𝑂(𝑝𝑑 ). We present nonlinear examples such as the 𝑝-Laplacian and
incompressible hyperelasticity.
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Dynamic composition of solvers for coupled problems
in DOLFINx

Martin Řehoř, Rafinex S.à r.l., Luxembourg
Jack S. Hale, University of Luxembourg, Luxembourg

22 March 2021

Recent developments in DOLFINx allow for the block assembly of linear algebraic systems arising
from discretisations of coupled partial differential equations. Each algebraic block represents a subprob-
lem associated with a coupling of the unknown fields. Designing and implementing robust and scalable
solution and preconditioning strategies for block-structured linear systems is an active area of research.

In this contribution we show how DOLFINx can now exploit one of the most significant features
of PETSc; the dynamic composition of the hierarchical solver and preconditioner options at runtime, see
Brown et al [1]. The idea is inspired by the work of Kirby andMitchell [2] that was originally implemented
in the Firedrake Project.

One of the most significant benefits of the approach is the possibility to construct advanced precondi-
tioners that require structure beyond a purely algebraic problem description, eg the pressure-convection-
diffusion (PCD) approximation of the Schur complement for the Navier–Stokes equations, see Silvester et
al [3].

We illustrate the capabilities of our implementation on examples ranging from incompressible flow of
a viscous fluid, through temperature-driven convection, to flows described by rate-type viscoelastic fluid
models.

The slides for this talk are available at https://mscroggs.github.io/fenics2021/talks/
rehor.html under a CC BY-NC-ND 4.0 license.
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Additive Schwarz methods for serendipity elements

Jorge Marchena Menendez, Baylor University, United States
Robert Kirby, Baylor University, United States

22 March 2021

While solving partial differential equations with finite element method, serendipity elements allow us
to obtain the same order of accuracy as rectangular tensor-product elements with many fewer degrees of
freedom. To realize these savings in practice, we utilize p-version Additive Schwarz methods that solve
local patch problems togetherwith a low-order global system. For symmetric coercive problems, we obtain
condition numbers independent of the mesh size and degree of serendipity space. Numerical experiments
using Firedrake and PETSc confirm this theory and demonstrate efficiency relative to standard elements
for model problems.

You can cite this talk as:
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Domain decomposition of stochastic PDEs using FEniCS
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The intrusive spectral stochastic finite element method (SSFEM) based domain decomposition (DD)
solvers for stochastic PDEs are implemented using FEniCS. For efficient uncertainty quantification (UQ)
for large- scale computational models, these algorithms demonstrate scalabilities for high resolution spa-
tial discretization and high dimensional random parameter space. However the implementation of these
algorithms is intrusive to finite element codes demanding additional programming efforts. In the intru-
sive SSFEM based DD formalism, the stochastic PDE is converted into a very large set (depending on
the number of random parameters) of deterministic coupled PDE system. It leads to a large-scale linear
system being solved iteratively using two-level domain decomposition preconditioners. The submatrices
for each subdomain are constructed using FEniCS. For each scale of random fluctuation, the associated
subdomain level deterministic submatrices required for DD algorithm are extracted through a modified
variational form of the PDE. Both three-dimensional stochastic Poisson and linear elasticity problems are
tackled through this generic software leveraging FEniCS.
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Nonlocal operators such as layer and volume potential operators are prevalent in physical sciences.
We are looking towards making such evaluators accessible from UFL. As an example application, we con-
sider a wave-structure interaction model for photoacoustic trace gas sensors. The sensors of interest are
based on quartz-enhanced photoacoustic spectroscopy or resonant optothermoacoustic detection. The
model consists of thermoacoustic waves in the exterior fluid domain and thermoelastic waves in the in-
terior solid domain. We plan to use integral equation method (IEM) for the exterior and FEM for the
interior. In this contribution, we propose a novel second-kind integral equation formulation for the exte-
rior solution that solves the Morse–Ingard equation subject to Neumann boundary conditions on the solid
surface. The resulting boundary integral equation is solved with GMRES where quadrature-by-expansion
with fast-multipole acceleration is used to evaluate the nonlocal integral operators. Since the solution
representation naturally satisfies the far-field conditions, domain truncation and perfectly matched layer
are not needed. We demonstrate with examples that our solver has 𝑂(𝑛) complexity, is high-order, and can
handle complex geometries. For the next steps, we are working towards integrating our Morse–Ingard
solver with FEM, and enabling more general IEM-FEM coupling in the process.
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On the reproducibility of numerical experiments with
FEniCS

Paul Garlick (http://www.tourbillion- technology.com ), Tourbillion Technology Ltd, United
Kingdom

22 March 2021

A key tenet of the scientific method is that an experiment conducted in one laboratory may be re-
produced in another. For numerical experiments the process should be straightforward; simply a case
of supplying the same inputs to the same software application. However, for software applications with
complex hierarchies the essential step of re-creating the same software environment can represent a sig-
nificant challenge. Difficulties can emerge in installing library dependencies on computer systems with
different architectures. Even on the same system changes to low-level libraries over time can prevent
compilation or execution of higher-level code. To address these issues methods from functional program-
ming have been developed to guarantee bit-identical software installations. Package definitions have been
created for FEniCS and its dependencies within the GNU Guix framework. Used as a package manager,
GNU Guix provides the tools to manage a dedicated file structure that sits alongside the host operating
system. This presentation shows how the underlying mechanism works, how FEniCS fits in and how to
create software environments that can be reproduced identically in space and time.
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Reproducibility

• Significant factor when assessing the trustworthiness of results

•Problems can be encountered when:

– moving a simulation environment from one system to another

– restoring the simulation environment from a previous project

• Solutions can be categorized as:

– approximate: docker, singularity, spack . . .

– exact (bit-identical): nix, guix

GNU Guix
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Guix introduction

•GNU/Linux distribution and package manager

– x86 64, aarch64, powerpc64le architectures

• 16,000+ packages

– FEniCS is part of the simulation module

• 60+ contributors/month

•Guile Scheme API; embedded DSL for defining packages

• File structure allows a separation of concerns. The operating
system and user profiles can be managed independently:

/ (root)

OS

/gnu

/store
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How it works

•Each package defines a list of inputs and a build function

•The build function returns the installed package with no
side effects

Inputs

openblas

boost

eigen

.

.

.

sundials-openmpi

zlib

Native inputs

ath-framework2

pkg-on�g

Propagated inputs

python-fenis-�

pets-openmpi

slep-openmpi

Build system

make

Output

fenis-dol�n

Example build process.
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•Build process can be expressed in mathematical form,
relating inputs to output objects via the build function:

fb,h : {i0,h, i1,h, . . . , im,h} 7→ {o0, o1, . . . , on}

•Directory name for a package contains a hash of all of the
inputs plus the package name and version:

/gnu/store/ywcdaz69y36...jbvw1igj-fenics-2019.1.0.post0

•The standard tools provide an automated process for
managing complexity in package hierarchies

– a rolling release update process

•To guarantee the reproducibility of a complete software
environment two advanced features are needed:

– a means to specify the packages to include

– the ability to pin the distribution

5
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Small list of lists

•User profile is defined by a manifest file:

(specifications->manifest

’("emacs"

"fenics"

"gmsh"

"python"

))

• Source code location is defined by a channel specification

file:

(list (channel

(name ’guix)

(url

"https://git.savannah.gnu.org/git/guix.git")

(commit

"a002e8a4f58a45034075cad27bf8eb65679bcc14")))

•Use version control to record changes to the lists:

– move forward and back through history as needed
6
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Status

•Package definitions completed:

– FEniCS 2018.1.0.post1

– FEniCS 2019.1.0.post0

• In progress:

– pyadjoint

– pygmsh, meshio

•Todo:

– FEniCSX

– Firedrake
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Links

•Getting started:

– https://guix.gnu.org

•Moving on:

– https://guix.gnu.org/manual

– https://guix.gnu.org/cookbook

• Joining in:

– Guix simulation channel (site under construction)

•User support:

– email: pgarlick@tourbillion-technology.com

8

99



mgis.fenics Part I: Coupling MFront and FEniCS for
complex solid mechanics simulations
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Raffaele Russo, University of the Basque Country, Spain
Tamara Dancheva, BCAM ‐ Basque Center for Applied Mathematics, Spain

22 March 2021

Constitutive equations describe how the internal state variables of a material evolve with changing
external conditions or due to gradients of thermodynamic variables. Those state variables can describe
many microstructural aspects of the material (grain size, dislocation density, hardening state, etc) or be
phenomenological in nature (equivalent plastic strain). The knowledge of those internal state variables
allows the computation of local thermodynamic forces which affect the material equilibrium at the struc-
tural scale.

MFront is an open-source code generator for complex constitutive laws which aims at ease of use,
numerical efficiency and portability (see [5][7]). MFront has been developed under very stringent qual-
ity requirements in the context of nuclear fuel element simulation under the PLEIADES platform (see
[6]), which is co-developed by CEA, EDF and Framatome. MFront provides several domain specific lan-
guages (DSL) built on top of the C++ language and associated with specific integration schemes that allows
to readily implement the constitutive equations in source code close to their mathematical expressions.
Numerical details are hidden by default allowing the user to focus on the physics. The underlying math-
ematical library, called TFEL/Math, provides optimised tensor objects and makes heavily use of template
metaprogramming to generate optimised code.

Those DSLs are translated into C++ sources adapted to the targeted solver. Interfaces are provided for
Cast3M, Code Aster, Europlexus, Cyrano, Abaqus/Implicit, Abaqus/Explicit, Ansys, CalculiX, AMITEX
FFTP, etc. A so-called generic interface has recently been introduced and is meant to be used through the
MFrontGenericInterfaceSupport project (MGIS) (See [3][4]).

The mgis.fenics python module aims at leveraging the power of the FEniCS platform, used for the
discretization of the balance equations, the assembly of residuals and stiffness matrices and the parallel
distribution of the resolution, combined with MFront, used for the local integration of the constitutive
equations, to build complex mechanical simulations. Several examples, illustrating the use of the new
module, will be presented (see [1][2]), including:

• Finite strain plasticity in the logarithmic space.

• Phase-field approach to britlle fracture.

• Finite strain polycrystal computations based on the Méric-Cailletaud behaviour.

You can cite this talk as:

Thomas Helfer, Jérémy Bleyer, Raffaele Russo, and Tamara Dancheva. “mgis.fenics Part I: Coupling MFront
and FEniCS for complex solid mechanics simulations”. In: Proceedings of FEniCS 2021, online, 22–26
March (eds Igor Baratta, Jørgen S. Dokken, Chris Richardson, Matthew W. Scroggs) (2021), 100–120. DOI:
10.6084/m9.figshare.14495232.

BibTeX for this citation can be found at https://mscroggs.github.io/fenics2021/talks/helfer.html .
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Goals of the ♠❣✐s✳❢❡♥✐❝s project

◮ ♠❣✐s✳❢❡♥✐❝s aims at combining the power of :
FEniCS for automatic generation of assembly of user defined weak
forms in the UFL syntax, the HPC performances, etc...

R(v) =

p
∑

i=1

∫

Ω

σ
i(u) · δgi(v) dx− L(v) = 0 ∀v ∈ V

MFront for the local description of the material behaviour :
� Complex kernels at quadrature points to compute σi(u).
� See also the talks about the ❆❝❡●❊◆ and ▼❛t❡r✐❛✉① projects.

The MGIS project that provides classes to :
� Retrievemetadata from an ▼❋r♦♥t behaviour
� Allocate memory associacted with the state variables handled by the
behaviour

� Call the behaviour integration over a time step.
� ❤tt♣s✿✴✴❣✐t❤✉❜✳❝♦♠✴t❤❡❧❢❡r✴▼❋r♦♥t●❡♥❡r✐❝■♥t❡r❢❛❝❡❙✉♣♣♦rt
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MFront goals

Fichiers C++ Cast3M
g++, clang, icpc

mfront --i
nterface=umat

mfront --interface=aster

mfront --interface=zmat
mfront --interface=....

Fichiers C++ Code-Aster
g++, clang, icpc

Fichiers C++ ZeBuLon
g++, clang, icpc

Fichiers C++ ???
g++, clang, icpc

mfront --obuild

mfront --obuild

mfront --obuild

mfront --obuild

Plasticity.mfront

◮ ▼❋r♦♥t is a code generation tool dedicated to material knowledge
(material properties, mechanical behaviours, point-wise models) :

Support for small and finite strain behaviours, cohesive zone models,
generalised behaviours (non local and or multiphysics).

◮ Main goals :
Numerical efficiency (see various benchmarks on the website).
Portability (Cast3M, Cyrano, code_aster, Europlexus, TMFTT,
AMITEX_FFTP, Abaqus, CalculiX, MTest).
Ease of use : Longum iter est per praecepta, breve et efficax per exempla

(It’s a long way by the rules, but short and efficient with examples).
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An simple example with the Implicit DSL and the
StandardElasticity brick

◮ Implicit integration.

◮ Implicit system :







f
ǫ
el = ∆ ǫ

el
− ∆ ǫ

to
+ ∆ p n

fp = ∆ p − Aσ
n
eq

◮ Jacobian :















































∂f
ǫ
el

∂∆ ǫ
el

= I +
2µ θ∆ p

σeq

(

M− n⊗ n
)

∂f
ǫ
el

∂∆ p
= n

∂fp

∂∆ ǫ
el

= −2µ θ A nσ
n−1
eq ∆ t n

◮ All programming and

numerical details are hidden

(by default).
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Generalities about ♠❣✐s✳❢❡♥✐❝s

◮ Inside a custom ◆♦♥❧✐♥❡❛rPr♦❜❧❡♠, define σi on a ◗✉❛❞r❛t✉r❡ space

and the generalized residual :

R(v) =

p
∑

i=1

∫

Ω
σ
i(u) · δgi(v) dx− L(v) = 0 ∀v ∈ V

◮ ▼●■❙ gives metadata to know on which blocks B(i) of gradients each
flux σi depends :

atangent(u, v) =

p
∑

i=1

∑

j∈B(i)

∫

Ω
δgi(v) · Tσ

i

gj · δg
j(u) dx

◮ This default variational problem can be overloaded by the user

using ❯❋▲.

◮ mgis.fenics almost automatically make the links between ❋❊♥✐❈❙ and
▼❋r♦♥t.
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List of available tutorials

◮ Documented demos have been designed to progressively illustrate the
use of the interface and the versatility of the approach when
implementing complex generalized behaviours, both on the MFront
and FEniCS sides.

◮ We recommend browsing the demos in the following order :
Stationnary non-linear heat transfer
Stationnary non-linear heat transfer : 3D problem and performance
comparisons
Transient heat equation with phase change
Monolithic transient thermoelasticity
Small-strain von Mises elastoplasticity
Finite-strain elastoplasticity within the logarithmic strain

framework

Multiphase model for fiber-reinforced materials
Phase-field approach to brittle fracture

◮ Repository : a repository containing the demos sources files is available
❤tt♣s✿✴✴❣✐t❧❛❜✳❡♥♣❝✳❢r✴♥❛✈✐❡r✲❢❡♥✐❝s✴♠❣✐s✲❢❡♥✐❝s✲❞❡♠♦s
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Finite-strain plasticity in the logarithimic space

material = mf.MFrontNonlinearMaterial("./src/libBehaviour.so", "
LogarithmicStrainPlasticity")

problem = mf.MFrontNonlinearProblem(u, material, bcs=bc)
problem.set_loading(dot(selfweight, u)∗dx)

prm = problem.solver.parameters
prm["absolute_tolerance"] = 1e−6
prm["relative_tolerance"] = 1e−6
prm["linear_solver"] = "mumps"

for ( i , t ) in enumerate(load_steps[1:]):
selfweight.t = t
problem.solve(u.vector())

Automatic registration of ’DeformationGradient’

as I + (grad(Displacement))
◮ Residual is : R(v) =

∫

Ω P : δR(v) dx−Wext(v)

◮ Consistent tangent bilinear form is : atangent(u, v) =
∫

Ω∇u :
∂P

∂F
: ∇vdx

◮ Logarithmic strain plasticity (Miehe, 2002) :

Hencky strain measure H =
1

2
log(FT · F) ✗

Use a small strain constitutive relation on H⇒ H = He + Hp

F −→ H −→ small strain law −→ T −→ σ
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Logarithmic strain plasticity - results

◮ ❤tt♣s✿✴✴t❤❡❧❢❡r✳❣✐t❤✉❜✳✐♦✴♠❣✐s✴✇❡❜✴♠❣✐s❴❢❡♥✐❝s❴❢✐♥✐t❡❴

str❛✐♥❴❡❧❛st♦♣❧❛st✐❝✐t②✳❤t♠❧

◮ ❤tt♣s✿✴✴❣✐t❧❛❜✳❡♥♣❝✳❢r✴♥❛✈✐❡r✲❢❡♥✐❝s✴♠❣✐s✲❢❡♥✐❝s✲❞❡♠♦s✴✲✴

tr❡❡✴♠❛st❡r✴❞❡♠♦s✴❢✐♥✐t❡❴str❛✐♥❴❡❧❛st♦♣❧❛st✐❝✐t②
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Phase-field approach to brittle fracture

◮ Bourdin/Francfort/Marigo variational phase-field approach :

u(t), d(t) = argmin
u,d

∫

Ω
(1− d)2ψ+(ε) + ψ−(ε) dx−Wext(u)+

Gc

cw

∫

Ω

(

w(d)

ℓ0
+ ℓ0‖∇d‖2

)

dx

◮ Example of Tension/compression splitting (Miehe et al.) :

ψ+(ε) =
1

2
λ〈tr(ε)〉2+ + µ

∑

I

〈εI〉
2
+

◮ Implementation of the alternate minimisation algorithm :

problem_u = mf.MFrontNonlinearProblem(u, material_u, bcs=bcu)
problem_u.register_external_state_variable("Damage", d)
psi = problem_u.get_state_variable("PositiveEnergyDensity")

for ( i , t ) in enumerate(loading[1:]):
Uimp.t = t
while res > tol and j < Nitermax:

problem_u.solve(u.vector()) # Solve displacement u−problem
problem_d.solve(d.vector()) # Solve damage d−problem
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Phase-field approach to brittle fracture

◮ Classical example of crack propagation (Bourdin et al.)
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Polycrystal computations

◮ Finite strain implementation of the Méric-Cailletaud single crystal
behaviour :

http://tfel.sourceforge.net/

MericCailletaudSingleCrystalPlasticity.html

◮ Example of orthotropic behaviour support.

◮ Périodic boundary conditions.
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Conclusions and perspectives
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Current state and future works

◮ ▼❋r♦♥t is an ever improving code generation tool dedicated to
material knowledge with one foot in the industrial world and one foot
in the academic world.

◮ The development of ❚❋❊▲✲✸✳✹ (this year version) has been geared
around three main axes :

Generalised behaviours
Porous plasticity
Extension and implementation of the Madnex specifications for the
storage of MFront files.

◮ The development of ❚❋❊▲✲✹✳✵ (next year) will be driven by :
The port to the C++-17 standard. MFront files will be
backward-compatible.
Homogeneisation
Data driven simulation?
Support of GPUs?
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Conclusions on ▼●■❙ and ♠❣✐s✳❢❡♥✐❝s

◮ ▼●■❙ is a young project with many interesting perspectives :
Support of GPU? Support of Eigen ?

◮ What’s next in ♠❣✐s✳❢❡♥✐❝s?
Tests !
Integration in dolfin-x and performances improvements.
Multi-materials, plates/shells
Other examples :

� Cosserat elastoplasticity (see part II).
� Micromorphic crystal plasticity.

◮ New users and contributions are welcomed!
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Thank you for your attention.

Time for discussion!
https://tfel.sourceforge.net

https://www.researchgate.net/project/TFEL-MFront

https://twitter.com/TFEL_MFront

https://github.com/thelfer/

tfel-contact@cea.fr

The development of ▼❋r♦♥t is supported

financially by CEA, EDF and Framatome

in the framework of the P▲❊■❆❉❊❙ project.
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The Pleiades platform

◮ A wide range of materials (ceramics, metals, composites).
◮ A wide range of mechanical phenomena and behaviours.

Creep, swelling, irradiation effects, phase transitions, etc..

◮ A wide range of mechanical loadings.
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Overview of the ▼❋r♦♥t●❡♥❡r✐❝■♥t❡r❢❛❝❡❙✉♣♣♦rt
project (MGIS)

MGIS

Europlexus

mgis.fenics

OpenGeoSys

MEFISTO

MoFEM

MFront

◮ The ▼●■❙ project provides classes on the solver side to retrieve
metadata from an ▼❋r♦♥t behaviour and call the behaviour
integration over a time step.

❈✰✰ ❈ ❋♦rtr❛♥✷✵✵✸ ♣②t❤♦♥ ❏✉❧✐❛

❳P❡r ❑r❛t♦s ▼✉❧t✐♣❤②s✐❝s ❏✉❧✐❛❋❊▼

◆❛✐r♠▼P▼ ❡s②s✳❡s❝r✐♣t ❉❯◆❊ ❍❊▲■❳ ▼❋❊▼
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Overview of the ▼❋r♦♥t●❡♥❡r✐❝■♥t❡r❢❛❝❡❙✉♣♣♦rt
project (MGIS)

MGIS

Europlexus

mgis.fenics

OpenGeoSys

MEFISTO

MoFEM

MFront

◮ The ▼●■❙ project provides classes on the solver side to retrieve
metadata from an ▼❋r♦♥t behaviour and call the behaviour
integration over a time step.

❈✰✰ ❈ ❋♦rtr❛♥✷✵✵✸ ♣②t❤♦♥ ❏✉❧✐❛

❳P❡r ❑r❛t♦s ▼✉❧t✐♣❤②s✐❝s ❏✉❧✐❛❋❊▼

◆❛✐r♠▼P▼ ❡s②s✳❡s❝r✐♣t ❉❯◆❊ ❍❊▲■❳ ▼❋❊▼
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Overview of the ▼❋r♦♥t●❡♥❡r✐❝■♥t❡r❢❛❝❡❙✉♣♣♦rt
project (MGIS)

MGIS

Europlexus

mgis.fenics

OpenGeoSys

MEFISTO

MoFEM

MFront

◮ The ▼●■❙ project provides classes on the solver side to retrieve
metadata from an ▼❋r♦♥t behaviour and call the behaviour
integration over a time step.

◮ Written in ❈✰✰. Bindings exists for ❈, ❋♦rtr❛♥✷✵✵✸, ♣②t❤♦♥, ❏✉❧✐❛. And
also used/tested in ❳P❡r, ❑r❛t♦s ▼✉❧t✐♣❤②s✐❝s, ❏✉❧✐❛❋❊▼,
◆❛✐r♠▼P▼, ❡s②s✳❡s❝r✐♣t, ❉❯◆❊, ❍❊▲■❳ (based on ▼❋❊▼).
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mgis.fenics Part II: Cosserat media in small deformation
with mgis.fenics

Tamara Dancheva (http://www.bcamath.org/en/ ), BCAM ‐ Basque Center for Applied
Mathematics, Spain

Unai Alonso, University of the Basque Country, Spain
Michael Barton, BCAM ‐ Basque Center for Applied Mathematics, Spain
Jérémy Bleyer, Ecole des Ponts ParisTech, France
Thomas Hefler, CEA (French Alternative Energies and Atomic Energy Commission), France
Raffaele Russo, University of the Basque Country, Spain

22 March 2021

When exposed to high strain rates of deformation, metal alloys with low thermal conductivity are
typically liable to large quantities of plastic strain. This phenomenon of localization of high temperatures
in a narrow band, known as an adiabatic shear band, occurs in many manufacturing processes such as
machining or metal forming. We aim to simulate it based on the research of Forest et al [2] and Russo et al
[4] that propose a thermodynamically consistent framework for both elastoplasticity and elastoviscoplas-
ticity. Their approach builds upon a bulk of work stemming from that of the Cosserat brothers in 1909
[1] on generalized continua by introducing independent translational and rotational degrees of freedom.

Our contribution is the implementation of the elastoplasticity framework using FEniCS, the MFront
library [3], and the corresponding interface between them, the mgis.fenics module. These tools automate
the implementation of material behaviours and allow for complex models. We present the results for the
glide and bending/torsion test, and their validation against another finite element solver (Zset) and the
analytical solution. Moreover, we run the performance analysis on the Atlas-EDR cluster, at the Donostia
International Physics Center (DIPC). We break down the execution time, identify the most computation-
ally intensive components, and analyze the results from the point of view of parallel scaling.
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AGENDA

❖ Introduction
❖ Cosserat media:

Motivation
Model
Implementation

❖ Performance
❖ Conclusion
❖ Next steps
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Introduction
Partners:

ENABLE H2020 project

This European Training Network actively involves academics and industrial partners in training a 
new generation of young researchers for the future of manufacturing. By developing new 
solutions for metallic alloys, ENABLE proposes a complete rethink of the usual process 
simulation methods. Innovative multiscale (from microscopic to macroscopic scales), and 
multi-physics (strong thermomechanical and microstructural couplings) are addressed.
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Cosserat Media - Motivation
- Development of an Adiabatic Shear Band
- Localization phenomena & prediction of 
characteristic length and size effect
- aim to regularize the model and avoid mesh 
dependency 

Fig.2 Chip formation during the machining of grade 316L 
stainless steel - using Third Wave Systems AdvantEdge - 
Temperature, courtesy of Sandvik Coromant 

Fig.1 2D machining of Ti-6Al-4V - using Third Wave 
Systems AdvantEdge - Temperature 

Cutting Tool

Chip

Shear 
Band

Workpiece
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❖ the model was initially introduced in 1909 by the Cosserat brothers [Cosserat 1909] 

❖ Raffaele Russo has been working on formulating a thermodynamically consistent model for small deformation 

and large deformation [Russo et al. 2020]

Displacement  Extra degrees of freedom - the rotation of the microstructure

          Deformation measures,  where 

  

Cosserat Media in small deformation - model

 Cosserat deformation tensor

 Cosserat wryness tensor 

Balance/equilibrium equation: 

couple stressclassical stress body force / couple external surface / couple traction

Cosserat, Eugene, and François Cosserat. Theorie des corps dédormables. A. Hermann et fils, 1909.
Russo, Raffaele, Samuel Forest, and Franck Andrés Girot Mata. "Thermomechanics of Cosserat medium: modeling adiabatic shear bands in metals." 
Continuum Mechanics and Thermodynamics (2020): 1-20.

126



❖ Material model for elasto-plasticity 

From the Helmholtz free energy and the Clausius-Duhem inequality (2nd thermodynamic law) 

we can verify the compatibility and derive the following:

- assuming single plastic multiplier we calculate using the consistency condition and the 

         normality rule:  

- Normals to the yield surface in the stress and couple stress spaces

- Equivalent Stress as in  [Borst 1991; Lippmann 1969; Mühlhaus and Vardoulakis 1987]

    

  

Cosserat Media in small deformation - model

Characteristic length:

De Borst, R. E. N. É. "Simulation of strain localization: a reappraisal of the Cosserat continuum." Engineering computations (1991).
Lippmann, H. "Eine Cosserat-Theorie des plastischen Fliessens." Acta Mechanica 8.3 (1969): 255-284.
Mühlhaus, Hans-Bernd and I. Vardoulakis (1987). “The thickness of shear bands in granular”. In:
Géotechnique
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Cosserat Media Implementation - Glide test

Iterations to converge - equilibrium:
- FEniCS: 

[1,1,1,1,1,1,3,7,8,8,9,10,10,11,12,13,15,16,18]
- Zset:[1,1,1,1,1,1,4,5,6,6,6,7,7,8,9,10,10,9] Fig.3 Comparison MFront+FEniCS with ZSet and the analytical solution 

[S.Forest et al.]

Forest, S. and R. Sievert (Jan. 2003). “Elastoviscoplastic constitutive frameworks for generalized continua”. In: Acta Mechanica 160.1-2, pp. 71–111.
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Cosserat Media Implementation
Fig. 4 Explicit Implementation MFront

Fig.4 .mfront file for the Cosserat glide test 
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Cosserat Media Implementation
Fig. 5 Explicit Implementation MFront

Optimization: converting to an implicit implementation 
Fig.5 .mfront file for the Cosserat glide test - continuation
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Cosserat Media Implementation

Fig.6
Glide test - Result 
for the stress, 

FEniCS + MFront

 Zset
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Cosserat Media Implementation

Fig.7
Glide test - Result 
for the couple 
stress, 

FEniCS + MFront

 Zset
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Performance

ATLAS EDR @ Donostia International Physics 
Center 

- Infiniband EDR network
- 37 nodes with Intel Xeon Platinum 8168 (24 

cores per node x 2 threads)
- 8 nodes with Intel Xeon Platinum 8280 (28 

cores per node x 2 threads)
- 2x NVIDIA Tesla P40, 1x NVIDIA Tesla P40

Current setup:
- using Singularity container
- using MPICH using the UCX network 

framework

Fig.8 Strong and weak scaling plot for the glide test
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Conclusions
- From the profiling and scaling results we can conclude that the major bottleneck is the resolution of 

the system of nonlinear equations (quasi Newton line search) using MUMPS as a linear solver

Fig.9 Strong and weak scaling plot for various routines part of the simulation
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Next steps

❖ Increase problem size

❖ Native installation of the software stack on ATLAS-EDR

❖ Profiling with EXTRAE for MPI statistics, DCRAB for node statistics 

❖ Exploring other linear solvers (and nonlinear)

❖ Implicit scheme implementation

❖ Porting to dolfin-x

❖ Further HPC analysis and code optimizations 

❖ Implementation of the full thermodynamically consistent Cosserat model in Large 

deformation - elasto viscoplasticity
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Thank you for your 
attention!

Questions
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FFCx code generation for expressions

Michal Habera, University of Luxembourg, Luxembourg
Andreas Zilian, University of Luxembourg, Luxembourg

23 March 2021

The FEniCSx Form Compiler (FFCx) compiles the symbolic weak formulation of PDEs into C code.
Historically, its primary focus was on integral operators originating fromweak forms. Using a quadra-

ture rule it generated code to evaluate integrals. However, a number of applications appeared where sym-
bolic UFL expressions not involving integrals needed to be compiled into C code—including interpolation
into point-evaluation function spaces.

In this contribution a code generation for UFL symbolic expressions is described. Code generation
and optimisation techniques of FFCx are briefly reviewed and improvements needed to compile C code
for non-integral, tensor-valued expressions are described.

New functionality is demonstrated with several examples: efficient interpolation into Lagrange point-
evaluation spaces and assembly of interpolation and other non-integral operators (discrete gradient, di-
vergence, curl, etc.). Examples are prepared using the development version of FEniCSx.

It is believed that this extension to FFCx will be used in common practice by FEniCS users, improve
their code performance and widen the applicability of the entire FEniCS package environment.

You can cite this talk as:

Michal Habera and Andreas Zilian. “FFCx code generation for expressions”. In: Proceedings of FEniCS 2021, on-
line, 22–26 March (eds Igor Baratta, Jørgen S. Dokken, Chris Richardson, Matthew W. Scroggs) (2021), 137. DOI:
10.6084/m9.figshare.14495247.

BibTeX for this citation can be found at https://mscroggs.github.io/fenics2021/talks/habera.html .
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Explicit dual space representation in UFL

India Marsden, Department of Computing, Imperial College London, United Kingdom
David A Ham, Department of Mathematics, Imperial College London, United Kingdom
Reuben Nixon‐Hill, Department of Mathematics, Imperial College London, United Kingdom

23 March 2021

This talk will discuss proposed changes to the Unified Form Language to include symbolic types repre-
senting dual spaces along with associated objects and functions. UFL represents forms over finite element
spaces, and operations on these forms naturally results in objects in the dual space, or operators mapping
to or from dual spaces. Since UFL currently does not have a representation of these objects, the language
is not closed, meaning these operations result in objects outside of the language, which these changes aim
to solve.

We will discuss the changes being made and their structure, the mathematical background and the
potential benefits, applications and simplifications that this work enables.

This talk was awarded a prize: Best talk by a PhD student or undergraduate (runner up).

You can cite this talk as:

India Marsden, David A Ham, and Reuben Nixon-Hill. “Explicit dual space representation in UFL”. In: Proceedings
of FEniCS 2021, online, 22–26 March (eds Igor Baratta, Jørgen S. Dokken, Chris Richardson, Matthew W. Scroggs)
(2021), 138–150. DOI: 10.6084/m9.figshare.14495250.

BibTeX for this citation can be found at https://mscroggs.github.io/fenics2021/talks/marsden.html .
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Explicit Dual Space Representation in UFL

India Marsden1, David A. Ham2 and Reuben Nixon-Hill2,3

March 2021
1Department of Computing, Imperial College London
2Department of Mathematics, Imperial College London
3Science and Solutions for a Changing Planet DTP, Grantham Institute for Climate Change and the Environment,
Imperial College London
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Context

UFL provides an intuitive way to represent mathematical forms
in code.
In particular, it is able to represent function spaces, finite
elements within function spaces and functions on these
spaces, among other things.

2
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Problem

Typically, operations such as assemble are applied to the
defined forms in UFL. Doing this results in objects that are not
within UFL.

This means that the language is not closed.

element = F in i teE lement ( ” Lagrange ” , t r i ang le , 1 )
u = T r i a l Func t i on ( element )
v = TestFunct ion ( element )
f = Coe f f i c i e n t ( element )

a = ( u*v − inner ( grad (u ) , grad ( v ) ) ) * dx
L = f * v * dx
res = assemble ( a )
res2 = assemble ( L )

3
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Examples of the problem

Operator Composition Where τ(u) is an external operator:

grad(u) · τ(u) · grad(v) ∗ dx

Interpolation Interpolation is not first class

interp(e,u) ∗ v ∗ dx

Adjoint Forward Operations

action(interp∗(ê,u), adjoint(u ∗ v ∗ dx))

Composing Assembled forms

assemble(v ∗ dx+ assemble(e ∗ dx))

4
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Dual Space

These operations depend on objects in the dual to the
function space, the space of bounded linear functionals on V:

V∗ = V→ R

An example of an operation on a dual space is the Dirac Delta
functional (V∗ → R), ie point evaluation:

δx(v) = v(x)

5
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Dual Basis

A function space can be represented by its (primal) basis. A
function in the space is then a set of coefficients of that basis:

v = viφi ∈ V

A dual space can be similarly represented by dual basis
functions, φ∗

∈ V→ R. Call the set of coefficients of a dual
space a cofunction:

u = uiφ∗

i ∈ V
∗

Writing u(v) would be evaluation of the dual basis and result
in a scalar.

6
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1-Forms

In UFL, a 1-form represents a mathematical object with one
unknown,such as below, which we can write in terms of the
basis:

h(v) =
∫
Ω

v dx =
∫
Ω

φi dx vi

=

∫
Ω

φi dx Iijvj =
∫
Ω

φi dx φ∗

i (φj)vj

=

∫
Ω

φi dx φ∗

i (vjφj)

=

∫
Ω

φi dx φ∗

i (v)

Using the property φ∗

i (φj) = δij and the linearity of the dual
basis.

7
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1-Forms

Therefore, we can see that 1-forms can be represented as
cofunctions with coefficients:

hi =
∫
Ω

φi dx

h = hiφ∗

This is a cofunction, an object in the dual space of V.
Computationally, we write:

L = v * dx
obj = assemble ( L )

Obviously, obj is not a current UFL object.

8
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Interpolation

Define interpolation from a space U to a space V as the
operator:

interp(u, v∗) : U→ V

We can write this as a form:

U× V∗ → R

As V = V∗∗ = V∗ → R. Then, taking the adjoint of this form we
get:

V∗ × U→ R = V∗ → U∗

which matches the expectation of linear operators.

9
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Interpolation

Seeing interpolation as a function, we have the first argument
as u ∈ U and the second v∗ ∈ V. Interpolation is dual
evaluation of v∗:

interp(u, v∗) = v∗(u)

v∗ is termed a coargument, and in code would be:

v_s ta r = TestFunct ion ( V . dual ( ) )

Introducing Cofunctions makes the adjoint behave correctly.

10
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Draft Additions

With these draft additions, users will be able to write code
such as:

V = FunctionSpace ( domain , element )
v = TestFunct ion ( V )
V_dual = V . dual ( )
L = v * dx
obj = assemble ( L )
a = Cofunct ion ( V )
res = a + obj

where res would be a valid operation and V_dual is the
function space that is dual to V.

11
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Further Implications

This change will need to be propagated into the
implementation of assemble and other similar operations.
This includes attaching data to these objects and adapting the
implementations to take into account pre-assembled sections.

12
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Turning FEniCS inside out

Chris Richardson, BP Institute, University of Cambridge, United Kingdom

23 March 2021

Previous versions of FEniCS have focused on adding more features and functionality by adding inter-
faces to an increasing list of third party libraries, for linear algebra, plotting, mesh partitioning, etc. In the
latest version of FEniCSx we are moving away from this trend, on the assumption that users can interface
third-party libraries themselves, given the right interface to FEniCS.

This can be viewed as “turning FEniCS inside-out” as the previous internal workings have become
public interfaces, and FEniCS itself is simplified and reduced.

I will show some examples using the Trilinos solvers, custom mesh partitioning and how to access
data directly for I/O and visualisation.

You can cite this talk as:

Chris Richardson. “Turning FEniCS inside out”. In: Proceedings of FEniCS 2021, online, 22–26 March
(eds Igor Baratta, Jørgen S. Dokken, Chris Richardson, Matthew W. Scroggs) (2021), 151–163. DOI:
10.6084/m9.figshare.14495253.

