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Abstract—The Electroencephalogram (EEG) is the brain sig-
nals which are most normally debased by Electromyogram
(EMG) antiquities. The presence of these EMG antiquities covers
the necessary information in an EEG signal. In this paper,
we have proposed another strategy named as Multi-channel
Singular Spectrum Analysis (MSSA) in light of Singular Value
Decomposition (SVD) to expel muscle or EMG antiquities from
multi-channel EEG signals. At first, the orthogonal eigenvectors
of multi-channel data are estimated by performing SVD which
are acquired from the covariance matrix . Since the frequency
variations of eigenvectors related to EEG signal are quite low
when compared to the EMG signal, so we fix some peak frequency
threshold to find out the frequencies related to EEG signal, then
the frequencies related to EMG signals are suppressed and the
artifact free Multi-channel EEG signal is extracted. Finally, our
proposed technique is applied on a noisy sinusoidal signals to
test the performance of the proposed method and then it is
applied on synthetic EEG signals mixed with the EMG artifacts.
Simulation results are then compared with Canonical Correlation
Analysis (CCA) to show that the proposed method eliminates
EMG antiquities more adequately without amending the required
data.

Index Terms—- Electroencephalogram (EEG), Electromyo-
gram (EMG), Multichannel Singular Spectrum Analysis (MSSA),
Singular Value Decomposition (SVD) and Canonical Correlation
Analysis (CCA).

I. INTRODUCTION

An electroencephalogram (EEG) is a graphic record of the
activity of a huge number of neuronal membrane potentials. It
is widely used for the diagnosis, monitoring, and management
of neurological disorders. "They are often contaminated by
antiquities such as Electromyogram (EMG) signals, which are
caused by the muscle contraction due to frowning, biting or
chewing” [1]. The performance of seizure detection algorithms
gets degraded due to the presence of these artifacts in the
EEG signals. So, the removal of these artifacts from EEG
signals is essential for the proper diagnosis and treatment by

the physicians. The common clinical practice is to remove the
entire segment of data affected by the artifacts, that may also
lead to loss of the relevant information. Moreover, in real-time
signal processing applications, as the manual artifact extraction
is not possible, discarding segment of data is not conceivable.
In such conditions, it is a challenging task to automate the
artifact separation procedure [1] [2].

Low-pass filters are used more generously to eliminate
EMG artifacts from the EEG signals. However, the frequency
spectrum of muscle antiquities signal overlaps with the in-
tersecting EEG signals, low-pass filters suppress the muscle
artifacts but at the same time they also abolish the required
valuable information.In some of the previous works artifacts
are removed from single channel EEG signal using SSA-
ICA [3] which gives the best results for single channel EEG
signals. ”Some of the latest methods for the elimination of
EMG artifacts from EEG signals are Optimal wavelet trans-
form and Surrogate-Based Artifact Removal” [4] [5]. "The
canonical correlation analysis (CCA) method was proposed to
separate EMG artifacts from the multi-channel EEG signals”
[6]. "Unlike the ICA and other wavelet transform techniques,
this method estimates the sources based totally on the sec-
ond order statistics (SOS), which exhibits low computational
complexity”. Some of the works discussed in [5] [7] are used
to remove different artifacts from multi-channel EEG signals.
In [9], ICA has been used to eliminate antiquities from the
single channel EEG signal. In any case, this methodology
isn’t important for EEG signal assessment because of the
confinements, for example, sources to be separated should
be fixed and the frequencies of the source signals should be
disjoint. To place in power ICA on single-channel signals, right
off the bat mapping of single-channel signal into a multichan-
nel signal is required. In [8] authors utilized “inter channel
dependence information to eliminate muscle artifacts in few-



channel situation by combining multivariate empirical mode
decomposition and canonical correlation analysis (MEMD-
CCA)” which removes EMG artifacts at some limited channels
and moreover increases complexity.

Most of the ICA based EEG artifact separation techniques
reported above either rely on only one stage or employs a more
complex separation procedure. Moreover, overall performance
of ICA relies upon on the length of the segment due to the fact
that when the larger segment is processed, the greater is the
likelihood that the high-quality number of sources overcomes
the number of channels (over complete ICA). In this case, ICA
will now not be capable to effectively separate the artifact from
the neural aspect due to the truth that some beneficial residual
EEG facts is lost.

In this paper, we have introduced an effective strategy
known as Multi-channel Singular Spectrum Analysis (MSSA)
to take out EMG artifacts from the multi-channel EEG signals.
In MSSA, right off the bat the symmetrical eigenvectors of
multi-channel information are assessed by the Singular Value
Decomposition (SVD). To take out the intriguing component,
we have assessed each eigenvector by setting a legitimate
pinnacle recurrence limit, the information matrix (G) was
planned onto the region stretched out by the eigenvectors
whose recurrence is significantly less than the pre-indicated
edge recurrence. Finally, the remedied EEG signal is extri-
cated with the guide of performing reverse implanting and
the diagonal averaging on the information matrix (G) The
proposed procedure is approved by the utilization of randomly
generated sinusoidal signals debased with the random noise
and continuous ictal EEG signals tainted by EMG artifacts.
Recreation results show that the proposed approach dispenses
EMG antiquities successfully as opposed to the current meth-
ods.

