
IEEE TRANSACTIONS ON SERVICES COMPUTING 1

Regression Analysis of Predictions and
Forecasts of Cloud Data Centre KPIs Using the

Boosted Decision Tree Algorithm
Thomas Weripuo Gyeera IEEE member, Anthony J.H. Simons, and Mike Stannett

Department of Computer Science, University of Sheffield, United Kingdom

Abstract—The National Institute of Standards and Technology defines the fundamental characteristics of cloud computing as:
on-demand computing, offered via the network, using pooled resources, with rapid elastic scaling and metered charging. The rapid
dynamic allocation and release of resources on demand to meet heterogeneous computing needs is particularly challenging for data
centres, which process a huge amount of data characterised by its high volume, velocity, variety and veracity (4Vs model). Data
centres seek to regulate this by monitoring and adaptation, typically reacting to service failures after the fact. We present a real cloud
test bed with the capabilities of proactively monitoring and gathering cloud resource information for making predictions and forecasts.
This contrasts with the state-of-the-art reactive monitoring of cloud data centres. We argue that the behavioural patterns and Key
Performance Indicators (KPIs) characterizing virtualized servers, networks, and database applications can best be studied and
analysed with predictive models. Specifically, we applied the Boosted Decision Tree machine learning algorithm in making future
predictions on the KPIs of a cloud server and virtual infrastructure network, yielding an R-Square of 0.9991 at a 0.2 learning rate. This
predictive framework is beneficial for making short- and long-term predictions for cloud resources.

F

1 INTRODUCTION

C LOUD computing service providers seek to deploy vast
quantities of shared resources that are managed in

an optimal way for all consumers. Monitoring describes
a collection of techniques for measuring cloud resource
consumption, performance, and for detecting anomalies [1].
Adaptation describes a collection of techniques for effecting
changes to a cloud configuration in order to improve per-
formance, or to counter anomalous behavior.

The state-of-the-art in cloud monitoring mostly gen-
erates statistics about Infrastructure-as-a-Service (IaaS) [2]
which is used privately to inform providers about the health
of the service. Consumers see other aspects, such as service
latency and response times, affected by the number of ten-
ants on a given platform [3], [4]. However, the relationship
between low-level resource provision and high-level con-
sumer experience is ill understood. While cloud providers
offer Service Level Agreements (SLAs), it is often not possi-
ble to tell whether these are being honoured. Providers want
to predict performance, plan capacity and detect anomalies
well in advance; and consumers need guarantees that their
SLAs are being honoured.

Many attempts have been made in recent years to ad-
dress this issue. For example, Kalyvianaki et al. [5] consid-
ered this problem on the basis of reactive monitoring and
adaptation of virtualized server applications, arguing that
data centre resources should be provisioned and managed
reactively. As a concrete example, they derived mathematical
relations between the allocation and utilization of the server
CPU and based on these relations, showed that appropri-
ate dynamic adjustment of its percentage CPU allocation
and utilization could be carried out on-demand. We argue,
however, that modern data centres have become increas-
ingly dynamic, complex and heterogeneous, and that the

reactive approach may not, therefore, be wholly suitable
for managing modern data centre servers and applications.
Our approach focusses instead on proactive monitoring and
adaptation, where Key Performance Indicator (KPI) patterns
for application servers are analyzed in advance.

It has often been observed that both small and large
organizations are rapidly moving to the cloud because of
the immediate cost benefits in adopting this technology, and
in so doing they increase the amount of data managed per
unit time interval in the supporting data centres. The multi-
shared environment of modern cloud data centres enables
great flexibility with which cloud computing resources can
be provisioned or deallocated. But this approach results in
the generation of huge amounts of data that are generally
characterized by the ‘4Vs’ (volume, velocity, variety and
veracity) [6], [7]. With these huge volumes of data from
data centres, we argue that the behavioral patterns and KPIs
characterizing virtualized servers, networks and database
applications can best be studied and analyzed with predic-
tive models such as the linear boosted decision tree regres-
sion algorithm. This approach allows both long- and short-
term predictions to be used as a guide for the provisioning
and deallocation of cloud data centre resources, and for
cloud data centre resource management more generally. A
key direct benefit of the approach would be the reduction
of over and under provisioning and utilization of cloud
computing resources.