BibTeX for this citation can be found at https://mscroggs.github.io/fenics2021/talks/richardson.html .
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Turning FEniCS inside-out

Chris Richardson
chris@bpi.cam.ac.uk

1
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DOLFIN 2017

GenericMatrix::set_local(...);

PETSc

Eigen

Trilinos

2
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GenericTransport::move(src, dest);

3
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FEniCS-X: A modular Finite Element code

Mesh Assemble Solve

Input Kernel Output

“Keep it simple and give the user freedom to do things their own way”

Python: ufl, basix, ffcx

C++ dolfinx library (with Python bindings)

4
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Matrix assembly plugins/callbacks

for cells in mesh:
  geom = geometry(cell)
  ...
  Ae = tabulate_tensor(geom, ...)
  global_mat_insert(Ae, ...)

dolfinx::fem::assemble_matrix(...)

fem::Form

mat_insert() tabulate_tensor()

5
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auto mat_insert = [&A](int nrows, int* rows, 
                       int ncols, int* cols, double *Ael)
{
  for (int i = 0; i < nrows; ++i)
    for (int j = 0; j < ncols; ++j)
      A[rows[i], cols[j]] += Ael[i*ncols + j];
}

dolfinx::fem::assemble_matrix(mat_insert, form, bcs);

Turning things inside out: C++ lambda functions

6
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1. Using other linear algebra backends: Trilinos

Tpetra::CrsMatrix<double> A;

auto mat_insert = [&A](int nrows, int* rows, 
                       int ncols, int* cols, double *Ael)
{
  for (int i = 0; i < nrows; ++i)
  {
    ArrayView<const int> col_view(cols, ncols);
    ArrayView<double> col_view(Ael + i*ncols, nc);
    for (int j = 0; j < ncols; ++j)
      A.sumIntoLocalValues(rows[i], col_view, val_view);
  }
}

7
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2. Lumping of mass matrix into diagonal

std::vector<double> diag;

auto vec_insert = [&diag](int nrows, int* rows, 
                       int ncols, int* cols, double *Ael)
{
  for (int i = 0; i < nrows; ++i)
    for (int j = 0; j < ncols; ++j)
      diag[rows[i]] += Ael[i*ncols + j];
}

fem::assemble_matrix(vec_insert, form, bcs);

8
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3. Action of a form (matrix-free)

auto mat_apply = [&uvec, &wvec](int nr, const int* rows,
              int nc, const int* cols, const double* Ae) 
   {
     for (int i = 0; i < nr; ++i)
       for (int j = 0; j < nc; ++j)
         wvec[rows[i]] += Ae[i * nc + j] * uvec[cols[j]];
   };

fem::assemble_matrix(mat_apply, form, bcs);

9
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std::vector<double> diag, w, u;

auto insert_diag = [&diag] (int nrows, int* rows, 
                     int ncols, int* cols, double *Ael)
{
  for (int i = 0; i < nrows; ++i)

diag[rows[i]] += Ael[i*ncols + i];
}

auto apply_lu = [&w, &u] (int nrows, int* rows, 
                     int ncols, int* cols, double *Ael)
{
  for (int i = 0; i < nrows; ++i)
    for (int j = 0; j < ncols; ++j)

   if (j != i)
         w[rows[i]] += Ael[i*ncols + j] * u[cols[j]];
}

4. Assemble diagonal, and action of L+U → Jacobi

10
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Python version?  But don’t do this without an adult present...

a = inner(grad(u), grad(v))*dx
a_form = fem.Form(a)
rdata = []
cdata = []
vdata = []

def mat_insert(rows, cols, vals):
    vdata.append(vals)
    rdata.append(numpy.repeat(rows, len(cols)))
    cdata.append(numpy.tile(cols, len(rows)))
    return 0

# Using Python callback is SLOW...
dolfinx.cpp.fem.assemble_matrix(mat_insert, a_form._cpp_object, [])
scipy.sparse.coo_matrix((vdata, (rdata, cdata)))

11
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Summary

● FEniCS-X is more open to experimentation at the low level
● Plugin functionality via std::function in C++ for matrix insertion

- FEniCS-X need know nothing about your LA backend
● Can also prototype in Python (but don’t do this for a real application)

- Better to use e.g. cppimport to wrap a snippet
● There are a number of things you can do with fem::assemble_matrix
● Mesh partitioning has some similar plugins with std::function

12
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Making point sets first class in UFL and Firedrake

ReubenW. Nixon‐Hill (https://www.imperial.ac.uk/people/reuben.nixon- hill10 ),
Science and Solutions for a Changing Planet DTP & Department of Mathematics, Imperial
College London, United Kingdom

Daniel Shapero, Polar Science Center, Applied Physics Laboratory, University of Washington,
United States

Colin J. Cotter, Department of Mathematics, Imperial College London, United Kingdom
David A. Ham, Department of Mathematics, Imperial College London, United Kingdom

23 March 2021

Point data turn up all the time in scientific computing problems—perhaps you want to know the value
of a field at a particular point or set of points, or you have point data that you want to assimilate into a
model of some phenomenon. At the moment points are typically expressed as lists of coordinates, thereby
bypassing the Unified Form Language’s (UFL’s) type system of function spaces and meshes.

In this talk I will discuss how new concepts such as a “Mesh of Disconnected Vertices” allow point
sets to be treated as vectors in a finite element vector space with appropriate UFL arguments and coef-
ficients. I will show how an interpolation operator, onto a function space on such a mesh, can be con-
structed to represent point evaluations. Since such an operator can be differentiated it fits neatly into the
pyadjoint/dolfin-adjoint ecosystem allowing PDE constrained optimisation problems to be solved when,
for example, assimilating point data. I will also discuss how this could impact future work to turn UFL
into a domain specific language (DSL) for expressing and automating diagnostics on big field datasets
produced by climate models.

You can cite this talk as:

Reuben W. Nixon-Hill, Daniel Shapero, Colin J. Cotter, and David A. Ham. “Making point sets first class in UFL
and Firedrake”. In: Proceedings of FEniCS 2021, online, 22–26 March (eds Igor Baratta, Jørgen S. Dokken, Chris
Richardson, Matthew W. Scroggs) (2021), 164–182. DOI: 10.6084/m9.figshare.14495256.

BibTeX for this citation can be found at https://mscroggs.github.io/fenics2021/talks/nixon- hill.html .
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in UFL and Firedrake
Reuben W. Nixon-Hill1,2, Daniel Shapero3, Colin J. Co1er2, David A. Ham2
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Why care about point data?

• Geoscience Examples

• Ice Sheets: elevation from satellite 
altimetry and ice cores

• Ocean: salinity and temperature from 
drifting buoys

• Atmosphere Climate: conditions at 
weather stations

• And more!

• Typical uses

• Point evaluation of PDE solutions

• PDE Constrained Optimisation

• Variational data assimilation

• Goal based error estimation

• And more!

"File:Weather Buoy MDS.jpg" by MDS is licensed with CC BY-SA 4.0. To view a copy of this license, visit hHps://creaJvecommons.org/licenses/by-sa/4.0

"Garden Wall Weather StaJon, MT" by U.S. Geological Survey is marked under CC0 1.0. To view the terms, visit hHps://creaJvecommons.org/licenses/cc0/1.0/

"Ice core sampling in Green Bay, Lake Michigan" by NOAA Great Lakes Environmental Research Laboratory is licensed with CC BY-SA 2.0. To view a copy of this license, visit hHps://creaJvecommons.org/licenses/by-sa/2.0/

"2 Geospace PE3 geophones, for near-field studies," is licensed with CC BY-NC-SA 4.0. To view a copy of this license, visit hHps://creaJvecommons.org/licenses/by-nc-sa/4.0/
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Definition: Point Data

1. A “point cloud” {𝑋!} – a set of 
spa5al coordinates and 

2. Values 𝑦! (scalar, vector or tensor 
valued) at those coordinates. 1.2

61.6

-5.0

or

x

y
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How we deal with point data at the moment

• UFL expressions of coefficients can be evaluated at given point 
coordinates

• Can get values from point clouds

# Firedrake (dolfin similar)

# evaluate Function f at two 

# 2-dimensional points

from firedrake import *

...
vals = f.at([0.2, 0.4], [1.2, 0.5])

# UFL

# evaluate coefficient f at two 

# 2-dimensional points

vals[0] = f([0.2, 0.4])

vals[1] = f([1.2, 0.5])
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How we deal with point data at the moment

# Firedrake

# evaluate Function f at two 

# 2-dimensional points

from firedrake import *

...
vals = f.at([0.2, 0.4], [1.2, 0.5])

• outside of the UFL type system 

of fields in function spaces on 

meshes

• Value driven: no symbolic point 

evaluation.

•

• end up special-casing point evaluaAon 

code pathways

• ODen slow! 

# UFL

# evaluate coefficient f at two 

# 2-dimensional points

vals[0] = f([0.2, 0.4])

vals[1] = f([1.2, 0.5])
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Need to express this in UFL and annotate 

it with dolfin-adjoint/pyadjoint
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Solution Part 1: A point 
cloud is a mesh Ω!
UFL

• Vertex Cells

• Topological dimension = 0

• Geometric dimension = dim(𝑋!) (point 
cloud coordinate dimension)

Firedrake

• VerLces at point cloud coordinates {𝑋!}
• Immersed (for now) 

• makes implementaLon simpler

• care about the point data with 
respect to field on “parent” mesh Ω
(e.g. a PDE soluLon)
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• Scalar, vector or tensor valued

• Each funcLon in this funcLon space represents a 

complete set of point data 

• Vertex coordinates {𝑋!} are fixed* 

• Can declare UFL arguments to solve for values at 

points {𝑋!}
• Changes: UFL ✔ FIAT ✔ Firedrake ✔

*unless we represent moving points – something for the future!

Solution Part 2: Point data 

are functions in a P0DG 

function space on Ω!
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How do we use this? 
Interpolate into the 
point data space

# UFL+Firedrake Pseudocode

# blue is proposed new UFL

# u is a solution from a function space on parent_mesh

# m is source term from some function space

vm = VertexOnlyMesh(parent_mesh, point_cloud_coords)

W = FunctionSpace(vm, ”DG”, 0)

# interpolate

v = TestFunction(W).dual()

u_v = interp(u, v) # or u_v = v(u)

...  # create y in W from observation data

# Functional for minimisation

J = assemble( (u_v – y)**2 * dx + c*inner(m, m) * dx )

# Reduce using control from parameter space

m ̂ = firedrake_adjoint.Control(m)

Ĵ = firedrake_adjoint.ReducedFunctional(J, m)̂

# Find optimal control

m_min = firedrake_adjoint.minimize(Ĵ, method='Newton-CG’)

Point evaluaEon is now 

interpolaEon into W = P0DG(Ω")𝑢" = 𝐼(𝑢,𝑊)

Rewrite 𝐽 = 𝑢 𝑋! − 𝑦! # + 𝑐 𝑚 #

𝐽 = 7
$!

(𝐼(𝑢,𝑊) − 𝑦)#𝑑𝑥 + 𝑐 𝑚 #

𝜕𝐽
𝜕𝑢 = 7

$!

(𝐼(𝑢,𝑊) − 𝑦) 𝝏𝑰(𝒖,𝑾)𝝏𝒖 𝑑𝑥

Newly added to

and
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It really works!
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Future: UFL for 

Automated 
DiagnosCcs

• Aim to develop UFL into a Domain Specific 

Language (DSL) for specifying model diagnostics

• A user will specify, as some high level integration (e.g. over 
points or planes), the diagnostic then code will be generated 
to calculate it

• Example: Ocean current from multiple climate models e.g. 
Atlantic Meridional Overturning Circulation in Medhaug and 

Furevik 2011 [4]

• Form compiler can then generate code for 

calculating the diagnostic

• Scalable and able to run on big datasets (e.g. 
climate) on the HPCs closest to the data.

1 Medhaug, I., & Furevik, T. (2011). North AtlanOc 20th century mulOdecadal variability in coupled climate models: Sea surface 

temperature and ocean overturning circulaOon. Ocean Science, 7(3), 389-404.

"Dynamic Earth - Ocean Currents”,  NASA Goddard Photo and Video, CC BY 2.0. hEps://creaIvecommons.org/licenses/by/2.0/
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Conclusion

• Point data are everywhere and can be treated more rigorously

• We can represent point data as a func?on in a P0DG func?on 
space on a point cloud mesh

• Point evalua?ons are interpola?ons into this func?on space

• interp proposed as new UFL operator for interpola?on

• Can use point data in PDE constrained op?misa?on problems by 
annota?ng interpola?on with pyadjoint/dolfin-adjoint

• First step towards turning UFL into a DSL for automated 
diagnos?cs

Get in touch! reuben.nixon-hill10@imperial.ac.uk
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Possible work-around existing limitations

• Interpolate the point data into some func?on space on my mesh then 
calculate

𝐽 = 𝑢 − 𝑦*++,-.
/
+ 𝑐0 𝑚 /

• Have to make difficult-to-test decisions about appropriate 
interpola?on hyperparameters to get 𝑦*++,-.,

• Par?cularly a problem if the point data is sparse

MinimizaEon Problem:

min
%,'

𝐽 𝑢,𝑚 where 𝐽 = 𝑢 𝑋! − 𝑦! # + 𝑐 𝑚 #

subject to

𝐹 𝑢,𝑚 = 0
+ boundary condi-ons
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Some Proper)es:

• Integra)ng sums values at points 

"
"!

𝑢#𝑑𝑥 ='
$

𝑢# 𝑋$

• L2 inner product equivalent to l2 inner product of each 
component (if vector or tensor valued)

𝑢# , 𝑦 %
" = "

"!

𝑢# 𝑦 𝑑𝑥 = ⋯ ='
$

𝑢# 𝑋$ 𝑦 𝑋$ = 𝑢# , 𝑦 &"

• Mass matrix  is iden)ty matrix

• Non-differen)able

• Reisz map is L2 inner product 

𝑢# , , %
" = 𝑢#' ,

• Nodal interpola)on is L2 Galerkin projec)on

Solution Part 2: Point data are 

functions in a P0DG function 

space on Ω!
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Why is this helpful in this example?

• No extra approxima?ons necessary

• Can be rigorous about the sta9s9cal interpreta9on of data 
assimila?on results via misfit func?onal (check if errors are normally 
distributed for example) and directly inves?gate different 
regularisa?ons.

• Feed back from modeller to experimenter: can quickly model say, 
the impact of more measurements vs beUer SNR with simulated 
data.

• Dan and I working on a paper right now to make this point!
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Future: UFL for 

Automated 
DiagnosCcs

• Possible approach:

1. Read-in gridded field data as equivalent finite 
element field

2. Create mesh to represent region to integrate:

• Points - “Vertex Only Mesh” 

• lines “mesh of disconnected lines” 

• Planes “mesh of disconnected planes” etc.

3. Calculate the  diagnostic by interpolating onto 
the region and performing desired integration 

• Point evaluations

• Fluxes etc.

• Note: Requires UFL to be extended to include 
interpolation operations in the language e.g. 
via the interp form. 

"Dynamic Earth - Ocean Currents”,  NASA Goddard Photo and Video, CC BY 2.0. hEps://creaIvecommons.org/licenses/by/2.0/
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Next Steps

Point Data

• Demonstra?on on real models showing advantages

• Moving points (op?onal)

Automated Diagnos9cs

• Higher dimension disconnected mesh abstrac?ons (lines, planes and 
polyhedra) for interpola?on onto

• Define the interpola?on opera?ons e.g. via supermeshing

• Improve dataset parsing tools

• Integra?on with exis?ng tool-chains e.g. Pangeo

x

y
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dolfiny: Convenience wrappers for DOLFINx

Andreas Zilian, University of Luxembourg, Luxembourg
Michal Habera, University of Luxembourg, Luxembourg

23 March 2021

With the increased flexibility of DOLFINx and its reduction to core functionality, the responsibility for
even some basic components of computational analysis is shifted to the user.

This presentation provides an overview of the open-source package dolfiny, which provides end-user
API interfaces to mesh/meshtags generation and processing, expression list handling, function interpo-
lation and projection as well as the restriction of function spaces to parts of the computational domain.
This functionality is consistently considered in interfaces to PETSc/SNES as nonlinear solver and SLEPc as
eigensolver backend, both allowing the operation on block and nested operators. In addition, the package
provides a convenient approach to incorporate time integration into the UFL formulation of the problem,
which is exemplified for the generalised alpha method.

The capability of dolfiny is demonstrated in a number of examples, ranging between finite strain
structural analysis, plasticity and fluid-structure interaction.

You can cite this talk as:

Andreas Zilian and Michal Habera. “dolfiny: Convenience wrappers for DOLFINx”. In: Proceedings of FEniCS 2021,
online, 22–26 March (eds Igor Baratta, Jørgen S. Dokken, Chris Richardson, Matthew W. Scroggs) (2021), 183–192.
DOI: 10.6084/m9.figshare.14495262.

BibTeX for this citation can be found at https://mscroggs.github.io/fenics2021/talks/zilian.html .
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Motivation | why dolfiny?

DOLFINx advantages▶ access to low level interfaces, light core▶ more flexible, more explicit▶ demands bottleneck-awareness

DOLFINx shortcomings (today)▶ user code often quite verbose▶ increased complexity to end-user▶ consistent approach to extensions?

dolfiny: Python, collection of wrappers, extensions + new functionality

�
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Mesh and MeshTags | challenge: problem setup

fluid

lower

si
de

s sides

upper

abyss

slip slip

▶ Gmsh to DOLFINx▶ merge named
non-overlapping
MeshTags▶ sub-classed
XDMFFile

import mesh_cavity_gmshapi as mg

# Create the geometry/mesh of the cavity using Gmsh Python API
gmsh, tdim = mg.mesh_cavity_gmshapi() # see demos in dolfiny repo

import dolfiny.mesh

# Get mesh and meshtags
mesh, mts = dolfiny.mesh.gmsh_to_dolfin(gmsh, tdim, prune_z=True)

# Get merged MeshTags for each codimension
subdomains, subdomains_keys = dolfiny.mesh.merge_meshtags(mts, tdim - 0)
interfaces, interfaces_keys = dolfiny.mesh.merge_meshtags(mts, tdim - 1)
markpoints, markpoints_keys = dolfiny.mesh.merge_meshtags(mts, tdim - 2)

# Define shorthands for labelled tags
fluid = subdomains_keys["fluid"]
upper = interfaces_keys["upper"]
lower = interfaces_keys["lower"]
sides = interfaces_keys["sides"]
abyss = markpoints_keys["abyss"]

import dolfiny.io

# Create output XDMF file
ofile = dolfiny.io.XDMFFile(comm, f"{name}.xdmf", "w")

# Write mesh, meshtags
ofile.write_mesh_meshtags(mesh, mts)

�
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Restriction | challenge: weak interface constraints

import dolfinx, ufl

# Function spaces, functions and test functions
V, P, L = # ... e.g. dolfinx.VectorFunctionSpace(mesh, ("CG", 2))
v, p, λ = # ... e.g. dolfinx.Function(V, name="v")
δv, δp, δλ = # ... e.g. ufl.TestFunction(V)

# Integration measures
dx = ufl.Measure("dx", domain=mesh, subdomain_data=subdomains)
ds = ufl.Measure("ds", domain=mesh, subdomain_data=interfaces)

# Non-Newtonian fluid, with mu = mu(D)
D = ufl.sym(ufl.grad(v))
T = 2 * mu(D) * D - p * ufl.Identity(2)

# Weak form (as one-form), with n = ufl.FacetNormal(mesh)
f = ufl.inner(ufl.grad(δv), T) * dx + δp * ufl.div(v) * dx \

+ ufl.dot(δv, n) * λ * ds(lower) + δλ * ufl.dot(v, n) * ds(lower)

import dolfiny.function

# Locate dofs: restriction
rdofsV = dolfiny.mesh.locate_dofs_topological(V, subdomains, fluid)
rdofsV = dolfiny.function.unroll_dofs(rdofsV, V.dofmap.bs)
rdofsP = dolfiny.mesh.locate_dofs_topological(P, subdomains, fluid)
rdofsL = dolfiny.mesh.locate_dofs_topological(L, interfaces, lower)

import dolfiny.restriction

# Set up restriction
r_fspaces, r_dofs = [V, P, L], [rdofsV, rdofsP, rdofsL]
restriction = dolfiny.restriction.Restriction(r_fspaces, r_dofs)

fluid

lower

si
de

s sides

upper

abyss

slip slip

▶ restrict full
function space to
subset of dofs▶ discrete/algebraic
approach

�
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SNES interface | challenge: nonlinear (restricted) problem

▶ SNESBlockProblem interfaces to PETSc SNES▶ custom block-wise convergence monitors▶ allows MatNest and AIJ/BAIJ as matrix storage layout▶ supports restrictions

# Define state as (ordered) list of functions
m, δm = [v, p, λ], [δv, δp, δλ]

# Overall form (as list of forms)
F = dolfiny.function.extract_blocks(f, δm)

import dolfiny.snesblockproblem

# Create nonlinear problem: SNES
problem = dolfiny.snesblockproblem.SNESBlockProblem(F, m, restriction)

# Set/update boundary conditions
problem.bcs = # ...

# Solve nonlinear problem
problem.solve()

...
### SNES iteration 4
# sub 0 |x|=1.052e+01 |dx|=2.515e-02 |r|=1.903e-03 (v)
# sub 1 |x|=1.350e+02 |dx|=7.764e-01 |r|=2.130e-17 (p)
# sub 2 |x|=4.723e+02 |dx|=2.210e+00 |r|=2.095e-18 (λ)
# all |x|=4.913e+02 |dx|=2.342e+00 |r|=1.903e-03

### SNES iteration 5
# sub 0 |x|=1.051e+01 |dx|=9.610e-04 |r|=3.658e-06 (v)
# sub 1 |x|=1.350e+02 |dx|=1.336e-02 |r|=1.890e-17 (p)
# sub 2 |x|=4.723e+02 |dx|=6.682e-03 |r|=1.713e-18 (λ)
# all |x|=4.913e+02 |dx|=1.497e-02 |r|=3.658e-06
...

▶ Restriction uses PETSc.Mat.createSubMatrix()

�
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Interpolation | challenge: expression evaluation

▶ interpolate UFL expressions into functions▶ supports arbitrary cell-wise UFL expressions: into CG/DG (FFCx/numba)▶ supports linear combination of functions for arbitrary function spaces

Cell-wise

import dolfiny.interpolation

# Function space for interpolated stress tensor
S = dolfinx.TensorFunctionSpace(mesh, ("DG", 1),\

symmetry=True)
# Function
s = dolfinx.Function(S)

# Interpolate UFL expression T
dolfiny.interpolation.interpolate(T, s)

Facet-wise (soon)

import dolfiny.interpolation

# Function space for interpolated stress vector
S = dolfinx.VectorFunctionSpace(mesh, ("DG", 1))

# Function
s = dolfinx.Function(S)

# Interpolate UFL expression T * n
dolfiny.interpolation.interpolate(T * n, s)

�
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Time-dependent forms | challenge: ease-of-use

# Global time, Time step size
time, dt = dolfinx.Constant(mesh, 0.0), dolfinx.Constant(mesh, 0.1)

# Define functions representing 1st time derivative
vt, pt, λt = # ... e.g. dolfinx.Function(V, name="vt"), ...

# Define state as (ordered) list of functions
m, mt, δm = [v, p, λ], [vt, pt, λt], [δv, δp, δλ]

import dolfiny.odeint

# Time integrator
odeint = dolfiny.odeint.ODEInt(t=time, dt=dt, x=m, xt=mt)

# Weak form (as one-form), with time-dependent terms
f = # ... \

+ ufl.inner(δv, rho * vt + rho * ufl.grad(v) * v) * dx

# Overall form (as one-form)
f = odeint.discretise_in_time(f)

# Overall form (as list of forms)
F = dolfiny.function.extract_blocks(f, δm)

# Create nonlinear problem: SNES
problem = dolfiny.snesblockproblem.SNESBlockProblem(F, m, restriction)

# Time steps
for step in timesteps:

odeint.stage()
problem.solve()
odeint.update()

▶ readability of forms▶ single step methods▶ stencil as expression▶ expression-based
state updates
(interpolation)▶ ODEInt, ODEInt2
for �st/�nd order in
time ODEs▶ based on modified
generalised-𝛼
method

�
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Summary and outlook

https://github.com/michalhabera/dolfiny

Now▶ transfer Gmsh/DOLFINx▶ Restriction▶ interpolation, projection▶ SNESBlockProblem, SLEPcBlockProblem▶ ODEInt, ODEInt2▶ supports MPI parallelism▶ various demos

Future▶ interpolation on facets▶ flexible API for static condensation▶ ...

�
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Back to Basix: Construction of arbitrary order finite
element DOF maps on polygonal and polyhedral cell

meshes

Matthew Scroggs (https://www.mscroggs.co.uk , r mscroggs, a @mscroggs), University of
Cambridge, United Kingdom

Jørgen S. Dokken (https://jsdokken.com/ , r jorgensd), University of Cambridge, United
Kingdom

Chris Richardson (r chrisrichardson), BP Institute, United Kingdom
Garth N. Wells (r garth‐wells), University of Cambridge, United Kingdom

23 March 2021

We develop an approach to generating degree-of-freedom (DOF) maps for arbitrary order finite ele-
ment spaces for any cell shape. The approach is based on the composition of permutations and transfor-
mations by cell sub-entity. Current approaches to generating degree-of-freedom maps for arbitrary order
problems typically rely on a consistent orientation of cell entities that permits the definition of a common
local coordinate system on shared edges and faces. However, while orientation of a mesh is straightfor-
ward for simplex cells and is local operation, it is not a strictly local operation for quadrilateral cells and in
the case of hexahedral cells not all meshes are orientable. The permutation and transformation approach
is developed for a range of element types, including Lagrange, divergence-conforming Raviart–Thomas
and curl-conforming Nédélec elements, and for a range of cell shapes. The approach is local and can be
applied to cells of any shape, including general polytopes and meshes with mixed cell types. This method
has been implemented in Basix, FEniCSx’s element tabulator.

References

[1] Matthew W Scroggs, Jørgen S Dokken, Chris N Richardson, and Garth N Wells. “Construction of
arbitrary order finite element degree-of-freedom maps on polygonal and polyhedral cell meshes”.
https://arxiv.org/abs/2102.11901 . 2021.

You can cite this talk as:

Matthew Scroggs, Jørgen S. Dokken, Chris Richardson, and Garth N. Wells. “Back to Basix: Construction of ar-
bitrary order finite element DOF maps on polygonal and polyhedral cell meshes”. In: Proceedings of FEniCS 2021,
online, 22–26 March (eds Igor Baratta, Jørgen S. Dokken, Chris Richardson, Matthew W. Scroggs) (2021), 193–220.
DOI: 10.6084/m9.figshare.14495268.

BibTeX for this citation can be found at https://mscroggs.github.io/fenics2021/talks/scroggs.html .
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Back to Basix
Construction of arbitrary order elements on
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Tabulation in FEniCSx

● FEniCS uses FIAT.

● We want:
– Tabulation at runtime.

– C++.
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Basix
github.com/FEniCS/basix

● C++ with Python interface
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Lagrange
Nédélec (first kind)
Nédélec (second kind)
Raviart–Thomas
Brezzi–Douglas–Marini
Bubble
Crouzeix–Raviart
Regge

Lagrange (Q)
Nédélec
Raviart–Thomas
Bubble
DPC
Serendipity
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Higher order spaces
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DOF transformations

● Solution?: order cells in the mesh

Input cells
[0, 5, 1]

[1, 2, 3]

[5, 3, 0]

[5, 1, 2]

Cells
[0, 1, 5]

[1, 2, 3]

[0, 3, 5]

[1, 2, 5]
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Rainer Agelek, Michael Anderson, Wolfgang Bangerth, and William L. Barth. 
On orienting edges of unstructured two- and three-dimensional meshes. (2017)
ACM Transactions on Mathematical Software 44, 1, 5:1–5:22. DOI: 10.1145/3061708
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Example: Hexahedron

202



  

Example: Hexahedron
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Example: Hexahedron
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Example: Order 4 Lagrange
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Example: Order 4 Lagrange
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Example: Order 4 Lagrange
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Example: Order 4 Lagrange
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Example: Order 4 Lagrange
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Example: Order 4 Lagrange
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In general

● Precompute:
– 1 matrix for each edge

– 2 matrices for each face

● Compare local and global numbers 
to decide which matrices to apply
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Example: Order 2 Nédélec
(first kind)
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Example: Order 2 Nédélec
(first kind)
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Basix

import basix

element = basix.create_element(

    "Nedelec 1st kind H(curl)", "tetrahedron", 2)

print(element.base_transformations)

216



  

Example: Order 3 Nédélec 
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arxiv.org/abs/2102.11901
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defelement.com
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Thanks for listening!

arxiv.org/abs/2102.11901

defelement.com
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hIPPYlib‐MUQ: Scalable Markov chain Monte Carlo
sampling methods for large‐scale Bayesian inverse

problems governed by PDEs

Ki‐Tae Kim, University of California, Merced, United States
Umberto Villa, Washington University in St. Louis, United States
Matthew Parno, The United States Army Corps of Engineers, United States
Noemi Petra, University of California, Merced, United States
Youssef Marzouk, Massachusetts Institute of Technology, United States
Omar Ghattas, The University of Texas at Austin, United States

23 March 2021

With a massive explosion of datasets across all areas of science and engineering, the central questions
are: How do we optimally learn from data through the lens of models? And how do we account for un-
certainties in both data and models? These questions can be mathematically framed as Bayesian inverse
problems. While powerful and sophisticated approaches have been developed to tackle these problems,
such methods are often challenging to implement and there is no available software that easily facilitates
the analysis of Bayesian inverse problems. In this talk, we present an extensible FEniCS-based software
framework hIPPYlib-MUQ that overcomes these challenges by providing access to state-of-the-art algo-
rithms that offer the capability to solve complex large-scale Bayesian inverse problems across a broad
spectrum of scientific and engineering areas.

You can cite this talk as:

Ki-Tae Kim, Umberto Villa, Matthew Parno, Noemi Petra, Youssef Marzouk, and Omar Ghattas. “hIPPYlib-MUQ:
Scalable Markov chain Monte Carlo sampling methods for large-scale Bayesian inverse problems governed by
PDEs”. In: Proceedings of FEniCS 2021, online, 22–26 March (eds Igor Baratta, Jørgen S. Dokken, Chris Richardson,
Matthew W. Scroggs) (2021), 221. DOI: 10.6084/m9.figshare.14495274.

BibTeX for this citation can be found at https://mscroggs.github.io/fenics2021/talks/kim.html .
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Artificial neural network for bifurcating phenomena
modelled by nonlinear parametrized PDEs

Federico Pichi (https://people.sissa.it/~fpichi/ ), SISSA, International School for
Advanced Studies, Italy

Francesco Ballarin (https://www.francescoballarin.it ), Catholic University of the Sacred
Heart, Italy

Gianluigi Rozza (https://people.sissa.it/~grozza/ ), SISSA, International School for
Advanced Studies, Italy

Jan S. Hesthaven, EPFL, École Polytechnique Fédérale de Lausanne, Switzerland

23 March 2021

This work aims to develop and investigate a computational framework to study parametrized par-
tial differential equations (PDEs) which model nonlinear systems undergoing bifurcations. Bifurcation
analysis, ie following the coexisting branches due to the non-uniqueness of the solution, as well as deter-
mining the bifurcation points themselves, are complex computational tasks [3] [4] [5]. The combination of
reduced basis (RB) model reduction and artificial neural network (ANN) can potentially reduce the compu-
tational burden by several orders of magnitude and shed light on new strategies. Following the POD-NN
approach [1], we analyzed two CFD applications where both physical and geometrical parameters were
considered. We studied the Navier–Stokes equations for a viscous, steady, and incompressible flow: (i) in
a planar straight channel with a narrow inlet of varying width, and (ii) in a triangular parametrized cavity
[2]. All the simulations were performed within the open source software FEniCS and RBniCS [6] for the
RB framework, integrated with PyTorch to construct the neural network.
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nomena: Application to the Gross–Pitaevskii equation”. In: SIAM Journal on Scientific Computing
42.5 (2020), B1115–B1135. DOI: 10.1137/20M1313106 .

[4] F. Pichi and G. Rozza. “Reduced basis approaches for parametrized bifurcation problems held by
non-linear Von Kármán equations”. In: Journal of Scientific Computing 81.1 (2019), 112–135. DOI:
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[6] “RBniCS - reduced order modelling in FEniCS”. https://www.rbnicsproject.org .

You can cite this talk as:

Federico Pichi, Francesco Ballarin, Gianluigi Rozza, and Jan S. Hesthaven. “Artificial neural network for bi-
furcating phenomena modelled by nonlinear parametrized PDEs”. In: Proceedings of FEniCS 2021, online, 22–
26 March (eds Igor Baratta, Jørgen S. Dokken, Chris Richardson, Matthew W. Scroggs) (2021), 222–240. DOI:
10.6084/m9.figshare.14495280.

BibTeX for this citation can be found at https://mscroggs.github.io/fenics2021/talks/pichi.html .

222

https://people.sissa.it/~fpichi/
https://www.francescoballarin.it
https://people.sissa.it/~grozza/
https://fenicsproject.org
https://www.rbnicsproject.org/
https://pytorch.org/
https://doi.org/10.1016/j.jcp.2018.02.037
https://doi.org/10.1016/j.jcp.2018.02.037
https://doi.org/10.1137/20M1313106
https://doi.org/10.1007/s10915-019-01003-3
https://arxiv.org/abs/2010.13506
https://www.rbnicsproject.org
https://dx.doi.org/10.6084/m9.figshare.14495280
https://mscroggs.github.io/fenics2021/talks/pichi.html


Artificial neural network for bifurcating phenomena
modelled by nonlinear parametrized PDEs

F. Pichi1,2

F. Ballarin3, G. Rozza1

J. S. Hesthaven2

1 mathLab, Mathematics Area, SISSA
2EPFL Lausanne, MCSS

3Catholic University of the Sacred Heart

FEniCS 2021
22-26 March

223



Outline map

All the simulations were performed within FEniCS1, RBniCS2 and PyTorch.

1A. Logg et al. Automated Solution of Differential Equations by the Finite Element Method. Springer, 2012.
2RBniCS - reduced order modelling in FEniCS. https://www.rbnicsproject.org
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Preliminary examples

Question:
What have in common complex models coming from different physical contexts?
∆ Sudden changes linked to qualitatively different behaviour of the solutions.

Example:
The situation for a compressed beam can change abruptly when the load is
increased beyond a certain critical level at which the beam buckles.

µ
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Bifurcation theory and its numerical approximation

We represent a nonlinear PDE with the parametrized mapping G : X ◊ P æ X
Õ.

Given µ œ P µ R
P , seek X(µ) œ X such that:

Strong form

G(X(µ); µ) = 0, in X
Õ

. (1)

Weak form

g(X(µ), Y ; µ) = 0, ’ Y œ X. (2)

Consider the finite dimensional space XN µ X, with dimension N .

Algorithm 1 A pseudo-code for the reconstruction of a branch

1: X0 = Xguess Û Initial guess
2: for µj œ PK do Û Continuation loop

3: X
(0)
j = Xj≠1 Û Continuation guess

4: while ||GN (X
(k)
j ; µj)||XN

> ‘ do Û Newton method

5: JN (X
(k)
j ; µj)”X = GN (X

(k)
j ; µj) Û Galerkin-FE method

6: X
(k+1)
j = X

(k)
j ≠ ”X

7: end while

8: JN (Xj ; µj)Xe = ‡µj MN Xe Û Eigenproblem for stability
9: end for
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Reduced Order Models (ROMs)3,4

We focus on Reduced Basis (RB) method based on POD strategy, defining

XN = span{Σ
m

, m = 1, · · · , N} µ XN , where N π N ,

where {Σ
m}N

m=1 are the basis functions obtained from the snapshots {XN (µn)}Ntrain
n=1 .

G(X(µ); µ) = 0
¸ ˚˙ ˝

Partial differential

equation

X

MANIFOLD

3J. S. Hesthaven, G. Rozza, and B. Stamm. Certified Reduced Basis Methods for Parametrized Partial

Differential Equations. Springer International Publishing, 2015.
4A. Quarteroni, A. Manzoni, and F. Negri. Reduced Basis Methods for Partial Differential Equations:

An Introduction. Springer International Publishing, 2015.
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OFFLINE PHASE
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Reduced Basis

approximation

• Global approach:
Pros: single space encoding all branches
Cons: larger N and higher errors.

XN

BIFURCATIONS
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Reduced Order Models (ROMs)3,4

We focus on Reduced Basis (RB) method based on POD strategy, defining

XN = span{Σ
m

, m = 1, · · · , N} µ XN , where N π N ,

where {Σ
m}N

m=1 are the basis functions obtained from the snapshots {XN (µn)}Ntrain
n=1 .

G(X(µ); µ) = 0
¸ ˚˙ ˝

Partial differential

equation

 GN (XN (µ); µ) = 0
¸ ˚˙ ˝

High Fidelity

approximation

 GN(XN(µ); µ) = 0
¸ ˚˙ ˝

Reduced Basis

approximation

• Global approach:
Pros: single space encoding all branches
Cons: larger N and higher errors.

• Branch-wise approach:
Pros: low dimensional space
Cons: hidden unsampled branch.

XN

BIFURCATIONS

3J. S. Hesthaven, G. Rozza, and B. Stamm. Certified Reduced Basis Methods for Parametrized Partial

Differential Equations. Springer International Publishing, 2015.
4A. Quarteroni, A. Manzoni, and F. Negri. Reduced Basis Methods for Partial Differential Equations:

An Introduction. Springer International Publishing, 2015.
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Motivations for non-intrusive approach

5Goal: Investigate efficiently complex bifurcating behaviour in a real-time context.

6How: POD-NN approach combining ROMs and learning of reduced coefficients.

R
P

R
N

INPUT
OUTPUT

HIDDEN LAYERS

POD-NN approach:
approximate fi : P µ R

P æ R
N such that µ ‘æ VT XN (µ) from a training set given

by the pairs {(µi
, VT XN (µi ))}Ntrain

i=1 obtained from the offline POD procedure.

5F. Pichi, F. Ballarin, G. Rozza, and J. S. Hesthaven. Artificial neural network for bifurcating phenomena

modelled by nonlinear parametrized PDEs. Preprint, 2020.
6J. S. Hesthaven and S. Ubbiali. Non-intrusive reduced order modeling of nonlinear problems

using neural networks. Journal of Computational Physics, 363:55–78, 2018.
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Navier-Stokes application: the Coanda effect in a channel

NS system for viscous, steady and incompressible flow

;
≠µ∆v + v · Òv + Òp = 0 in Ω,

Ò · v = 0 in Ω,
with

Y

]

[

v = vin on Γin,

v = 0 on Γ0,

≠pn + (µÒv)n = 0 on Γout,

ISSUE: For viscosities µ Æ µ
ú ¥ 0.96 wall-hugging (stable) phenomena occur.

x
2
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Navier-Stokes application: the Coanda effect in a channel

SETTING

Parameter space P = 2, (µ, w) œ P = [0.5, 2] ◊ [0.5, 1.5], viscosity and ch. width.
RB dimension Nu = 50, Np = 24. Network 2 layers, 15 neurons, Ntrain = 200 · 6.

POD-NN speed-up = 106

‘
max
NN = 0.0625, ‘NN = 0.0118.

RB speed-up = 1.5
‘

max
RB = 0.7553, ‘RB = 0.0129.
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Navier-Stokes application: triangular cavity flow

Towards multiple bifurcating regimes:
existence of a critical angle for the parametrized
geometry causing a vortex attaching to vertex B

increasing the Reynolds number.

Γlid

Γwall

A B

C

Ω

Γwall

SETTING

Parameter space P = 3, (‹, µ1, µ2) œ P = [2 · 10≠4
, 1] ◊ [≠0.5, 0.5] ◊ [≠.25, ≠1],

viscosity and bottom vertex position. RB dimension Nu = 100, Np = 44.
Network 3 layers, 20 neurons, log-equispaced sampling, tanh, epochs, Adam opt.
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A reduced manifold based bifurcation diagram

Aim: efficiently reconstruct a bifurcation diagram, where the output is entirely
based on the reduced coefficients appearing in the RB expansion.

Idea: take advantage of the non-smoothness of the manifold, constructing a
detection tool that is able to track the critical points employing its curvature.

Result: L2 relative error for the vector of the critical points is of the order 10≠2.

Figure: Multi-parameter Coanda test case: (Left) Reduced manifold based bifurcation
diagram reconstruction. (Right) RB/POD-NN based 3D bifurcation diagram.
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Conclusions and Perspectives

— We described the general framework for the approximation of bifurcating
nonlinear parametrized PDEs.

— We investigated the intrusive Reduced Basis method to obtain an efficient
evaluation of the bifurcation diagrams.

— We applied the non-intrusive POD-NN technique to recover the decoupling
between offline and online phases.

— We presented an application of the methodology to the multi-parameter test
cases: the Coanda effect in a channel and the triangular cavity flow.

