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Introduction  

These supplementary materials provide further details about the elastic properties, axial 
conventions, and relative orientation of the host zircon and the quartz inclusion. The 
datasets provide all the results of the quartz-in-zircon calculations in table format. The 
datasets include the unrelaxed and relaxed strains, and the relaxation tensors.  
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Text S1. 

Elastic properties, axial conventions and relative orientations for quartz and zircon 

Elastic properties 

The anisotropic elastic properties are described by the 4th-rank stiffness tensor (C). Here 

we report the components 𝐶𝑖𝑗 of the corresponding matrix in Voigt notation (Voigt, 1910) 

for quartz and zircon. The elastic constants (𝐶𝑖𝑗) and the Equation of State (EoS) usually 

are not determined on the same crystal and with the same experimental settings. 

Moreover, the EoS is obtained from isothermal measurements while the elastic constants 

are obtained from adiabatic measurements (Angel et al. 2009). This has the consequence 

that the value of the isothermal Reuss bulk modulus determined at room conditions 

(𝐾𝑇𝑅,0 ) from the EoS does not coincide exactly with that of the adiabatic Reuss bulk 

modulus that is calculated from the elastic tensor. To keep consistency among the 

different steps of the calculation, which involve both the elastic tensor and the EoS (see 

Appendix A), for each mineral its 𝐶𝑖𝑗 components were rescaled to obtain a new elastic 

tensor that gives a 𝐾𝑇𝑅,0 equal to that obtained from its EoS. To this aim, all the  𝐶𝑖𝑗 were 

multiplied by a scalar value (close to 1) that was adjusted until the agreement in the value 

of 𝐾𝑇𝑅,0 was reached. This approach guarantees that the anisotropy of the mineral is not 

modified by the rescaling. 

Zircon 

Zircon crystallizes in the tetragonal systems, point group 4/mmm (centrosymmetrical 

class). The elastic properties of nonmetamict natural and synthetic crystals of zircon were 
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measured by  Özkan et al. (1974) using the pulse superposition and the phase comparison 

method. Their adiabatic elastic constants were rescaled to obtain the same value of 

𝐾𝑇𝑅,0 = 224.4 GPa as that given by the EoS of Ehlers et al. (2021). The anisotropy, as 

evaluated by the universal anisotropic index (Ranganathan and Ostoja-Starzewski 2008) 

𝐴𝑈 = 1.12, is left unchanged by the rescaling. The independent components of the 

stiffness tensor are reported in Table S1. 

Quartz 

Quartz crystallizes in the trigonal system, point group 32. The adiabatic elastic constants 

of a natural quartz were determined by Lakshtanov et al. (2007). The room P,T adiabatic 

elastic constants were rescaled to obtain the same value of 𝐾𝑇𝑅,0 = 37.15 GPa as in the 

EoS of Angel et al. (2017). The anisotropy, as evaluated by the universal anisotropic index 

(Ranganathan and Ostoja-Starzewski 2008) 𝐴𝑈 = 0.84, is left unchanged by the rescaling. 

The independent 𝐶𝑖𝑗  components of the stiffness tensor are reported in Table S2. 

Axial conventions 

For each mineral we follow the axial convention that was assumed for the experimental 

determination of its stiffness tensor 𝐶𝑖𝑗𝑘𝑙, and we maintain it for all of our calculations. 

For zircon (tetragonal) the Cartesian x, y, z are taken parallel to the crystallographic a, b, 

c axes respectively, according to the convention of the stiffness tensor followed by Özkan 

et al. (1974). For quartz (trigonal) the Cartesian z is taken parallel to the crystallographic 

c, while x is parallel to a. As a consequence y is in the crystallographic a-b plane, parallel 

to b*. This convention is the standard for quartz proposed by the ANSI/IEEE (1987) and it 

is the axial convention assumed by Lakshtanov et al. (2007) for their stiffness tensor. Both 



 

 

4 

 

these axial conventions can be represented by the same matrix A that transforms the unit 

cell onto a Cartesian reference basis which in general puts z parallel to c and the y axis 

parallel to the reciprocal lattice axis b*: 

 

𝑨 = (

𝑎 sin(𝛽) 𝑏(cos(𝛾) − cos(𝛼) cos(𝛽))/ sin(𝛽) 0

0 𝑉/(𝑎 𝑐 sin(𝛽)) 0

𝑎 cos(𝛽) 𝑏 cos(𝛼) 𝑐

) 

 

(eq. S1) 

 
Where  a, b, c are the lengths of the unit-cell axes, V is the unit-cell volume, and the α, β, 

γ are the angles between the unit-cell axes. For trigonal and tetragonal crystals without 

symmetry breaking, equation S1 is simplified by letting 𝛼 = 𝛽 = 90°. 