We trained, tested, and evaluated predictive models
using the boosted decision tree regression algorithm and
bench-marked this approach with two state-of-the-art algo-
rithms (the ordinary least squares (OLS) and the stochastic
gradient descent (SGD)) [8]–[10]. Like other decision tree al-
gorithms, this is capable of handling outliers in the training



IEEE TRANSACTIONS ON SERVICES COMPUTING 2

set; it is preferred over other linear regression algorithms,
such as the ordinary least squares (OLS) algorithm, because
of its speed during training and its ability to scale well
on non-parametric data. We considered the accuracy of the
prediction algorithm, together with its linearity, the number
of features, and other parameters needed when using it.
For instance, a problem with high dimensional training set
example will require the application of principal component
analysis (PCA) or mixture discriminant analysis (MDA), and
a classification problem may require the application of mul-
ticlass logistic regression to solve complex problems [11].

Service level agreements (SLAs) are designed to establish
a bond between a cloud provider and a consumer. These
documents outline the quality-of-service (QoS) features that
must be maintained and respected by all parties involved.
The quality-of-service needs to be described in clear measur-
able performance metrics and the limitations of the services
or IT resource offered to the consumer [12]. In addition
to managing SLA, most application load and performance
testings at the design, integration, and operational stages
need to measure and predict the performance of these met-
rics in order to support a comprehensive decision-making
process (e.g. load balancing, billing, and controlling resource
usages) [13].

For these purposes we sampled data relating to the key
performance indicators of a real experimental cloud testbed
with a virtual infrastructure network (VIN) constructed in
Microsoft Azure. This framework enabled us to monitor
and measure the following server KPIs: Server hits per sec-
ond, throughput (average requests per second), bandwidth
consumption in Mbps, percentage CPU utilization, average
response time/latency in seconds, and Bytes received per
second.

Extensive supervised machine learning experiments con-
ducted with the boosted decision tree regression algorithm
on our generated data from the application server and
the virtual infrastructure network achieved a performance
with an R-square value of 0.9991 at a learning rate of 0.2
compared to two state-of-the-art (OLS and SGD).

1.1 Structure of the Paper

The rest of this paper is organized as follows. We present
previous work related to this investigation in section 2.
Section 3 presents the mathematical constructs and the
problem definition in terms of the boosted decision tree
(BDT) supervised machine learning algorithm. Section 4
covers the experimental testbed and describes the procedure
and tools used in data sampling for building and evaluating
the models for the predictive analytic framework. In section
5 we provide a critical review of the experimental results
based on the linear boosted decision tree regression method
used in predicting and forecasting cloud server KPIs for
adaptation purposes. In section 6 we evaluate and interpret
the trained and tested models and compare our results
with the state-of-the-art techniques in precious works. The
potential applications, benefits and threats to the validity of
our work are discussed in section 7. We summarise our main
conclusions in section 8, and include a number of topics for
further investigation.

2 RELATED WORK

We extend our discussion on the related work to cover some
key machine learning algorithms that have been employed
in solving the problem of workload prediction in cloud data
centres.