— We developed a new empirical strategy employing the reduced coefficients to
recover the bifurcation diagram from the manifold’s curvature.
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Conclusions and Perspectives

— We described the general framework for the approximation of bifurcating
nonlinear parametrized PDEs.

— We investigated the intrusive Reduced Basis method to obtain an efficient
evaluation of the bifurcation diagrams.

— We applied the non-intrusive POD-NN technique to recover the decoupling
between offline and online phases.

— We presented an application of the methodology to the multi-parameter test
cases: the Coanda effect in a channel and the triangular cavity flow.

— We developed a new empirical strategy employing the reduced coefficients to
recover the bifurcation diagram from the manifold’s curvature.

“ Reduce the number of training points needed incorporating physics with
Physics Informed Neural Networks (PINNs).

“ Embed Automatic Machine Learning (AutoML) to select best configuration for
the hyper-parameters of the neural network.

“ Improve the decay of the POD-NN technique w.r.t. the number of RB modes
by developing new algorithmic procedure.
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Run‐time from 300 years to 300 min: Lessons learned
in large‐scale modeling in FEniCS
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Topology optimization and phase-field fracture simulations necessitate the use of high mesh density
in the model. Thus, practical problems could range from a million to more than a billion degrees of
freedom. It is impossible to solve such systemswithout proper knowledge of good programming practices,
efficient memory management, and parallel computation. Fortunately, FEniCS works out of the box for
parallel computation. However, a researcher working with FEniCS should also understand the algorithm’s
computational complexity and optimize it for the best performance.

This talk aims to provide beginners with proper guidelines for handling large-scale systems in FEniCS.
We investigate the work cost and the storage cost related to different components of the program. We
will also comment on good programming practices that allow for a drastic reduction in program run-time.
Furthermore, we present our study on a topology optimization problem and discuss our mistakes while
working with small mesh that resulted in an estimated run-time of 300 years for a large-scale system. We
finally present the redesigned implementation that brought the run-time close to 300 mins.

You can cite this talk as:

Abhinav Gupta, U Meenu Krishnan, Rajib Chowdhury, and Anupam Chakrabarti. “Run-time from 300 years
to 300 min: Lessons learned in large-scale modeling in FEniCS”. In: Proceedings of FEniCS 2021, online, 22–
26 March (eds Igor Baratta, Jørgen S. Dokken, Chris Richardson, Matthew W. Scroggs) (2021), 241–257. DOI:
10.6084/m9.figshare.14495289.

BibTeX for this citation can be found at https://mscroggs.github.io/fenics2021/talks/gupta.html .
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Motivation

Design Domain Topologically optimised design

(I) Solve the topology optimization problem for a medium to large scale
engineering structure.

(II) The problem could contain degrees of freedom ranging from a million to over a
billion.
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Coding topology optimization in FEniCS

Start topology optimisation

Solve variational problem

Evaluate objective and sensitivity

Filter sensitivity

Solve the optimisation problem

Write results in XDMF

is STOP
condition
satisfied

Exit

Yes

No

MATLAB
99-Line code

FEniCS
55-Line code
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The problem

0.00 0.20 0.40 0.60 0.80

Start topology optimisation

Solve variational problem

Evaluate objective and sensitivity

Filter sensitivity

Solve the optimisation problem

Write results in XDMF

is STOP
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Exit

Yes

No

time (seconds)
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189

degrees of
freedom
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The problem
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The problem
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The problem

time (seconds)

Start topology optimisation

Solve variational problem

Evaluate objective and sensitivity

Filter sensitivity

Solve the optimisation problem

Write results in XDMF

is STOP
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satisfied

Exit
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The problem

0.00 2000.00 4000.00 6000.00 8000.00 10000.00 12000.00

Start topology optimisation

Solve variational problem

Evaluate objective and sensitivity

Filter sensitivity

Solve the optimisation problem

Write results in XDMF

is STOP
condition
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Exit

Yes
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Loops are excruciatingly slow.

1 million degrees of
freedom

Start topology optimisation

Solve variational problem

Evaluate objective and sensitivity

Filter sensitivity

Solve the optimisation problem

Write results in XDMF

is STOP
condition
satisfied

Exit

Yes

No

3years/iteration

time (seconds)
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Vectorization and static matrices

0.00 2000.00 4000.00 6000.00 8000.00 10000.00 12000.00

Loops

Loops

Vectorisation

Vectorisation

Build static matrices outside

80k degrees of freedom

time (seconds)
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Controlled post processing

Build static matrices outside

Write only necessary fields

0.00 200.00 400.00 600.00 800.00 1000.00

time (seconds)

80k degrees of freedom

Start topology optimisation

Solve variational problem

Evaluate objective and sensitivity

Filter sensitivity

Solve the optimisation problem

Write results in XDMF

is STOP
condition
satisfied

Exit

Yes

No

Each call to project results in a call to solve
for approximating the field by finite element method.
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Properly select/configure the solver and preconditioner.

Write only necessary fields

Change to an iterative solver
and a PDE filter

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00

time (seconds)

Start topology optimisation

Solve variational problem

Evaluate objective and sensitivity

Filter sensitivity

Solve the optimisation problem

Write results in XDMF

is STOP
condition
satisfied

Exit

Yes

No

80k degrees of freedom
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Parallelization.

80K

600K

1.3M

0.00 20.00 40.00 60.00 80.00 100.00 120.00

0.00 20.00 40.00 60.00 80.00 100.00 120.00

1

2

6

10
1.3M degrees of freedom

time (seconds)

time (seconds)

Start topology optimisation

Solve variational problem

Evaluate objective and sensitivity

Filter sensitivity

Solve the optimisation problem

Write results in XDMF

is STOP
condition
satisfied

Exit

Yes

No

2min/iteration
degrees of
freedom

Cores
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Result

Design Domain Topologically optimised design
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Conclusion

(I) General guidelines for handling medium to large-scale systems in FEniCS

(i) Always profile the code and look for bottlenecks.
(ii) Avoid use of loops in python. Look for efficient alternatives.
(iii) Avoid re-evaluation of matrices that do not change.
(iv) Evaluate and write only necessary simulation outputs.
(v) In an iterative process evaluate output at every n

th step to further speed
up the simulation.

(vi) Properly select/configure the solver and preconditioner based on the
problem.

(II) Stepping into the realm of large scale simulations require knowledge of good
programming practices, parallelization, and a deep understanding of the
working principles of the tools/libraries.
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Piola‐mapped finite elements in Firedrake for linear
elasticity and Stokes flow
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23 March 2021

Many finite element spaces are not preserved by the standard pullback to the reference cell. Robust im-
plementation therefore requires studying the relation between degrees of freedom under pushforward, in
order to obtain the correct bases on a generic physical triangle [1]. In this work, we extend this transforma-
tion theory to vector- and tensor-valued elements mapped by the contravariant Piola transform. We apply
this theory, and describe its efficient implementation in Firedrake, for the the Mardal–Tai–Winther ele-
ments discretizing𝐻(div) for Stokes–Darcy flow, and the Arnold–Winther elements discretizing𝐻(div; 𝕊)
for the stress-displacement formulation of linear elasticity.

In particular, the Arnold–Winther elements were the first to stably enforce exact symmetry of the
Cauchy stress tensor; we demonstrate how they may be efficiently mapped, while the few prior imple-
mentations are either custom-made for specific numerical experiments, or require the explicit element-
by-element construction of the basis. Our novel implementation of these exotic elements composes inex-
pensively and automatically with the rest of the Firedrake code stack; numerical results are presented.
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Motivation

x̂1 x̂2

x̂3
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x3

F : K̂ → K

K̂

KThe reference-to-physical
map F : K → K̂ between cells

F (x̂) = J x̂+ b

induces a pullback operator on
reference functions φ̂:

(

x̂ 7→ φ̂(x̂)

)

7→

(

x 7→ φ(x) := φ̂(F−1(x))

)

.
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correct bases on a generic physical cell.
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Transformation theory of Kirby [2018] showed how to obtain the
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7→
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x 7→ φ(x) := φ̂(F−1(x))

)

.

Standard pullback preserves bases of affine equivalent elements:
Lagrange, Crouzeix–Raviart, ...

Many elements are not preserved: Hermite, Argyris, Morley, Bell, ...

Transformation theory of Kirby [2018] showed how to obtain the
correct bases on a generic physical cell.

Goal of this work:

Extend this theory to H(div) elements.

Representative elements:

{

H(div) : Mardal–Tai–Winther [2002].

H(div; S) : Arnold–Winther [2002, 2003].
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Piola transforms

Definition

Let F : K̂ → K, J(x̂) = ∇̂F (x̂) its Jacobian. The contravariant Piola

transform takes
(

Φ̂ : K̂ → R
d

)

7→

(

Fdiv(Φ̂) = Φ : K → R
d

)

,

Fdiv(Φ̂) :=
1

det J
JΦ̂ ◦ F−1.
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Let F : K̂ → K, J(x̂) = ∇̂F (x̂) its Jacobian. The contravariant Piola

transform takes
(

Φ̂ : K̂ → R
d

)

7→

(

Fdiv(Φ̂) = Φ : K → R
d

)

,

Fdiv(Φ̂) :=
1

det J
JΦ̂ ◦ F−1.

The double contravariant Piola transform is
(

τ̂ : K̂ → S

)

7→

(

Fdiv,div(τ̂) = τ : K → S

)

,

Fdiv,div(τ̂) :=
1

(det J)2
J(τ̂ ◦ F−1)J⊤.
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Piola transforms

Definition

Let F : K̂ → K, J(x̂) = ∇̂F (x̂) its Jacobian. The contravariant Piola

transform takes
(

Φ̂ : K̂ → R
d

)

7→

(

Fdiv(Φ̂) = Φ : K → R
d

)

,

Fdiv(Φ̂) :=
1

det J
JΦ̂ ◦ F−1.

The double contravariant Piola transform is
(

τ̂ : K̂ → S

)

7→

(

Fdiv,div(τ̂) = τ : K → S

)

,

Fdiv,div(τ̂) :=
1

(det J)2
J(τ̂ ◦ F−1)J⊤.

Fact

These are isomorphisms

H(div, K̂)
≃
−→ H(div,K), H(div, K̂; S)

≃
−→ H(div,K; S).
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Vector-valued elements

The Mardal–Tai–Winther element

MTW (K) =
{

Φ ∈ P3(K;R2)| div Φ ∈ P0(K), (Φ · n) |e ∈ P1(e) ∀ edges e
}
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Locking-free element for (poro)elasticity; discrete
Korn inequality
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Vector-valued elements

The Mardal–Tai–Winther element

MTW (K) =
{

Φ ∈ P3(K;R2)| div Φ ∈ P0(K), (Φ · n) |e ∈ P1(e) ∀ edges e
}

Novelties:

Discretises H(div) and (nonconforming) H
1(Ω)

Stable for both Stokes and Darcy flow

Locking-free element for (poro)elasticity; discrete
Korn inequality

Divergence-free for Stokes when paired with DG(0)

Discretises the 2D Stokes complex:

R H2(Ω) H
1(Ω) L2(Ω) 0.

⊂ curl div
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Tensor-valued elements

The Arnold–Winther stress elements

Conforming: AW c(K) = {τ ∈ P3(K; S) | div τ ∈ P1(K;R2)}

Nonconforming: AWnc(K) = {τ ∈ P2(K; S) | n · τn ∈ P1(e) ∀ edges e}

paired with DG(1) for the displacement.
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Tensor-valued elements

The Arnold–Winther stress elements

Conforming: AW c(K) = {τ ∈ P3(K; S) | div τ ∈ P1(K;R2)}

Nonconforming: AWnc(K) = {τ ∈ P2(K; S) | n · τn ∈ P1(e) ∀ edges e}

paired with DG(1) for the displacement.

Exact enforcement of the symmetry of the Cauchy
stress.

Stable and convergent for stress-displacement linear
elasticity.

Discretise the 2D stress complex:

0 P1(Ω) H2(Ω) H(div; S) L
2(Ω) 0

0 P1(Ω) Qh Σh Vh 0.

⊂

id

airy

Ih

div

Πh Ph

⊂ airy div
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Tensor-valued elements

The Arnold–Winther stress elements

Conforming: AW c(K) = {τ ∈ P3(K; S) | div τ ∈ P1(K;R2)}

Nonconforming: AWnc(K) = {τ ∈ P2(K; S) | n · τn ∈ P1(e) ∀ edges e}

paired with DG(1) for the displacement.

Exact enforcement of the symmetry of the Cauchy
stress.

Stable and convergent for stress-displacement linear
elasticity.

Discretise the 2D stress complex:

0 P1(Ω) H2(Ω) H(div; S) L
2(Ω) 0

0 P1(Ω) Qh Σh Vh 0.

⊂

id

airy

Ih

div

Πh Ph

⊂ airy div

Almost never systematically implemented.
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Piola-inequivalent spaces

Denote:

F∗ : V̂ → V a reference-to-physical Piola pullback

Ψ̂,Ψ nodal bases for the MTW or AW spaces.

Then unfortunately,

F∗(Ψ̂) 6= Ψ, but Ψ = MF∗(Ψ̂) for some invertible M.
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Similarly, define:
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Piola-inequivalent spaces

Denote:

F∗ : V̂ → V a reference-to-physical Piola pullback

Ψ̂,Ψ nodal bases for the MTW or AW spaces.

Then unfortunately,

F∗(Ψ̂) 6= Ψ, but Ψ = MF∗(Ψ̂) for some invertible M.

Similarly, define:

pushforward F∗ : V ∗ → V̂ ∗

sets of DOFs L, L̂

then L̂ = PF∗(L) for some invertible P.

Theorem [Kirby (2018)]

M = P⊤.

Proposition [A., Farrell, Kirby (2020)]

Explicit construction of the (sparse) dual transformations P for the
MTW , AW c, and AWnc spaces.
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Implementation: the MTW element

Implementation was carried out in Firedrake .
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Implementation: the MTW element

Implementation was carried out in Firedrake .

A perturbed saddle point system

Seek (u, p) ∈ (H0(div) ∩ ǫH1
0(Ω))× L2(Ω) such that

(

I − ǫ2∆
)

u−∇p = f in Ω,

div u = g in Ω,

u = h on ΓD,

ǫ2∇un− pn = 0 on ΓN .

ǫ = 1: Stokes-like incompressible flow.
ǫ → 0 : Darcy flow (∼ mixed Poisson).
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Implementation: the MTW element

Implementation was carried out in Firedrake .

A perturbed saddle point system

Seek (u, p) ∈ (H0(div) ∩ ǫH1
0(Ω))× L2(Ω) such that

(

I − ǫ2∆
)

u−∇p = f in Ω,

div u = g in Ω,

u = h on ΓD,

ǫ2∇un− pn = 0 on ΓN .

ǫ = 1: Stokes-like incompressible flow.
ǫ → 0 : Darcy flow (∼ mixed Poisson).

We validate robustness with respect to ǫ using a smooth MMS on
Ω = (0, 1)2.

23/03/2021 Piola-mapped elements 8

288



The MTW element: ǫ-independent MMS convergence rates

ǫ \ N 2
0

2
1

2
2

2
3

2
4

2
5 EOC

1 0.00456896 0.00128355 0.000341183 8.8577e-05 2.26311e-05 5.72514e-06 1.92807

2
−2 0.00447605 0.00126505 0.000335227 8.68331e-05 2.21707e-05 5.60825e-06 1.92809

2
−4 0.00421902 0.00120629 0.000319928 8.22134e-05 2.09019e-05 5.2806e-06 1.9284

2
−6 0.00405483 0.00113654 0.000305674 7.96031e-05 2.02428e-05 5.10031e-06 1.92697

2
−8 0.0040504 0.00112421 0.000296652 7.67045e-05 1.97471e-05 5.02906e-06 1.93071

2
−10 0.00405058 0.00112407 0.000296248 7.60249e-05 1.92762e-05 4.88509e-06 1.9391

0 0.00405059 0.00112407 0.000296246 7.60168e-05 1.92522e-05 4.84429e-06 1.94153

L
2 errors and convergence rates of MTW velocity for a range of ǫ.

ǫ \ N 2
0

2
1

2
2

2
3

2
4

2
5 EOC

1 0.430242 0.200198 0.102848 0.051765 0.0259237 0.0129668 1.01045

2
−2 0.420754 0.198049 0.102341 0.051599 0.0258535 0.0129335 1.00476

2
−4 0.420711 0.19804 0.102339 0.0515984 0.0258533 0.0129334 1.00473

2
−6 0.420711 0.19804 0.102339 0.0515983 0.0258533 0.0129334 1.00473

2
−8 0.420711 0.19804 0.102339 0.0515983 0.0258533 0.0129334 1.00473

2
−10 0.420711 0.19804 0.102339 0.0515983 0.0258533 0.0129334 1.00473

0 0.420711 0.19804 0.102339 0.0515983 0.0258533 0.0129334 1.00473

L
2 pressure errors and convergence rates.

23/03/2021 Piola-mapped elements 9

289



Arnold–Winther elements for linear elasticity

The Hellinger–Reissner principle

Seek a stress-displacement pair (σ, u) ∈ H(div; S)× L
2(Ω) such that

Aσ = ε(u) in Ω,

div σ = f in Ω,

u = u0 on ΓD,

σn = g on ΓN ,

where A = A(µ, λ) denotes the compliance tensor.

We validate the implementation again using a smooth MMS.
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Arnold–Winther elements: MMS convergence rates

N u error u EOC σ error σ EOC divh σ error divh σ EOC

21 0.10522 – 0.490015 – 0.832183 –

22 0.0278746 1.91638 0.209729 1.2243 0.267865 1.63539

23 0.00707398 1.97836 0.0890996 1.23504 0.0714705 1.90609

24 0.00177271 1.99656 0.0412454 1.11118 0.0181626 1.97638

25 0.000442977 2.00066 0.0199779 1.04583 0.00455929 1.99409

L
2 errors and convergence rates for AW

nc, at Poisson ratio ν = 0.3.

N u error u EOC σ error σ EOC div σ error div σ EOC

20 4.94678 – 0.00816494 – 0.037794 –

21 1.0283 2.26623 0.0010553 2.95179 0.01005 1.91095

22 0.0826871 3.63646 0.000129246 3.02946 0.0025538 1.97649

23 0.00561489 3.88033 1.59231e-05 3.02093 0.000641093 1.99404

24 0.000365775 3.94023 1.98093e-06 3.00687 0.00016044 1.9985

25 2.7322e-05 3.74282 2.47482e-07 3.00078 4.01203e-05 1.99963

AW
c, near the incompressible limit ν = 0.49999.
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Arnold–Winther elements: Nitsche and smoothers

To enforce the traction condition

σn = g on ΓN

which is particularly difficult with AW elements [Carstensen et al.
(2008)],
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Arnold–Winther elements: Nitsche and smoothers

To enforce the traction condition

σn = g on ΓN

which is particularly difficult with AW elements [Carstensen et al.
(2008)], and to aid multigrid preconditioning, seek stationary points of

Hh,γ,ω(σh, uh) :=

∫

Ω

1

2
Aσh : σh + (div σh − f) · uh

−

∫

ΓN

(σhn− g) · uh ds+
γ

2h

∫

ΓN

‖σhn− g‖2 ds .

Nitsche penalty for the traction condition,
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Arnold–Winther elements: Nitsche and smoothers

To enforce the traction condition

σn = g on ΓN

which is particularly difficult with AW elements [Carstensen et al.
(2008)], and to aid multigrid preconditioning, seek stationary points of

Hh,γ,ω(σh, uh) :=

∫

Ω

1

2
Aσh : σh + (div σh − f) · uh

−

∫

ΓN

(σhn− g) · uh ds+
γ

2h

∫

ΓN

‖σhn− g‖2 ds +
ω

2

∫

Ω

‖ div σh − f‖2 dx.

Nitsche penalty for the traction condition,

augmented Lagrangian penalty to control the Schur complement.
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Arnold–Winther elements: Nitsche and smoothers

To enforce the traction condition

σn = g on ΓN

which is particularly difficult with AW elements [Carstensen et al.
(2008)], and to aid multigrid preconditioning, seek stationary points of

Hh,γ,ω(σh, uh) :=

∫

Ω

1

2
Aσh : σh + (div σh − f) · uh

−

∫

ΓN

(σhn− g) · uh ds+
γ

2h

∫

ΓN

‖σhn− g‖2 ds +
ω

2

∫

Ω

‖ div σh − f‖2 dx.

Nitsche penalty for the traction condition,

augmented Lagrangian penalty to control the Schur complement.

Patch-based additive Schwarz smoother [e.g. Schöberl (1999)]

We employ the vertex-star iteration to precondition the augmented stress
block after block factorisation, applied by PCASM.
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Arnold–Winther elements for linear elasticity
Numerical results

A traction-free condition except at both ends, coloured by the shear stress, near

the incompressible limit (ν = 0.499999); 1.14× 10
6 DOFs using AW

nc.

Considered in [Li (2018)].
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Take-home messages

We have generalised contravariant Piola transformation theory to
Piola-inequivalent elements.
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Take-home messages

We have generalised contravariant Piola transformation theory to
Piola-inequivalent elements.

Robust implementation of:
◮ Mardal–Tai–Winther elements for Stokes–Darcy flow.
◮ Arnold–Winther elements for stress-displacement linear elasticity.

Conformity to complexes allows for the deployment of patch-based
multigrid smoothers.

Our approach is inexpensive, composing neatly with the existing
software stack.

Thanks.
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UFL to GPU: Generating near roofline actions kernels

Kaushik Kulkarni, University of Illinois at Urbana‐Champaign, United States
Andreas Kloeckner (http://www.cs.illinois.edu/~andreask ), University of Illinois at
Urbana‐Champaign, United States

23 March 2021

Recent GPUs are capable of providing peak performance up to 6 TFlOps/s (DP), making them an
attractive computational target for Finite Element Methods. However, effectively mapping an FEM solver
to a GPU remains challenging due to the scattered memory access, large amounts of on-chip state space
(eg registers) required for efficient execution, and the inherently large algorithmic variety encountered in
local assembly kernels for variational forms.

In this talk, we focus on accelerating FEM action kernels for matrix-free operators on simplices. We
describe a parametrized family of transformation strategies targeting these kernels, a heuristic cost model,
and an auto-tuning strategy that enables us to achieve near-roofline performance for a wide variety of
variational forms across domains such as fluid dynamics, solid mechanics, and wave motion. We propose
a new computational offloading interface for Firedrake, and we have realized our UFL-to-GPU compilation
pipeline within this interface. The pipeline can process general UFL with very few limitations and reliably
produce routines for high-performance matrix-free 1-form assembly.

We close with remarks on further potential performance improvement opportunities.

You can cite this talk as:

Kaushik Kulkarni and Andreas Kloeckner. “UFL to GPU: Generating near roofline actions kernels”. In: Proceedings
of FEniCS 2021, online, 22–26 March (eds Igor Baratta, Jørgen S. Dokken, Chris Richardson, Matthew W. Scroggs)
(2021), 302. DOI: 10.6084/m9.figshare.14495301.

BibTeX for this citation can be found at https://mscroggs.github.io/fenics2021/talks/kulkarni.html .
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A second order scheme to compute geometric
interfaces with applications in microfluids

Stephan Schmidt, Humboldt University Berlin, Germany
Melanie Gräßer, Paderborn University, Germany
Hans‐Joachim Schmid, Paderborn University, Germany

23 March 2021

Second order shape calculus is used to solve the Young–Laplace problem, which determines the shape
of energy minimal interfaces such as droplets and capillary bridges. Knowledge of the shape and resulting
capillary force of droplets in micro fluids has multiple application in granulate flows and lubrication.

To this end, 2nd order shape calculus is combined with a variety of contact and subset constraints to
make the problem tractable with FEniCS. In particular, a level-set formulation to described the external ge-
ometry is coupled with a curvature-free variational formulation of the shape Hessian on shells, combining
the multi and inter mesh capabilities of FEniCS with finite elements on shells.

Alternative, non-smooth interface energies and the resulting geometric flows will also be discussed.

You can cite this talk as:

Stephan Schmidt, Melanie Gräßer, and Hans-Joachim Schmid. “A second order scheme to compute geometric
interfaces with applications in microfluids”. In: Proceedings of FEniCS 2021, online, 22–26 March (eds Igor Baratta,
Jørgen S. Dokken, Chris Richardson, Matthew W. Scroggs) (2021), 303. DOI: 10.6084/m9.figshare.14495304.

BibTeX for this citation can be found at https://mscroggs.github.io/fenics2021/talks/schmidt.html .

303

https://fenicsproject.org
https://dx.doi.org/10.6084/m9.figshare.14495304
https://mscroggs.github.io/fenics2021/talks/schmidt.html


Stochastic topology optimisation for robust and
manufacturable designs

Johannes Neumann (https://www.rafinex.com ), Rafinex SARL, Germany

23 March 2021

Modern production methods, such as 3D printing, can manufacture almost constraint free form varia-
tions. Topology optimization enables engineers to explore the vastly increased design possibilities. Given
the performance requirements, a part is optimized to be as cheap or lightweight as possible. Provided with
the greatest allowed extent of the part, the algorithm fully controls the shape and placement of material
and the incorporation of holes.

Care needs to be taken as there is a high risk of over-optimization towards the provided load cases.
As a result the part might perform well in the simulated environment but fail in the actual application
as unforeseen load conditions might occur or load cases might deviate due to some margin of error in
manufacturing and application.

Stochastic topology optimization yields reliable optimal forms by extending physics models with
risk assessment approaches from financial mathematics using formal uncertainty quantification meth-
ods. Loads are allowed to have an error in direction or magnitude, materials might have production
faults. Incorporating these defects in the optimization yields unique designs that are not achievable by
conventional topology optimization.

The generated designs react much more robustly to changing and unknown conditions in the physical
world and have greatly increased reusability potential thanks to a greater performance envelope while
maintaining or reducing weight compared to conventional design methods.

Manufacturability can be ensured with additional constraints such as two mold casting or printability
for different printing techniques. State of the art adaptive numerical algorithms ensure high resolution,
high quality ready to manufacture designs. These can be used to rapidly design and manufacture perfor-
mance parts or as a blueprint for a more traditional design approach.

The degree of robustness can be controlled on a high level with model parameters when employing
the Bayesian approach or on a low level frequentist approach by prescribing probabilities and a desired
risk measure for more control and even more optimization potential.

The slides for this talk are available at https://mscroggs.github.io/fenics2021/talks/
neumann.html under a CC BY-NC-ND 4.0 license.

You can cite this talk as:

Johannes Neumann. “Stochastic topology optimisation for robust and manufacturable designs”. In: Proceedings
of FEniCS 2021, online, 22–26 March (eds Igor Baratta, Jørgen S. Dokken, Chris Richardson, Matthew W. Scroggs)
(2021), 304. DOI: 10.6084/m9.figshare.14495307.
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Computing multiple solutions of topology optimisation
problems with FEniCS

Ioannis Papadopoulos (http://www.maths.ox.ac.uk/people/ioannis.papadopoulos ),
University of Oxford, United Kingdom

Patrick Farrell, University of Oxford, United Kingdom
Thomas Surowiec, Philipps‐Universität Marburg, Germany

23 March 2021

Topology optimisation finds the optimal material distribution of a fluid or solid in a domain, subject
to PDE and volume constraints. The models often result in a PDE, volume and inequality constrained,
nonconvex, infinite-dimensional optimisation problem. These problems can exhibit many local minima.
In practice, heuristics are used to obtain the global minimum, but these can fail even in the simplest of
cases. In this talk, we will introduce the deflated barrier method, an algorithm, implemented in both
FEniCS and Firedrake, that solves such problems and can systematically discover many of these local
minima. We will present examples which include finding 42 solutions of the topology optimisation of
a fluid satisfying the Navier–Stokes equations and more recent work involving the three-dimensional
topology optimisation of a fluid in Stokes flow. We also discuss block preconditioners for solving the
linear systems arising in three-dimensional problems.

You can cite this talk as:

Ioannis Papadopoulos, Patrick Farrell, and Thomas Surowiec. “Computing multiple solutions of topology opti-
misation problems with FEniCS”. In: Proceedings of FEniCS 2021, online, 22–26 March (eds Igor Baratta, Jørgen S.
Dokken, Chris Richardson, Matthew W. Scroggs) (2021), 305. DOI: 10.6084/m9.figshare.14495310.
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Shape optimization in coupled fluid‐structure systems
using Multiphenics

Harisankar Ramaswamy, University of Southern California, United States
Saikat Dey, U.S. Naval Research Laboratory, United States
Assad Oberai, University of Southern California, United States

23 March 2021

We present a gradient-based shape optimization framework for coupled structural acoustic systems
using Multiphenics, a FEniCS-based open source software. In our approach, the primary variables are
displacement in the solid domain and pressure in the fluid domain; they are obtained by solving the
Navier–Cauchy and the Helmholtz equation respectively. Further, these fields are coupled through ex-
plicit interface conditions that ensure the continuity of displacements and tractions across fluid-structure
boundary. In our method, the adjoint based formulation is employed to derive gradients that drive the
movement of the interface boundary at every iteration. The curvature at the interface boundary, which is
a crucial ingredient for obtaining the shape sensitivity, is computed by considering a smooth-continuous
extension of the normal vector. Finally, the effectiveness of our approach in solving both interior and
exterior optimization problems is demonstrated with simple examples.

You can cite this talk as:

Harisankar Ramaswamy, Saikat Dey, and Assad Oberai. “Shape optimization in coupled fluid-structure systems
using Multiphenics”. In: Proceedings of FEniCS 2021, online, 22–26 March (eds Igor Baratta, Jørgen S. Dokken, Chris
Richardson, Matthew W. Scroggs) (2021), 306. DOI: 10.6084/m9.figshare.14495313.
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ATOMiCS: topology optimization using FEniCS and
OpenMDAO

Jiayao Yan, University of California San Diego, United States
Ru Xiang, University of California San Diego, United States
David Kamensky, University of California San Diego, United States
John Hwang, University of California San Diego, United States

23 March 2021

We present a toolbox called ATOMiCS, which uses FEniCS as the partial differential equation (PDE)
solver for topology optimization and provides partial derivatives for density-based topology optimization
in a modular large-scale optimization framework, OpenMDAO. OpenMDAO is a gradient-based multi-
disciplinary design optimization framework developed by NASA. Many existing models from different
disciplines have been implemented in OpenMDAO as modular components by various users. Integrating
FEniCS with OpenMDAO brings a practical PDE solution approach and symbolic derivative computation
while maintaining interoperability with existing OpenMDAO models. In addition, using FEniCS as the
PDE solver for topology optimization inside amodular framework enables a general topology optimization
toolbox with user-specified governing PDEs. We have applied ATOMiCS to topology optimization prob-
lems such as minimizing compliance in linear and nonlinear elastic structures, minimizing compliance
and weight of thermoelastic material in battery packs, and shape-matching with liquid crystal elastomer
structures.

You can cite this talk as:

Jiayao Yan, Ru Xiang, David Kamensky, and John Hwang. “ATOMiCS: topology optimization using FEniCS and
OpenMDAO”. In: Proceedings of FEniCS 2021, online, 22–26 March (eds Igor Baratta, Jørgen S. Dokken, Chris
Richardson, Matthew W. Scroggs) (2021), 307. DOI: 10.6084/m9.figshare.14495316.
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Simple and sharp: Error estimates of Bank–Weiser type
in the FEniCS Project

Jack S. Hale, University of Luxembourg, Luxembourg
Raphael Bulle, University of Luxembourg, France
Alexei Lozinski (http://lmb.univ- fcomte.fr/Lozinski- Alexei ), Université Bourgogne

Franche‐Comté, France
Stéphane P. A. Bordas, University of Luxembourg, Luxembourg
Franz Chouly, Université de Bourgogne‐Franche‐Comté, France

24 March 2021

We propose a simple, cheap and parallelisable implementation [3] in DOLFIN and DOLFINx of an
implicit a posteriori error estimator introduced in [1].

The computation of the implicit estimator requires the solution of local Neumann problems in non-
standard finite element spaces on each cell of the mesh. These special spaces are usually not available in
modern automated finite element software, including the FEniCS Project.

Our method bypasses this issue by constructing a linear system on each cell corresponding to the
problem in an available finite element space. We restrict this linear system to a non-standard space. On
affine-equivalent finite elements, this restriction is constant and its application involves only small dense
matrix-matrix multiplications.

We show several numerical examples of adaptive mesh refinement driven by this estimator applied to
Poisson, Stokes and incompressible linear elasticity, as well as for goal-oriented problems [2].

References

[1] R. E. Bank and A. Weiser. “Some a posteriori error estimators for elliptic partial differential equa-
tions”. 1985.

[2] Roland Becker, Elodie Estecahandy, and David Trujillo. “Weighted marking for goal-oriented adap-
tive finite element methods”. 2011.

[3] Raphaël Bulle, Jack S. Hale, Alexei Lozinski, Stéphane P. A. Bordas, and Franz Chouly. “Hierarchical
a posteriori error estimation of Bank–Weiser type in the FEniCS Project”. In: submitted (2020).
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• The problem.

• Estimates of Bank-Weiser type.

• Implementation.

• Results.
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Problem setting

Find uk in V k such that
∫

Ω

∇uk · ∇vk =

∫

Ω

fvk ∀vk ∈ V k. (1)
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Error

We quantify the discretization error e := uk − u using the energy norm ηerr :=
‖∇e‖Ω = ‖∇uk −∇u‖Ω.
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Error

We quantify the discretization error e := uk − u using the energy norm ηerr :=
‖∇e‖Ω = ‖∇uk −∇u‖Ω.

Goal: estimate η i.e. find a computable quantity ηbw such that

ηbw ≈ ηerr.
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Contributions

• A high-level way of expressing Bank–Weiser type error estimators in DOLFIN
and DOLFINx [Bank and Weiser, 1985].

• A simple dual-weighted error estimation and marking strategy originally
proposed in [Becker et al., 2011].

• A proof of the reliability of the Bank–Weiser estimator in dimension three
[Bulle et al., 2020].

• arXiv: https://arxiv.org/abs/2102.04360

• Code: https://github.com/rbulle/fenics-error-estimation
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The Bank–Weiser Estimator
The restriction eT of e to any cell T of the mesh satisfies the equation

∫

T

∇eT · ∇vT :=

∫

T

(f −∆uk)vT +
∑

E∈∂T

1

2

∫

E

J∂nukKE vT ∀v ∈ H1
0 (T ).
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The Bank–Weiser Estimator
The restriction eT of e to any cell T of the mesh satisfies the equation

∫

T

∇eT · ∇vT :=

∫

T

(f −∆uk)vT +
∑

E∈∂T

1

2

∫

E

J∂nukKE vT ∀v ∈ H1
0 (T ).

On a cell T , the Bank–Weiser problem is given by:
find ebwT in V bw

T such that
∫

T

∇ebwT · ∇vbwT =

∫

T

(f −∆uk)v
bw
T +

∑

E∈∂T

1

2

∫

E

J∂nukKE vbwT ∀vbwT ∈ V bw
T .
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The Bank–Weiser Estimator
The restriction eT of e to any cell T of the mesh satisfies the equation

∫

T

∇eT · ∇vT :=

∫

T

(f −∆uk)vT +
∑

E∈∂T

1

2

∫

E

J∂nukKE vT ∀v ∈ H1
0 (T ).

On a cell T , the Bank–Weiser problem is given by:
find ebwT in V bw

T such that
∫

T

∇ebwT · ∇vbwT =

∫

T

(f −∆uk)v
bw
T +

∑

E∈∂T

1

2

∫

E

J∂nukKE vbwT ∀vbwT ∈ V bw
T .

The Bank–Weiser estimator is defined as

η2bw :=
∑

T∈T

η2bw,T , ηbw,T := ‖∇ebwT ‖T .
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The space V bw
T
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The space V bw
T

• Different definitions of V bw
T lead to different variants of the estimator.
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The space V bw
T

• Different definitions of V bw
T lead to different variants of the estimator.

• General principle: let V −

T ( V +

T be two finite element spaces and

LT : V +

T −−−−! V −

T ,

be the local Lagrange interpolation operator,

V bw
T := ker(LT ) =

{

v+T ∈ V +

T , LT (v
+

T ) = 0
}

.
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Example

For V +

T = V 2
T and V −

T = V 1
T
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Implementation
We need to compute the matrix Abw

T and vector bbwT from
∫

T

∇ebwT · ∇vbwT =

∫

T

(f −∆uk)v
bw
T +

∑

E∈∂T

1

2

∫

E

J∂nukKE vbwT ∀vbwT ∈ V bw
T .
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Implementation
We need to compute the matrix Abw

T and vector bbwT from
∫

T

∇ebwT · ∇vbwT =

∫

T

(f −∆uk)v
bw
T +

∑

E∈∂T

1

2

∫

E

J∂nukKE vbwT ∀vbwT ∈ V bw
T .

Problem: the space V bw
T is not provided by DOLFIN.
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Implementation
We need to compute the matrix Abw

T and vector bbwT from
∫

T

∇ebwT · ∇vbwT =

∫

T

(f −∆uk)v
bw
T +

∑

E∈∂T

1

2

∫

E

J∂nukKE vbwT ∀vbwT ∈ V bw
T .

Problem: the space V bw
T is not provided by DOLFIN.

Idea: we rely on the matrix A+

T and vector b+T from
∫

T

∇e+
T
· ∇v+

T
=

∫

T

(f −∆uk)v
+

T
+

∑

E∈∂T

1

2

∫

E

J∂nukKE v+
T

∀v+
T
∈ V +

T
,

since V +

T is provided by DOLFIN.
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Implementation
We need to compute the matrix Abw

T and vector bbwT from
∫

T

∇ebwT · ∇vbwT =

∫

T

(f −∆uk)v
bw
T +

∑

E∈∂T

1

2

∫

E

J∂nukKE vbwT ∀vbwT ∈ V bw
T .

Problem: the space V bw
T is not provided by DOLFIN.

Idea: we rely on the matrix A+

T and vector b+T from
∫

T

∇e+
T
· ∇v+

T
=

∫

T

(f −∆uk)v
+

T
+

∑

E∈∂T

1

2

∫

E

J∂nukKE v+
T

∀v+
T
∈ V +

T
,

since V +

T is provided by DOLFIN. and we look for a matrix N such that:

Abw
T = N tA+

TN, and bbwT = N tb+T .
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Algorithm

Compute
G

SVD of G
to obtain V

Extract N
from V

Computation of N
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Algorithm

Compute
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Extract N
from V

Computation of N

Compute A+

T

and b+T

Compute Abw
T

and bbwT
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equation

Compute local
BW estimator

Computation of

the local estimators
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In code
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Results I
Adaptive finite elements for a Poisson problem:
−∆u = 0 in Ω, u = uD on Γ. Quadratic finite elements.

103 104

Number of dof

10 3

10 2

10 1

2
-2

b
bw

res

2, 0
bw
3, 2
bw

4, 2
bw
err

Notation V +

T
V −

T

η
k+,k

−

bw
V

k+

T
V

k
−

T

ηb
bw

V 2
T
+ bubble V 1

T
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Results II
Goal oriented adaptive finite elements for a Poisson problem:

−∆u = 0 in Ω, u = uD on Γ. ηerr := J(u − u1) =

∫

Ω

(u − uh)c, where c is a smooth

weight function.
The estimators are computed using the WGO method from [Becker et al., 2011].