II. METHODOLOGY
A. Multi-channel SSA

The SSA technique involves two complementary stages:
(1) Decomposition and (ii) Reconstruction. The contaminated
EEG signal (Y;,) is decomposed at the first stage and the noise
compressed EEG (X,,) is reconstructed at the second stage.

1) Decomposition: The decomposition stage of SSA its
further divided into two sub-steps embedding and Singular
Value Decomposition (SVD). The basic difference between
MSSA and SSA is that in MSSA embedding step is not
required, since embedding step is used to map single channel
signal into multi-channel signal or data. Consider a multi-
channel data matrix (G) of size (K x M) as shown below,
where (K = N — L + 1), N represents number of Samples
and L represents the Length of the window.

G(1) G2 G(K)
c_lca @ G(K +1)
G(M) G(M +1) G(N)

In the following stage SVD is performed on the informa-
tion matrix G. The SVD of information matrix is given as
G=VDUT, where V and U are unitary networks and D is a
diagonal matrix. For the most part, SVD is performed to locate
the symmetrical eigen vectors. The covariance matrix C for
information matrix G is given by C = GGT, which speak
to the relating eigenvalues and eigenvectors as A1, Ag, ..., Ays
and V1, Vs, ...,V individually. The i;;, component of U can
be spoken to as in (1),

GT V;
Vi

where ¢ = 1,2,.., M. Then, the trajectory matrix can be
expressed as,

u; =

(D

M M

G = ZGZ- = Z \/X-ViuiT
i=1 i=1

where trajectory matrix (TM) G; can be defined as

2

G=vv G 3)

The term v;v7 in (3) forms a subspace, which is formed by
the eigenvector v;.

2) Reconstruction: This reproduction phase of SSA com-
prises two steps namely, grouping and diagonal averaging.

Grouping: In this progression from the pattern of eigenval-
ues, the ideal subspace having a place with the signs of intrigue
and the undesired subspace having a place with the ancient
rarities are isolated. This frequently requires a few ideas
regarding the ideal segments. The grouping step relates to part-
ing the basic networks into a few groups and adding the lattices
inside each grouping. Let the lists are T = (1,2,3,..., M)
which are part into L number of groups; and is performed
dependent on the magnitude of the eigenvalue and chosen
physically. The trajectory matrix (G) is represented as

L
G=> G
j=1

where G, is the TM and I; represents set of indices for
jth group with j = 1,2, ..., L . Of the chance that L = M, at
that point the grouping is referred to as elementary grouping.

Diagonal averaging: The reason for inclining averaging is
to recreate a specific component or sign from the measured sig-
nal, radically change the corresponding TM to a Hankel matrix
which can, as a result, be converted to an original signal, which
can be subsequently converted to the original. For example,
to expel the extraordinary imperativeness segment from the
conscious sign, right off the bat, the related TM is formed
by introducing the information matrix (G) onto the subspace
stretch with eigenvectors comparing to the huge eigenvalues.
To expand the supported subspace, the choice of eigenvectors
reliant on the degrees of the eigenvalues are not reasonable for
the capacity, for instance, signals polluted by the unpredictable
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Fig. 1. 21-channels contaminated ictal EEG data.

upheaval. In this paper, to perceive the supported subspace
the eigenvectors required to broaden the subspace are picked
depending on their peak frequencies then again of the extents
of the eigenvalues.

B. Calculation of Peak Frequency

Peak frequency is simply the frequency of maximum power
signal. For pure EEG signals embedded with some EMG
artifacts this technique often provide the best pitch estimate.
The peak frequency is observed in low to medium muscle
contractions is present in the S-band (13-30 Hz). The peak
frequency during the high muscle contractions is noticed in
the a-band. This is referred to as the piper rthythm, wherein
coherence is observed at (30-60 Hz) during muscle release. It
can be calculated by determining the frequency response of
a digital filter designed to filter signals sampled at frequency
fs. Frequency response of digital filter is given as,

B(z)

HO=46 =

b(1) +b(2)z7t + ..b(n+1)z7" s = e—i
a(l)+a(2)z71 + ...a(n+1)z—™ ==

&)

Since we have determined the peak frequency in MATLAB,
we utilized the function fregz to assess the frequency re-
sponse. At the point when a vector of frequencies is provided
as an information contention, at that point freqz assesses
the polynomials at every frequency point utilizing Horner’s
strategy for settled polynomial assessment, separating the
numerator response by the denominator response as in (5). At
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Singular Value
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Multi-channel EEG
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Fig. 2. Proposed method

Fig. 3. 21-channels corrected ictal EEG data by MSSA technique.

long last, the frequencies over the assigned limit are eliminated
to get an artifact-free EEG signal.