The work in Sackl et al. [14] presented five models in
capturing the effects of bandwidth consumption fluctua-
tions on user’s quality of experience. The five models (LTD,
SLTD, TJ, AREA, and double models) identified suitable
techniques for the observation of bandwidth fluctuations in
assessing the overall quality of the network. Their models
constructed new KPIs for characterizing the impact of band-
width fluctuations on the user experience. The LTD model
defines a fraction of time for which the bandwidth through-
put is said to be observed below the network connection
downlink referred to as the BDW. This time range allows a
mapping function to be modeled in order to relate the mean
opinion score to the fluctuating bandwidth. The selective
throughput duration model considers that the duration for
which a bandwidth fluctuations drops is unobserved by
the user whereas the TJ model is constructed based on
the principle of the moving average and avoids the high
sampling frequency in order not to obfuscate drops of the
bandwidth reference value. Both the AREA and the double
models work in a similar way as the LTD.

Menascé et al. [15], [16] presented a model framework
for predicting and comparing performance metrics on re-
sources. Their work focused on the application of queuing
theory formulae in building relations between the mean
values of the response times, throughput or resource uti-
lization and the mean demand placed on the type of re-
quests on the resource. Specifically, they designed exper-
imental techniques in a control environment to measure
these performance metrics (response time, throughput or
resource utilization) in order to estimate the mean demand
on the CPU utilization. A similar queuing network built
by [17] outperforms the regression-based approximations
characterizing the CPU utilization from consumer demands.
Both frameworks can be used in estimating and profiling
workload characteristics of individual virtual machines that
have been provisioned in the cloud.

Kumar et al. [18] applied an artificial neural network and
the adaptive differential evolution algorithm in predicting
cloud data centres workload. They performed experiments
on some HTTP server benchmark datasets from NASA
and the predicting models are seen to present an optimal
mutation. For a given time series obtained from a histor-
ical dataset, the techniques of Autoregresssion Integrated
Moving Average (ARIMA), Moving Average (MA), Autore-
gression (AR), Exponential Smoothing (ES), and Hidden
Markov (HMM) models are known to perform quite well
on historical sampled datasets with a uniform time interval.

Ban et al. [19] proposed the k–nearest neighbor (kNN)
approach for making predictions on financial time series
dataset. This algorithm was again applied by Eddahech
et al. [20] to model predictions on multi–media workload
fluctuations. kNN learners are generally considered lazy
trainers and may give rise to high computational cost in the
training phase. The combined techniques of neural network
and linear regression were presented by Islam et al. [21] in



IEEE TRANSACTIONS ON SERVICES COMPUTING 3

predicting workload variations in data centres. The frame-
work also described the sliding window concept and was
tested on historical CPU demand data. Experimental results
reveal that the sliding window performs better than the non-
sliding widow framework.

The technique of the boosted decision tree method in
our approach presents predictions with confidence bounds
of 98 % compared to the standard state-of-the-art ML (OLS
and SGD) algorithms. A prediction accuracy of 98 % means
that we are able to match the utilization signal and therefore
we are able to detect potential violations, over, and un-
derutilizations of the server resources (e.g. CPU utilization,
bandwidth traffic).

Chen et al. [22] presented combined techniques based on
both neural network and the steepest descent algorithms
in making predictions on workload fluctuations in data cen-
tres. Even though the technique suffers from high prediction
errors, it turns to improve on the prediction accuracy with
time delay.

Fan-Hsun et al. [23] presented a framework based on
a multi-objective genetic algorithm (GA) for dynamically
predicting and allocating cloud data centre resources. The
proposed GA predicts the resource requirements of the next
step ahead time slot based on the historical patterns of
the previous time slot. A similar approach of using the
stochastic model and the neural network was presented by
Prevost et al. [24] in predicting workload fluctuations in
cloud data centres. The approach exploited the benefits of
back propagation of neural networks and the high predic-
tion accuracy of the stochastic model.

Hu et al. [25] proposed a framework based on statistical
learning theory in constructing models using the Kalman
smoother and the support vector regression algorithms.
Prediction accuracy with their approach were evaluated to
be higher than the techniques that employ auto regression,
the back propagation neural network, and the canonical
support vector regression algorithms.