104 105

Number of dof

10 6

10 5

10 4

10 3

2
-2

b
bw

zz

res
4, 2
bw

1, 0
bw
err

Notation V +

T
V −

T
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−

bw
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V
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−
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V 2
T
+ bubble V 1
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Results II
GO AFEM for a linear elasticity problem:
we used a technique from [Khan et al., 2019] to compute the estimators. The goal functional is

defined by J(u2, p1) :=

∫

Γ

u2 · nc.
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Results II
GO AFEM for a linear elasticity problem:
we used a technique from [Khan et al., 2019] to compute the estimators. The goal functional is

defined by J(u2, p1) :=

∫

Γ

u2 · nc.
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Thank you for your attention!

I would like to acknowledge the support of the ASSIST research project of the University of Luxembourg. This presentation has been
prepared in the framework of the DRIVEN project funded by the European Union’s Horizon 2020 Research and Innovation programme
under Grant Agreement No. 811099.
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The fractional Laplacian has a global character and its solutions have strong boundary layers. Its
efficient solution is still an open challenge for the community.

In this talk, we will show a novel a posteriori error estimation method for the spectral fractional Lapla-
cian.

Our method begins with the work of [2] where a fractional operator is represented by an integral over
non-fractional (ie local) parametric operators. The integral and the local operators can then be discretised
using a quadrature rule and a standard finite element method, respectively.

We show that the integral representation of [2] can equally be applied to the construction of an error
estimator. A key building block of the method is an efficient hierarchical estimator introduced in [1].

The estimator has numerous benefits: it is numerically sharp, it allows the measurement of the error
in various norms, and it is defined for one, two and three-dimensional problems. It is also fully local and
cheap to compute in parallel.

The estimator leads to optimal convergence rates when used to steer adaptive refinement algorithms.
The implementation is based on FEniCS Error Estimation (FEniCS-EE), a finite element error estima-

tion package for DOLFIN and DOLFINx [3].
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The spectral fractional Laplacian

Fractional operators are used in a wide range of different fields such as statistics,
hydrogeology, finance, physics...

• Main advantage: they are nonlocal.

• Main drawback: they are nonlocal.
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The spectral fractional Laplacian

Let Ω ⊂ R
d, α ∈ (0, 2) and f ∈ L2(Ω).

(−∆)α/2u = f in Ω, u = 0 on ∂Ω. (1)
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The spectral fractional Laplacian

Let Ω ⊂ R
d, α ∈ (0, 2) and f ∈ L2(Ω).

(−∆)α/2u = f in Ω, u = 0 on ∂Ω. (1)

Let {ψi, λi}
+∞

i=1 ⊂ L2(Ω)× R
+ be such that

−∆ψi = λiψi in Ω, ψi = 0 on ∂Ω, ∀i = 1, · · · ,+∞. (2)
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The spectral fractional Laplacian

Let Ω ⊂ R
d, α ∈ (0, 2) and f ∈ L2(Ω).

(−∆)α/2u = f in Ω, u = 0 on ∂Ω. (1)

Let {ψi, λi}
+∞

i=1 ⊂ L2(Ω)× R
+ be such that

−∆ψi = λiψi in Ω, ψi = 0 on ∂Ω, ∀i = 1, · · · ,+∞. (2)

The solution u of (1) is defined by

u :=
+∞∑
i=1

λ
−α/2
i (f, ψi)L2 . (3)
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Contribution

We present the first a posteriori error estimator for a numerical method presented
in [Bonito and Pasciak, 2015] for solving the spectral fractional Laplacian.
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Discretization

How to solve (1) numerically ?
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Discretization

How to solve (1) numerically ?
Using an integral representation of the solution

u = Cα

∫ +∞

−∞

eαy uy dy, (4)

where uy is solution to

e2y
∫
Ω

∇uy · ∇v +

∫
Ω

uyv =

∫
Ω

fv, ∀v ∈ H1
0 (Ω). (5)
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Discretization

• Quadrature discretization: given a quadrature rule {ωl, yl}
N
l=−N ,

u = Cα

∫ +∞

−∞

eαy uy dy ≈ Cα

N∑
l=−N

ωl e
αyl uyl =: uN . (6)
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Discretization

• Quadrature discretization: given a quadrature rule {ωl, yl}
N
l=−N ,

u = Cα

∫ +∞

−∞

eαy uy dy ≈ Cα

N∑
l=−N

ωl e
αyl uyl =: uN . (6)

• Finite element discretization: given a mesh Th on Ω and Vh a FE space,

u ≈ Cα

N∑
l=−N

ωl e
αyl uh,yl =: uNh , (7)

where uh,yl solves

e2yl
∫
Ω

∇uh,yl · ∇vh +

∫
Ω

uh,ylvh =

∫
Ω

fvh ∀vh ∈ Vh. (8)
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A posteriori error estimation

We neglect the quadrature discretization error and we focus on the FE discretiza-
tion error

η ≈ ‖u− uNh ‖L2 . (9)
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A posteriori error estimation

We consider the Bank–Weiser a posteriori error estimator [Bank and Weiser, 1985]
on the parametric problem associated to uyl .
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A posteriori error estimation

We consider the Bank–Weiser a posteriori error estimator [Bank and Weiser, 1985]
on the parametric problem associated to uyl . For each cell T of Th we solve

e2y
∫
T

∇wT,yl · ∇vT +

∫
T

wT,ylvT = RT (vT ) ∀vT ∈ V bw(T ). (10)
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A posteriori error estimation

We consider the Bank–Weiser a posteriori error estimator [Bank and Weiser, 1985]
on the parametric problem associated to uyl . For each cell T of Th we solve

e2y
∫
T

∇wT,yl · ∇vT +

∫
T

wT,ylvT = RT (vT ) ∀vT ∈ V bw(T ). (10)

The local fractional Bank–Weiser solution is given by

wT := Cα

N∑
l=−N

ωl e
αyl wT,yl . (11)
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A posteriori error estimation

We consider the Bank–Weiser a posteriori error estimator [Bank and Weiser, 1985]
on the parametric problem associated to uyl . For each cell T of Th we solve

e2y
∫
T

∇wT,yl · ∇vT +

∫
T

wT,ylvT = RT (vT ) ∀vT ∈ V bw(T ). (10)

The local fractional Bank–Weiser solution is given by

wT := Cα

N∑
l=−N

ωl e
αyl wT,yl . (11)

The local and global Bank–Weiser estimators are given by

ηbw,T := ‖wT‖L2(T ), η2bw :=
∑
T∈Th

‖wT‖
2
L2(T ). (12)
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A posteriori error estimation

Fully local and fully parallelizable.
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Numerical results

Uniform mesh refinement.
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Numerical results

Uniform mesh refinement[Bonito and Pasciak, 2015].

Frac. pow. 0.1 0.3 0.5 0.7 0.9

Th. slope 0.7 1.1 1.5 1.9 2.0
Err. slope 0.71 1.11 1.52 1.9 2.04
Est. slope 0.71 1.13 1.54 1.84 1.91
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Adaptive mesh refinement.
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Numerical results

Adaptive mesh refinement.
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Numerical results

Adaptive mesh refinement.

Frac. pow. 0.1 0.3 0.5 0.7 0.9

Th. slope (unif.) 0.35 0.55 0.75 0.95 1.0
Err. slope (adapt.) 0.71 1.13 1.54 1.84 1.91
Est. slope (adapt.) 0.72 1.11 1.52 1.9 2.04
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In fluid mechanics research, linearizing the governing equations around a base state has yielded signif-
icant insight in flow unsteadiness, as for example turbulence. The principles of these linearized methods
go back to the 19th century to illustrious names, such as Helmholtz, Rayleigh, Kelvin and Reynolds. De-
spite over a century of successful application of the linearized Navier–Stokes equations in research to
understand countless different forms of flow unsteadiness, its full potential for application in academia
and especially industry up to today remains not exhausted by far: Although research groups around the
globe successfully develop and apply in-house codes to address various unsteady flow configurations us-
ing the linearized equations, no common coding-platform exists that enables these groups to share their
expertise and benefit from each other’s developments, both in modelling and coding. As a consequence,
the hurdle of applying such tools to a new configuration is high, which makes the method—despite its
potential—unattractive to researchers which are new to this field and fluid mechanics engineers. With
our solver FELiCS (Finite-Element Linearized Combustion Solver, not to be confused with FEniCS), our
goal is to fill this gap, and make the rich toolbox of linearized methods available to a broader audience.
Our code uses the FEniCS package in order to discretize the governing equations in space, which together
with the python environment, and efficient toolboxes, such as SLEPc and ARPACK is the ideal framework
for our purposes. Currently, the code is applied to various configurations, such as investigating turbulence
in jet flows, hydrodynamic instabilities, such as eg the cylinder vortex street, and laminar and turbulent
combustion dynamics. Our talk will give an overview of linearized methods in fluid mechanics as well as
current and potential application fields.
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Porous materials are widely used in soundproofing and noise control applications. Their microgeome-
try, which determines the sound absorption properties, can be developed to fit specific needs and produced
employing modern additive manufacturing technologies. However, the design process usually requires
running multiscale and multiphysics simulations, which is greatly facilitated by the FEniCS computing
platform. The airborne propagation and attenuation of acoustic waves in a 3D printed rigid-frame porous
material is considered with the aid of the 2019.1.0 FEniCS release. Two cases are studied: a basic passive
configuration, and an adaptable configuration with steel balls introduced to the main pores that effectively
modify visco-inertial and thermal dissipation within the system. The stationary Stokes, Laplace, and Pois-
son analyses are performed on a periodic fluid (air) domain representative for the microgeometry of the
medium imposing periodic boundary conditions within a parallelised code. The respective solution fields
are averaged over the domain using the built-in DOLFIN algorithms and upscaled to serve as an input
to macroscopic calculations. The coupled Helmholtz problem of harmonic linear acoustics is solved to
model the distribution of acoustic pressure in both a homogenised fluid equivalent to the porous material,
and a layer of air adjacent to it. Suitable continuity boundary condition at the interface is implemented
weakly into the finite element formulation of the problem. Finally, the numerical predictions of normal
incidence sound absorption coefficient are compared with impedance tube measurements made on a 3D
sample. Along with FEniCS, only open-source software is involved to prepare volumetric meshes and
visualise the results.
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Modelling the solidification of alloys remains challenging, as there is a multi-physics problem to be
solved involving fluid flow, heat transfer as well as phase changes. Shape casting processes are constantly
sought to be improved, which can potentially be achieved through accurate and fast modelling of the alloy
solidification process. We present in a short overview our approach of an application relying on FEniCS
that will be used to model such solidification problems. The model, which is currently under development,
follows a volume-averaged two-phase approach, as proposed by Beckermann et al [1].

Simplified models have been tested and used to generate snapshots for a non-intrusive reduced order
model. As this application is being built in Python, we hope its flexible corewill open up new opportunities
for fast and accurate reduced order models.
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We present the Digital Math framework as the foundation for modern science-based on constructive
digital mathematical computation. The computed result (coefficient vector, FEM function, plot, etc) is
a mathematical theorem, and the mathematical Open Source code, here in the FEniCS framework, and
computation is the mathematical proof. Based on the Digital Math framework and the FEniCS realization,
we present solutions to some of the grand challenges in science, education and industry.

In this seminar, we specifically focus on solving the reproducibility crisis in research, recently high-
lighted in our panel debate with the European Commission, Swedish Parliament, Lorena Barba and top
Swedish journalist:

http://digimat.tech/paneldebate- kth/
We see education as reproducing scientific results of key importance for society. As part of the seminar,

you are invited to participate in the online DigiMat course on reproducible research, where anyone in an
accessible Ubiquitous High-Performance Computing (UHPC) Digital Math environment can create your
own reproducible “Digital Math” publication.

Reports from the education system show that almost all students lose motivation for math and pro-
gramming somewhere along the way. At the same time computational math is the fundament of modern
society, creating an enormous societal problem.

We show results that ourDigiMat—DigitalMath online educationprogram [1]—frompre-school through
university and professional is a solution to this grand challenge in education. DigiMat creates motivation
and learning of the key abstract concepts by playing with, editing and building your own Digital Math
interactive simulations and virtual worlds. DigiMat Pro has reached 30000+ participants with great feed-
back, and DigiMat Basic is now reaching schools in Sweden with good results.

We show reproducible predictive Real Flight Simulation as a solution to the grand challenge of aero-
dynamics connected to results in the High Lift Prediction Workshop. For general continuum modeling,
such as biomechanics, we present our Real Unified Continuum framework [2] with results in food tech,
heart modeling, etc.
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This talk presents a framework for penalty coupling of non-matching Kirchhoff–Love shells using a
FEniCS-based implementation of isogeometric analysis (IGA) called tIGAr. Topologically-1D, geometrically-
3D mortar meshes are generated to integrate penalty terms in the variational problem, which penalize de-
viations from displacement and rotational continuity at the geometric intersections between separately-
parameterized spline surfaces modeling different structural components. The framework allows one to
directly perform shell structure analysis on computer-aided design (CAD) models consisting of multi-
ple surface patches with non-matching parameterizations at their intersections. We verify the method
and implementation using benchmark examples like the Scordelis–Lo roof problem with multiple NURBS
patches and a T-beam subjected to a point load at one corner. Quantities of interest are computed accu-
rately over a wide range of values of a dimensionless, problem-independent penalty coefficient. Coupling
of non-matching shell structures with IGA is attractive for the design and analysis of aircraft, which are
usually modeled geometrically by many intersecting parametric surfaces. We use the new framework to
perform structural analysis of an aircraft model given in STEP format, which includes 42 B-spline surfaces
and 84 non-matching intersections.
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We consider the numerical solution, by finite element methods, of singularly-perturbed differential
equations (SPDEs) whose solutions exhibit boundary layers. We will discuss our numerical method and
the implementation in FEniCS [1], including some technical problems we overcame.

Our interest lies in developing parameter-robust methods, where the quality of the solution is inde-
pendent of the value of the perturbation parameter. One way of achieving this is to use layer resolving
methods based on meshes that concentrate their mesh points in regions of large variations in the solution.

We investigate the use of Mesh PDEs (MPDEs), as first presented in [3], to generate layer resolving
meshes that yield parameter robust solutions to SPDEs. Specifically, we present MPDEs whose solutions,
in the 1D case, yield the celebrated graded “Bakhvalov” meshes [2].

The true value of the proposed approach comes to the fore whenwe investigate 2D problems. Whereas
the classical Bakhvalov mesh is restricted to generating tensor product grids, the use of MPDEs allows us
to generate non-tensor product grids that are still highly anisotropic and layer-adapted grids, and yield
robust solutions. We demonstrate this by solving problems on irregular domains, and with space-varying
diffusion.

As the MPDEs are non-linear problems, we use a fixed-point iterative method to solve them numeri-
cally. We present an approach involving alternating between ℎ- and 𝑟-refinement which is highly efficient,
especially for larger meshes and small values of the perturbation parameter.

The manuscript on which this talk is based, and the code that generated the results, are available at
https://osf.io/dpexh/
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Motivation

We want to solve singularly perturbed differential equations (SPDEs)

whose solutions have boundary layers, so require special

layer-adapted meshes.
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Example with boundary layers near x = 1 and y = 1.
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Motivation (cont.)

Our goal is to generate layer-adapted meshes for solving SPDEs,

with mesh-adaption driven by Mesh Partial Differential Equations

(MPDEs) [Huang and Russell, 2011].

Typically layer adapted meshes are formulated using a priori
information about the SPDE’s solution; the most successful

(arguably) of these is due to Bakhvalov [Bakhvalov, 1969]. For

problems in 2D, they are restricted to tensor product grids.

In this talk we will present:

1. a more general formulation based on MPDEs, and

2. an algorithm for efficiently solving these nonlinear problems.

Results and source code are available as: Generating layer-adapted
meshes using mesh partial differential equations; osf.io/dpexh/ (to

appear in Numer. Math. Theor. Meth. Appl.) [Hill and Madden, 2021]

Róisín Hill & Niall Madden | Layer-adapted meshes and MPDEs

377



3

Reaction-diffusion equation and method

Our SPDEs are reaction-diffusion problems of the form

− ε
2∆u + ru = f in Ω ⊆ R

d , with u|∂Ω = 0, (1)

where d = 1, 2; ε > 0, r and f are given (smooth) functions and

r ≥ β2 on Ω, with β > 0.

When ε is small the solutions exhibit boundary layers.

We use a standard Galerkin finite element method (FEM), with linear

elements, to compute our numerical solutions to (1), and implement

the method in FEniCS [Alnæs et al., 2015].
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Solutions to (2) on uniform meshes

Model 1D scalar reaction-diffusion equation

− ε2u′′ + u = 1 − x , on (0, 1), u(0) = u(1) = 0. (2)
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(b) ε = 10−4

The oscillations occur in the solutions when ε < C/N due to the

lack of stability in the discrete problem.
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5

Layer-resolving meshes

We are interested in using layer-resolving meshes, which concentrate

mesh points in regions where large variations occur in the solution. In

1D we consider these meshes in terms of this

“mesh generating function".

Definition

A mesh generating function

(on [0,1]) is a strictly

monotonic bijective function

ϕ : [0, 1] → [0, 1] that maps

a uniform mesh ξi = i/N, to

a possibly non-uniform

mesh xi = ϕ(i/N), for

i = 0, 1, . . . ,N.
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Figure: Mesh generated when ϕ(ξ) = ξ4

Róisín Hill & Niall Madden | Layer-adapted meshes and MPDEs

380



6

Bakhvalov mesh (via equidistribution)

One method of generating a Bakhvalov mesh for (2) is by

equidistributing the function [Linß, 2010],

ρ(x) = max

{

1,K
β

ε
exp

(

−
βx

σε

)}

, (3)

where σ, β and K are constants.

That is, one computes the mesh ωN := {0 = x0, x1, . . . , xN = 1} such

that
∫ xi+1

xi

ρ(x)dx =
1

N

∫ 1

0

ρ(x)dx for i = 0, 1, ...,N − 1.

This is a nonlinear problem, as is the classic method of generating a

Bakhvalov mesh.
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Equidistribution of ρ
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Figure: integral of ρ on the resulting mesh.

When ε ≪ 1, ρ decays rapidly near x = 0. Therefore, we use the

Gauss-Lobatto quadrature rule when solving the 1D MPDE. We thank

Jørgen Dokken for pointing us towards a nice implementation.
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Mesh PDE (MPDE)

A (moving) mesh PDE is presented in [Huang et al., 1994] as a way

to generate specially adapted meshes:

1. A PDE whose solution is a mesh generating function is posed.

2. The PDE features a coefficient, ρ, that controls the concentration

of points in the resulting mesh.

3. Classically, ρ depends on (local error estimates for) the solution.

4. However, we will use the basic idea to generate a priori
Bakhvalov-style meshes.
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From equidistribution to an MPDE

We derived the MPDE,

− (ρ(x)x(ξ)′)′ = 0 for all ξ ∈ (0, 1), x(0) = 0 and x(1) = 1, (4)

using the equidistribution principle.

The BCs are necessary to result in a mesh generating function.

The solution to (4) is a Bakhvalov mesh when ρ is as defined in (3).

Since this is a nonlinear problem we use a fixed point iteration

method to find a solution.
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Solving the MPDE by an FEM

Example of how the mesh evolved when N = 64 and ε = 10−3
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Efficiency of the method

The number of iterations required was O(N). So, to improve the

efficiency of the method, we

1. start with a mesh with 4 intervals,

2. apply 3 iterations of the MPDE,

3. interpolate the solution onto a mesh with twice the number of

intervals,

4. repeat steps 2–3 until we reach the required number of mesh

intervals, and

5. then iterate until a stopping criterion is achieved.

This reduces the number of iterations required to O(log2 N), e.g.,

when ε = 10−8 and N = 1024, iterations: 517 → 27 (3 on final mesh).
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Efficient solution of MPDE

Example of how the mesh evolved when N = 64 and ε = 10−3
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Scalar 1D reaction-diffusion problem

−ε2u′′ + u = 1 − x , on (0, 1), u(0) = u(1) = 0.

Solution with ε = 10−4 and N = 16 on the MPDE (physical) mesh ωN

and uniform (computational) mesh ω[c]
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Scalar 1D reaction-diffusion problem
Error measurement

It can be shown (e.g., [Roos et al., 2008]) that the error in the

linear-FEM solution generated on a Bakhvalov mesh satisfies

‖u − uh‖E ≤ C(ε1/2N−1 + N−2),

where u is the true solution and uh is the FEM solution, C is a

constant independent of ε and N, and ‖ · ‖E is the usual energy norm

induced by the FEM bilinear form.

In practice we compare the linear-FEM with the quadratic-FEM

solution to compute our errors, eh.
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Scalar 1D reaction-diffusion problem
Errors

Plot of ‖eh‖E for the scalar 1D problem when solved on a MPDE

mesh, ωN
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2D example

Arguably, in 1D the method outlined has no advantage over other

methods of equidistribution.

This would also be true in 2D if we restrict our interest to problems for

which tensor product grids are appropriate.

Therefore, we present a scenario where a non-tensor product grid is

more appropriate.

The solution to the MPDE only determines the location of the mesh

points, resulting in a unique mesh in 1D. However in 2D we also need

connectivity, here our adapted-mesh inherits the connectivity from a

uniform mesh.
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2D problem with spatially varying diffusion

−∇ ·

(

(

ε(1 + 2y)2 0

0 ε(3 − 2x)2

)2

∇u(x , y)

)

+ u(x , y)

= (ex − 1) (ey − 1) , for (x , y) ∈ Ω = (0, 1)2, with u|Ω = 0.

MPDE Mesh and contour plot of solution when ε = 10−2 and N = 32
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2D problem with spatially varying diffusion
MPDE

The MPDE, for ~x(ξ1, ξ2) = (x , y)T , is

−∇ · (M(~x(ξ1, ξ2))∇~x(ξ1, ξ2)) = (0, 0)T , for (ξ1, ξ2) ∈ Ω[c],

with boundary conditions,

x(0, ξ2) = 0, x(1, ξ2) = 1,
∂x
∂n

(ξ1, 0) = 0,
∂x
∂n

(ξ1, 1) = 0,

y(ξ1, 0) = 0, y(ξ1, 1) = 1,
∂y
∂n

(0, ξ2) = 0,
∂y
∂n

(1, ξ2) = 0,

and

M(~x) =








max

{

1,K1
β

ε(1 + 2y)2
exp

(

−
β(1 − x)

σε(1 + 2y)2

)}

0

0 max

{

1,K2
β

ε(3 − 2x)2
exp

(

−
β(1 − y)

σε(3 − 2x)2

)}









.
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2D problem with spatially varying diffusion
Errors

Plot of ‖eh‖E
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Conclusions

◮ The MPDE approach appears to be useful for generating suitable

layer-adapted meshes, given sufficient a priori data.

◮ The method extends to 2D problems in situations where

non-tensor product grids are appropriate.

◮ The MPDE is nonlinear and converges slowly for small ε and

large N, we resolve this by combining the MPDE with

h-refinement, the iteration count depends only very weakly on ε.

◮ For the 1D example provided, existing theory proves robust

convergence. However, the 2D example provided does not have

a theoretical basis.
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Future work

◮ Our original motivation actually comes from solving some

convection-diffusion-type problems: advection-diffusion and

Navier Stokes. Initial results are promising.

◮ We are particularly interested in modelling dispersion and flow

through constricted channels. MPDEs on convex sub-domains

may be useful.

◮ We want to perform a comparison of alternative MPDE

formulations.

◮ And, of course, we would like to incorporate a posterori error

estimation. To date, best results are with hierarchical error

estimators.
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From equidistribution to an MPDE

We derive an MPDE by considering the equidistribution principle as a

mapping x(ξ) : [0, 1] → [a, b] from the computational coordinate ξ to

the physical coordinate x , which satisfies

∫ x(ξ)

a
ρ(x)dx = ξ

∫ b

a
ρ(x)dx . (5)

Differentiating (5) twice with respect to ξ we get the nonlinear MPDE,

− (ρ(x)x(ξ)′)′ = 0 for all ξ ∈ (0, 1), x(0) = a and x(1) = b. (6)

The BCs are necessary to result in a mesh generating function.

The solution to (4) is a Bakhvalov mesh when ρ is as defined in (3).

Since this is a nonlinear problem we use a fixed point iteration

method to find a solution.
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CutFEM‐style methods in FEniCSx: CAD and level sets

August Johansson, SINTEF Digital, Norway
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The interest in finite element methods on non-matching meshes has increased in recent years. The-
oretical advances, based on the ideas of Nitsche, have allowed for the construction of methods such as
CutFEM for a wide variety of problems.

From the perspective of implementation, one major challenge is to be able to compute integrals over
cells that only have a partial intersection with the domain. Often, quadrature rules for both the volume
and surface are required by the method.

In this contribution we will present our work on using custom quadrature in the FEniCSx framework.
We focus on domains described by level sets as well as domains from CAD, and restrict ourselves to
quadrilateral and hexahedral elements.

You can cite this talk as:

August Johansson and Vibeke Skytt. “CutFEM-style methods in FEniCSx: CAD and level sets”. In: Proceedings
of FEniCS 2021, online, 22–26 March (eds Igor Baratta, Jørgen S. Dokken, Chris Richardson, Matthew W. Scroggs)
(2021), 401–412. DOI: 10.6084/m9.figshare.14495382.

BibTeX for this citation can be found at https://mscroggs.github.io/fenics2021/talks/johansson.html .
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Finite element methods on non-matching meshes

• Non-matching mesh construction is easy.

• The mesh is used for the finite element approximation.

• The mesh is not used for geometry approximation.

• Several methods exist: CutFEM, φ-FEM, TraceFEM, etc.

• Beneficial for problems with dynamic domains.

• Cut elements are K : K ∩ ∂Ω 6= ∅.

• Custom quadrature on the cut elements for∫
K∩Ω

dx and

∫
K∩∂Ω

ds

• This talk: a "library" with custom quadrature based on FEniCS-X.
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Custom quadrature in FEniCS: MultiMesh 2D
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Custom quadrature in FEniCS: MultiMesh 3D
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Extensions to FFC-X & DOLFIN-X

The FEniCS pipeline has functionality for custom integrals:

void tabulate_tensor_custom(A, w, c, coord_dofs,

num_qr, qr_pts, qr_w, normals)

Extend FFC-X:

• Include metadata as

ufl.dx(metadata={’quadrature_rule’: ’runtime’}, domain=mesh)

• Make such integrals generate code for the custom integral type.

• Generate code for

– calling evaluate_basis_derivatives().

– using the provided normals.

Extend DOLFIN-X:

• Add support for the custom integral type.

• Mimic setup for cell integrals.

4/9
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Important high-level functionality

• Custom assemblermimicking examples from test_custom_assembler.py:

custom_assemble_matrix(form, [(cells, qr_pts, qr_w, normals)])

• Works as standard FE assembly:

– Set up sparsity pattern (same as cell integral type).

– Loop over cells (typically the cut cells).

– Call the custom integral kernel.

– Assemble into the global matrix (e.g. calling MatSetValues).

• Utilities for settingmesh tags from the geometry representation.

• Function for locking inactive dofs similar to DirichletBC.

5/9
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Python example for testing bulk and surface quadrature

geom_kernel = Geometry(’circle.iges’)

cut_cells, uncut_cells = geom_kernel.cells()

qr_pts, qr_w = geom_kernel.bulk_qr()

qr_pts_surf, qr_w_surf, normals = geom_kernel.surf_qr()

bulk_data = (cut_cells, qr_pts, qr_w)

surf_data = (cut_cells, qr_pts_surf, qr_w_surf, normals)

cell_tags = get_cell_tags(mesh, uncut_cells, uncut_cell_tag=1)

dx_cut = ufl.dx(metadata={’quadrature_rule’: ’runtime’}, domain=mesh)

dx_uncut = ufl.dx(subdomain_data=cell_tags, domain=mesh)

area = custom_assemble_scalar(1.0*dx_cut, [surf_data])

vol = custom_assemble_scalar(1.0*dx_cut, [bulk_data])

+ dolfinx.assemble_scalar(1.0*dx_uncut(uncut_cell_tag))
6/9
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Obtain quadrature from external libraries

CAD: GoTools library

• https://github.com/

SINTEF-Geometry/GoTools

• Spline geometry libraries by V. Skytt, T.

Dokken et al (SINTEF).

• Quadrature created from tensor

product-type constructions (work in

progress).

Level set: Algoim library

• https://algoim.github.io

• Level set library by R. Saye (LBL).

• Provides accurate quadrature.
Figure: From https://algoim.github.io

(with permission).7/9
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Example: CutFEM Poisson on a circle, spline geometry
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Figure: Relative volume error, relative area error and L2 error.

Conclusions:

• Quadrature not correct.

• Do not see all errors in a weak norm.
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Example: CutFEM Poisson on a circle, level set geometry
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Figure: Relative volume error, relative area error and L2 error.

Conclusions:

• Quadrature correct.

• Perfect convergence.
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Finite elements on accelerators: an experience using
FEniCSx and SYCL
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Chris Richardson (r chrisrichardson), University of Cambridge, United Kingdom
Garth Wells (r garth‐wells), University of Cambridge, United Kingdom

24 March 2021

In this presentation, we are going to talk about our experience implementing the finite elementmethod
on different architectures and accelerators using the FEniCSx libraries and the SYCL programming model.
Our main focus is on performance portability, we would like the FEM program to get consistent perfor-
mance on a wide variety of platforms, instead of being very efficient on a single one.

SYCL is a modern kernel-based parallel programming model that allows for one code to be written
which can run in multiple types of computational devices (eg CPUs and GPUs). A kernel describes a
single operation, that can be instantiated many times and applied to different input data (eg cell-wise
matrix assembly). This kernel-based model matches nicely with the new FEniCS data-centric design:
DOLFINx generates data to operate in parallel (geometry, topology, and dofmaps) and FFCx generates
efficient code that can be used as part of the parallel kernels.

We will discuss how different ways of expressing parallelism can affect the performance we ultimately
achieve, for instance, we consider different global assembly strategies and data structures. We will also
discuss how carefully arrangingmemory transfer and allocations can reduce latency and increase through-
put in different accelerators. Finally, we will show some performance results of simplified finite element
simulations on different architectures, ranging from Intel and AMD CPUs to NVIDIA GPUs.

You can cite this talk as:

Igor Baratta, Chris Richardson, andGarthWells. “Finite elements on accelerators: an experience using FEniCSx and
SYCL”. In: Proceedings of FEniCS 2021, online, 22–26 March (eds Igor Baratta, Jørgen S. Dokken, Chris Richardson,
Matthew W. Scroggs) (2021), 413–429. DOI: 10.6084/m9.figshare.14495385.

BibTeX for this citation can be found at https://mscroggs.github.io/fenics2021/talks/baratta.html .
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What’s Performance Portability? 
And why do we care about it?

An application is performance portable if it:

     Achieves reasonable level of 
performance

     Requires minimal platform 
specific code

3
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Programming 
Model

SYCL is a high-level single source parallel 
programming model, that can target a range of 
heterogeneous platforms:

uses completely standard C++;
both host CPU and device code can be written in 
the same C++ source file;
open standard coordinated by the Khronos 
group.

SYCL implementations:

Intel 
SYCL* hipSYCL*

Compute
Cpp triSYCL*

*open source 4
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cl::sycl::queue q{cl::sycl::gpu_selector()};
 

int N = 100;

auto a = cl::sycl::malloc_device<double>(N, q);

auto b = cl::sycl::malloc_shared<double>(N, q);

auto e = q.fill(a, 3.0, N);

q.parallel_for(cl::sycl::range<1>(N), e,

[=](cl::sycl::id<1> Id) {

  int i = Id.get(0);

  b[i] = 2 * a[i];

});

q.wait();

for (int i = 0; i < N; i++)

  assert(b[i] == 6.);
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Simple Workflow

Interconnect

Copy input data 
from Host memory 
to Device memory

Launch kernels for 
execution on the 
Device

Wait for the 
execution queue 
to finish

Copy results 
back to Host 
from Device

~102 GB/s

Device Memory

 Local Memory  Local Memory 

 Local Memory  Local Memory 

~101 GB/s
CPU Memory

P0 P1 ... PN

6

Device Memory

 Local Memory  Local Memory 

 Local Memory  Local Memory 

Device Memory

 Local Memory  Local Memory 

 Local Memory  Local Memory 
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An idealised modular Finite Element worflow

element = FiniteElement("Lagrange", tetrahedron, 3)

...

a = inner(grad(u), grad(v)) * dx + k*inner(u, v) * dx
L = inner(f, v) * dx

UFL 
File ffcx --sycl_defines=True problem.ufl

Mesh/Coeffs
DofMap

Device

Assemble Solve

OutputInput Kernel

7
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~50% Total time

8

Data Transfer to 
Computation 
Ratio - P1

1 3
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9

Data Transfer to 
Computation 
Ratio - P3

~2% Total time

1 3
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Matrix Assembly

For each cell:

Gather cell coordinates and coefficients

Compute element matrix

Update global CSR matrix

auto kernel = [=](cl::sycl::id<1> ID) {
   const int i = ID.get(0);
   ...
   double Ae [ndofs * nofs];

   // Gather cell coordinates and coefficients
   for (std::size_t j = 0; j < 4; ++j)
   {
     const std::size_t dmi = x_coor[i * 4 + j];
     for (int k = 0; k < gdim; ++k)
      cell_geom[j * gdim + k] = x[dmi * gdim + k];
   }
   ...
   // Compute element matrix
   tabulate_cell_a(Ae, coeffs, cell_geom);

   // Update global matrix - Binary Search
   for (int j = 0; j < ndofs; j++)
     for (int k = 0; k < ndofs; k++)
     {
       int ind = dofs[offset + k];
       int pos = find(indices, first, last, ind);
       atomic_ref atomic_A(data[pos]);
       atomic_A += Ae[j * ndofs + k];
     }
};

* atomic operations

Global assembly strategies:
- Binary Search*
- Lookup Table*
- Two Stage

01

02

03

10
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11

Matrix Assembly - CPU Performance

2 x Intel Xeon Skylake 6142 processors, 2.6GHz 16-core
Theoretical peak performance: 2.7 TFlop/s.
192GB RAM

Architectures
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Matrix Assembly - GPU Performance

Architectures

GPU Tesla P100 - 16GB
GPU Tesla V100 - 16GB

12
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Matrix Assembly - GPU Performance

12

Architectures

GPU Tesla P100 - 16GB
GPU Tesla V100 - 16GB
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Low Achieved Occupancy

Device Memory

 Local Memory  Local Memory 

 Local Memory  Local Memory 

x x x x x x x x

x x x x x x x x

Achieved Occupancy: ~25%
The occupancy limited by register usage.

Solution: 
Use shared memory for precomputed tables.

Each thread block (work-group) has shared memory visible to all 
threads (work-item) of the block.

Occupancy MCell/s

1st Version 25% 664 MCell/s

Shared Memory 63% 1660 MCell/s

Reference CUDA1 * 1627 MCells/s

[1] James Trotter - High-performance finite element computations - Performance modelling, optimisation,  GPU acceleration & automated code generation -  Phd Thesis 2021. 13

427



Thank you!
The code and reproducibility 
instructions can be found at 
https://github.com/Excalibur-SLE/dolfinx.sycl

You can reach me via e-mail:
 ia397@cam.ac.uk
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Future/Ongoing Work

Different problems, 

and meshes

Profiling in a wider 

range of devices 

AMD GPU, A64FX

Multi-GPU

MPI-based distributed 

memory computations

Code transformation

Improve generated 

code

Linear Elasticity,  
Maxwell’s equations
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Working with complex meshes: The mesh processing
pipeline

UMeenu Krishnan
(https://computationalmechanics.in/rajib_teams/u- meenu- krishnan/ ), Indian
Institute of Technology, Roorkee, India

Abhinav Gupta, Indian Institute of Technology, Roorkee, India
Rajib Chowdhury, Indian Institute of Technology, Roorkee, India

24 March 2021

In any finite element analysis, it is very important to have an efficient tool to generate the mesh.
In our work, we use Gmsh as a meshing software, and it is observed that the main problem with the
current implementation of the mesh processing pipeline is that it is facing difficulties to handle models
with complex geometries comprising of many boundaries and loading conditions; this means it has more
number of physical groups. We use these physical groups to assignmaterial properties, loads, or boundary
conditions to the model.

The main objective of this talk is to explain the complete mesh processing pipeline for complex geom-
etry. Starting from modeling of a mesh geometry and marking different boundary conditions in Gmsh,
then will discuss about the benefits of using Mesh functions and Mesh Value Collections in FEniCS, and
we will also discuss how to use the number tags from the XDMF file for defining various subdomains
required for load and boundary conditions applications, and at the end how to visualize the XDMF file for
validating if all the boundary conditions and loads are applied appropriately.

This talk will help the community to understand the complete mesh processing pipeline for a complex
mesh geometry with increased efficiency.

You can cite this talk as:

U Meenu Krishnan, Abhinav Gupta, and Rajib Chowdhury. “Working with complex meshes: The mesh processing
pipeline”. In: Proceedings of FEniCS 2021, online, 22–26March (eds Igor Baratta, Jørgen S. Dokken, Chris Richardson,
Matthew W. Scroggs) (2021), 430–438. DOI: 10.6084/m9.figshare.14495403.

BibTeX for this citation can be found at https://mscroggs.github.io/fenics2021/talks/krishnan.html .
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Motivation
We wish to use FEniCS with complex geometries

In practice, a real world engineering structure could 
have :
1. Multiple loading areas
2. Multiple boundary conditions
3. Multiple materials

Thus can have 10 – 100’s of marked regions in the 
mesh

Problem: This could result in human error in the 
process of modelling

cmla

“Output of a simulation is as good as the accuracy in the mathematical modelling” 
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Preferred mesh processing pipeline 

Meshio FEniCS ParaviewGmsh

STL
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Basic design approach

Engineering structures are accompanied with schematic drawings

1. Layout of the structure 

2. Details of boundary conditions

3. Details of loading condition

4. Details about material properties

Aim : To use the same tag names which is in the schematic drawing in the FEniCS 
implementation
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Desired mesh processing pipeline 

Meshio FEniCS ParaviewGmsh

M
Meshx
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Basis for Meshx

point.xdmf line.xdmf triangle.xdmf tetra.xdmf

tags.json
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Example:
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Thank You….

GitHub repository for meshx: 

https://github.com/iitrabhi/meshx

You can use this Docker image: 

https://github.com/iitrabhi/fenics-docker

(computationalmechanics.in)
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Numerical investigation of the interaction of two
electrolytic drops under an external electric field

Shyam Sunder Yadav (https://www.bits- pilani.ac.in/pilani/ssyadav/Profile ), Birla
Institute of Technology and Science Pilani, India

25 March 2021

In the current work, we study the interaction of twomicro droplets containing electrolytes in presence
of an external electric field. For this purpose, we use the open source code BERNAISE which is built on
top of FEniCS and capable of simulating the electrohydrodynamics of binary electrolytes. We focus on
the movement of the electrolytes in and around the thin liquid bridge which forms during the interaction
of droplets and investigate their role in causing coalescence or bouncing of droplets at different strengths
of externally applied electric field.