Choice of the relative orientations 

Both quartz and zircon are elastically anisotropic. As a consequence the residual strain 

developed in the inclusion is a function of the relative orientation of the two minerals. In 

our analysis we illustrate this orientation dependency by considering three specific 

relative orientations. The orientations are chosen by aligning the directions of highest and 

lowest Young’s modulus of the inclusion to the direction with highest Young’s modulus of 

the host. The Young’s modulus of an anisotropic crystal is direction-dependent and its 

value along any direction is calculated as (Nye 1985): 

 

𝐸 = 1/(𝑆1111
′ ) = 1/(𝑈1𝑚𝑈1𝑛𝑈1𝑝𝑈1𝑞𝑆𝑚𝑛𝑝𝑞) (eq. S2) 

 
where the indicial notation with summation over repeated indices is assumed (the 

Einstein summation convention). The matrix U is the transformation matrix (as defined 

above) while S is the 4th-rank compliance tensor of the mineral. The directions of largest 
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and smallest Young’s modulus do not necessarily coincide with the crystallographic axes 

of the crystal (Nye 1985). With the elastic properties of quartz defined in Table S2, the 

Young’s modulus is largest (E = 130.04 GPa) along the [0.00 -0.77 0.64] direction and 

equivalents (in Cartesian coordinates) and smallest (E = 69.47 GPa) along the [1.00 -0.58 

0.42] direction and equivalents. The equivalent directions are found considering that 

elasticity is a centrosymmetrical property, which for quartz is described in the Laue group 

3̅𝑚. With the properties of zircon reported in Table S1 its’ Young’s modulus is largest (E = 

397.87 GPa) in the Cartesian [0 0 1] direction, that coincides with the c unit-cell axis.  

Under the constraint of aligning one specific direction of the inclusion to a specific 

direction of the host, infinite relative orientations are possible, which are generated by 

rotating the local reference system of the inclusion around that chosen direction. 

Therefore, in defining a unique orientation, one should add a second constraint that 

orients another direction of the inclusion with respect to the host. Table S3a shows the 

transformation matrix U (see equation A1) that describes the orientation of the inclusion 

assuming that the direction of largest Young’s modulus of the quartz inclusion is parallel 

to the direction of largest Young’s modulus of zircon, while the Cartesian [1 0 0] of the 

host and the inclusion are kept parallel. For the case where the direction with the smallest 

Young’s modulus of quartz aligned with the direction of the largest Young’s modulus of 

zircon, no other condition is imposed. Therefore, one of the possible orientation matrices 

that satisfies this condition was used (Table S3b). The identity transformation matrix is 

the orientation matrix that keeps the local Cartesian reference system parallel to the 

global reference system (Table S3c). 
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Supplementary Data Tables 

 

Table S1.  

𝐶11 𝐶12 𝐶13 𝐶33 𝐶44 𝐶66 
422.0 70.0 148.9 488.0 113.1 48.3 

 
Table S1. Components of the stiffness tensor in Voigt notation of zircon (𝐶𝑖𝑗, GPa), 

modified from Özkan et al., (1974). 

 

Table S2.  

𝐶11 𝐶12 𝐶13 𝐶14 𝐶33 𝐶44 
86.1 7.2 11.7 17.7 105.6 59.2 

 
Table S2. Components of the stiffness tensor in Voigt notation of quartz (𝐶𝑖𝑗, GPa). 

Modified from Lakshtanov et al., (2007), as described in the text. 
 

Table S3.  

stiff-stiff orientation 
𝑼 = (

1 0 0
0 0.639200 −0.769041
0 0.769041 0.639200

) 

 

(a) 

soft-stiff orientation 
𝑼 = (

0.507240 0.285802 0.813034
0.285802 0.834234 −0.471561

−0.813034 0.471561 0.341475
) 

 

(b) 

identity orientation 
𝑼 = (

1 0 0
0 1 0
0 0 1

) 

 

(c) 

 
Table S3. Transformation matrices for the three choices of relative orientations 
between the quartz inclusion and the zircon host. 
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Supplementary Data Sets 

Data Set S1. The unrelaxed strain results for all of the quartz-in-zircon models. Model 

results are grouped according to the P-T of the simulation as described in the text. Strain 

tensors are represented using the notation of Voigt (1910).  

Data Set S2. The relaxation tensors calculated using Finite Element Modeling following 

the methods outlined in Mazzucchelli et al., (2019) and Morganti et al., (2020).  

Data Set S3. The relaxed strain results for all of the quartz-in-zircon models. Model results 

are grouped according to the P-T of the simulation as described in the text. Strain tensors 

are represented using the notation of Voigt (1910).  

 