Pahlevan et al. [26] integrated a novel hyper-heuristic
and the K-means machine learning algorithm that dynami-
cally and optimally allocates VMs to servers in cloud data
centres. The sampled CPU utilization as well as the memory
traces of the VMs are classified with the K-means machine
learning algorithm in addition to a set of heuristics used
to determine the VM classes. In the last step of the ML
algorithm the VMs patterns and features are extracted with
the last-value predictor method and the reinforced learning
technique determines which VM should be assigned to a
particular class in the form of a finite set of actions and
states of the virtual machines.

The K-means classification-based approach demon-
strates an improvement of up to 24% server-to-server net-
work traffic. For large scale data centers, their approach
is able to reduce workload execution time by 480 times
compared to the state-of-the-art. In particular, when their
approach is compared to the correlation and network-
aware [27] state-of-the-art schemes, the ML, and Heuristic
methods significantly improve the network communication
overheads as the number of VMs provisioned increases. In
comparison with the state-of-the-art, the application of the
K-means technique helps achieve a reduction in violations

Fig. 1. Block diagram of of the conceptual framework.

in terms of server overutilization and network traffic over-
head especially in VMs off-peak loads management.

Our approach applies the linear boosted decision tree
regression algorithm in building predictive models that can
be used for analyzing and forecasting cloud resource alloca-
tion and consumption. We benchmarked and compared this
approach with the state-of-the-art ordinary least squares and
the stochastic gradient descent regression machine learning
algorithms. Our approach is further compared with the
work presented in [13], a reactive framework that con-
centrates on cloud systems workload capacity planning,
allocation, and redirection. In order to state the benefits
of our framework, extensive discussions on comparing our
approach to some state-of-the-art techniques such as [10],
[13] are covered in section 6.

3 PROBLEM DEFINITION

This section describes the boosted decision tree (BDT) linear
regression algorithm as it is applied in making predic-
tions on the server KPIs by building sub-functions within
the hypothesis space of an inductive ensemble learning
system. The problem of cloud resource provisioning and
consumption prediction can be stated in this approach as
one that can be formulated in the language of least squares
regression as having the overall aim of building models that
can make predictions on z-manifold observations. The goal
of teaching the model to predict a server application KPI
such as bandwidth fluctuations, latencies or the percentage
CPU utilization using a functional hypothesis space can be
achieved through the minimization of the mean squared
error.

3.1 Conceptual framework
Our monitoring and adaptation framework has four main
building stacks as depicted in Fig. 1.

1: The monitor stack consists of a dashboard that show-
cases the different purposes for conducting monitoring: The
pay-per-use monitor depicts metrics that may be relevant to
how resources are consumed and how much the consumer
may be required to pay for them. For example, the amount
of memory, bandwidth or %CPU utilization can be used
here as a metric for evaluating and billing the client as spec-
ified within the SLA. For the purpose of enforcing an SLA



IEEE TRANSACTIONS ON SERVICES COMPUTING 4

contractual agreement, the SLA monitor here can display
metrics such as the availability of the resources that were
provisioned within the cloud. The fail-over/infrastructure
monitoring stack is quintessential in characterizing transient
and general network issues. This component is generally
required in detecting failures and anomalous behaviors, and
how they can be mitigated before the virtual network and
the application server becomes unavailable.

2: The adaptation stack contains the filtering or machine
learning algorithm that is implemented to learn from be-
havioral patterns displayed by the virtual infrastructure
network and key performance indicators of the application
server. For instance, the implementation of an ensemble
learning algorithm (BDT) helps predict future resource con-
sumption patterns. In this case an adaptation strategy can
be enforced such as elastic load balancing, auto-scaling of
pooled resources or the migration of a DB workflow.

3: The third block of components consists of our applica-
tion server and the virtual infrastructure network nodes to
be monitored. We implemented a webservice platform that
mimics eBay or Amazon, in the sense that it can allow a
huge number of robot users to browse and make purchases
from the application. The content management and the
metrics polling techniques (push or pull) all constitute our
application stack as shown in Fig. 1.