You can cite this talk as:

Shyam Sunder Yadav. “Numerical investigation of the interaction of two electrolytic drops under an external
electric field”. In: Proceedings of FEniCS 2021, online, 22–26 March (eds Igor Baratta, Jørgen S. Dokken, Chris
Richardson, Matthew W. Scroggs) (2021), 439–457. DOI: 10.6084/m9.figshare.14495406.

BibTeX for this citation can be found at https://mscroggs.github.io/fenics2021/talks/yadav.html .
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Interaction of charged droplets
Drop-Interface and Drop-Drop Interactions

Figure: Computational domain for (a) Drop-Interface, (b) Drop-Drop interactions

Shyam Sunder Yadav Assistant Professor, Mechanical EngineeringNumerical investigation of the interaction of two electrolytic drops under an external electric2 / 18
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Interaction of charged droplets
Codes used in the current study

Two different numerical techniques are used
◮ Finite Differences + CLSVOF method

⋆ Developed by my advisor and his advisor!
⋆ I added the charge advection using VOF

◮ Finite Element + Phase field method
⋆ Developed by Gaute Linga
⋆ Based on FENICS, Code is called BERNAISE
⋆ https://github.com/gautelinga/BERNAISE

Shyam Sunder Yadav Assistant Professor, Mechanical EngineeringNumerical investigation of the interaction of two electrolytic drops under an external electric3 / 18
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Governing equations in CLSVOF based code

Navier-Stokes equation:
◮ ρ

(

∂v
∂t

+ v · ∇v
)

= −∇p +∇ · [µ(∇v +∇vT )] + ρg + fγv + fEv
◮ ∇ · ~U = 0

Interface advection:
◮

∂φ
∂t

+ v · ∇φ = 0
◮

∂F
∂t

+ v · ∇F = 0

Equations for quasi-electrostatics
◮ ∇ · ǫ0ǫ~E = qv
◮ fEv = qvE− 1

2ǫ0E
2∇ǫ

◮
∂qv
∂t

+ v · ∇qv +∇ · σE = 0

Surface tension forces
◮ fγv = γκn̂δs
◮ n̂ = − ∇φ

|∇φ|

Shyam Sunder Yadav Assistant Professor, Mechanical EngineeringNumerical investigation of the interaction of two electrolytic drops under an external electric4 / 18
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Numerical Schemes in CLSVOF based code
Discretization summary

Grid: Staggered grid, (Harlow and Welch).

Viscous terms: Second order accurate central difference scheme.

Convective terms: Second order ENO scheme, (Harten et al.).

Surface tension: Continuum surface force model, (Brackbill et al).

Electric forces: Continuum electric force model, (Tomar et al).

Temporal term: First order accurate explicit Euler method.

Pressure: Second order accurate Projection method, (Chorin).

Interface capturing: CLSVOF algorithm, (Sussman and Puckett) .

Time step: Variable time step is used:
◮ CFL criterion : ∆t ≤ cfl ∆x

umax

◮ Viscous time scale : ∆t ≤ ρ∆x2

4µ

◮ Capillary time scale : ∆t ≤
[

(ρ1+ρ2)∆X 3

γ

]
1
2

◮ Charge Relaxation time scale : ∆t ≤ ǫ0ǫ
σ

Shyam Sunder Yadav Assistant Professor, Mechanical EngineeringNumerical investigation of the interaction of two electrolytic drops under an external electric5 / 18

444



Governing equations in BERNAISE
Based on FENICS

Two-phase electrokinetic flows are described by the coupled problem
of solute transport, fluid flow and electrostatics

◮
∂
∂t
ρ(φ) ~U +∇ · ρ(φ) ~U ~U −∇ · [2µ(φ)D+ ~Uρ′(φ)M(φ)∇gφ] +∇p =

−φ∇gφ −
∑

cj∇gcj
◮ ∇ · ~U = 0
◮

∂cj
∂t

+ ~U · ∇cj −∇ ·
(

Kj(φ)cj∇gcj
)

= 0

◮ ∇ · (ǫ0ǫ~E ) = ρe
◮ [2µD− p′I+ γκI+ ǫ0ǫ~E ~E − 1

2ǫ0ǫE
2
I] · n̂ = 0

◮
∂φ
∂t

+ ~U · ∇φ−∇ · (M(φ)∇gφ) = 0

Chemical potential of species cj and the phase field φ
◮ gcj (cj , φ) = α′(cj) + βj(φ) + zjV
◮ For dilute solutions: α(c) = c(log(c)− 1)
◮ gφ = ∂f

∂φ
−∇ · ∂f

∂∇φ
+

∑

β′
j (φ)cj −

1
2ǫ

′(φ)|∇V |2

◮ f (φ,∇φ) = 3σ
2
√
2

[

ǫ
2 |∇φ|2 + ǫ−1W (φ)

]

◮ W (φ) = (1−φ2)2

4

Phase field mobility: M(φ) = ǫM0 or M(φ) = M0 ∗max(1− φ2)

Shyam Sunder Yadav Assistant Professor, Mechanical EngineeringNumerical investigation of the interaction of two electrolytic drops under an external electric6 / 18
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CLSVOF based simulations
Drop-Drop, Situation before contact
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Figure: Charge & Eforce before contact
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CLSVOF based simulations
Drop-Drop, Situation at contact
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CLSVOF based simulations
Drop-Drop, Situation after contact
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Drop-Interface Interactions
Situation before contact
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Drop-Interface Interactions
Situation at contact
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Drop-Interface Interactions
Situation after contact
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Drop-Interface Interactions
Drop-Interface, Greater velocity after contact
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BERNAISE based results
Distribution of charged species

Initial
distribu-
tion

Just
before
contact
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BERNAISE based results
Distribution of charged species

During
contact

During
contact
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BERNAISE based results
Distribution of charged species

During
contact

During
contact
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BERNAISE based results
Velocity distribution in the domain

Before
contact

After
contact
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Thank you for your attention.

Questions...
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FESTIM, a modelling code for hydrogen transport in
materials for nuclear fusion applications

Rémi Delaporte‐Mathurin, CEA, France
Etienne Hodille, CEA, France
Floriane Leblond, CEA, France
Jonathan Mougennot, LSPM, France
Yann Charles, LSPM, France
Christian Grisolia, CEA, France
James Dark, LSPM, France

25 March 2021

The principle of nuclear fusion is to fuse two hydrogen nuclei to form a helium nucleus and a neutron,
releasing incredible amounts of energy in the process. To achieve these fusion reactions, extremely high
temperatures are required: more than 10 times the temperature of the Sun’s core. The very hot fuel in the
plasma is magnetically confined within a chamber called a tokamak. Eventually, hydrogen ions will hit
the reactor walls and penetrate in the materials.

In order to simulate hydrogen transport in complex components (multi-material, multidimensional
geometries…), a finite element modelling code relying on FEniCS called FESTIM has been developed [2].
FESTIM solves a set of transient Macroscopic Rate Equations (MRE) which accounts for the diffusion
(based on Fick’s law) and trapping/detrapping of hydrogen isotopes in materials (based on McNabb and
Foster’s equations [4]) coupled to transient heat transfer.

This talk showcases the use of FESTIM and FEniCS to model key tokamak components such as actively
cooled plasma facing components and how results crucial for the International Thermonuclear Experi-
mental Reactor (ITER) [3] operations are extracted from it [1]. The code was verified using the method of
manufactured solutions and validated against experimental results. FESTIM was also benchmarked with
other codes from the fusion community and with the commercial simulation suite Abaqus.

This talk was awarded a prize: Best talk by a PhD student or undergraduate.
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Grisolia. “Finite element analysis of hydrogen retention in ITER plasma facing components using
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Images: ITER Organization
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GOVERNING EQUATIONS

𝜕𝑡𝑐m = 𝛻 𝐷(𝑇) ⋅ 𝛻𝑐m −𝑖 𝜕𝑡𝑐t,𝑖 on Ω
𝜕𝑡𝑐t,𝑖 = 𝑘(𝑇) ⋅ 𝑐m 𝑛𝑖 − 𝑐t,𝑖 − 𝑝(𝑇) ⋅ 𝑐t,𝑖 on Ω𝑐m−𝑆(𝑇)− = 𝑐m+𝑆(𝑇)+ on Ω𝑖 ∩ Ω𝑗𝜌𝐶𝑝 𝜕𝑡𝑇 = 𝛻 𝜆 ⋅ 𝛻𝑇 + 𝑄 on Ω

► 𝑐m, 𝑐t,𝑖, 𝑇 H concentrations and temperature

► 𝑖 corresponds to a type of sink

Hydrogen transport
McNabb & Foster - Trans. 

Metall. Soc. (1963)

Conservation of 

chemical potential

at interfaces

Energy equation
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FINITE ELEMENT SIMULATION OF TRITIUM IN MATERIALS (FESTIM)

► Finite Element Simulation of Tritium In Materials

► Based on FEniCS

► 1/2/3D

► Multi-materials

FESTIM

For more info:

Delaporte-Mathurin et al, NME (2019)
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CONSERVATION OF CHEMICAL POTENTIAL

𝑐m−𝑆− = 𝑐m+𝑆+ at interfaces
► Modelling discontinuities in FEniCS𝜕𝑡𝑐m = 𝛻 𝐷 ⋅ 𝛻𝑐m −𝑖 𝜕𝑡𝑐t,𝑖 on Ω𝜃 = 𝑐m/𝑆
1. Solve : 𝜕𝑡(𝜃𝑆) = 𝛻 𝐷 ⋅ 𝛻(𝜃𝑆) − σ𝑖 𝜕𝑡𝑐t,𝑖 on Ω
2. Post-processing: 𝑐m = 𝜃 ⋅ 𝑆

project on DG1 space V_DG1 = FunctionSpace(mesh, ‘DG’, 1)
c_m = project(theta*S, V_DG1)

Mat. 1 Mat. 2

𝑐m

Delaporte-Mathurin et al, Nucl. Fusion (2021)

463



French Alternative Energies and Atomic Energy Commission 629/03/2021

Verification using MMS Experimental validation

VALIDATION & VERIFICATION

► Thermo-desorption experiments

► Parametric optimisation

► 𝑐m,D = 1 + cos 2𝜋𝑥 cos 2𝜋𝑦 +cos(2𝜋𝑡)
► 𝑇 = 500 + 30 cos(2𝜋𝑥)
► Multi-material

ComputedAnalytical

Delaporte-Mathurin et al, NME (2021)
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Application:

Tokamak 

components
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ITER DIVERTOR & MONOBLOCKS

CuCrZr cooling pipe

W substrate

Cu interlayer

Images: ITER Organization

How much hydrogen 

is retained ?
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MESHING

► Meshed with SALOME (open-source)

► Converted from .med to .xdmf with meshio [1]

► High refinement:

 on the top surface

 at interfaces

► Planned: using Adaptive Mesh Refinement

[1] Meshio: 10.5281/zenodo.4590119
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RESULTS

KTemperature field Hydrogen concentration

CuCrZr

W

Cu

► Total inventory of H : ∫ (𝑐m + 𝑐𝑡) 𝑑𝑥
► Coolant contamination : ∫ 𝐷(𝑇)∇𝑐m ⋅ 𝒏 𝑑𝑆
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PERSPECTIVES

► Applications to more complex tokamak components

► Coupling with other physics

 CFD

 MHD,

 co-deposition models

 He transport…

► Coupling with external plasma codes

Tritium breeding blanket
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Thank you for your attention

French Alternative Energies and Atomic Energy Commission - www.cea.fr 29/03/2021

Plots were made with Matplotlib and Paraview

12
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SUMMARY

► FESTIM is a FEniCS-based simulation interface

► Hydrogen transport (including diffusion and trapping) is modelled and coupled to heat 

transfer.

► FESTIM applications:

 Simulating fusion reactors components

 Identifying materials properties

► Perspectives:

 Applications to more complex tokamak components (tritium breeding blankets)

 Coupling with other physics (CFD, MHD, co-deposition models, He transport…)
 Coupling with external plasma codes (SOLEDGE, SOLPS)
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FESTIM INTERFACE

import FESTIM

parameters = {

"materials": [

{

"E_D": 0.1,

"D_0": 1,

"id": 1

}

],

"traps": [],

"mesh_parameters": {

"initial_number_of_cells": 200,

"size": 1,

"refinements": [

],

},

"boundary_conditions": [

],

"temperature": {

"type": "expression",

"value": 300

},

"solving_parameters": {

"final_time": 100,

"initial_stepsize": 0.1,

"newton_solver": {

"absolute_tolerance": 1e-10,

"relative_tolerance": 1e-9,

"maximum_iterations": 50,

}

},

}

output = FESTIM.run(parameters)
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CHANGE OF VARIABLE

class UserCoeff(UserExpression):

def __init__(self, mesh, vm, T, **kwargs):

super().__init__(kwargs)

self._mesh = mesh

self._vm = vm # MeshFunction for volume markers

self._T = T

def eval_cell(self, value, x, ufc_cell):

cell = Cell(self._mesh, ufc_cell.index)

subdomain_id = self._vm[cell]

if subdomain_id == 1:

value[0] = self._T(x)

else:

value[0] = 2

def value_shape(self):

return ()

S = UserCoeff(mesh, vm, T)

V_DG1 = FunctionSpace(mesh, ‘DG’, 1)
c_m = project(theta*S, V_DG1)
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Interfacing AceGEN and FEniCS for advanced
constitutive models

Jakub Lengiewicz, University of Luxembourg, Luxembourg
Michal Habera, University of Luxembourg, Luxembourg
Andreas Zilian, University of Luxembourg, Luxembourg
Stephane Bordas, University of Luxembourg, Luxembourg

25 March 2021

There are two main difficulties related to FE analysis: (i) the necessity to provide effective FE proce-
dures for complex constitutivemodels or advanced FE formulations, and (ii) the need to solve big problems.
Up to date, no single environment exists to fully tackle both. In the present contribution we combine two
existing systems: AceGen and FEniCS. AceGen is an advanced automatic differentiation (AD) system,
capable to derive highly efficient low-level computer code for characteristic FE quantities (gradients, tan-
gent operators, sensitivity vectors, etc) for complex FE formulations. FEniCS is a flexible open-source FE
framework, designed to perform large-scale analyses on high-performance computer architectures.

The proposed hybrid approach relies on new developments of FEniCSx project, which allows to in-
corporate external FE code to the environment. As examples, we have generated FE routines for two
representative FE formulations: hyperelesticity and non-linear elasto-plasticity with hardening. The for-
mer formulation can be also generated by the FEniCS Form Compiler (FFC), thus allows to quantitively
show the runtime speedup of the FE procedures generated by AceGEN w.r.t. FEniCS/FFC. The latter for-
mulation shows the dominance of the hybrid approach over AceGen/AceFem or FEniCS alone, which is
the ability to solve complex FE formulations within the HPC-ready framework.

You can cite this talk as:

Jakub Lengiewicz, Michal Habera, Andreas Zilian, and Stephane Bordas. “Interfacing AceGEN and FEniCS for
advanced constitutive models”. In: Proceedings of FEniCS 2021, online, 22–26 March (eds Igor Baratta, Jørgen S.
Dokken, Chris Richardson, Matthew W. Scroggs) (2021), 474. DOI: 10.6084/m9.figshare.14495463.

BibTeX for this citation can be found at https://mscroggs.github.io/fenics2021/talks/lengiewicz.html .
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FEniCS‐preCICE: Coupling FEniCS to other simulation
software

Ishaan Desai (https://www.ipvs.uni- stuttgart.de/institute/team/Desai ), University of
Stuttgart, Germany

Benjamin Rodenberg
(https://www.in.tum.de/i05/personen/personen/benjamin- rodenberg ), Technical
Universiy of Munich, Germany

Richard Hertrich, Technical University of Munich, Germany
Alexander Jaust (https://www.ipvs.uni- stuttgart.de/institute/team/Jaust- 00001 ),

University of Stuttgart, Germany
Benjamin Uekermann
(https://www.ipvs.uni- stuttgart.de/institute/team/Uekermann- 00001 ), University of
Stuttgart, Germany

25 March 2021

FEniCS-preCICE facilitates coupling of FEniCS with other software codes using the coupling library
preCICE. preCICE enables users to couple different solvers in a partitioned black-box fashion. This talk
explains various features of preCICE and its usage. Only a few additional lines of code are necessary to
prepare a FEniCS program script for coupling.

FEniCS-preCICE acts as a middle software layer which helps to connect a high-level FEniCS program
to the low-level API of preCICE. The package converts between FEniCS and preCICE data structures, pro-
vides easy-to-use coupling conditions, andmanages checkpointing for implicit coupling. FEniCS-preCICE
is able to handle distributed memory parallelization of FEniCS internally. This package is a library itself
and follows a FEniCS-native style.

The functionality of FEniCS-preCICE is illustrated by two examples of coupled problems in fluid-
structure interaction: a FEniCS heat conduction program coupled to OpenFOAM and a FEniCS elastic
solid mechanics program coupled to SU2. In both examples FEniCS is used to solve the solid part of the
fluid-solid coupling. The results of both examples are compared with other simulation software showing
good agreement. preCICE and FEniCS-preCICE are available under open-source licenses on GitHub.

References

[1] Benjamin Rodenberg, Ishaan Desai, Richard Hertrich, Alexander Jaust, and Benjamin Uekermann.
“FEniCS-preCICE: Coupling FEniCS to other simulation software”. https : / / arxiv . org / abs /
2103.11191 .

You can cite this talk as:

Ishaan Desai, Benjamin Rodenberg, Richard Hertrich, Alexander Jaust, and Benjamin Uekermann. “FEniCS-
preCICE: Coupling FEniCS to other simulation software”. In: Proceedings of FEniCS 2021, online, 22–26
March (eds Igor Baratta, Jørgen S. Dokken, Chris Richardson, Matthew W. Scroggs) (2021), 475–486. DOI:
10.6084/m9.figshare.14495469.

BibTeX for this citation can be found at https://mscroggs.github.io/fenics2021/talks/desai.html .
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FEniCS-preCICE: Coupling FEniCS to other Simulation Software
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preCICE - A Flexible Coupling Library

What is preCICE used for?

Coupling solvers for multi-physics simulations in a partitioned black-box fashion

Working principles of preCICE

Partitioned approach, black-box coupling,
massively parallel, highly flexible, library
approach

Solver A Solver B

Communication
Data Mapping

Coupling Schemes

libprecice adapter

in-house
solver

fluid solver

ad
ap

te
r

structure
solver

lib
pr
ec
ice

coupling schemes

data mapping

. . .

. . .

communication

time interpolation

A Coupling Library for Partitioned

Multi-Physics Simulations

commercial
solver

so
lve

r

OpenFOAM
SU2 

CalculiX
Code_Aster
FEniCS
deal-ii
Nutils
MBDyn
 

API in: C++
C

Python
Fortran

Matlab

foam-extend
 

ANSYS Fluent
COMSOL
 

Figure: Overview of preCICE features
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FEniCS-preCICE

Goal of FEniCS-preCICE

To provide a helper package to a FEniCS user to facilitate easy use of preCICE to setup a coupled problem

Design Principles:

To have a middle layer between high-level FEniCS
program and low-level C++ preCICE API

Use python-bindings of preCICE to access C++ API

To have a highly modular structure which is easy to
understand and modify in future

To handle as many boilerplate tasks as possible inside
the adapter

Features of Adapter:

Adapter supports 2D cases in FEniCS. Users can
define boundary conditions using FEniCS Expression or
PointSource

Adapter needs to be configured with a JSON file

fenicssolver.py

FEniCS-preCICE adapter

import fenics

import fenics
import precice

import fenicsprecice

libprecice

coupling to

OpenFOAM, SU2, ...

xml
precice.SolverInterface(...)

json
fenicsprecice.Adapter(...)

Figure: Functioning of FEniCS-preCICE Adapter
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API Functions of FEniCS-preCICE

Adapter receives configuration
information from JSON file

Adapter retrieves mesh data from user
defined FEniCS FunctionSpace and the
coupling boundary SubDomain

Converting data from FEniCS format to
preCICE format and visa-versa is
handled internally in the functions
read_data() and write_data()

Data at coupling boundary can be of the
form of a FEniCS Expression or FEniCS
PointSource

Distributed parallelization in FEniCS is
handled out of the box

Checkpointing functionality for implicit
coupling

def __init__(self, adapter_config_filename='precice-adapter-config.json'):

self._interface = precice.Interface(...)

def initialize(self, coupling_subdomain, read_function_space=None,

write_object=None):→֒

precice_dt = self._interface.initialize()

def read_data(self):

return data

def write_data(self, write_function):

def create_coupling_expression(self):

return CouplingExpression(...)

def update_coupling_expression(self, coupling_expression, data):

coupling_expression.update_boundary_data(nodal_data, x_coordinates,

y_coordinates)→֒

def get_point_sources(self, data):

return x_PointSources, y_PointSources

def store_checkpoint(self, user_u, t, n):

self._checkpoint = SolverState(user_u.copy(), t, n)

self._interface.mark_action_fulfilled(

precice.action_write_iteration_checkpoint() )→֒

def retrieve_checkpoint(self):

self._interface.mark_action_fulfilled(

precice.action_read_iteration_checkpoint() )→֒

return self._checkpoint.get_state()

5
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Modifying a FEniCS Program to couple using FEniCS-preCICE

from fenics import *

mesh = UnitSquareMesh(10, 10)

class Boundary(SubDomain): ...

V = V_bc = FunctionSpace(mesh, 'P', 2)

u, v = TrialFunction(V), TestFunction(V)

u_D = Expression('...',degree=2)

uncoupled_bc = DirichletBC(V_bc, u_D, Boundary)

# Define initial condition and weak form in FEniCS

...

for t in np.arange(0,T,dt):

solve(lhs(F) == rhs(F), u, [uncoupled_bc])

6
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Modifying a FEniCS Program to couple using FEniCS-preCICE

from fenics import *

mesh = UnitSquareMesh(10, 10)

class Boundary(SubDomain): ...

V = V_bc = FunctionSpace(mesh, 'P', 2)

u, v = TrialFunction(V), TestFunction(V)

u_D = Expression('...',degree=2)

uncoupled_bc = DirichletBC(V_bc, u_D, Boundary)

# Define initial condition and weak form in FEniCS

...

for t in np.arange(0,T,dt):

solve(lhs(F) == rhs(F), u, [uncoupled_bc])

from fenics import *

from fenicsprecice import Adapter

mesh = UnitSquareMesh(10, 10)

class Boundary(SubDomain): ...

class CouplingBoundary(SubDomain): ...

V = V_bc = FunctionSpace(mesh, 'P', 2)

u, v = TrialFunction(V), TestFunction(V)

V_flux = VectorFunctionSpace(mesh, 'P', 1)

u_D = Expression('...',degree=2)

uncoupled_bc = DirichletBC(V_bc, u_D, Boundary)

adapter = Adapter("precice-adapter-config.json")

precice_dt = adapter.initialize(CouplingBoundary, read_function_space=V_bc,

write_object=V_flux)→֒

u_C = adapter.create_coupling_expression()

coupled_bc = DirichletBC(V_bc, u_C, CouplingBoundary)

# Define initial condition and weak form in FEniCS

...

while adapter.is_coupling_ongoing():

read_data = adapter.read_data()

adapter.update_coupling_expression(u_C, read_data)

dt.assign(np.min([fenics_dt, precice_dt]))

solve(lhs(F) == rhs(F), u_np1, [uncoupled_bc, coupled_bc])

flux = some_postprocessing(u_np1, V_flux)

adapter.write_data(flux)

precice_dt = adapter.advance(dt(0))

u_n.assign(u_np1)

t += float(dt)
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Example Case: Conjugate Heat Transfer Coupling with FEniCS and OpenFOAM

buoyantPimpleFoam (OpenFOAM) solves fluid and heat transport problem

FEniCS solves heat transport problem
ΓC

ΓC, no-slip

coupling via preCICE

Γhot
Γ Γ

Γslip Γno-slip

Γslip

Γinflow Γoutflow

H

L

l

h

w

8
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Example Case: Fluid-Structure Interaction Coupling with FEniCS and SU2

SU2 solves fluid problem

FEniCS solves

structure problem

ΓC

ΓC

Γfixed

Γno-slip Γno-slip

Γno-slip

Γinflow ΓoutflowH

L

l

h
w

F
coupling via preCICE

9
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Getting FEniCS-preCICE and its Dependencies

Getting the Adapter:

Maintained under a open-source license here: https://github.com/precice/fenics-adapter

Easy to install: pip3 install fenicsprecice

Latest release can be found here: https://github.com/precice/fenics-adapter/releases

Other dependencies such as Scipy, Numpy, Cython, mpi4py are installed automatically during the adapter
installation

Dependencies

Python (python3)

preCICE (obviously)

FEniCS

Python-bindings for preCICE: pip3 install --user pyprecice

10
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Summary

preCICE is a coupling library for partitioned, black-box coupling. Designed for highly flexible and massively parallel
use

FEniCS-preCICE is an adapter to couple FEniCS programs with other software codes using preCICE

Adapter supports 2D FEniCS cases

Adapter handles FEniCS data structures and distributed parallelization automatically

Adapter is modular and flexible to use

Installation is straightforward using pip

Always happy with contributions from the community!

Immediate help required:

Extending adapter to handle 3D FEniCS cases

Implementing multiple coupling interfaces handling

Modify adapter to support FENICS-X and DOLFIN-X

Adding tutorials of coupled problems which use FEniCS
Research collaboration with the preCICE team

Pre-print of reference paper: Benjamin Rodenberg, Ishaan Desai, Richard Hertrich, Alexander Jaust, and Benjamin

Uekermann. FEniCS-preCICE: Coupling FEniCS to other Simulation Software: https: // arxiv. org/ abs/ 2103. 11191
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Motion of synthetic microswimmers at low Reynolds
numbers with FEniCS

Roberto Ausas (http://www.lmacc.icmc.usp.br/~ausas ), Institute of Mathematics and
Computer Sciences, University of São Paulo, Brazil

Stevens Paz, Universidad del Valle, Colombia
Paula Alvez da Silva, Institute of Mathematics and Computer Sciences, University of São Paulo,

Brazil
Gustavo Buscaglia (http://www.lcad.icmc.usp.br/~buscaglia ), Institute of Mathematics
and Computer Sciences, University of São Paulo, Brazil

25 March 2021

Swim propulsion strategies that work well in the macroscopic world turn out to be ineffective at the
microscopic scale due to the dominance of viscous forces at very low Reynolds numbers. Understanding
the locomotion strategies that can be adopted at the microscopic level by living microorganisms and syn-
thetic microswimmers is of fundamental importance in biology and in biomedical applications. This work
deals with the swimming of microscopic bodies in a highly viscous ambient fluid. We solve this fluid-solid
interaction problem by means of a fully implicit formulation in which fluid unknowns (velocity and pres-
sure) and positional degrees of freedom of the body are obtained simultaneously. This is accomplished
by suitably constructing the space of kinematically admissible fluid-solid motions. A stabilized equal or-
der formulation is adopted for the fluid part and linear triangular elements are used to approximate the
swimmer geometry. Lagrangian update of the moving boundaries is performed either by a non-reversible
Euler method or by a reversible mid-point scheme. In the latter case, a fixed-point iterative strategy is used
to obtain the solution. We present a FEniCS-based finite element implementation of this fluid-swimmer
interaction problem. Convergence of the proposed methodology is numerically assessed. Several nu-
merical and implementation details are provided along challenging 2D- and 3D-axisymmetric examples,
considering Newtonian and non-Newtonian rheologies.

You can cite this talk as:

Roberto Ausas, Stevens Paz, Paula Alvez da Silva, and Gustavo Buscaglia. “Motion of synthetic microswimmers at
low Reynolds numbers with FEniCS”. In: Proceedings of FEniCS 2021, online, 22–26 March (eds Igor Baratta, Jørgen
S. Dokken, Chris Richardson, Matthew W. Scroggs) (2021), 487. DOI: 10.6084/m9.figshare.14495475.

BibTeX for this citation can be found at https://mscroggs.github.io/fenics2021/talks/ausas.html .
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Development of an open‐source‐based framework for
multiphysical crystal growth simulations

Arved Enders‐Seidlitz, Leibniz Institute for Crystal Growth, Germany
Josef Pal, Leibniz Institute for Crystal Growth, Germany
Kaspars Dadzis, Leibniz Institute for Crystal Growth, Germany

25 March 2021

The NEMOCRYS project in the group “Model experiments” at the IKZ funded by an ERC Starting
Grant aims at profoundly validated numerical models for crystal growth. These processes involve a va-
riety of coupled physical phenomena such as heat transfer including radiation and phase change, elec-
tromagnetism, melt- and gas flows and thermal stresses. Numerous simulation studies (using eg Comsol,
Ansys or OpenFOAM) have been published, however, their applicability remains limited: The validation
is mostly insufficient due to missing in-situ measurements, and the models are either implemented in
expensive closed-source software or not published at all.

Therefore, a new open-source-based framework for multiphysics simulation in crystal growth is un-
der development. It currently uses Gmsh for FEM mesh generation and Elmer to solve the heat transfer
problem, which are wrapped in a python interface. Amajor challenge in the current implementation is the
coupling between Elmer and Gmsh: The transient simulation involves a moving crystal and phase bound-
ary, and thus the mesh needs to be updated. FEniCS is a promising tool providing additional flexibility
to implement new models with more advanced coupling algorithms. For example, a dynamic simulation
with varying crystal diameter could include heat transfer with phase change and electromagnetic heat
induction in FEniCS. External coupling with finite volume libraries such as OpenFOAM could be applied
for melt and gas flow calculations.

You can cite this talk as:

Arved Enders-Seidlitz, Josef Pal, and Kaspars Dadzis. “Development of an open-source-based framework for mul-
tiphysical crystal growth simulations”. In: Proceedings of FEniCS 2021, online, 22–26 March (eds Igor Baratta, Jørgen
S. Dokken, Chris Richardson, Matthew W. Scroggs) (2021), 488–501. DOI: 10.6084/m9.figshare.14495487.

BibTeX for this citation can be found at https://mscroggs.github.io/fenics2021/talks/enders- seidlitz.html .
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Motivation

Simulation concept

Transient heat transfer simulation

Possible integration of FEniCS

Conclusion

Content
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https://www.sciencedirect.com/topics
/chemistry/czochralski-process

Motivation – Silicon production

Czochralski growth 
furnace 

Silicon single crystal

http://www.knoda.org/back-history-discovery-
very-first-silicon-chip-digital-computers/

Computer technology, 
solar energy

https://cen.acs.org/energy/solar-power/Supercharging-
silicon-solar-cell/97/web/2019/07

https://www.pvatepla-
cgs.com/anlagen/czochralski/
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Motivation

Model experiments

Simplified geometry and material

Materials

o Tin, 𝑇𝑚𝑒𝑙𝑡 = 232°C
o Bismuth, NaNO3, …

Conditions

o Air atmosphere

o Vacuum

Measurements

o Temperatures
o Thermocouples, Pt100

o IR Camera

o Pyrometer

o Electromagnetism
o Heating power

o Magnetic field

o Flows, thermal stresses
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Heat 
transfer & 

phase 
change

Electro-
magnet-

ism

Gas flow Melt flow

Stresses

Crystal

Melt

Motivation

Numerical challenges

o Complex coupled physics

o Moving geometries

o Different timescales

o …

Goals in NEMOCRYS Project

o Validation: Using model experiments

o Open source implementation
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Simulation concept

openCGS framework
(open crystal growth simulation)

Automatization,
pre-defined setups, etc.

Geometry
definition

Simulation setup

Post processing

Planned

Fluid dynamics

General purpose FEM

Coupling

External tools

additional tools 
required

Meshing

Simulation

Visualization
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Transient simulation – setup

crucible

melt

air

inductor

crystal

symmetry axis Induction heating  (harmonic)

𝛻 × 1𝜇 𝛻 × 𝐴𝜑𝒆𝜑 + 𝑖𝜔𝜎𝐴𝜑𝒆𝜑 = 𝑗𝜑
Heat transfer

𝜌𝑐𝑝 𝜕𝑇𝜕𝑡 + 𝒖 ⋅ 𝛻 𝑇 − 𝛻 ∙ λ𝛻𝑇 = 𝜌ℎ
Phase change  (steady-state approximation)

𝑞 = 𝐿 𝜌 𝒗 ⋅ 𝒏 ,    𝑠𝑦 = 𝑦𝑗,1 − 𝑦𝑖 + (𝑥𝑖 − 𝑥𝑗,1) 𝑦𝑗,2−𝑦𝑖,1𝑥𝑗,2−𝑥𝑗,1
Radiation (at solid/air boundaries)

−λ𝑘 𝜕𝑇𝑘𝜕𝒏𝑘 = 𝜎𝜀𝜀𝑘 𝑇𝑘4 − 1𝐴𝑘𝜀𝑘𝑖=1𝑁 𝐺𝑖𝑘𝜀𝑖𝑇𝑖4𝐴𝑖
P. Råback et al.: Elmer Models Manual, CSC – IT Center for Science, 
10.11.2020. https://www.nic.funet.fi/pub/sci/physics/elmer/doc/ 

2D axisymmetric with Elmer
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Transient simulation – procedure

distortion

distortion

remeshing

t  = 50 s

t  = 50 s t  = 100 s

t  = 0 s

Steady state simulation

Mesh generation (with new L)

Transient simulation
with mesh distortion

Combination of sub-simulations to
one final result in Python

T

L, T

Mesh to mesh interpolation in Elmer

if 𝑙𝑐𝑟𝑠𝑡𝑎𝑙 < 𝑙𝑚𝑎𝑥 else

Procedure using Elmer / Gmsh
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Transient simulation – implementation

from opencgs import geo, setup

def geometry(crystal_length):

geo.crystal(crystal_length, ...)

geo.crucible(...)

geo.melt(...)

... # boundaries, mesh sizes

def simulation_setup(...):

setup.add_crystal(...)

... # bodies, boundaries

User input: Two functions
(simplified)

Mesh update loop in openCGS
(simplified)

sim = SteadyStateSim(geometry,

simulation_setup,

start_length)

sim.execute()

while start_length < max_length:

sim = TransientSim(geometry,

simulation_setup,

start_length,

length_increment,

sim)

sim.execute()

start_length += length_increment
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Transient simulation – results

Numerical

o Simulation numerically stable

o No visible errors introduced by mesh update

Physical

o Increase in temperature with crystal length, 

corresponds to experiment

o Validation ongoing: Convective cooling of crystal, 

etc.

Future challenges

o Variable crystal diameters

→ New models required
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Possible integration of FEniCS

Need for advanced models

o Phase boundary modeling

o Growth in axial and radial 

direction

o Interaction with process control

o Semi-transparent materials

o Internal radiation

o Internal absorption

Possible implementations

o Coupling to Elmer (preCICE)

o Complete solver in FEniCS –

radiation model required!

Semi-transparent materials

Phase boundary
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Transient thermal CZ growth simulation implemented

o Python-based framework using Elmer and Gmsh

o Limited to constant crystal diameters

Possible integration of FEniCS

o Coupling to Elmer using preCICE: Under development

o Complete solver in FEniCS: Radiation model required

Conclusion
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Coupling of thermomechanics with electromagnetism
in FEniCS

Bilen Emek Abali (http://bilenemek.abali.org ), Uppsala University, Sweden

25 March 2021

In thermomechanics, we utilize balance equations and compute temperature as well as deformation of
a continuum body. The theory is well established. In electromagnetism, we use Maxwell’s equations for
calculating electric field and magnetic flux. As we want to combine all of these fields, there are theoretical
and numerical challenges. This talk briefly introduces challenges and addresses some possible solutions
for computing electro-magneto-thermo-mechanical systems in FEniCS.

You can cite this talk as:

Bilen Emek Abali. “Coupling of thermomechanics with electromagnetism in FEniCS”. In: Proceedings of FEniCS
2021, online, 22–26 March (eds Igor Baratta, Jørgen S. Dokken, Chris Richardson, Matthew W. Scroggs) (2021),
502–517. DOI: 10.6084/m9.figshare.14495493.

BibTeX for this citation can be found at https://mscroggs.github.io/fenics2021/talks/abali.html .
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Thermomechanics and electromagnetism

Challenges in theory and implementation

◮ Coupling of electromagnetism and thermomechanics,

Abraham–Minkowski debate

◮ Thermodynamically sound derivation of all

constitutive equations using Minkowski momentum

◮ Balances of mass, momentum, energy, electric charge,

and Faraday law, jump conditions

Bilen Emek Abali, Thermomechanics and electromagnetism, 25.03.2021 slide 2/13
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Thermomechanics and electromagnetism

Challenges in theory and implementation

◮ Coupling of electromagnetism and thermomechanics,

Abraham–Minkowski debate

◮ Thermodynamically sound derivation of all

constitutive equations using Minkowski momentum

◮ Balances of mass, momentum, energy, electric charge,

and Faraday law, jump conditions

◮ Numerical method depends on the chosen gauge

conditions

◮ Jump conditions to be implemented as terms in the

variational formulation rather than element

formulation

◮ Monolithic computation by using Lorenz gauge and

jump conditions

Bilen Emek Abali, Thermomechanics and electromagnetism, 25.03.2021 slide 2/13
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Implementation

Solving the weak form by using open-source packages:

◮ CAD in Salome

◮ Mesh via NetGen in Salome

◮ Code in Python

◮ Assembly, linearization, solving via FEM in space and FDM in time

by FEniCS

◮ Visualization in ParaView

Bilen Emek Abali, Thermomechanics and electromagnetism, 25.03.2021 slide 3/13
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Implementation

Simulation of multiphysics applications, FEM in space, FDM in time

◮ Elastostatics

◮ Nonlinear elasticity

◮ Plasticity

◮ Linear and nonlinear fluid dynamics

◮ Fluid-structure interaction

◮ Thermomechanics

◮ Electromagnetism

◮ Thermoelectric coupling

◮ Piezoelectricity

◮ Magnetohydrodynamics

Bilen Emek Abali, Thermomechanics and electromagnetism, 25.03.2021 slide 4/13
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Verification of the method

◮ Thermodynamically sound derivation

of all constitutive equations in

electromagnetism and

thermomechanics

◮ Computation of displacement, u, and

magnetic potential, A, such that

magnetic flux, B

◮ Analytical solution for verifying the

novel numerical implementation

using Lorenz gauge and jump

conditions

Bilen Emek Abali, Thermomechanics and electromagnetism, 25.03.2021 slide 5/13

BEA and F. A. Reich. Continuum Mechanics and Thermodynamics 32.3 (2020), pp. 693–708.

BEA and F. A. Reich. Computer Methods in Applied Mechanics and Engineering 319 (2017), pp. 567–595.
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Multiphysics in electronics, transistor on a board

◮ Coupled constitutive equations in

electromagnetism and thermomechanics

◮ Monolithic computation of displacement, u,

temperature, T , electric potential, φ,

magnetic potential, A

◮ Realistic Mini-MELF geometry and

comparison to reduced order models

Bilen Emek Abali, Thermomechanics and electromagnetism, 25.03.2021 slide 6/13

BEA and T. I. Zohdi. Journal of Computational Electronics 17.2 (2018), pp. 625–636.
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Thermal damage in lightning

Bilen Emek Abali, Thermomechanics and electromagnetism, 25.03.2021 slide 7/13

BEA and T. I. Zohdi. Computational Mechanics 65.1 (2020), pp. 149–158.