III. PROPOSED MSSA TECHNIQUE

In this paper, we have presented a replacement grouping
technique that is implemented using the MSSA algorithm as
shown in Fig 2. The concept of this proposed technique is thee
eigenvectors which are wont to extend the specified subspace,
the eigenvalues are selected supported their peak frequencies
rather than the magnitude. This system is incredibly efficient
in recognizing EEG signals which are contaminated with
EMG artifacts. Consider G(n) and A(n) as desired and
contaminated statistically unconventional source signals which
are originated at gy and gi, respectively. Then, the measured
mono-channel EEG signal can be represented by

X(n) = G(n) + pA(n) (6)

where p is a propagation constant, which decides the role
of a particular contaminated signal in X (n).

To extricate the spotless EEG signal from the ruined EEG
signal we have assessed the peak frequencies of each eigenvec-
tor. Subsequent to evaluating peak frequencies the information
matrix G was anticipated onto the subspace, the eigenvectors
having peak frequencies not exactly the assigned limit, have
a place with the TM of the EEG signal. Finally, diagonal
averaging has been performed on the TM to extricates the
multi-channel antiquity free EEG signal.

IV. RESULTS ON SYNTHETIC DATA

To present the validity of the proposed MSSA technique,
we have considered the signal mixed with some random noise
represented in (6). SNR value of the signal is given by

v BMS(@)

~ RMS(pA) ™
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Fig. 4. 10-Channels Contaminated Synthetic EEG data.

Fig. 5. 3-Channels MSSA output.

Here, p represents the SNR value of the measured signal
X(n).

To compare the performance of the proposed MSSA tech-
nique with the existing CCA technique, we have considered
the relative root-mean-square error (RRMSE) as a error pa-
rameter between orginal signal and artifact free signal. The
RRMSE of the required source signal G(n) is given by

RMS(G - G)
RMS(S)

Where G is the original data matrix and G is data matrix
after diagonal averaging.

RRMSE = x 100% ®)

A. Extraction of EEG Signal Using MSSA Technique

At first, the proposed technique is applied on 21-channel
ictal EEG data to observe the performance of proposed tech-
nique in removing EMG artifacts Fig. 1. The outputs of the
ictal EEG data are shown in Fig. 3.

Later, the proposed method is applied on the 10-channel
synthetic EEG signal which was tainted by EMG artifact
shown in Fig. 4. The multi-channel EEG During Mental Arith-
metic Tasks recording of Subject001ledfm was taken from
physionet database [10]. We considered 10-channels from the
19-channels data with a sampling frequency of 500Hz. The

Fig. 6. 3-Channels CCA output.
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proposed MSSA technique is then applied on the 3-channel
synthetic EEG data corrupted with EMG artifacts. During
simulation the sampling frequency was reduced to 250Hz,
window size was set to 40 during entire simulation and the
maximum peak frequency threshold was set to 21Hz since all
the EMG artifacts fall under (13-30Hz). The artifact corrected
EEG data after using MSSA technique is shown in Fig. 5.
PSD graph is plotted between orginal EEG, noisy EEG and
purified EEG as shown in Fig. 7. Then by varying propagation
constant p we have plotted the RRMSE curves between the
original EEG data and the contaminated EEG data. Then,
the data is used to simulate using CCA technique to remove
EMG artifacts as shown in Fig. 6. Finally, both the RRMSE
and RMSE curves were compared to show that the proposed
MSSA technique outperforms the CCA technique in removing
EMG artifacts from EEG signals shown in Fig. 8 and Fig. 9.

V. CONCLUSION

In this paper, we have introduced an MSSA-based strategy
for the expulsion of EMG antiques from the EEG signals. We



TABLE I
COMPARISON OF RRMSE AND RMSE VALUES BETWEEN PROPOSED
MSSA AND CCA TECHNIQUES

SNR RRMSE(%) RMSE(%)
(dB) MSSA CCA MSSA CCA
-9.87 88.69 157.90 0.1616 0.2113
-8.84 83.10 139.31 0.1457 0.1919
-1.70 73.73 121.66 0.1254 0.1757
-6.42 63.26 104.24 0.1236 0.1840
-5.00 55.06 93.89 0.1015 0.1673
-3.45 46.78 74.03 0.0809 0.1360
-1.86 35.56 58.31 0.0647 0.1072
-0.53 26.85 35.46 0.0488 0.0617

160

140 | \

120 1

—&— Proposed MSSA

——CCA

% 100 |
i
@
z
& sor
60
40
20
-12 -10 -8 B -4 -2 0
SNR(dB)
Fig. 8. Comparison of RRMSE curves between CCA technique and the

proposed MSSA techniques.

have thought about the aftereffects of the proposed method
with the current CCA procedure. By assessing the exhibitions
of two methodologies as demonstrated in Table I, it could
be confirmed that the MSSA-based methodology got more
noteworthy SNR and substantially less RRMSE and RMSE
values than the CCA-based technique. Contrasted with the
CCA-based strategy, the MSSA-based procedure is less dif-
ficult to expel the EMG antiques from the EEG signals, hence
this method is more noteworthy proper to wipe out the EMG
antiques from the EEG signals. Later on, the MSSA-based
methodology can be utilized for the handling of ongoing EEG
signals so as to comparably certify the adequacy of the EMG
antiquity end of the proposed strategy.
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