4: The fourth stack is the admin user console that is
interfaced with the application in observing the different
metrics of the framework. The admin terminals administer
all the databases and storage required for the operation of
the system as shown in Fig. 1.

3.2 The BDT algorithm

The boosted decision tree learning methods first derived by
Friedman belong to an ensemble group of inductive learn-
ing methods [28], [29]. In these algorithms, the idea is to
teach a model how to perform predictions on a training set
example by sequentially constructing a set of hypotheses
in each iterative step. The individual hypotheses in the
final set of functions or hypotheses space are combined in
determining the predicted output [30], [31].

Consider a finite hypothesis space M . For each iteration,
a newly constructed function at the time interval is weighted
to determine its contribution to the output value of the final
hypothesis. Assigning weights to each hypothesis added to
the predictive model is called boosting [29], [32] (e.g. boost-
ing is normally initialized with a constant value greater
than 0). In the next iteration, these weights are increased
for results with weaker predictions while the hypotheses
with the correct results have their weights decreased. These
iterations continue until the final number of functions are
generated.

Assuming a training set {xi, zi}Ni=1 is obtained from
measuring the server KPIs of a virtual infrastructure net-
work or an application server provisioned in the cloud, the
goal here is to teach a model with the boosted decision
tree base-learner to make predictions on the input variable.
For instance, if the bandwidth fluctuations or the percent-
age CPU utilization constitutes the training set example
from the designed experiment, then it is computationally
realizable using the decision tree model objective function

to make predictions on the server KPIs. The rest of this
section presents the mathematical background behind the
construction of the boosted decision tree as a predictive
model according to [28], [32].

Let the hypothesis space be defined as one comprising
the functions generated at each iteration on the training
set example {xi, zi}Ni=1: the parameters for building the
functional space include the tree structure, score labels for
each leaf and the total number of trees to be generated. Since
each step generates its own subtree (also referred to as a sub-
hypothesis), the objective function constitutes the sum of all
the different hypotheses as defined in equation (1):

H = {h1, h2, h3, ...hT } (1)

where T is the total number of trees and h1, h2, ...hT are
the sub-hypotheses added to the hypothesis space during
each running of the training experiment. The boosted de-
cision tree can be constructed from a logical expression by
forming the disjunction of all the sub-hypotheses as shown
in equation (2) (see, e.g., [29]).

H ⇔ (h1 ∨ h2 ∨ h3 ∨ · · · ∨ hT ) (2)

If the decision tree can be constructed through the combi-
nation of the sub-hypothesis in (2), the next steps illustrate
how each of these sub functions can be constructed to fill
the defined hypothesis space H .

In building the regression tree from sampled observa-
tions on a server’s KPI at different time intervals, one im-
mediate step is to construct the loss function that minimizes
the least square errors. Thus the loss on making inaccurate
predictions on the training set data is the sum of the residu-
als between the predicted and the actual observations, given
as follows:

Error(E) =
m∑
j=1

e(zj , ẑj) (3)

This error function measures how well the model fits on
the training set. According to the formulation of the least
square error, if we take this to be the minimization objective
function, then the squared loss is given as follows:

e = (zj − ẑj)2 (4)

In order to characterize the complexity of the new model,
we define an additive L2 regularization hyperparameter
(see [32], [33] for the definition of the L2 regression) as
a component of our objective function. This component
combines the learning rate factor, λ, which ranges from
0 < λ ≤ 1 and can be used to tune the model. As a rule of
thumb, the model learns faster, the closer the learning rate
is to unity, but according to [31], this parameter should be
tweaked carefully to avoid overfitting. For the jth training
set {xj , zj}, the estimate of ẑj at sample interval j is the
sum of all the hypotheses generated from the previous to
the current estimates. These estimates in the hypothesis
space form the decision trees based stumps on if-then clauses
evaluation.