510
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BEA and T. I. Zohdi. Computational Mechanics 65.1 (2020), pp. 149–158.
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Lifetime estimation in fatigue crack growth

◮ Plasticity, thermodynamics, and

electromagnetism by using experimentally

determined material parameters

◮ Experimental validation of results

◮ Coffin–Manson type fatigue related damage

by using accumulated plastic strain

Bilen Emek Abali, Thermomechanics and electromagnetism, 25.03.2021 slide 8/13

BEA, W. H. Müller, H. Walter, O. Wittler, and M. Schneider-Ramelow. GMM-Facbericht, DVS 340 (2018), pp. 174–179.

BEA. Mechanics of Advanced Materials and Modern Processes 3.1 (2017), pp. 1–11
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Piezoceramic fan under large displacement

Bilen Emek Abali, Thermomechanics and electromagnetism, 25.03.2021 slide 9/13

BEA and A. F. Queiruga. Journal of Computational Physics 394 (2019), pp. 200–231.
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Magnetorheological elastomer transducer

Bilen Emek Abali, Thermomechanics and electromagnetism, 25.03.2021 slide 10/13

BEA and A. F. Queiruga. Journal of Computational Physics 394 (2019), pp. 200–231.
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Multiphysics in batteries, microscale computations

Bilen Emek Abali, Thermomechanics and electromagnetism, 25.03.2021 slide 11/13

BEA. “Modeling mechanochemistry in Li-ion batteries”. In: Scientific Computing in Electrical Engineering. Ed. by G. Nicosia and V. Romano. Vol. 32. Mathematics in Industry.

Springer Nature, Cham, 2020. Chap. 8, pp. 79–91.
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What computations we can do?

◮ Solving coupled and nonlinear partial differential equations

◮ Thermomechanics and electromagnetism in solids and mixtures

◮ Reversible phenomena
◮ Piezoelectricity
◮ Pyroelectricity
◮ Magnetothermal coupling
◮ Electromagnetic coupling

◮ Irreversible phenomena
◮ Thermoelectric coupling (Peltier elements)
◮ Plasticity and damage

Bilen Emek Abali, Thermomechanics and electromagnetism, 25.03.2021 slide 12/13
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Thanks a lot !

http://bilenemek.abali.org
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Implementation of a nonlinear anisotropic image
denoising model in FEniCS

Abderrazzak Boufala, LISTI lab‐ENSA, FSJES AM, Ibn Zohr University, Morocco
El Mostafa Kalmoun, Department of Mathematics, Statistics and Physics, College of Arts and
Sciences, Qatar University, Qatar

25 March 2021

In this talk, we present a numerical implementation of the following nonlinear anisotropic diffusion-
based image denoising model, using the computing platform FEniCS Project:

𝑢 − 𝑢_0 = 1
2𝜆 div( 1

(𝜖2 + |∇𝑢_𝜎|2)1−𝑝/2
∇𝑢) in Ω,

𝜕_𝑛𝑢 = 0 on 𝜕Ω.
𝑢 = 𝑢(𝑥, 𝑦) denotes the unknown image to be recovered, 𝑢_0 is the observed noisy image, Ω ⊂ ℝ2 is

the spatial image domain and 𝜕_𝑛𝑢 denotes the derivative of 𝑢 in the direction normal to the boundary
𝜕Ω.

We also compare the numerical results with those obtained using finite difference method.

You can cite this talk as:

Abderrazzak Boufala and El Mostafa Kalmoun. “Implementation of a nonlinear anisotropic image denoising model
in FEniCS”. In: Proceedings of FEniCS 2021, online, 22–26 March (eds Igor Baratta, Jørgen S. Dokken, Chris Richard-
son, Matthew W. Scroggs) (2021), 518. DOI: 10.6084/m9.figshare.14495499.

BibTeX for this citation can be found at https://mscroggs.github.io/fenics2021/talks/boufala.html .
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Bistatic polarimetric through‐wall SAR public release
data set

Daniel Andre (https://www.cranfield.ac.uk/people/dr- daniel- andre- 496015 ),
Cranfield University, United Kingdom

Richard Sabbiers, Cranfield University, United Kingdom

25 March 2021

This talk presents details of a public release measured radar through-wall dataset suitable for valida-
tion of electromagnetic propagation and scattering predictions and for research in scene reconstruction
and three-dimensional Synthetic Aperture Radar (SAR) image formation. The collection was fully po-
larimetric, in a frequency range of 1-4 GHz, employing both monostatic and bistatic two-dimensional
synthetic aperture scanning geometries. The scene comprised a concrete walled structure approximately
3 m square and 1.3 m high, containing and surrounded by various metal targets. The Dstl funded experi-
ments were performed at Cranfield University’s Ground-Based SAR laboratory in the UK and the dataset
will be released in November 2021.

You can cite this talk as:

Daniel Andre and Richard Sabbiers. “Bistatic polarimetric through-wall SAR public release data set”. In: Pro-
ceedings of FEniCS 2021, online, 22–26 March (eds Igor Baratta, Jørgen S. Dokken, Chris Richardson, Matthew W.
Scroggs) (2021), 519. DOI: 10.6084/m9.figshare.14495511.

BibTeX for this citation can be found at https://mscroggs.github.io/fenics2021/talks/andre.html .
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Nonlocal UFL: Finite elements for Helmholtz equations
with a nonlocal boundary condition

Benjamin Sepanski (https://www.cs.utexas.edu/~bmsepan ), University of Texas at Austin,
Department of Computer Science, United States

Robert Kirby (https://sites.baylor.edu/robert_kirby ), Department of Mathematics,
Baylor University, United States

Andreas Kloeckner (https://mathema.tician.de/aboutme ), Department Computer Science,
University of Illinois at Urbana‐Champaign, Urbana, IL, United States

25 March 2021

Numerical resolution of exterior Helmholtz problems require some approach to domain truncation.
As an alternative to approximate nonreflecting boundary conditions and invocation of the Dirichlet-to-
Neumann map, we introduce new, nonlocal boundary conditions. These conditions are exact and require
the evaluation of layer potentials involving Green’s functions. The nonlocal boundary conditions are
readily approximated by fast multipole methods, and the resulting linear system can be preconditioned
by the purely local operator. Integration of the layer potential evaluation library pytential with the new
external operator feature of Firedrake allows us to express these boundary conditions in UFL.

You can cite this talk as:

Benjamin Sepanski, Robert Kirby, and Andreas Kloeckner. “Nonlocal UFL: Finite elements for Helmholtz equations
with a nonlocal boundary condition”. In: Proceedings of FEniCS 2021, online, 22–26 March (eds Igor Baratta, Jørgen
S. Dokken, Chris Richardson, Matthew W. Scroggs) (2021), 520–576. DOI: 10.6084/m9.figshare.14495538.

BibTeX for this citation can be found at https://mscroggs.github.io/fenics2021/talks/sepanski.html .
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Order of Presentation

Motivating Problem: Helmholtz scattering

A nonlocal boundary condition

Nonlocal UFL

Numerical Results

522



Thanks to. . .

◮ NSF 1525697, 1909176

◮ The U.S. Department of Energy, Office of Science, Office of
Advanced Scientific Computing Research, Department of
Energy Computational Science Graduate Fellowship under
Award Number DE-SC0021110

◮ Luke Olson (UIUC)

523



Exterior scattering1

Ωc

Ω′

Γ Σ

◮ Model waves reflecting off of
obstacle Γ
{

−∆u − κ2u = 0, R
d \ Ωc

∂u
∂n = f , Γ

◮ Without any spurious
reflections from infinity

lim
r→∞

r (d−1)/2
(

∂u
∂r − iκu

)

= 0

◮ In some finite domain of
interest Ω′ ⊆ R

d \ Ωc

bounded by Σ.

1Colton and Kress 1998; Kress 1999.
1 / 13
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Exterior scattering: computational problem

Ωc

Ω′

Γ Σ

◮ Problem we want to solve










−∆u − κ2u = 0,
∂u
∂n = f ,

limr→∞ r (d−1)/2
(

∂ u

∂r − iκu
)

= 0

◮ Problem we can actually solve











−∆u − κ2u = 0, Ω′

∂u
∂n = f , Γ

?????, Σ

2 / 13
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Exterior scattering: Perfectly Matched Layers (PML)3

Ωc

Ω′

Γ ΩS Σ











−∇ · β(x)∇u − κ2u = 0, Ω′

∂u
∂n = f , Γ

u = 0, Σ

◮ Ω′: β = I , satisfies original
equation

◮ ΩS : β is a complex-valued
coordinate transform to cause
exponential decay in
oscillating waves

◮ Preconditioning is difficult!2

2Engquist and Ying 2011; Safin, Minkoff, and Zweck 2018.
3Berenger 1994; Erlangga 2006; Bermudez et al. 2006.

3 / 13
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Integral form of the solution

Using the Helmholtz Green’s function

K (x) =
i

4π |x|
e iκ|x|,

Figure: K in 2D

the true solution satisfies4

u(x) = D(u)(x)− S(∂u∂n )(x), x ∈ Ω′

where

D(u)(x) =

∫

Γ

(

∂
∂nK(x − y)

)

u(y) dy ,

S(u)(x) =

∫

Γ
K(x − y)u(y) dy

4Colton and Kress 1998; Kress 1999. 4 / 13
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Exterior scattering

Ωc

Ω′

Γ Σ

Exact boundary conditions











−∆u − κ2u = 0, Ω′

∂u
∂n = f , Γ

(iκ− ∂
∂n ) (u − D(u) + S(f )) = 0, Σ

Variational Form:

For all v ∈ H1(Ω′)

(∇u,∇v)− κ2 (u, v)− iκ〈u, v〉Σ+〈
(

iκ− ∂
∂n

)

D(u), v〉Σ

= 〈f , v〉Γ +〈
(

iκ− ∂
∂n

)

S(f ), v〉Σ
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Theory

◮ a is a bounded bilinear form on H1 × H1

◮ F is a bounded linear functional on H1

◮ Gårding inequality. There existM and an α > 0 such that

Re(a(u, u)) +M ‖u‖2 ≥ α ‖u‖2

H1(Ω) .

◮ For h ≤ h0, we have optimal-order H1 and L2 error
estimates.5

5Kirby, Klöckner, and Sepanski 2021.
6 / 13
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Nonlocal operations in UFL

◮ Recall:

D(u)(x) =

∫

Γ

∂
∂nK(x − y)u(y) dy , x ∈ Σ

◮ Problem: Nonlocal operations have large support (all of Σ!)

– This makes our stiffness matrix dense, especially in 3D
– Solution: Firedrake’s matrix-free evaluation

◮ Problem: Naive evaluation of layer potentials is slow:

– ndof(Γ) · ndof(Σ)
– Solution: Fast multipole methods (FMM)6: use the structure
of K to compute the potential in linear time with low-rank
approximations

6Carrier, Greengard, and Rokhlin 1988.
7 / 13
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Nonlocal operations in UFL: Marshalling pytential8

◮ Build LayerPotential as a UFL External Operator7

X Build pytential representation of domain of interest

X Build pytential representation of function space

X Build efficient converter between pytential and firedrake
representations

– Fully support automatic differentiation

◮ Evaluation of
〈

(iκ− ∂
∂n )D(u), v

〉

Σ

X LayerPotential evaluates D(u) (automatically uses
pytential, which employs FMM to compute the potential)

X Firedrake evaluates inner product

7N. Bouziani, External Operators: https://fenics2021.com/talks/bouziani.html
8Klöckner 2020.
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Solving the system with Firedrake

Extend UFL:

a(u, v) = (∇u,∇v)− κ2 (u, v)− iκ〈u, v〉Σ + 〈
(

iκ− ∂
∂n

)

D(u)v〉Σ

9 / 13
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Numerical results: 2D
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Preconditioning: LU of local part

11 / 13
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Preconditioning: PyAMG

◮ If we can find a good preconditioner for the local problem,
we get a good preconditioner for the nonlocal problem

◮ PyAMG: precondition with plane waves

12 / 13
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Conclusion

Results
◮ Novel nonlocal boundary

condition

– Error estimates 9

◮ Extension of UFL to efficiently
handle nonlocal operators

◮ Numerical experiments
demonstrating optimal-order
convergence

◮ Investigation into
preconditioners

Coming Soon

◮ Full implementation of
LayerPotentials and
VolumePotential10s in
UFL as External
Operator11s

◮ General theory for this
method and application
to more problems

10Kirby, Klöckner, and Sepanski 2021.
11X. Wei, IEM-FEM Coupling: https://fenics2021.com/talks/wei.html
12N. Bouziani, External Operators: https://fenics2021.com/talks/bouziani.html
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Numerical results: 2D, degree 2
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Numerical results: 2D, degree 3
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Numerical results: 2D, degree 4
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Numerical results: 3D, degree 1
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Plasma modelling using FEniCS and FEDM

Aleksandar P. Jovanovic, Leibniz Institute for Plasma Science and Technology (INP), Germany
Detlef Loffhagen, Leibniz Institute for Plasma Science and Technology (INP), Germany
Markus M. Becker, Leibniz Institute for Plasma Science and Technology (INP), Germany
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Non-thermal low-temperature plasmas produced by electric discharges are widely used for various
kinds of applications, such as chemical processing (like ozone generation), surface processing (such as
plasma etching and sputtering), plasma actuators, or biomedical applications. In order to determine
the governing physical and chemical processes, which is sometimes ambitious by experimental meth-
ods, plasma modelling is an additional option to be applied. For the numerical analysis of atmospheric-
pressure plasmas, which are considered here, fluid models are mostly used due to their computational
efficiency. Common fluid models for non-thermal plasmas consist of a set of balance equations for the
particle number densities of the relevant plasma species and the energy density of electrons. Poisson’s
equation is typically solved to self-consistently calculate the electric potential and field. Depending on
the gas under consideration the number of species that needs to be taken into account spans from tens
to hundreds, which results in the same number of balance equations that need to be solved. At the same
time, the number of collision and radiation processes to be considered can even reach thousands, which
can make setting-up of the model difficult. Moreover, the physical time scales in plasmas range from
picoseconds (electron kinetics) to tens of seconds (slow plasma-chemical reactions) so that the implemen-
tation of adaptive time stepping methods is necessary. The present FEniCS-based FEDM (Finite Element
Discharge Modelling) code addresses these challenges by automating the model set-up procedure and im-
plementing a backward differentiation formula for time stepping. This contribution represents the main
features of the code, shows results of verification studies using benchmarking, and highlights how FEniCS
can be used for the numerical analysis of dielectric barrier discharges in argon at atmospheric pressure.

The present work was funded by the Deutsche Forschungsgemeinschaft – project number 407462159.

You can cite this talk as:

Aleksandar P. Jovanovic, Detlef Loffhagen, and Markus M. Becker. “Plasma modelling using FEniCS and FEDM”.
In: Proceedings of FEniCS 2021, online, 22–26 March (eds Igor Baratta, Jørgen S. Dokken, Chris Richardson, Matthew
W. Scroggs) (2021), 577–597. DOI: 10.6084/m9.figshare.14495562.
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Introduction

2

 Plasma is a gaseous state in which free electrons and io-

nised atoms or molecules exist. 

 Non-thermal low-temperature plasmas considered here 

are usually produced by electric discharges.

 They are used for different applications, such as chemical 

and surface processing, or biomedical applications.

 In order to describe physical and chemical processes in 

plasma, experimental studies are often supplemented by  

numerical modelling.

Images obtained from https://www.inp-greifswald.de/
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Governing equations

M. M. Becker et al., J. Phys. D: Appl. Phys. 46 (2013) 355203

G. J. M. Hagelaar et al., Phys. Rev. E 62 (2000) 1452

 Continuity equation for particle densities Poisson’s equation for electric potential

 Electron energy balance equation  In order to solve the equations, appropriate 
set of boundary conditions is used:

 Dirichlet and Robin boundary  conditions 
for Poisson’s equation

 Robin boundary conditions for continuity 
equations, and electron energy balance 
equation.

3
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Challenges in plasma modelling

 For appropriate description of the processes in plasma, lots of particles, and 

consequently, lots of processes need to be taken into account.

 Chemical reactions in plasma model usually lead to stiff system of equations.

 Time scale of the problem spans from picoseconds to tens of seconds.

4

D. Loffhagen et al., Plasma Chem. Plasma Process. 41 (2021) 289
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FEDM (Finite Element Discharge Modelling) code

5
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FEDM (Finite Element Discharge Modelling) code

6

 Transport and reaction rate coefficients are imported into model in form of functions 

or look-up tables.

 Source term definition is automated based on the reaction kinetic scheme.

 Time discretization is done using backward differentiation formula.

 Time stepping control is done using either H211b or PI.3.4 controllers.

E. Alberdi Celaya et al., Procedia Comput. Sci., 29, 1014–1026 (2014)

G. Söderlind and L. Wang,  J. Comput. Appl. Math., 185, 225–243 (2006)

G. Söderlind, Numer. Algorithms, 31, 281–310 (2002)
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7

Code verification by benchmarking

 Axisymmetric positive streamer in air at atmospheric 

pressure and 300 K is modelled using 2D FEDM code.

 Square domain has radius and gap distance of 1.25 cm.

 Background electric field is 15 kV/cm.

 Gaussian seed near the powered electrode is introduced 

to locally enhance the field and initiate the streamer.

 Mesh is refined towards the axis and streamer region 

(approx. 500000 elements).

 Linear Lagrange elements are used for all the equations.

 Time-step size is constant: Δt = 5 ps.

 Temporal evolution is followed up to 12 ns (2400 time 

steps). 

B. Bagheri et al., Plasma Sources Sci. Technol. 27 (2018) 095002

𝑟 = 𝑅

𝑧 = 𝑑

𝑟 = 0𝑧 = 0

Powered electrode

Grounded electrode
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pressure and 300 K is modelled using 2D FEDM code.

 Square domain has radius and gap distance of 1.25 cm.

 Background electric field is 15 kV/cm.

 Gaussian seed near the powered electrode is introduced 

to locally enhance the field and initiate the streamer.

 Mesh is refined towards the axis and streamer region 

(approx. 500000 elements).

 Linear Lagrange elements are used for all the equations.

 Time-step size is constant: Δt = 5 ps.

 Temporal evolution is followed up to 12 ns (2400 time 

steps). 
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Dielectric barrier discharge (DBD) modelling

8

 Atmospheric-pressure DBD in argon in asymmetric 

configuration is modelled using 2D FEDM code.

 Electrodes of radius 2 mm are set 1.5 mm apart.

 Grounded electrode (top) is covered by 0.5 mm thick dielectric.

 Pulsed voltage is applied to powered electrode (bottom).

 Gaussian seed near the powered electrode is introduced to 

locally enhance the field and initiate the streamer.

 Mesh is refined near the streamer region and along the 

dielectric (approx. 350000 elements).

 Linear Lagrange elements are used for all the equations.

 Adaptive time stepping is used (1 ps < Δt < 100 ps).

 Temporal evolution is followed up to about 43 ns. 
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Conclusion and outlook

 FEDM code for automated set-up of the equations is developed.

 The code is verified using benchmarking.

 The challenges in cases where the problem is defined on several subdomains, such as DBDs, 

could possibly be resolved using mixed-dimensional formulation.

 Handling of electron-energy-dependent and electric-field-dependent coefficients should be 

further addressed because they can lead to small time-step sizes.

9
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Contact

Leibniz Institute for Plasma Science and Technology

Address: Felix-Hausdorff-Str. 2, 17489 Greifswald 

Phone: +49 - 3834 - 554 3911, Fax: +49 - 3834 - 554 301

E-mail: aleksandar.jovanovic@inp-greifswald.de, Web: www. leibniz-inp.de
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Implementation of fluid‐structure interactions for rigid
body motion in FEniCS using immersed finite element

method

Chayut Teeraratkul, University of Colorado Boulder, United States
Debanjan Mukherjee, University of Colorado Boulder, United States

25 March 2021

In this work, an implementation of rigid body immersed finite element method in FEniCS is presented.
Immersed finite element method was proposed for resolving complex fluid structure interaction problems
often encounter in many engineering applications. In immersed finite element method, the structure
is represented by a Lagrangian mesh moving on top of a Eulerian fluid mesh. This allow for the fluid
mesh to be generated independently from the solid structure and thus greatly simplified the meshing
process. The no-slip condition and the FSI force at the fluid-solid interface is enforced using a mesh-to-
mesh interpolation of velocity and FSI coupling force. Classically, the interpolation method employed
in immersed finite element is to use a discrete delta function; however, in this work a method based on
transforming basis function between the two domain is employed. This allow for the support of the FSI
force interpolation to be the size elements in the fluid domain touching the structure domain. Support
size on which the fluid-structure interaction force is applied is therefore optimal in an element-wise sense.
Results from a canonical problem of rigid sphere dropping in a channel is simulated to demonstrate the
implementation. Implementation details and performance of the implementation is discussed.

You can cite this talk as:

Chayut Teeraratkul and Debanjan Mukherjee. “Implementation of fluid-structure interactions for rigid body
motion in FEniCS using immersed finite element method”. In: Proceedings of FEniCS 2021, online, 22–
26 March (eds Igor Baratta, Jørgen S. Dokken, Chris Richardson, Matthew W. Scroggs) (2021), 598. DOI:
10.6084/m9.figshare.14495568.

BibTeX for this citation can be found at https://mscroggs.github.io/fenics2021/talks/teeraratkul.html .
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Direct FEM Simulation for air pollution dispersion in
building aerodynamics

Linde van Beers, KTH Royal Institute of Technology, Sweden
Johan Jansson, KTH Royal Institute of Technology, Sweden
Måns Andersson, KTH Royal Institute of Technology, Sweden

25 March 2021

We discuss the suitability of time-resolved adaptive Direct FEM Simulations (DFS) as an alternative
method to RANS and LES in building aerodynamics. This method has significant advantages over other
methods in that it relies less on human-defined parameters and meshes, potentially reducing the need
for extensive validation for each new case. Next to that, it uses computational resources very efficiently,
as the mesh is adapted to local error estimates. Especially for applications such as pollution dispersion,
where RANS does not provide sufficiently detailed flow characteristics and LES is often too slow, adaptive
DFS may present a solution.

However, little research is available on the use of this method in the Atmospheric Boundary Layer,
which is essential for flow features around buildings. We will present preliminary principles and results
for applying time-resolved adaptive DFS in building aerodynamics, with the focus on future application to
pollution dispersion. Moreover, experiments will be performed using FEniCS in accessible environments
with limited computational resources, to enhance reproducibility.

You can cite this talk as:

Linde van Beers, Johan Jansson, and Måns Andersson. “Direct FEM Simulation for air pollution dispersion in
building aerodynamics”. In: Proceedings of FEniCS 2021, online, 22–26 March (eds Igor Baratta, Jørgen S. Dokken,
Chris Richardson, Matthew W. Scroggs) (2021), 599. DOI: 10.6084/m9.figshare.14495574.

BibTeX for this citation can be found at https://mscroggs.github.io/fenics2021/talks/van- beers.html .
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A tracer’s sojourn in a compressible velocity field

Nate Sime, Carnegie Institution for Science, United States
Cian Wilson, Carnegie Institution for Science, United States
Peter van Keken, Carnegie Institution for Science, United States

25 March 2021

Pointwise satisfaction of the continuity equation is key to precise advection of tracer data through
incompressible velocity fields.

In this presentation we explore tracer advection in the context of weakly compressible flows arising
in anelastic fluids.

To do this we exploit the hybrid discontinuous Galerkin (HDG) method via the GeoPart and LEoPart
libraries in conjunction with the FEniCS project.

We present some esoteric findings and aesthetic images.

You can cite this talk as:

Nate Sime, Cian Wilson, and Peter van Keken. “A tracer’s sojourn in a compressible velocity field”. In: Proceedings
of FEniCS 2021, online, 22–26 March (eds Igor Baratta, Jørgen S. Dokken, Chris Richardson, Matthew W. Scroggs)
(2021), 600. DOI: 10.6084/m9.figshare.14495586.

BibTeX for this citation can be found at https://mscroggs.github.io/fenics2021/talks/sime.html .

600

https://bitbucket.org/nate-sime/geopart/
https://bitbucket.org/jakob_maljaars/leopart/
https://fenicsproject.org
https://dx.doi.org/10.6084/m9.figshare.14495586
https://mscroggs.github.io/fenics2021/talks/sime.html


A two‐level nonlinear beam model using adjoints

Marco Morandini (https://home.aero.polimi.it/morandini ), Politecnico di Milano, Italy

26 March 2021

A two-level nonlinear beam model, with the two levels linked by first- and second-order adjoints, al-
lows to successfully deal with beam problems characterized by complex andmulti-material cross-sections.
Emphasis is given to the approach used for coupling the two levels within the FEniCS framework, and on
how to overcome a few issues encountered during the actual implementation of the coupling procedure.

You can cite this talk as:

Marco Morandini. “A two-level nonlinear beam model using adjoints”. In: Proceedings of FEniCS 2021, online,
22–26 March (eds Igor Baratta, Jørgen S. Dokken, Chris Richardson, Matthew W. Scroggs) (2021), 601–641. DOI:
10.6084/m9.figshare.14495592.

BibTeX for this citation can be found at https://mscroggs.github.io/fenics2021/talks/morandini.html .
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A two-level nonlinear beam model using adjoints

Marco Morandini
marco.morandini@polimi.it

Politecnico di Milano

FEniCS 2021, March 22-26
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Introduction

Beam model

Domain: line

Unknowns: x ′, α′

Needs constitutive law
{T ,M}(ǫ,β)

α
′2

α
′1

α
′3

x
′

Handling of finite rotations in Dolfin,
proc. FEniCS Conference 2017

https://home.aero.polimi.it/morandini/Downloads/
DolfinFiniteRotations/html/

FEniCS 2021, March 22-26 2
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Introduction

Beam model

Domain: line

Unknowns: x ′, α′

Needs constitutive law
{T ,M}(ǫ,β)

Cross-section models

Domain: cross section (area)

Unknowns: û i

Known 3D constitutive law

Function of {T ,M}
(forcing term)

α
′2

α
′1

α
′3

x
′

T

M

z

Handling of finite rotations in Dolfin,
proc. FEniCS Conference 2017

Analysis of beam cross section response
accounting for large strains and plasticity, IJSS,
2019.

https://home.aero.polimi.it/morandini/Downloads/
DolfinFiniteRotations/html/
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604



Two-level model

1 Beam model:
from {x ′,α′}

∫
L

(δεT + δβM) ds − δLe = 0

FEniCS 2021, March 22-26 3
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Two-level model

1 Beam model:
from {x ′,α′}

∫
L

(δεT + δβM) ds − δLe = 0

to {x ′,α′,T ,M}

complementary strain energy

v(T ,M) = ǫT + βM − w(ǫ,β)
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Two-level model

1 Beam model:
from {x ′,α′}

∫
L

(δεT + δβM) ds − δLe = 0

to {x ′,α′,T ,M}

complementary strain energy

v(T ,M) = ǫT + βM − w(ǫ,β)

H(δ{ǫ,β,T ,M}, {ǫ,β,T ,M}) =

∫
l

(δǫT + δβM + δTǫ + δMβ − δv) ds − δLe = 0
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Two-level model

1 Beam model:
from {x ′,α′}

∫
L

(δεT + δβM) ds − δLe = 0

to {x ′,α′,T ,M}

complementary strain energy

v(T ,M) = ǫT + βM − w(ǫ,β)

H(δ{ǫ,β,T ,M}, {ǫ,β,T ,M}) =

∫
l

(δǫT + δβM + δTǫ + δMβ − δv) ds − δLe = 0

2 Cross section model: F(δû i , û i , {T ,M}) = 0
compute

v =

∫
A

S : ε − ψ(ε,χ)dA

on the cross-section F = 0 with {T ,M} from beam model

FEniCS 2021, March 22-26 3
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Two-level model

Global model: H(δ{ǫ,β,T ,M}, {ǫ,β,T ,M})

Fi = 0

{T ,M}

dv

d{T ,M}

d
2
v

d{T ,M}2

H = 0

F3 = 0
F1 = 0

F2 = 0

δv = δ{T , M} · dv

d{T ,M}
∂δv = δ{T , M} · d2

v

d{T ,M}2 · ∂{T , M}

FEniCS 2021, March 22-26 4
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H = 0
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δv = δ{T , M} · dv

d{T ,M}
∂δv = δ{T , M} · d2

v
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Cross section: F(δû i , û i , {T , M}) = 0

dv

d{T ,M}
: first order adjoint
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Two-level model
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H = 0
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F2 = 0

δv = δ{T , M} · dv

d{T ,M}
∂δv = δ{T , M} · d2

v

d{T ,M}2 · ∂{T , M}

Cross section: F(δû i , û i , {T , M}) = 0

dv

d{T ,M}
: first order adjoint d2

v

d{T ,M}2 : second order adjoint
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Implementation

Cross section:
class BeamSection():

# solve the F = 0
def solve(self, force, moment):

....

# compute the derivative dv

d{T ,M}

def delta_v(self, force, moment):

....

# compute the derivative d
2
v

d2{T ,M}

def de_delta_v(self, force, moment):

....

T

M

where
solve find the solution of F = 0;
delta_v compute the first derivative dv

d{T ,M}

de_delta_v compute the second derivative d2
v

d{T ,M}2

FEniCS 2021, March 22-26 5
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Implementation

Global beam model H = 0:
store array beams_sec of BeamSections,
one for each cell

F3 = 0

F1 = 0
F2 = 0

F4 = 0

F5 = 0

FEniCS 2021, March 22-26 6
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Implementation

Global beam model H = 0, array beams_sec
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Implementation

Global beam model H = 0, array beams_sec

class delta_v_expression(UserExpression):

# evaluate dv

d{T ,M}

def eval_cell(self, value, x, ufc_cell):

...

value = beams_sec[ufc_cell.index].delta_v(self.Tc, self.Mc)

FEniCS 2021, March 22-26 7
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Implementation

Global beam model H = 0, class delta_v_expression

∫
l

(δǫT + δβM + δTǫ + δMβ − δv) ds − δLe

# δT and δM

test_FM = as_vector([v_F[0], v_F[1], ...])

# dv

d{T ,M}

delta_v_expr = delta_v_expression(u, element = AZ2_EL)

# δv = δ{T , M} · dv

d{T ,M}

delta_v = inner(test_FM, delta_v_expr)

# H
functional = ... - \

delta_v * dx - \

....

FEniCS 2021, March 22-26 8
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Implementation

Linearization?

Same approach but with d2
v

d{T ,M}2

FEniCS 2021, March 22-26 9

618



Does it work?

Yes

FEniCS 2021, March 22-26 10
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Does it work?

Yes

quadratic convergence

nice results, also with elasto-plastic & hyperelastic materials

Morandini M, A two-level nonlinear beam analysis method, IJSS, 2020

FEniCS 2021, March 22-26 10
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Issue #1: caching

{T ,M} piece-wise constant discontinuous (DG0)

FEniCS 2021, March 22-26 11
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Issue #1: caching

{T ,M} piece-wise constant discontinuous (DG0)

repeated calls, for the same cell, with same {T ,M}

(limited) caching → significant speedup
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Issue #2: a tale of coffee mugs

Python Dolfin wrapper

Early in the morning

FEniCS 2021, March 22-26 12
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Issue #2: a tale of coffee mugs

Python Dolfin wrapper
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F3 = 0
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Issue #2: a tale of coffee mugs

Why?
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Issue #2: a tale of coffee mugs

Why?

dijitso caches FFC code generation & compilation

caching based of Form “signature”

Form.signature() really expensive

Form.signature() gets recomputed!

Stop-gap solution:

replace Form.signature()

hash(.py source file) + form name
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Questions/comments?
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Interoperability with automatic differentiation libraries
through NumPy interface to FEniCS

Ivan Yashchuk, Aalto University, Finland

26 March 2021

Partial differential equations (PDEs) are used to describe a variety of physical phenomena. Comput-
ing derivative information of the solution to PDE with respect to the input parameters is important in
many tasks in scientific computing. A high-level interface for evaluating derivatives of FEniCS models
is developed. It is intended to be used as the backend for extending Automatic Differentiation libraries
to support FEniCS solvers. High-level symbolic representation of PDEs allows bypassing differentiating
through low-level possibly many iterations of the underlying nonlinear solvers. Automatic tangent linear
and adjoint solvers for FEniCS problems are derived with dolfin-adjoint/pyadjoint. These solvers make it
possible to use forward and reverse modes Automatic Differentiation with FEniCS. This package is used
for building bridges between FEniCS and JAX, PyMC3 (Theano), PyTorch, Julia’s ChainRule.jl, Zygote.jl.
This enables the efficient composition of finite element solvers with arbitrary differentiable programs.

You can cite this talk as:

Ivan Yashchuk. “Interoperability with automatic differentiation libraries through NumPy interface to FEniCS”. In:
Proceedings of FEniCS 2021, online, 22–26 March (eds Igor Baratta, Jørgen S. Dokken, Chris Richardson, Matthew
W. Scroggs) (2021), 642–659. DOI: 10.6084/m9.figshare.14495595.

BibTeX for this citation can be found at https://mscroggs.github.io/fenics2021/talks/yashchuk.html .
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Ivan Yashchuk
Aalto University | Quansight Labs

AD libraries + FEniCS/Firedrake
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Behind the scenes: Tangent and Adjoint PDEs
Symbolic form of the problem is used to derive additional PDEs that are solved for 
calculating Jacobian-vector and vector-Jacobian products.

Let F(u, m) = 0 represent the PDE,
u represents the solution and m represents the parameters.

Jacobian-vector product:

vector-Jacobian product:
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Jacobian-vector product

https://github.com/IvanYashchuk/jax-fenics
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Jacobian-transpose-vector product

https://github.com/IvanYashchuk/jax-fenics
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Composition with other JAX programs
Let’s use jax.stax to set up network initialization and evaluation functions

# Define R^2 -> R^1 function
net_init, net_apply = jax.experimental.stax.serial(Dense(2), Relu, Dense(10), Relu, Dense(1))

nn_predictions = net_apply(net_params, W.tabulate_dof_coordinates())
f_nn = numpy_to_fenics(nn_predictions, fenics.Function(W))

https://nbviewer.jupyter.org/github/IvanYashchuk/jax-fenics-adjoint/blob/master/notebooks/poisson-intro.ipynb
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“Physics-Informed” Neural Networks (PINN)

Equivalent minimization problem: 

Usual FEM: Taking c = nn(x; coefficients)

and solving the minimization problem for neural network coefficients we get PINN.
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“Physics-Informed” Neural Networks (PINN)
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dolfin-adjoint is not enough but pyadjoint is
pyadjoint/dolfin-adjoint is an automatic differentiation for FEniCS and Firedrake
+ an interface to selected optimization libraries (SciPy, IPOpt, Moola, PyROL)

The goal is to embed PDE solvers inside other programs for

● composition with other differentiable programs (for example neural networks)
● probabilistic parameter estimation
● interface to optimization and sampling libraries outside of dolfin-adjoint

This work is about serialisation layer using NumPy arrays and API that simplifies 
embedding of FEniCS/Firedrake in AD libraries
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Finite Element Chain Rules (inspired by ChainRules.jl)

A serialisation layer using NumPy arrays
+ API that simplifies embedding of FEniCS/Firedrake in AD libraries

https://github.com/IvanYashchuk/fecr
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  FECR 🌄
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https://ivanyashchuk.github.io/fenics_pymccon2020/

PyMC3
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https://github.com/IvanYashchuk/PyFenicsAD.jl

Julia | Turing.jl

Summary Statistics
  parameters      mean       std   naive_se      mcse        ess      rhat 
      Symbol   Float64   Float64    Float64   Float64    Float64   Float64 

      kappa0    1.2497    0.3789     0.0120    0.0357   130.3485    1.0001
      kappa1    0.5443    0.1711     0.0054    0.0155   139.7087    1.0001
           σ    0.0143    0.0019     0.0001    0.0001   178.8158    1.0043

Quantiles
  parameters      2.5%     25.0%     50.0%     75.0%     97.5% 
      Symbol   Float64   Float64   Float64   Float64   Float64 

      kappa0    0.5183    0.9850    1.2590    1.5483    1.9140
      kappa1    0.2295    0.4291    0.5424    0.6698    0.8579
           σ    0.0111    0.0130    0.0142    0.0154    0.0188
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Summary | AD + FEniCS/Firedrake
What?
Automatic forward and reverse differentiation of FEniCS/Firedrake composable with 
JAX | PyMC3 | Julia

Why?
Reuse existing well established libraries instead of reinventing the wheels in 
“differentiable physics” fashion
Composability with other libraries of host AD:
Including PDEs in probabilistic modelling using PyMC3 | Turing.jl | NumPyro (JAX)
Interfacing with optimization and sampling libraries

What’s next?
Arbitrary higher-order derivatives for JAX and Julia
Distributed array interface
Compatibility with JAX’s JIT compilation
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How to get started?
Step 1: Install Firedrake or FEniCS
For embedding in other AD libraries:
https://github.com/IvanYashchuk/fecr

For JAX interface:
https://github.com/IvanYashchuk/jax-fenics-adjoint

For PyMC3 interface:
https://github.com/IvanYashchuk/fenics-pymc3

For Julia interface:
https://github.com/IvanYashchuk/PyFenicsAD.jl
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Developing an automatized optimization problem in
FEniCS for parameter determination of metamaterials

Navid Shekarchizadeh, Department of Basic and Applied Sciences for Engineering, Sapienza
University of Rome, Italy

Alberto Maria Bersani, Department of Mechanical and Aerospace Engineering, Sapienza
University of Rome, Italy

26 March 2021

In this work, a novel automatized optimization process is developed for the inverse analysis and pa-
rameter determination of metamaterials. Metamaterials are the family of materials designed to have tai-
lored material properties, such as high strength-to-weight ratio or extreme elasticity, by using an opti-
mized topology. Due to metamaterials’ inner substructure, it is of interest to simulate their mechanical
behaviour using reduced-order modelling utilizing the generalized mechanics. We determine the con-
stitutive parameters of such models by developing an automatized optimization process in FEniCS. This
process utilizes the Trust Region Reflective optimization method, from Scipy, for minimizing the deviation
of the continuummodel from a detailedmicro-scale model. The parameter identification procedure proves
to be robust and reliable by testing it for the pantographic structures as an example of metamaterials.

You can cite this talk as:

Navid Shekarchizadeh andAlbertoMaria Bersani. “Developing an automatized optimization problem in FEniCS for
parameter determination of metamaterials”. In: Proceedings of FEniCS 2021, online, 22–26 March (eds Igor Baratta,
Jørgen S. Dokken, Chris Richardson, Matthew W. Scroggs) (2021), 660–679. DOI: 10.6084/m9.figshare.14495607.

BibTeX for this citation can be found at https://mscroggs.github.io/fenics2021/talks/shekarchizadeh.html .
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Introduction

What are metamaterials?

• engineered materials, with properties not found in natural materials

• usually arranged in repeating patterns

• at scales smaller than the wavelengths of the phenomena they influence

• derive their properties from their designed structures

We need to identify the parameters of metamaterials’ models

2Navid Shekarchizadeh, Alberto Maria Bersani, 26.03.2021
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Introduction

An example of metamaterials:

Pantographic structures

3Navid Shekarchizadeh, Alberto Maria Bersani, 26.03.2021

Shekarchizadeh, N, Abali, BE, Barchiesi, E, Bersani, AM. Inverse analysis of metamaterials and parameter determination by means of an automatized optimization problem. Z Angew Math

Mech. 2021;e202000277
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Introduction

Pantographic Structures

• Properties:
• Large deformation in the elastic region

• High toughness: absorbing large amount of energy in the elastic 
and plastic regimes

• Extraordinarily high specific strength

• Main Deformation Energy Mechanisms:

• Shear deformation of the elastic pivots

• Bending of beams

• Stretching of beams
4Navid Shekarchizadeh, Alberto Maria Bersani, 26.03.2021
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Introduction

Modeling Pantographic Structures

• Micro-scale Model

• Using Cauchy first-gradient continuum theory

• Macro-scale Model

• Using a strain-gradient energy model

5Navid Shekarchizadeh, Alberto Maria Bersani, 26.03.2021
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• Nonlinear Elasticity

• Deformation of a body

• Deformation gradient

• Green-Lagrange strain tensor

• Strain energy density:

• Elasticity action functional:

• Weak form:

Micro-scale Model

6
Abali, B. E., Müller, W. H., & dell’Isola, F. (2017). Archive of

Applied Mechanics, 87(9), 1495-1510.
Navid Shekarchizadeh, Alberto Maria Bersani, 26.03.2021
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Macro-scale Model

A macro-scale model for planar pantographic structures

• A homogenized model with strain-gradient terms𝑊𝑀 𝜺, 𝜿, 𝛾 = 12𝐾e 𝜀12 + 𝜀22 + 12𝐾g 𝜅12 + 𝜅22 + 12𝐾s𝛾2

7

dell’Isola, F., Giorgio, I., Pawlikowski, M., & Rizzi, N. L. (2016). Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical

examples of equilibrium. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 472(2185), 20150790.

Navid Shekarchizadeh, Alberto Maria Bersani, 26.03.2021
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Optimization problem

Numerical Identification

8Navid Shekarchizadeh, Alberto Maria Bersani, 26.03.2021

Shekarchizadeh, N, Abali, BE, Barchiesi, E, Bersani, AM. Inverse analysis of metamaterials and parameter determination by means of an automatized optimization problem. Z Angew Math

Mech. 2021;e202000277
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Optimization

Numerical Identification

• Optimization function: scipy.optimize.least_squares (from Python)

• Optimization method: Trust Region Reflective (trf) algorithm

9

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html

Navid Shekarchizadeh, Alberto Maria Bersani, 26.03.2021
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Modeling

10

• Creating 3D CAD model and meshing in SALOME

• 230k degrees of freedom

• Creating 2D homogenized model in FEniCS

• 5k degrees of freedom

• Simulate a tensile test

Navid Shekarchizadeh, Alberto Maria Bersani, 26.03.2021
Abali, B. E. (2017). Computational Reality. Springer, Singapore.
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Results

• Micro-scale model results:

• Plot of displacement (17.6 % normal strain)

11
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Navid Shekarchizadeh, Alberto Maria Bersani, 26.03.2021

Shekarchizadeh, N, Abali, BE, Barchiesi, E, Bersani, AM. Inverse analysis of metamaterials and parameter determination by means of an automatized optimization problem. Z Angew Math

Mech. 2021;e202000277
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Results

• Macro-scale model results:

• Plot of energy

12Navid Shekarchizadeh, Alberto Maria Bersani, 26.03.2021

Shekarchizadeh, N, Abali, BE, Barchiesi, E, Bersani, AM. Inverse analysis of metamaterials and parameter determination by means of an automatized optimization problem. Z Angew Math

Mech. 2021;e202000277
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Results

• Comparing the models:

• Displacement plot: micro-scale (in black), macro-scale (in color)

13

(m
)

Navid Shekarchizadeh, Alberto Maria Bersani, 26.03.2021

Shekarchizadeh, N, Abali, BE, Barchiesi, E, Bersani, AM. Inverse analysis of metamaterials and parameter determination by means of an automatized optimization problem. Z Angew Math

Mech. 2021;e202000277
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• Numerical identification results:

Results

14Navid Shekarchizadeh, Alberto Maria Bersani, 26.03.2021

Shekarchizadeh, N, Abali, BE, Barchiesi, E, Bersani, AM. Inverse analysis of metamaterials and parameter determination by means of an automatized optimization problem. Z Angew Math

Mech. 2021;e202000277
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• Numerical identification results:

Results

15Navid Shekarchizadeh, Alberto Maria Bersani, 26.03.2021
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Results

• Numerical identification results:

• Sensitivity analysis

16Navid Shekarchizadeh, Alberto Maria Bersani, 26.03.2021

Shekarchizadeh, N, Abali, BE, Barchiesi, E, Bersani, AM. Inverse analysis of metamaterials and parameter determination by means of an automatized optimization problem. Z Angew Math

Mech. 2021;e202000277
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Results

• Macro-scale model results:

• Mesh convergence

17Navid Shekarchizadeh, Alberto Maria Bersani, 26.03.2021

Shekarchizadeh, N, Abali, BE, Barchiesi, E, Bersani, AM. Inverse analysis of metamaterials and parameter determination by means of an automatized optimization problem. Z Angew Math

Mech. 2021;e202000277
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Conclusion

• Implementing a novel optimization procedure for the numerical
identification of the parameters

• Consistency of the micro-scale and the macro-scale models in terms
of deformation and energy

• Efficiency and robustness of the Trust Region Reflective Algorithm

• Robustness of the developed code by checking the sensitivity

18Navid Shekarchizadeh, Alberto Maria Bersani, 26.03.2021

Shekarchizadeh, N, Abali, BE, Barchiesi, E, Bersani, AM. Inverse analysis of metamaterials and

parameter determination by means of an automatized optimization problem. Z Angew Math

Mech. 2021;e202000277
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Total generalized variation for piecewise constant
functions

Lukas Baumgärnter, Humboldt‐Universität zu Berlin, Germany
Stephan Schmidt, Humboldt‐Universität zu Berlin, Germany
Roland Herzog, Technische Universität Chemnitz, Germany
Ronny Bergmann, Technische Universität Chemnitz, Germany
José Vidal‐Núñez, University of Alcalá, Spain

26 March 2021

The total generalized variation (TGV) was introduced as a generalization to the total variation reg-
ularizer to avoid the staircasing effect. In particular, the kernel of second-order TGV consists of linear
polynomials.

Strictly speaking, the functional measures TV on piecewise constant data, however, the concept has
become state of the art for recontruction of pixel images using an appropriate discretization.

A discrete version of second-order TGV for piecewise constant functions on triangulated meshes is
presented in the FEniCS framework. The non-smooth regularizer prefers equally distributed jumps over
larger constant areas and thus prevents the visible staircasing effect compared to TV.

This is demonstrated for image denoising problems on structured as well as unstructured planar
meshes using an implementation of the split Bregman method in FEniCS.

The functional is suitable for data on surfaces and can be extended to manifold valued data to measure
the total generalized variation of the normal vector.

You can cite this talk as:

Lukas Baumgärnter, Stephan Schmidt, Roland Herzog, Ronny Bergmann, and José Vidal-Núñez. “Total generalized
variation for piecewise constant functions”. In: Proceedings of FEniCS 2021, online, 22–26 March (eds Igor Baratta,
Jørgen S. Dokken, Chris Richardson, Matthew W. Scroggs) (2021), 680. DOI: 10.6084/m9.figshare.14495610.

BibTeX for this citation can be found at https://mscroggs.github.io/fenics2021/talks/baumgartner.html .
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Efficient Hessian computation in deterministic and
Bayesian inverse problems

Daniel I Gendin, Boston University, United States
Paul Barbone, Boston University, United States

26 March 2021

Inverse problem applications often require finding the minimum and Hessian of an optimization prob-
lem with partial differential equation constraints. Computing the Hessian of the cost functional is useful
to estimate the uncertainty in the inverse problem solution from both a deterministic and Bayesian point
of view. Direct computation of the Hessian, however, is prohibitively expensive for inverse problems with
high dimensionality. We present a computational algorithm that computes the Hessian as a by-product
of solving the inverse problem at practically no additional cost. It is based on solving using conjugate
gradient (CG) inner iterations to solve for Newton updates in outer iterations to find the minimum. As
an iterative matrix solver, an advantage of CG is that of short term recurrence preserves global conjugacy
of the search directions, and therefore prior searches may be discarded. By saving conjugate directions
and the action of the Hessian on those directions, we show that we can recover the full Hessian while
computing the minimum. We present the algorithm in weak form in Hilbert space, and implement it in
FEniCS. We verify the implementation in simulated inverse problems of modest size, and demonstrate its
applicability to real data in an application of ultrasound elastography.

You can cite this talk as:

Daniel I Gendin and Paul Barbone. “Efficient Hessian computation in deterministic and Bayesian inverse problems”.
In: Proceedings of FEniCS 2021, online, 22–26 March (eds Igor Baratta, Jørgen S. Dokken, Chris Richardson, Matthew
W. Scroggs) (2021), 681–692. DOI: 10.6084/m9.figshare.14495613.

BibTeX for this citation can be found at https://mscroggs.github.io/fenics2021/talks/gendin.html .
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Introduction

Forward problem

Parameter(m) → Model → State(u)

Inverse problem

Parameter(m) ← Model ← Measurement(ũ)

Bayes’s Theorem

Ppost(m|ũ) ∝ Plike(ũ|m)Pprior(m) (1)

Posterior probability is easy to evaluate but difficult to interpret.

How do we characterize the posterior?

Daniel I. Gendin, Paul E. Barbone (BU) Efficient Hessian Computation March 26, 2021 2 / 11
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Background

Sampling full posterior (e.g. MCMC)

[Petra et al., 2014, Bardsley et al., 2020, Chen and Ghattas, 2020,
Vigliotti et al., 2018, Zou et al., 2019]

Laplace approximation: Ppost(m) ≈ N(m̄,H−1[m̄])

[Bui-Thanh et al., 2013, Saibaba et al., 2020, Chang et al., 2014,
Fatehiboroujeni et al., 2020, Cui et al., 2016]

Approximating the Hessian

[Saibaba et al., 2020, Ambartsumyan et al., 2020, Flath et al., 2011]

In this work we find the MAP through Newton-CG and approximate
the Hessian by using the Krylov basis found in computing the MAP.

This gives us the Hessian “for free.”

Finding the MAP is a constrained optimization problem.

Daniel I. Gendin, Paul E. Barbone (BU) Efficient Hessian Computation March 26, 2021 3 / 11
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Optimization formulation

Cost = -Log posterior

C (m)
︸ ︷︷ ︸

− log(Ppost(m|ũ))

=
1

2
||ũ− u(m)||2noise

︸ ︷︷ ︸

− log(Plike(ũ|m))

+
1

2
R(m,m)

︸ ︷︷ ︸

− log(Pprior(m))

. (2)

Constraint equation (weak form).

a(ŵ, u;m) = l(ŵ) ∀ŵ ∈ W. (3)

Laplace approximation

Close to the MAP point

C (m) = C (m̄)+
✭
✭

✭
✭
✭

✭
✭
✭

(G [m̄],m− m̄)m+
1

2
H[m̄](m−m̄,m−m̄)+O(||m−m̄||3).

(4)

Ppost(m) ∝∼ exp(
1

2
H[m̄](m− m̄,m− m̄)) ∼ N(m̄,H−1[m̄]) (5)

Daniel I. Gendin, Paul E. Barbone (BU) Efficient Hessian Computation March 26, 2021 4 / 11
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MAP evaluation

We use a Newton-CG method to find the MAP point.

Newton (outer) iterations

Tend to converge in few iterations
Consistent with Laplace approximation.
Explicit construction of full Hessian is prohibitive

Preconditioned-CG (inner) iterations

Requires only the action of the Hessian in the search directions.
Constructs a Krylov space of H-conjugate search directions {p} and
R-orthogonal gradients {r}.
Algorithm theoretically converges in Kd + 1 steps, where Kd is the rank
of the data part of the Hessian.

Daniel I. Gendin, Paul E. Barbone (BU) Efficient Hessian Computation March 26, 2021 5 / 11
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Efficient Hessian evaluation

Given preconditioned-CG products pa, ra and qa and sa:

Main result

H[mn](δma, δmb) =
k∑

j=1

1

Djj

(δma, qj)(qj , δmb)−
k−1∑

j=0

1

Cjj

(δma, sj)(sj , δmb)

+ R(δma, δmb)

(6)

Where:

(v, qa) = H[mn](v, pa) ∀v ∈M (7)

(v, sa) = R(v, ra) ∀v ∈M (8)

Daa = H[mn](pa, pa) (no sum) ∀a ∈ {1, . . . , k} (9)

Caa = R(ra, ra) (no sum) ∀a ∈ {0, . . . , k − 1}. (10)

Daniel I. Gendin, Paul E. Barbone (BU) Efficient Hessian Computation March 26, 2021 6 / 11
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Simulated data

We consider the inverse elasticity problem where the state u is
displacements and parameter m = log(Shear Modulus).

Prescribed parameter Generated State Noisy State

MAP Reconstruction Pointwise variance Comparison along line Eigenvalue comparison

Daniel I. Gendin, Paul E. Barbone (BU) Efficient Hessian Computation March 26, 2021 7 / 11
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Elastic modulus maps of breast masses: UQ

Data courtesy of M. Fatemi at Mayo Clinic and T.J. Hall at University of Wisconsin

Subject 1 Subject 2 Subject 3

Ultrasound B-mode

MAP estimate

Pointwise variance estimate
||u−ũ||
||ũ||

0.0498 0.0461 0.0401

Information gain (nats) 264.0 161.2 220.7

Daniel I. Gendin, Paul E. Barbone (BU) Efficient Hessian Computation March 26, 2021 8 / 11
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Conclusions

We develop a method to construct an approximation for the Hessian
“for free” using components obtained during the process of
optimization.

Our method takes advantage of the conjugacies of the directions that
comprise the Krylov space used to build the solution.

The UFL interface in FEniCS facilitates easy implementation of our
method.

Thank you!

Daniel I. Gendin, Paul E. Barbone (BU) Efficient Hessian Computation March 26, 2021 9 / 11
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26 March 2021

In this contribution we introduce the material modeling framework “Materiaux” [3], which is partly
based on the FEniCS technologies. Materiaux allows for the convenient development of complicated ma-
terial models (including plasticity and dissipative ferromagnetism) in Python and provides the necessary
integration bits to directly use themodels in FEniCS/dolfin simulations. While the present implementation
of the FEniCS bindings are based on subclassing dolfin::Expression, the structure of the models created
is much more general such that they in principle allow for bindings in dolfinx and other FE packages.
After outlining the basic structure of Materiaux we demonstrate the capabilities of Materiaux in combina-
tion with FEniCS by an application to magnetically hard [1] [2] and soft viscoelastic magnetorheological
elastomers.

References

[1] Mukherjee, D., Danas, and K. “An evolving switching surface model for ferromagnetic hysteresis”.
In: Journal of Applied Physics 125.3:033902 (2019). DOI: 10.1063/1.5051483 .

[2] Mukherjee, D., Rambausek, M., Danas, and K. “An explicit dissipative model for isotropic hard mag-
netorheological elastomers”. In: Journal of the Mechanics and Physics of Solids (2021). DOI: 10.1016/
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Reduced order methods for optimal flow control:
FEniCS‐based applications
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26 March 2021

Optimal control is a powerful mathematical tool that can be used to fill the gap between collected
data and equations, making the model more reliable and precise in the prediction of physical phenomena.
However, optimal control problems are usually costly, most of all in a parametrized setting where many
evaluations of the problem must be run to have a more comprehensive knowledge of the whole system.
Reduced order methods (ROMs) help us to tackle this issue. Indeed, they aim at describing the paramet-
ric nature of the optimality system in a low-dimensional framework, accelerating the system solutions,
maintaining the model accuracy. The talk aims at showing an overview of several applications in this
topic through FEniCS-based [1] libraries, RBniCS and Multiphenics [4] [2], developed to deal with para-
metric partial differential equations. After describing the general problem formulation and the basic ideas
behind ROMs, we will show many numerical results in the optimal control field highlighting the potential
of FEniCS and of the two libraries for these very complex problems, moving from steady linear problems
to nonlinear time-dependent ones [3] [5] [6].
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Motivations
Starting Point

Reduced Order Methods (ROMs) for parameterized Optimal Flow Control Problems (OFCPs) 
in environmental sciences 

PDEs-based
Several simulations for different values of physical and/or 

geometrical parameters
(Uncertainty Quantification, Parameter Estimation...)

DATA-based
Scattered

expensive and difficult to collect
complex to interpret 

VIDEO

OFCPs

By Dan Copsey (DanCopsey1 at English Wikipedia) — Own work, Public Domain, 
https://commons.wikimedia.org/w/index.php?curid=1692219
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The Optimal Control Pipeline

PDEs
Data

Control

Cost
Functional

Minimization

Optimal
Solution

Solution
Interpretation

changes

ROM framework
 time-dependent nonlinear problems

(POD, RB)

General Formulation
easy to adapt to several PDEs

Advanced Applications
(UQ, Bifurcations)

https://mathlab.sissa.it/multiphenics
https://www.rbnicsproject.org/

Outline:
1. Problem Formulation
2. Ideas behind ROMs 
3. Advanced Applications

○ Shallow Waters Equations (SWE)
○ Steering Bifurcations
○ Uncertainty Quantification (UQ)

Advisors:
Prof. Gianluigi Rozza (SISSA)
Dr. Francesco Ballarin (UNICATT)

Collaborators:
Prof. Rob Stevenson (UvA)
Giuseppe Carere (UvA)
Dr. Federico Pichi (SISSA/EPFL)
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Problem Formulation

such that

minmin

Linear

Non-linear

Time-dependent

PDEs
Graetz Flows (temperature)
Advection Diffusion (pollutant)
Shallow Waters (coastal management)
Navier-Stokes (haemodynamics)

Controls
Boundary, Part of the domain, the 
whole domain, forcing terms…
Control changes the usual behaviour 
of the solution.

Optimal Control is a very powerful mathematical tool
● more reliable solutions
● great versatility

However it is costly (based on the solution of three equations)
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Problem Formulation

such that

minmin

Linear

Non-linear

Time-dependent

PDEs
Graetz Flows (temperature)
Advection Diffusion (pollutant)
Shallow Waters (coastal management)
Navier-Stokes (haemodynamics)

Controls
Boundary, Part of the domain, the 
whole domain, forcing terms…
Control changes the usual behaviour 
of the solution.

Optimal Control is a very powerful mathematical tool
● more reliable solution
● great versatility

However it is costly (based on the solution of three equations) 
most of all in a parametrized setting

Exploit the parametric structure of 
the problem

ROMs
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Ideas behind ROMs

Explore the solutions snapshots and how they 
change with respect to the parameter
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Ideas behind ROMs

Explore the solutions snapshots and how they 
change with respect to the parameter

Building phase
POD (SVD, PCA)
RB (Adaptive technique)

use for each new parameter evaluation

702



Ideas behind ROMs

Explore the solutions snapshots and how they 
change with respect to the parameter

Building phase
POD (SVD, PCA)
RB (Adaptive technique)

for each new parameter evaluationSaving computational time use
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How do you use RBniCS?

In the class you define the parameters 
multiplied by the various forms defined as 
in FEniCS

Example of Steady Coercive State Equation

Simple modifications for more 
complicated problems or to use other 
algorithms
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How do you use RBniCS?

Example of Steady Coercive State Equation

In the class you define the parameters 
multiplied by the various forms defined as 
in FEniCS

Simple modifications for more 
complicated problems or to use other 
algorithms
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Coastal Height Management

Minimisation of

constrained to

GOAL:  recover parametrized desired height and velocity profiles with distributed control 

desired height

Straightforward implementation in 
RBniCS with standard modifications 
of Nonlinear problems classes
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several in μ ?

Errors 〜 1e-4, Speedup 〜 30
ROM vs FE dim = 270 vs 94’016.

[Strazzullo, Ballarin, Rozza, POD-Galerkin Model Order Reduction for 
Parametrized Nonlinear Time Dependent Optimal Flow Control: an Application to 
Shallow Water Equations. Submitted, 2021]

Coastal Height Management
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Advanced Applications

Optimal control + Bifurcations in Navier-Stokes:
● Does optimal control affect the system?
● Does optimal control change stability? 
● Does it change the stability analysis?
● What is the most “natural” configuration?

[Pichi, Strazzullo, Ballarin, Rozza, Driving bifurcating parametrized nonlinear 
PDEs by optimal control strategies: application to Navier-Stokes equations 
with model order reduction. Submitted, 2020]

credits: American Society of Echocardiography 

Guideline Valvular Regurgitation

Optimal control + Uncertainty Quantification:
● Input-output relation? 
● Weighted-POD
● More knowledge is better (less basis need)

[Carere, Strazzullo, Ballarin, Rozza, Stevenson, Weighted POD-reduction 
for parametrized PDE-constrained Optimal Control Problems with random 
inputs and its applications to environmental sciences Submitted, 2021]
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Conclusions

ROMs and OCPs
● Great mathematical tool to reach a desired configuration
● Expensive to solve
● RBniCS and multiphenics application to OFCPs

○ great versatility 
○ simple to code

Applications
● POD for nonlinear time-dependent problems (SWEs)
● OFCPs and bifurcations
● OFCPs and UQ
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Thank you for your attention!
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A generic FEniCS‐framework for moment
approximations of Boltzmann’s equation

Edilbert Christhuraj, RWTH Aachen University, Germany
Manuel Torrilhon, RWTH Aachen University, Germany

26 March 2021

The moment method is a technique which relates a microscopic description of a kinetic model to a
macroscopic continuum model. In the context of nonequilibrium gas flows, the moment method is used
to derive fluid dynamics equations from the Boltzmann equation which provides a kinetic description of
the nonequilibrium. The resulting moment equations are a set of partial differential equations (PDEs)
and inherently form a hierarchy due to the nature of the moment method. Using more moment variables
result in a larger system with better physical accuracy. Following a similar procedure, a corresponding
set of boundary conditions can be directly derived from the kinetic description. Ultimately the moment
equations can be reformulated and rewritten as a hyperbolic system of first order PDEs. Our aim is to
develop a generic framework which solves arbitrary moment systems and we hitherto developed a solver
called ‘FEniCS For Moment Equations’ (F2ME). In this talk, we briefly look at a set of moment systems and
describe how FEniCS is employed to solve these systems. Furthermore, we discuss the implementation of
our approach in detail and demonstrate the validity of the developed solver by comparing it with analytical
and experimental solutions.

You can cite this talk as:
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mann’s equation”. In: Proceedings of FEniCS 2021, online, 22–26 March (eds Igor Baratta, Jørgen S. Dokken, Chris
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Setting The Scene

NSF (no slip)

NSF (no slip)

Micro-channel Flow

: microscopic

Velocity Profile

Temperature Profile

 Experimental data

 Experimental data

Euler Navier-Stokes-Fourier Transition Regime Kinetic Regime Free Flight Regime

.

Equilibrium Non-equlibrium
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Theoritical  Foundation In A Nutshell

Number of particles

Contour Profile

Momen
t M

eth
od

Continuum Limit

Microscopic Setting Macroscopic Setting

Mesoscopic Setting

Statistics
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Moment Method - An Overview

Euler :          {        }
NSF :            {             }
G13 :            {             }
R13 :            {                 }
R26 :            {                      }

Coefficient Set 

4
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A Generic First order Formulation
System Matrix Hierarchy
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Problem Setup - User's Perspective 

6
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A Generic Solver To The Generic Problem

Generic Problem

Weak Form Procedure

Final Weak Formulation

 Generic Solver (F2ME)

System Matrix Class

Mesh Class

Function Space Class

Variational Problem Class

Solver Class

 Solution

Input.yml

User input

7
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F2ME

 Fenics For Moment Equations , hence the abbreviation F2MEName

Location https://www.gitlab.com/19ec94/f2me

Usage $ git clone git@gitlab.com:19ec94/f2me.git

$ cd f2me/f2me

$ python3 f2me.py input.yml

Features

Generalised solver

Highly modularised

Easily extendable to other moment models

Docker support available 

Built upon FEniCS

Easily customisable to needs of an user

 f2me.py  (main file)

{
{
{
{
{
{

{

Import custom modules

Read user input

Mesh using Gmsh 

VectorFunctionSpace()

Create & assemble system

Inbuilt solver (mumps)

Prepare system matrices

https://git.rwth-aachen.de/19ec94/f2me

or

8
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Simulation Results
input.yml

{

{
{
{
{
{

{

Model specific

Stabilisation

Problem specific

Solver specific

Model specific

Problem specific

Problem specific

Velocity Profile 

9
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Simulation Results
input.yml
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{

{
{
{
{

{

Model specific
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Velocity Profile 
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Outlook
Summary

What is next ?

G13/R13/G26 G13

R13
R26

R9

R3

model refinement

11
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Hybridized discontinuous Galerkin methods for the
Stokes and Navier–Stokes equations in FEniCSx:

non‐simplex cells and curved geometries

Joseph P. Dean (r jpdean), University of Cambridge, United Kingdom
Sander Rhebergen, University of Waterloo, Canada
Chris N. Richardson (r chrisrichardson), University of Cambridge, United Kingdom
Garth N. Wells, University of Cambridge, United Kingdom

26 March 2021

We investigate hybridized discontinuous Galerkin (HDG) methods for the Stokes and incompressible
Navier–Stokes equations which yield approximate velocity fields that are pointwise divergence free in
each cell and globally 𝐻(div)-conforming. The analysis of a recently developed method is restricted to
simplex cells and affine geometries. Here, we explore the extension of the method to non-simplex cells
and curved boundaries, both of which are important for engineering applications. Static condensation is
used to reduce the size of the global system of equations. For the implementation, we make use of some
new features of FEniCSx, which is composed of DOLFINx, FFCx, Basix, and UFL. We use UFL and FFCx
to compile kernels for each block of the global matrix, which are then exposed to the Python interface
using CFFI. These kernels are called from a custom kernel (compiled by Numba) to carry out the static
condensation process. The smaller statically condensed system can then be solved using a block precon-
ditioned iterative solver. We present analysis and numerical results demonstrating that the approximate
velocity field is pointwise divergence free in each cell and globally 𝐻(div)-conforming on meshes with
non-simplex cells and curved boundaries.

You can cite this talk as:

Joseph P. Dean, Sander Rhebergen, Chris N. Richardson, and Garth N. Wells. “Hybridized discontinuous Galerkin
methods for the Stokes and Navier–Stokes equations in FEniCSx: non-simplex cells and curved geometries”. In:
Proceedings of FEniCS 2021, online, 22–26 March (eds Igor Baratta, Jørgen S. Dokken, Chris Richardson, Matthew
W. Scroggs) (2021), 722–741. DOI: 10.6084/m9.figshare.14495634.

BibTeX for this citation can be found at https://mscroggs.github.io/fenics2021/talks/dean.html .
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Outline
1. The Stokes problem

2. Why not use conforming methods?

3. Hybridized discontinuous Galerkin

4. Non-simplex and curved cells

5. Implementation

6. Numerical results

7. The Navier-Stokes equations

8. Open questions
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Problem statement
Stokes problem (weak form): Given f ∈ [L2(Ω)]d, find u ∈ V := [H1

0(Ω)]
d and p ∈ Q :=

L2
0(Ω) such that

a(u, v) + b(v, p) = F(v) ∀v ∈ V,
b(u, q) = 0 ∀q ∈ Q,

where

a(u, v) :=
∫

Ω

ν∇u : ∇v dx, b(v, p) := −
∫

Ω

p∇ · v dx, and F(v) :=
∫

Ω

f · v dx.

2/17

725



Some observations

1. The problem is well-posed and ∃β > 0 such that

inf
q∈Q

sup
v∈V

∫

Ω
q∇ · v dx

||v||1,Ω||q||0,Ω
≥ β

2. The following invariance property1 holds:

f → f +∇φ =⇒ (u, p) → (u, p + φ)

1Volker John et al. “On the Divergence Constraint in Mixed Finite Element Methods for Incompressible Flows”. In:
SIAM Review 59.3 (2017), pp. 492–544. DOI: 10.1137/15m1047696.
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Mass conservation?

Mass conservation (weak statement):

b(u, q) = 0 ∀q ∈ Q

• The weak statement implies exact mass conservation, meaning ||∇ · u||0,Ω = 0.

Mass conservation (discrete statement): Let uh ∈ Vh ⊂ V, then

b(uh, qh) = 0 ∀qh ∈ Qh ⊂ Q

• The discrete statement could imply global, local (cell), or exact mass conservation
depending on Vh and Qh. If∇ · Vh ⊆ Qh, mass is conserved exactly.

With conforming methods, it is difficult to balance stability and incompressibility

4/17
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Hybridized discontinuous Galerkin2

Let uh := (uh, ūh) ∈ Vh and ph := (ph, p̄h) ∈ Qh, where
Vh := Vh × V̄h,Qh := Qh × Q̄h, and

Vh :=
{

vh ∈ [L2(Th)]
d; vh|K ∈ Vh(K) ∀K ∈ Th

}

,

V̄h :=
{

v̄h ∈ [L2(Fh)]
d; v̄h|F ∈ V̄h(F) ∀F ∈ Fh, v̄h = 0 on ∂Ω

}

,

Qh :=
{

qh ∈ L2(Th); qh|K ∈ Qh(K) ∀K ∈ Th

}

,

Q̄h :=
{

q̄h ∈ L2(Fh); q̄h|F ∈ Q̄h(F) ∀F ∈ Fh

}

.

uh, ph

ūh, p̄h

2S. Rhebergen and G. N. Wells. “A hybridizable discontinuous Galerkin method for the Navier–Stokes equations
with pointwise divergence-free velocity field”. In: J. Sci. Comput. 76.3 (2018), pp. 1484–1501. DOI:
10.1007/s10915-018-0671-4.
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HDG formulation

Stokes problem (HDG formulation): Find (uh,ph) ∈ Vh × Qh such that

ah(uh, vh) + bh(vh,ph) = F(vh) ∀vh ∈ Vh,

bh(uh, qh) = 0 ∀qh ∈ Qh,

where

ah(uh, vh) :=
∑

K∈Th

∫

K
ν∇uh : ∇vh dx −

∑

K∈Th

∫

∂K
ν
(

(uh − ūh) · ∂nvh + ∂nuh · (vh − v̄h)
)

ds

+
∑

K∈Th

∫

∂K
ν
α

hK
(uh − ūh) · (vh − v̄h) ds,

and
bh(vh,ph) := −

∑

K∈Th

∫

K
ph∇ · vh dx +

∑

K∈Th

∫

∂K
vh · np̄h ds.

6/17
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Mapping functions
Let ψK : Vh(K) → Vh(K̂).

Lemma
If ψK is the pullback by the geometric mapping (as in the original method), and if
∇ · Vh(K) ⊆ Qh(K) and Q̄h(F) ⊇ {vh|F · n; vh ∈ Vh(K)}, then the discrete velocity field is
exactly divergence free.

Problem: what if the geometric mapping is not affine?

Lemma
If ψK is the contravariant Piola transform, then the above conditions can be relaxed; if
∇ · Vh(K̂) ⊆ Qh(K̂) and Q̄h(F̂) ⊇ {v̂h|F̂ · n̂; v̂h ∈ Vh(K̂)} then the discrete velocity field is
exactly divergence free.

A similar idea can be applied to Scott–Vogelius elements on curved domains.3

3Michael Neilan and M. Baris Otus. “Divergence–free Scott–Vogelius elements on curved domains”. In: (2020),
pp. 1–23. arXiv: 2008.06429. URL: http://arxiv.org/abs/2008.06429.
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Suitable spaces

Simplex cells: If K̂ is the reference simplex and if ψK is the contravariant Piola trans‑
form, then the spaces

Vh(K̂) := [Pk(K̂)]d, V̄h(F̂) := [Pk(F̂)]d, Qh(K̂) := Pk−1(K̂) and Q̄h(F̂) := Pk(F̂)

give an exactly divergence free velocity field even if the geometric mapping is not
affine.

Non-simplex cells: If K̂ is the reference quadrilateral or hexahedron and if ψK is the
contravariant Piola transform, then the spaces

Vh(K̂) := RTk(K̂), V̄h(F̂) := [Qk(F̂)]d, Qh(K̂) := Qk(K̂), and Q̄h(F̂) := Qk(F̂)

give an exactly divergence free velocity field even if the geometric mapping is not
affine.
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More about the non-simplex case

• H(div)-conforming finite elements are introduced following the same ideas as
divergence conforming DG4 and HDG5 methods.

• Other H(div)-conforming finite elements can be used, but care must be taken as some
lose optimal order approximation in [L2(Ω)]d on general quadrilateral meshes.6

4Bernardo Cockburn, Guido Kanschat, and Dominik Schötzau. “A Note on Discontinuous Galerkin Divergence-free
Solutions of the Navier-Stokes Equations”. In: Journal of Scientific Computing 31.1-2 (2007), pp. 61–73. DOI:
10.1007/s10915-006-9107-7.

5Christoph Lehrenfeld and Joachim Schöberl. “High order exactly divergence-free Hybrid Discontinuous Galerkin
Methods for unsteady incompressible flows”. In: Computer Methods in Applied Mechanics and Engineering 307
(2016), pp. 339–361. DOI: 10.1016/j.cma.2016.04.025.

6Douglas N. Arnold, Daniele Boffi, and Richard S. Falk. “Quadrilateral H (div) Finite Elements”. In: SIAM Journal on
Numerical Analysis 42.6 (2005), pp. 2429–2451. DOI: 10.1137/S0036142903431924.
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Static condensation

The block structure of the element tensor is of the form










Auu BT
pu AT

ūu BT
p̄u

Bpu 0 0 0
Aūu 0 Aūū 0
Bp̄u 0 0 0





















U
P
Ū
P̄











=











Fu
0
0
0











.

Eliminating the cell degrees of freedom gives the condensed element tensor
[

Aūū − BA−1BT −BA−1CT

−CA−1BT −CA−1CT

](

Ū
P̄

)

=

(

−BA−1F
−CA−1F

)

,

where

A =

[

Auu BT
pu

Bpu 0

]

, B =
[

Aūu 0
]

, C =
[

Bp̄u 0
]

, and F =

(

Fu
0

)

.
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Implementation

Features of FEniCSx:

• Create kernels generated from UFL that are callable from python

UFL expression Kernel
FFCx

• Create user defined kernels written in Python

Python function Kernel
Numba

• User defined kernels can call generated kernels

11/17
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Implementation

Create kernels for each block of the element tensor (Auu, …, Aūū):

1 # UFL expressions for each block of the element tensor
2 A_uu_form = nu * inner(grad(u), grad(v)) * dx + nu * gamma * inner(u, v) * ds \
3 - nu * (inner(u, dot(grad(v), n)) + inner(v, dot(grad(u), n))) * ds
4 ...
5 A_ubar_ubar_form = nu * gamma * inner(ubar, vbar) * ds
6

7 # Compile forms with FFCx and expose to Python
8 forms = [A_uu_form, ..., A_ubar_ubar_form]
9 compiled_forms = ffcx.codegeneration.jit.compile_forms(forms)
10 A_uu_cell_kernel = compiled_forms[0][0].create_cell_integral().tabulate_tensor
11 A_uu_facet_kernel = \
12 compiled_forms[0][0].create_exterior_facet_integral().tabulate_tensor
13 ...
14
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Implementation

Define a custom kernel to compute the top left block of the condensed element tensor
(K00 := Aūū − BA−1BT):

1 @numba.cfunc(c_signature)
2 def tabulate_K00(K00_, w_, c_, coords_, entity_local_index, ...):
3 K00 = numba.carray(K00_, (ubar_size, ubar_size))
4 A_uu = np.zeros((u_size, u_size))
5 ...
6 # Compute cell integrals
7 A_uu_cell_kernel(ffi.from_buffer(A_uu), w_, c_, coords_, entity_local_index, ...)
8 ...
9 for j in range(n_facets):
10 # Compute facet integrals
11 A_uu_facet_kernel(ffi.from_buffer(A_uu), w_, c_, coords_, fj, ...)
12 ...
13 # Static condensation
14 K00 += A_ubar_ubar - B @ np.linalg.solve(A, B.T)
15

This kernel is passed to DOLFINx to assemble over the mesh.
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Implementation: further work

• The above FEniCSx implementation has been tested on simplices.
• Until recently, FEniCSx did not have support for quadrilateral/hexahedral

H(div)-conforming finite elements.
• Basix supports these elements, but some work is required to implement facet function
spaces in a more general manner.

• To demonstrate the HDG scheme on meshes containing quadrilaterals, the method
was also implemented in NGSolve.7

7Joachim Schöberl. “C++ 11 implementation of finite elements in NGSolve”. In: Technical Report ASC‑2014‑30,
Institute for Analysis and Scientific Computing (2014). URL:
https://www.asc.tuwien.ac.at/~schoeberl/wiki/publications/ngs-cpp11.pdf.
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Results: curved cells

(a) Velocity magnitude (b) Pressure

Figure: Computed solution

N eu e∇·u eJuK

Present method 3870 6.17× 10−4
5.45× 10

−15 4.68× 10−14

Original method 3870 6.71× 10−4
3.02× 10

−2 8.51× 10−13

200 300 400

10−8

10−6

10−4

10−2

√
N

e u

1
2
3
4

Figure: eu against
√

N for k = 3 with piecewise
polynomial geometric mappings of degrees 1, 2, 3,
and 4.
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Extension to the Navier-Stokes equations

✓ Straightforward extension to the

Navier-Stokes equations

✓ Divergence free velocity field on

affine and non-affine simplex and
non-simplex cells

✓ Local momentum conservation

✓ Arbitrarily high order

Figure: Velocity magnitude
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Open questions

We are currently working on:

• Implementing a FEniCSx version of the method for meshes with quadrilateral and
hexahedral cells.

• Rigorous proofs of the discrete inf-sup condition and error estimates on non-affine
meshes.

• Optimal preconditioners and investigating the performance of the method at large
scale.

Any suggestions/advice about these topics would be very much appreciated!
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Thank you. Any questions?
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Semismooth Newton method for Bingham flow

Alexei Gazca, FAU Erlangen‐Nürnberg, Germany

26 March 2021

We propose a semismooth Newton method for non-Newtonian models of incompressible flow where
the constitutive relation between the shear stress and the symmetric velocity gradient is given implicitly;
as a motivating example we consider the Bingham model for viscoplastic flow. The proposed method
avoids the use of variational inequalities and is based on a particularly simple regularisation for which the
(weak) convergence of the approximate stresses is known to hold. The system is analysed at the function
space level and results in mesh-independent behaviour of the nonlinear iterations.

You can cite this talk as:

Alexei Gazca. “Semismooth Newton method for Bingham flow”. In: Proceedings of FEniCS 2021, online, 22–
26 March (eds Igor Baratta, Jørgen S. Dokken, Chris Richardson, Matthew W. Scroggs) (2021), 742–764. DOI:
10.6084/m9.figshare.14495637.

BibTeX for this citation can be found at https://mscroggs.github.io/fenics2021/talks/gazca.html .
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Semismooth Newton method for Bingham flow
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1 Incompressible Fluids | 1

Let Ω ⊂ R
d , d ∈ {2, 3} be a bounded Lipschitz polyhedral domain and consider the

system:

αu − divSSS + div(u ⊗ u) + ∇p = f , Ω,

div u = 0, Ω,

+ BCs

Here

◮ u : Ω → R
d represents the velocity field;

◮ p : Ω → R is the pressure;

◮ SSS: Ω → R
d×d
sym,tr is the shear stress tensor;

Alexei Gazca Semismooth Newton for Bingham — FEniCS21 FAU Erlangen-Nürnberg
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1 Constitutive relation (Bingham/Herschel–Bulkley) | 2

Denote DDD := DDD(u) := 1
2(∇u + ∇u

⊤).

{

SSS = 2ν∗(|DDD|)DDD + τ∗
DDD
|DDD| if |SSS| ≥ τ∗,

DDD = 0 if |SSS| ≤ τ∗.

Here τ∗ ≥ 0 is the yield stress and ν∗ > 0 is the viscosity.
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1 Constitutive relation (Bingham/Herschel–Bulkley) | 2

Denote DDD := DDD(u) := 1
2(∇u + ∇u

⊤).

{

SSS = 2ν∗(|DDD|)DDD + τ∗
DDD
|DDD| if |SSS| ≥ τ∗,

DDD = 0 if |SSS| ≤ τ∗.

Here τ∗ ≥ 0 is the yield stress and ν∗ > 0 is the viscosity.

It can be naturally written using an implicit function:

GGG(SSS,DDD) := (|SSS| − τ∗)+SSS − 2ν∗(τ∗ + (|SSS| − τ∗)+)DDD = 0.
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1 Constitutive relation (Bingham/Herschel–Bulkley) | 2

Denote DDD := DDD(u) := 1
2(∇u + ∇u

⊤).

{

SSS = 2ν∗(|DDD|)DDD + τ∗
DDD
|DDD| if |SSS| ≥ τ∗,

DDD = 0 if |SSS| ≤ τ∗.

Here τ∗ ≥ 0 is the yield stress and ν∗ > 0 is the viscosity.

It can be naturally written using an implicit function:

GGG(SSS,DDD) := (|SSS| − τ∗)+SSS − 2ν∗(τ∗ + (|SSS| − τ∗)+)DDD = 0.

� M. Buĺıček, P. Gwiazda, J. Málek, and A. Świerczewska-Gwiazda. On unsteady flows of implicitly

constituted incompressible fluids. SIAM J. Math. Anal. 44(4):2756–2801, 2012.

� P.E. Farrell, P.A. Gazca-Orozco, and E. Süli. Numerical analysis of unsteady implicitly constituted

incompressible fluids: 3-field formulation. SIAM J. Numer. Anal. 58(1):757–787, 2020.
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1 Regularisation | 3

A common regularisation [Bercovier, Engelman 1980]:

SSSε = S̃ε(DDD) := 2ν∗DDD + τ∗
DDD

√

ε2 + |DDD|2
ε > 0.
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1 Regularisation | 3

A common regularisation [Bercovier, Engelman 1980]:

SSSε = S̃ε(DDD) := 2ν∗DDD + τ∗
DDD

√

ε2 + |DDD|2
ε > 0.

Problems:

◮ It is unclear whether SSSε → SSS.
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1 Regularisation | 3

A common regularisation [Bercovier, Engelman 1980]:

SSSε = S̃ε(DDD) := 2ν∗DDD + τ∗
DDD

√

ε2 + |DDD|2
ε > 0.

Problems:

◮ It is unclear whether SSSε → SSS.

The main alternative (AL) also has issues:

◮ In its basic form it can be slow.

◮ Needs more sophisticated tools;
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1 New Regularisation | 4

We employ here the simple regularisation from:
� M. Buĺıček, J. Málek, and E. Maringová. On nonlinear problems of parabolic type with implicit

constitutive equations involving flux. ArXiv Preprint: 2009.06917, 2020.

GGGε(SSS,DDD) := GGG(SSS − εDDD,DDD − εSSS) ε > 0.
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1 New Regularisation | 4

We employ here the simple regularisation from:
� M. Buĺıček, J. Málek, and E. Maringová. On nonlinear problems of parabolic type with implicit

constitutive equations involving flux. ArXiv Preprint: 2009.06917, 2020.

GGGε(SSS,DDD) := GGG(SSS − εDDD,DDD − εSSS) ε > 0.
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1 New Regularisation | 5

We employ here the simple regularisation:
� M. Buĺıček, J. Málek, and E. Maringová. On nonlinear problems of parabolic type with implicit

constitutive equations involving flux. ArXiv Preprint: 2009.06917, 2020.

GGGε(SSS,DDD) := GGG(SSS − εDDD,DDD − εSSS) ε > 0.

◮ The stresses converge (weakly) SSSε ⇀ SSS.
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1 New Regularisation | 5

We employ here the simple regularisation:
� M. Buĺıček, J. Málek, and E. Maringová. On nonlinear problems of parabolic type with implicit

constitutive equations involving flux. ArXiv Preprint: 2009.06917, 2020.

GGGε(SSS,DDD) := GGG(SSS − εDDD,DDD − εSSS) ε > 0.

◮ The stresses converge (weakly) SSSε ⇀ SSS.

◮ The graph defined by GGGε is strongly monotone and 2-coercive:

SSS1 :DDD1 ≥ c(|SSS1|2 + |DDD1|2) − c̃ ,

(SSS1 − SSS2) : (DDD1 − DDD2) ≥ cε(|SSS1 − SSS2|2 + |DDD1 − DDD2|2).
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1 New Regularisation | 5

We employ here the simple regularisation:
� M. Buĺıček, J. Málek, and E. Maringová. On nonlinear problems of parabolic type with implicit

constitutive equations involving flux. ArXiv Preprint: 2009.06917, 2020.

GGGε(SSS,DDD) := GGG(SSS − εDDD,DDD − εSSS) ε > 0.

◮ The stresses converge (weakly) SSSε ⇀ SSS.

◮ The graph defined by GGGε is strongly monotone and 2-coercive:

SSS1 :DDD1 ≥ c(|SSS1|2 + |DDD1|2) − c̃ ,

(SSS1 − SSS2) : (DDD1 − DDD2) ≥ cε(|SSS1 − SSS2|2 + |DDD1 − DDD2|2).

The function GGGε is still not continuously differentiable.

We need a semismooth Newton method!
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2 Semismooth Newton method | 6

Classical Newton iteration for F (z) = 0:

zk+1 = zk − DF (zk)−1F (zk).
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2 Semismooth Newton method | 6

Classical Newton iteration for F (z) = 0:

zk+1 = zk − DF (zk)−1F (zk).

Semismooth Newton iteration for F (z) = 0:

zk+1 = zk − M−1
k F (zk).

Here Mk is an element of the generalised gradient of F , e.g. Clarke’s differential (if
F : Rm → R

n):

∂F (z) := co{M ∈ R
n×m : ∃{zi} ⊂ R

m \ UR with zi → z , ∇F (zi) → M}
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2 Semismooth Newton method | 7

Example

For H(SSS) = (|SSS| − τ∗)+ one has:

∂H(SSS) =

{

{1{|SSS|>τ∗}
SSS
|SSS|} if |SSS| 6= τ∗,

{φ ∈ R
d×d : |φ| ≤ 1} if |SSS| = τ∗.

For the positive part, UFL makes the choice:

∇ max{f , 0} =

{

∇f if f > 0,

0 if f ≤ 0.
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2 Semismooth Newton method | 8

We write the original problem as F (SSS, u, p) = 0, where F : Z → W for some approriate
Banach spaces Z and W .
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2 Semismooth Newton method | 8

We write the original problem as F (SSS, u, p) = 0, where F : Z → W for some approriate
Banach spaces Z and W .

Proposition [Ulbrich,2003]

Suppose that in a nbd of the solution z we have ‖M−1‖L(X ;Z) ≤ c , and that

sup
M∈∂F (z+h)

‖F (z + h) − F (z) − Mh‖X = o(‖h‖Z ) as h → 0.

Then the semismooth Newton iteration converges locally superlinearly.
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2 Semismooth Newton method | 8

We write the original problem as F (SSS, u, p) = 0, where F : Z → W for some approriate
Banach spaces Z and W .

Proposition [Ulbrich,2003]

Suppose that in a nbd of the solution z we have ‖M−1‖L(X ;Z) ≤ c , and that

sup
M∈∂F (z+h)

‖F (z + h) − F (z) − Mh‖X = o(‖h‖Z ) as h → 0.

Then the semismooth Newton iteration converges locally superlinearly.

Need to carefully check that semismoothness of GGG: Rd×d
sym

×R
d×d
sym

→ R
d×d
sym

implies that

(SSS, u) ∈ Lr ′

sym
(Ω)d×d × W 1,r (Ω)d 7→ GGG(SSS,DDD(u)) ∈ Lq

sym
(Ω)d×d ,

is semismooth.
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2 Examples | 9

Using a stabilised P
d×d
0 –Pd

1 –P1 element with firedrake:
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(a) ε = 0.5.
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(b) ε = 0.0001.
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2 Examples | 10

(c) τ∗ = 0.5. (d) τ∗ = 50.
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Thank you for your attention!
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Non‐intrusive reduced order modeling of linear
poroelasticity in heterogeneous porous media

Teeratorn Kadeethum, Cornell University, United States
Francesco Ballarin, SISSA, Italy
Nikolaos Bouklas, Cornell University, United States

26 March 2021

A simulation tool capable of speeding up the calculation for linear poroelasticity problems in het-
erogeneous porous media is of large practical interest for engineers, in particular, to effectively perform
sensitivity analyses, uncertainty quantification, optimization, or control operations on the fluid pressure
and bulk deformation fields. Towards this goal, we present here a non-intrusive model reduction frame-
work built on FEniCS, RBniCS, and Multiphenics using proper orthogonal decomposition (POD) and neu-
ral networks, based on the usual offline-online paradigm. As the conductivity of porous media can be
highly heterogeneous and span several orders of magnitude, we utilize the interior penalty discontinuous
Galerkin (DG) method as a full order solver to handle discontinuity and ensure local mass conservation
during the offline stage.

We then use POD as a data compression tool and compare the nested POD technique, in which time
and uncertain parameter domains are compressed consecutively, to the classical POD method in which
all domains are compressed simultaneously. The neural networks are finally trained to map the set of
uncertain parameters, which could correspond to material properties, boundary conditions, or geometric
characteristics, to the collection of coefficients calculated from an 𝐿2 projection over the reduced basis.
We then perform a non-intrusive evaluation of the neural networks to obtain coefficients corresponding
to new values of the uncertain parameters during the online stage. We show that our framework provides
reasonable approximations of the DG solution, but it is significantly faster. Moreover, the reduced or-
der framework can capture sharp discontinuities of both displacement and pressure fields resulting from
the heterogeneity in the media conductivity, which is generally challenging for intrusive reduced order
methods. The sources of error are presented, showing that the nested POD technique is computationally
advantageous and still provides comparable accuracy to the classical POD method. We also explore the
effect of different choices of the hyperparameters of the neural network on the framework performance.

You can cite this talk as:

Teeratorn Kadeethum, Francesco Ballarin, and Nikolaos Bouklas. “Non-intrusive reduced order modeling
of linear poroelasticity in heterogeneous porous media”. In: Proceedings of FEniCS 2021, online, 22–26
March (eds Igor Baratta, Jørgen S. Dokken, Chris Richardson, Matthew W. Scroggs) (2021), 765–782. DOI:
10.6084/m9.figshare.14495643.

BibTeX for this citation can be found at https://mscroggs.github.io/fenics2021/talks/kadeethum.html .
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Non-intrusive ROM of linear poroelasticity in porous media
(https://arxiv.org/abs/2101.11810)

Teeratorn Kadeethum, Francesco Ballarin, and Nikolaos Bouklas
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Governing equations

Momentum balance equation

Mass balance equation

Pic from: J.Choo. Stabilized mixed continuous/enriched Galerkin

formulations for locally mass conservative poromechanics. 

CMAME. 2019.
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Full-order model (FOM) – finite element

CG: for displacement field

DG: for pressure field

Monolithic

Time-stepping

https://www.sciencedirect.com/science/article/pii/S0309170819312576

https://link.springer.com/article/10.1007/s11004-020-09893-y

https://www.sciencedirect.com/science/article/pii/S0021999120308044
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Reduced-order model (ROM) – data driven
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Proper orthogonal decomposition (POD)

Finite element snapshots
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Proper orthogonal decomposition (POD)

Single compression
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Proper orthogonal decomposition (POD)

Nested compression
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Artificial neural networks (ANN)
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Artificial neural networks (ANN)
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Terzaghi’s consolidation problem

ν = [0.1,0.4]

Displacement 

(1 x 10-4)

Pressure

(1 x 103)
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Consolidation problem with 2-layered material

k𝑥𝑥𝑥𝑥 = [1.0 × 10−16, 1.0 × 10−15]

Displacement 

Pressure
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Heterogeneous media - POD

Displacement

Pressure
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Heterogeneous media - POD

Nested compression could save a lot of time

Wall time used to perform POD
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Heterogeneous media – 1000 test cases

snapshot = 400, reduced basis = 10 (5), 

hidden layers = 3, and neurons = 7

snapshot = 900, reduced basis = 20 (10), 

hidden layers = 5, and neurons = 10

779



Heterogeneous media – costs

Taking the training time into account, we need to perform at least 1050 and 

2850 inquiries (online phase) to have a break-even point for model 1 and 

model 2, respectively.
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• Nonlinear compression – autoencoder and its variants

• Adaptive mesh and timestep

• Physics-informed neural networks

Current works
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Thank you 

https://arxiv.org/abs/2101.11810

https://gitlab.com/multiphenics/multiphenics

https://gitlab.com/RBniCS/RBniCS
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Consensus ADMM for inverse problems governed by
multiple PDE models

Luke Lozenski, Washington University in St. Louis, United States
Umberto Villa, Washington University in St. Louis, United States

26 March 2021

The alternating direction method of multipliers (ADMM) provides a natural way of solving inverse
problems with multiple forward models and nonsmooth regularization. ADMM allows splitting these
large-scale inverse problems into smaller, simpler sub-problems, forwhich computationally efficient solvers
are available. In this work, we are interested in the case in which the forward models stem from partial
differential equations and the inversion parameter is a scalar or vector field belonging to an infinite-
dimensional Hilbert space. Then, the ADMM methods allow us to split the original inverse problems into
several (one for each forward model) single-PDE inverse problems with a smooth Tikhonov-like regu-
larization and, an unconstrained denoising-like problem with non-smooth regularization to update the
consensus variable. We discuss several adaptations of the ADMM needed to maintain consistency with
the underlining infinite-dimensional problem and ensure scalability. Specifically, we show how using the
correct norm in the consensus equations (ie, the one of the underlining Hilbert space) improves both the
accuracy and computational efficiency of ADMM. Moreover, we use the Lagrangian formalism to derive
expressions of first and second-order optimality conditions for the continuous form of each subproblem,
which are then discretized with the finite element method using FEniCS. In particular, for solving the de-
coupled Tikhonov regularized inverse problems we utilized an inexact Newton conjugate gradient solver
in hIPPYlib, an extensible software framework for large-scale inverse problems governed by PDEs. To han-
dle the denoising problem stemming from the consensus variable update we apply the PETScTAOSolver
built into FEniCS. We present two imaging applications inspired by electrical impedance tomography and
quantitative photoacoustic tomography to demonstrate the proposed method’s effectiveness.

You can cite this talk as:

Luke Lozenski and Umberto Villa. “Consensus ADMM for inverse problems governed by multiple PDE models”.
In: Proceedings of FEniCS 2021, online, 22–26 March (eds Igor Baratta, Jørgen S. Dokken, Chris Richardson, Matthew
W. Scroggs) (2021), 783–805. DOI: 10.6084/m9.figshare.14495652.

BibTeX for this citation can be found at https://mscroggs.github.io/fenics2021/talks/lozenski.html .
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Motivation

PDEs are often dependent on unknown (or difficult to measure)
parameters associated with physical systems and can be estimated via
an inverse problem

Inverse problems are often-illposed: there’s not enough data to
recover the parameter

Regularization selects one solution among many possible solutions

Non-smooth regularization reinforces certain ”nice” properties in
solutions: TV enforces sharp edges

ADMM provides a natural way of splitting these inverse problems into
smaller problems.

◮ The subproblems related to the PDEs can be solved efficiently using
INCG, which requires a smooth objective term

◮ The term related to the regularization can be solved for separately
using other proximal methods

FEniCS is used for efficient discretization of these variational problems

Luke Lozenski Consensus ADMM for Inverse Problems FEniCS Conference 2 / 22
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ADMM Description

Equality between solutions of subproblems is reinforced with a
consensus term

ADMM will only reach moderate accuracy in a few iterations and
requires many following iterations for high-precision convergence1

This is sufficient for most large-scale applications including
◮ Machine learning
◮ Continuum mechanics2

◮ Imaging3

1
S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein,Distributed Optimization andStatistical Learning via the

Alternating Direction Method of Multipliers, Foundation andTrends in Machine Learning, Vol. 3, No. 1 (2010).
2
D. Gabay and B. Mercier,A dual algorithm for the solution of nonlinear variational problems via finite element

approximations, Computers and Mathematics with Applications, Vol. 2,No. 1 (1976)
3
Y. Wang, J. Yang, W. Yin, and Y. Zhang,A New Alternating Minimization Algorithm forTotal Variation Image

Reconstruction, SIAM Journal on Imaging Sciences, (2007)
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Setting

Consider the minimization problem

min
m∈M,

L(m) +R(m)

M is a possibly infinite-dimensional Hilbert space.

L : M 7→ R is twice differentiable, may be expensive to evaluate

R : M 7→ R is assumed convex and non-smooth

Introduce a consensus variable z ∈ M

min
m,z∈M,

L(m) +R(z),

s.t. m − z = 0

Luke Lozenski Consensus ADMM for Inverse Problems FEniCS Conference 4 / 22
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Consensus ADMM

We introduce the augmented Lagrangian for some ρ > 0

Lρ(m, z , y) = L(m) +R(z) + 〈y ,m − z〉+
ρ

2
||m − z ||2

Algorithm 1: Consensus ADMM

Begin with starting points (m0, z0, y0)
while While convergence criterion is not met do

mk+1 = argminm Lρ(m, zk , yk)
zk+1 = argminz Lρ(m

k+1, z , yk)
yk+1 = yk + ρ(mk+1 − zk+1)

end

4

4
L. Lozenski, U. Villa, ”Consensus ADMM for Inverse Problems Governed by Multiple PDE Models”, in preparation 2021
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Inverse problems governed by PDEs

Goal: Estimate a parameter m given a measurement d ∈ D where

d = F(m) + e,

F is the composition of a PDE solver and observation operator
B : U → D.

Introduce the state variable u ∈ U s.t.

F(m) = B(u(m)), r(m, u) = 0

min
m∈M

J (m) = 1
2‖B(u(m))− d‖2 +R(m)

For a Newton type solution method
◮ Using the Lagrangian formalism, gradient computation requires solving

two PDEs: the forward & adjoint problems
◮ Each Hessian action requires solving two linearized PDEs: the

incremental forward & incremental adjoint problems

Luke Lozenski Consensus ADMM for Inverse Problems FEniCS Conference 6 / 22

789



The proposed consensus ADMM

Algorithm 2: The mean based scaled ADMM for parameter inversion
with multiple PDEs

Let q be the number of PDEs
Begin with starting points ({m0

i }
q
i=1, z

0, {y0i }
q
i=1)

while While convergence criterion is not met, k = 1, . . . do
for i = 1, . . . , q do

mk+1
i = argminmi

1
2q ||Fi (mi )− d i ||

2 + ρk

2q ||mi − zk + yki ||
2

end

Set m̄ = 1
q

∑q
i=1m

k+1
i and, ȳ = 1

q

∑q
i=1 y

k+1
i

zk+1 = argminz R(z) + ρ
2 ||m̄ − z + ȳ ||2

for i = 1, . . . , q do

yk+1
i = yki + (mk+1

i − zk+1)
end

Update ρk+1 adaptively
end
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hIPPYlib: Inverse Problem PYthon

An extensible software framework for PDE-constrained determinsitic
and Bayesian inverse problems

Implements state of the art scalable adjoint based algorithms

Built on FEniCS for discretization of PDEs and PETSc for scalable
and effecient linear algebra

Employs use of advanced structure-exploiting algorithms and
approximations

Maintains consistency with underlying infinite-dimensional problem

Facilitates expirementation with different priors, observation
operators, noise covariance models, model parameter representations,
etc.

https://hippylib.github.io/5

5
Villa et al., (2018). hIPPYlib: An Extensible Software Framework for Large-Scale Inverse Problems. Journal of Open

Source Software, 3(30), 940, https://doi.org/10.21105/joss.00940
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hIPPYlib features

Friendly, compact,
near-mathematical FEniCS
notation to express PDE and
likelihood in weak form.

Automatic generation of
efficient code.

Scalable algorithms
◮ MAP point computation
◮ Low rank representaiton of

posterior covariance via
randomized algorithms

◮ Scalable sampling from prior
and posterior

◮ Forward/inverse propagation
of Uncertainty Quantification

Luke Lozenski Consensus ADMM for Inverse Problems FEniCS Conference 9 / 22
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Electrical Impedance Tomography(EIT)

Electrical Impedance Tomography (EIT) is an imaging modality in which

An electrical current is introduced on the boundary of an object

The electric potential is measured on the boundary.

The potential measurements are used to reconstruct for conductivity

6

6
https://www.mdpi.com/2077-0383/8/8/1176/htm
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Formulating EIT in the continuous setting

Goal to minimize

1

q

q
∑

i=1

Li (m) +R(m), Li (m) =
1

2

∫

Γi

(ui − d i )
2ds

The regularization used was a combination of TV and L2

The potential ui solves the electrostatic Maxwell equation











−∇ · em∇ui = 0 x ∈ Ω
∂
∂η
ui = gi x ∈ ΓiN

ui = 0 x ∈ ΓiD

where σ := em is the conductivity domain and ui is the electric potential
resulting from introducing the current gi

Luke Lozenski Consensus ADMM for Inverse Problems FEniCS Conference 11 / 22

794



Discretization

For discretization we applied the finite element method(FEM) used in
FEniCS

Ω = D2

Coarsest mesh had 8044 degrees of freedom on M and U

Parameter updates were accomplished using the INCG algorithm in
hIPPYlib

Consensus updates were found using the PETScTAOSolver built into
Fenics
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Ground Truth

True parameter

True states 1,11,16 for EIT problem with q = 16
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H
1 reconstruction with inexact subproblem solutions

Inverted consensus for EIT problem using exact and inexact m solves

The relative error, primal and dual residuals wrt Foward PDE solves
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Scalability with respect to problem size

Fix q = 16 and sequences of uniformly refined meshes

A
D
M
M

M
on

ol
it
h
ic

8044 31816 71280 126428
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Accuracy with respect to problem size

Relative error and state misfit for ADMM and monolithic approaches vs number
of degrees of freedom
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Scalability with respect to problem size (number of PDE
solves)

Similar results hold for scaling by number of forward models
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Quantitative photoacoustic tomography(qPACT)

1 A fast laser pulse is sent into an object

2 Underlying material absorbs this energy generating heat and a local
increase pressure distribution

3 Pressure distribution transitions into acoustic waves and measured on
boundary

Luke Lozenski Consensus ADMM for Inverse Problems FEniCS Conference 18 / 22
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Formulation of the qPACT problem

We focused on reconstructing for optical properties given the initial
pressure distribution

Observation operator d =
p0

Γ
= µaφ+ e

Diffusion approximation to radiative transport
−∇ · 1

3(µa+µ′

s)
∇φ+ µaφ = 0 x ∈ Ω

with Robin boundary condition
1

3(µa+µ′

s)
∂φ
∂η

+ 1
2φ = 1

2φ0 x ∈ ∂Ω

Form the data fidelity term

1

q

q
∑

i=1

Li (s, cthb, µ
′
s) =

1

q

q
∑

i=1

|| ln(µa,iφi )− ln(di )||
2

and use regularization with a mixture of Tikhonov, TV, and L1
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Forward Results

Measurements corresponding to 757, 800, 850 nm
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Reconstruction Results

True s, cthb, chb, and chbO2

Reconstructed s, cthb, chb, and chbO2
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Conclusions

We presented a framework for solving inverse problems governed by PDE
forward models using ADMM

ADMM is well suited for solving problems involving several large-scale
PDE models with nonsmooth regularization

ADMM solution method significantly reduced computational costs
while still achieving satisfactory accuracy

In the future, we plan to improve upon this framework by

Implementing a primal-dual solver for updating the consensus variable

Implementing the ADMM process on several processors, with each
PDE model being handled by its own set of processors.

The code and EIT example will be included in hIPPYlib

This work was partially supported by the National Science Foundation under Grant No ACI-1550593.
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Automating the formulation and resolution of convex
variational problems with the fenics_optim package

Jeremy Bleyer (https://scholar.google.no/citations?user=p9iRhzgAAAAJ ), Laboratoire
Navier, Ecole des Ponts ParisTech, Université Gustave Eiffel, France

26 March 2021

In this work, we present a Python package called fenics_optim which enables to easily formulate
convex variational problems as conic optimization problems within FEniCS. It relies on the conic opti-
mization solver Mosek which uses state-of-the-art interior-point methods for solving large-scale linear,
second-order cone and semi-definite programming problems. These are particularly suited for solving
non-smooth optimization problems which arise in contact or elasto-plasticity problems for instance but
also in the image processing community. In particular, we will present an application to solving limit
analysis problems, ie computing directly the limit load of a perfectly plastic structure as a convex opti-
mization problem and without relying on an incremental elasto-plastic procedure until final collapse. I
will finish by a recent extension towards limit-analysis based topology optimization.

You can cite this talk as:

Jeremy Bleyer. “Automating the formulation and resolution of convex variational problems with the fenics_optim
package”. In: Proceedings of FEniCS 2021, online, 22–26March (eds Igor Baratta, Jørgen S. Dokken, Chris Richardson,
Matthew W. Scroggs) (2021), 806–830. DOI: 10.6084/m9.figshare.14495655.

BibTeX for this citation can be found at https://mscroggs.github.io/fenics2021/talks/bleyer.html .
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Convex variational problems
variational inequalities arise in presence of contact, unilateral conditions
(phase-field), plasticity...

inf
u∈V

J(u)

s.t. u ∈ K

J convex function, K convex set
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Convex variational problems
variational inequalities arise in presence of contact, unilateral conditions
(phase-field), plasticity...

inf
u∈V

J(u)

s.t. u ∈ K

J convex function, K convex set
e.g. obstacle problem:

inf
u∈V

∫

Ω

1

2
‖∇u‖2

2
dx −

∫

Ω

fu dx

s.t. u ≥ g on Ω

0.0 0.2 0.4 0.6 0.8 1.0
x coordinate

−0.12

−0.10

−0.08

−0.06

−0.04

−0.02

0.00

D
is
p
la
ce
m
en
t

obstacle

membrane
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Conic optimization problems

problems become difficult to solve when J is non-smooth (or K complicated)

inf
u∈V

J(u)

s.t. u ∈ K
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Conic optimization problems

problems become difficult to solve when J is non-smooth (or K complicated)

inf
u∈V

J(u) + δK(u) =: J̃(u)
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Conic optimization problems

problems become difficult to solve when J is non-smooth (or K complicated)

inf
u∈V ,t

t

s.t. J̃(u) ≤ t

Jeremy Bleyer (Laboratoire Navier) fenics_optim March, 26th 2020 3 / 10
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Conic optimization problems

problems become difficult to solve when J is non-smooth (or K complicated)

inf
u∈V ,t

t

s.t. J̃(u) ≤ t

Conic optimization
min
x∈Rn

cTx

s.t. bl ≤ Ax ≤ bu

x ∈ K1 × . . .×Kp

where Kj are simple cones
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Conic optimization problems

problems become difficult to solve when J is non-smooth (or K complicated)

inf
u∈V ,t

t

s.t. J̃(u) ≤ t

Conic optimization
min
x∈Rn

cTx

s.t. bl ≤ Ax ≤ bu

x ∈ K1 × . . .×Kp

where Kj are simple cones

positive orthant : Kj = R
m+ = {z ∈ R

m s.t. zi ≥ 0} => LP

Lorentz second-order ("ice-cream") cone :

Kj = Qm = {z = (z0, z̄) ∈ R× R
m−1 s.t. ‖z̄‖ ≤ z0} => SOCP

cone of positive semi-definite matrix X � 0 => SDP
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Conic optimization problems

problems become difficult to solve when J is non-smooth (or K complicated)

inf
u∈V ,t

t

s.t. J̃(u) ≤ t

Conic optimization
min
x∈Rn

cTx

s.t. bl ≤ Ax ≤ bu

x ∈ K1 × . . .×Kp

where Kj are simple cones

positive orthant : Kj = R
m+ = {z ∈ R

m s.t. zi ≥ 0} => LP

Lorentz second-order ("ice-cream") cone :

Kj = Qm = {z = (z0, z̄) ∈ R× R
m−1 s.t. ‖z̄‖ ≤ z0} => SOCP

cone of positive semi-definite matrix X � 0 => SDP

State-of-the-art interior point solvers: CPLEX, MOSEK, CVXOPT
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A more advanced problem

cΩ = inf
u∈V0

∫

Ω

‖∇u‖2 dx

s.t.

∫

Ω

fu dx = 1

antiplane limit analysis, Cheeger problem, first
eigenvalue of the 1-Laplacian
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A more advanced problem

cΩ = inf
u∈V0

∫

Ω

‖∇u‖2 dx

s.t.

∫

Ω

fu dx = 1

antiplane limit analysis, Cheeger problem, first
eigenvalue of the 1-Laplacian
Difficulties:

✘
✘
✘✘‖∇u‖2

2
but ‖∇u‖2 ⇒ non-smooth

discontinuous solution ⇒ discretization ?

Jeremy Bleyer (Laboratoire Navier) fenics_optim March, 26th 2020 4 / 10
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A more advanced problem

cΩ = inf
u∈V0

∫

Ω

‖∇u‖2 dx

s.t.

∫

Ω

fu dx = 1

antiplane limit analysis, Cheeger problem, first
eigenvalue of the 1-Laplacian
Difficulties:

✘
✘
✘✘‖∇u‖2

2
but ‖∇u‖2 ⇒ non-smooth

discontinuous solution ⇒ discretization ?

Conic reformulation:

inf
u∈V0,z

∫

Ω

z0 dx

s.t.

∫

Ω

fu dx = 1 (SOCP problem)

z̄ = ∇u

‖z̄‖2 ≤ z0 ⇔ z ∈ Qd+1
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Conic-representable functions and the fenics_optim package

A convex function F (x) will be conic-representable if it can be written as:

F (x) = min
y

cxx + cyy

s.t. bl ≤ Ax + By ≤ bu

y ∈ K1 × . . .×Kp
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Conic-representable functions and the fenics_optim package

A convex function F (x) will be conic-representable if it can be written as:

F (x) = min
y

cxx + cyy

s.t. bl ≤ Ax + By ≤ bu

y ∈ K1 × . . .×Kp

fenics_optim package dedicated to solving problems involving:

J(u) =
n∑

i=1

∫

Ω

Fi (ℓi (u)) dx

where Fi are conic-representable and ℓi are UFL-representable linear operators
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Conic-representable functions and the fenics_optim package

A convex function F (x) will be conic-representable if it can be written as:

F (x) = min
y

cxx + cyy

s.t. bl ≤ Ax + By ≤ bu

y ∈ K1 × . . .×Kp

fenics_optim package dedicated to solving problems involving:

J(u) =
n∑

i=1

∫

Ω

Fi (ℓi (u)) dx

where Fi are conic-representable and ℓi are UFL-representable linear operators

Choice of a quadrature rule: J(u) =

∫

Ω

F (ℓ(u)) dx ≈

Ng∑

g=1

ωgF (Lgu)

⇒ min
u

J(u) = min
u,yg

Ng∑

g=1

ωg (cxLgu + cyy g )

s.t. bl ≤ ALgxg + By g ≤ bu

y g ∈ K1 × . . .×Kp
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Example on the Cheeger problem

auxiliary variables will be implicitly declared on a Quadrature space

class L2Norm(ConvexFunction):

def conic_repr(self, X):

d = self.dim_x

z = self.add_var(d+1, cone=Quad(d+1))

zbar = as_vector([z[i]

for i in range(1, d+1)])

self.add_eq_constraint(X - zbar)

self.set_linear_term(z[0])

CG1

V = FunctionSpace(mesh, "CG", 1)

prob = MosekProblem("Cheeger problem")

u = prob.add_var(V, bc=bc)

F = L2Norm(grad(u), degree=0)

prob.add_convex_term(F)

f = Constant(1.)

R = FunctionSpace(mesh, "Real", 0)

def constraint(l):

return l*f*u*dx

prob.add_eq_constraint(R, A=constraint, b=1)

prob.optimize()

Jeremy Bleyer (Laboratoire Navier) fenics_optim March, 26th 2020 6 / 10

822



Example on the Cheeger problem

auxiliary variables will be implicitly declared on a Quadrature space

class L2Norm(ConvexFunction):

def conic_repr(self, X):

d = self.dim_x

z = self.add_var(d+1, cone=Quad(d+1))

zbar = as_vector([z[i]

for i in range(1, d+1)])

self.add_eq_constraint(X - zbar)

self.set_linear_term(z[0])

CG2

V = FunctionSpace(mesh, "CG", 1)

prob = MosekProblem("Cheeger problem")

u = prob.add_var(V, bc=bc)

F = L2Norm(grad(u), degree=0)

prob.add_convex_term(F)

f = Constant(1.)

R = FunctionSpace(mesh, "Real", 0)

def constraint(l):

return l*f*u*dx

prob.add_eq_constraint(R, A=constraint, b=1)

prob.optimize()
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Example on the Cheeger problem

auxiliary variables will be implicitly declared on a Quadrature space

class L2Norm(ConvexFunction):

def conic_repr(self, X):

d = self.dim_x

z = self.add_var(d+1, cone=Quad(d+1))

zbar = as_vector([z[i]

for i in range(1, d+1)])

self.add_eq_constraint(X - zbar)

self.set_linear_term(z[0])

DG1

V = FunctionSpace(mesh, "CG", 1)

prob = MosekProblem("Cheeger problem")

u = prob.add_var(V, bc=bc)

F = L2Norm(grad(u), degree=0)

prob.add_convex_term(F)

f = Constant(1.)

R = FunctionSpace(mesh, "Real", 0)

def constraint(l):

return l*f*u*dx

prob.add_eq_constraint(R, A=constraint, b=1)

prob.optimize()

also works with facet measures
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Example on the dual Cheeger problem

dual problem with the same objective

cΩ = sup
λ∈R,σ∈W

λ

s.t. λf = divσ in Ω
‖σ‖2 ≤ 1
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Example on the dual Cheeger problem

dual problem with the same objective

cΩ = sup
λ∈R,σ∈W

λ

s.t. λf = divσ in Ω
‖σ‖2 ≤ 1

⇒ H(div)-conforming discretization
with RT elements (lower bound)

prob = MosekProblem("Cheeger dual")

lamb, sig = prob.add_var([R, VRT])

f = Constant(1.)

def constraint(u):

return u*(lamb*f+div(sig))*dx

prob.add_eq_constraint(VDG0, A=constraint,

name="u")

F = L2Ball(sig, quadrature_scheme="vertex")

prob.add_convex_term(F)

prob.add_obj_func([1, None])

100 101 102 103

1/h
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DG1
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RT1
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Variational cartoon/texture decomposition

Image y = u (cartoon) + v (texture)
Meyer’s model (TV + G-norm):

inf
u,v

∫

Ω

‖∇u‖2 dx + α‖v‖G

s.t. y = u + v

where ‖v‖G = inf
g∈L∞(Ω;R2)

{‖
√
g2

1
+ g2

2
‖∞ s.t. v = div g}

reformulated as:

inf
u,g

∫

Ω

‖∇u‖2 dx

s.t. y = u + div(g)

‖
√
g2

1
+ g2

2
‖∞ ≤ α

L2 ad L∞,2-norms are conic-representable ⇒ SOCP problem
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Variational cartoon/texture decomposition

Image y : represented by a DG0 field on a 512x512 finite-element mesh
u, g ∈ CR× RT

prob = MosekProblem("Cartoon/texture decomposition")

Vu = FunctionSpace(mesh, "CR", 1)

Vg = FunctionSpace(mesh, "RT", 1)

u, g = prob.add_var([Vu, Vg])

def constraint(l):

return dot(l, u + div(g))*dx

def rhs(l):

return dot(l, y)*dx

prob.add_eq_constraint(Vu, A=constraint, b=rhs)

tv_norm = L2Norm(grad(u))

prob.add_convex_term(tv_norm)

g_norm = L2Ball(g, k=alpha)

prob.add_convex_term(g_norm)

prob.optimize()
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Variational cartoon/texture decomposition

Image y : represented by a DG0 field on a 512x512 finite-element mesh
u, g ∈ CR× RT

Barbara image
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Conclusions

Package available at https://gitlab.enpc.fr/navier-fenics/fenics-optim

UFL syntax for conic-representable functions

supports LP, SOCP, SDP, exponential and power cones via Mosek

other applications : viscoplastic fluids, limit analysis, topology optimization,
nonlinear membranes/shells, inpainting, optimal transport, etc.

Perspectives

other IPM solvers, custom solver ?

first-order solvers (proximal algorithms)

porting to dolfin-x Bleyer J., TOMS, 46(3), 1-33. 2020
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Generating high‐order time stepping methods

Robert Kirby, Baylor University, United States
Jorge Marchena‐Menendez, Baylor University, United States
Patrick Farrell, University of Oxford, United Kingdom

26 March 2021

Code generation systems greatly simplify the formulation of physical problems, allowing efficient
and accurate discretizations to be rapidly deployed for challenging problems. However, domain-specific
languages like UFL currently lack abstractions to describe time-dependence, leaving users to hand-code
multistep or Runge–Kutta methods if they wish to obtain high temporal accuracy or utilize special time-
stepping strategies.

In this talk, we describe IRKsome, a simple package that, given a UFL description of a semidiscrete
problem and a Butcher tableau, produces UFL for the associated Runge–Kutta method. In this way, we
can obtain high-order time-stepping methods with appropriate stability and/or symplecticity properties.
On the down side, implicit Runge–Kutta methods lead to algebraic systems coupling together the several
stages, which presents greater challenges to the linear solvers. We also present preliminary results on
preconditioners.

Although Irksome currently sits on top of Firedrake, the critical aspects of UFL manipulation (the hard
part) should work well with FEniCS or other UFL-based codes.

You can cite this talk as:

Robert Kirby, Jorge Marchena-Menendez, and Patrick Farrell. “Generating high-order time stepping methods”. In:
Proceedings of FEniCS 2021, online, 22–26 March (eds Igor Baratta, Jørgen S. Dokken, Chris Richardson, Matthew
W. Scroggs) (2021), 831. DOI: 10.6084/m9.figshare.14495661.

BibTeX for this citation can be found at https://mscroggs.github.io/fenics2021/talks/kirby.html .
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