If a total of T regression trees is desired, then the model
function can be summarized (equation (5)) as the complete
objective function. The model which is characterized by
the sum of the heuristic hypotheses can be split from the



IEEE TRANSACTIONS ON SERVICES COMPUTING 5

base-learner into sub-leaves consisting of the sub-functions
within the ensemble defined in (1) by applying the infor-
mation gain (see definition in [28], [32], [33]). The complete
objective function can be stated as follows:

Error(E) =
m∑
j=1

e(zj , ẑj) +
∑
T

Ψ(hT ) (5)

where
∑

T Ψ(hT ) defines how complex the tree can be (hT ∈
H) summing all sub-hypotheses at the different iterations to
generate the ensemble, and T is the total number of trees
to be grown from the sub-hypotheses. Once the objective
function has been completely stated a prediction at a defined
period is simply the sum of the estimation at the previous
and current iterations. This can be expressed mathematically
as

ẑm = ẑ
(m−1)
j + hm(xj) (6)

where hm(xj) is the new function added to the growing
tree at the mth round of running the training experiment on
the model in predicting the values of z. It is this addition
of hm(xj) to the training loss function that is referred to as
boosting [28], [32]. Applying the steep gradient approach,
the sum of squares loss can be reconstructed from (4). If the
first and second partial derivatives are applied to equation
(4), then this leads to the following equation. If we consider
the total loss by taking the difference between the actual
and the predicted estimate as shown in (4), then the new
loss error square function can be rewritten as in (7):

e = (zj − (ẑ
(m−1)
j + hm(xj)))

2 + Ψ(hm(xj)) + C (7)

where C is a constant. The goal of combining equation (4),
(5), and (6) to form equation (7) is to allow the objective
function to be derived by applying the gradient descent
method. To this end, applying the first and second partial
derivatives to equation (7) and using the Taylor expansion
series for linearizing polynomials, then the error square
objective function can be rewritten [12] as:

Error(E) =
m∑
j=1

[∆hm(xj) +
1

2
∆2h2m(xj)] + Ψ(hm) (8)

where ∆ is partial derivative taken on the loss square error
function with respect to the previous estimates ẑ(m−1).

∆ = ∂ẑ(m−1)e(zj , ẑj) (9)

∆2 = ∂2ẑ(m−1)e(zj , ẑj) (10)

The component Ψ(hm), called the regularization parameter,
characterizes the complexity of the model. There are several
regularization methods in the literature (see [28], [32], [33]
for further reading) that can be employed for measuring the
complexity of a decision tree model. For this article, the L2

norm, which is defined as the standard Euclidean distance,
is used in combination with the learning rate to define the
structure of the tree. Thus the model complexity Ψ(hm)
contains the total number of the leaves and the L2 sums
the optimal weights within the ensemble. This formulation
can be expressed as:

Ψ(hm) = λ‖ωm‖2 + γL (11)

where ωm is the optimal weight assigned to each leaf in a
particular round of the training experiment and γL is the
total number of leaves from the tree. Algorithm 1 below
presents the pseudo code for the boosted decision tree
algorithm (following [28]).

Algorithm 1 The Boosted Decision Tree algorithm [28]

1: procedure BDT
2:
3: initialization
4: Consider an N training set example {xi, zi}Ni=1

5: Define a finite set, Ĥ , of hypotheses
6: Construct the error function
7: Construct the base-learner
8: ĥm ← constant
9:

10: read current state
11: for i← 1, N do
12: Compute the negative gradient ∆
13: Add a new base-learner to the hypothesis space
14: Optimize the gradient descent ∆
15: Update the ensemble with the hypothesis esti-

mate:
ẑm ←

(
z
(m−1)
j + hm(xj)

)
16: end for
17:
18:
19: return results
20: end procedure

3.3 How to Split the Leaves of the BDT
In this section, the information gain used in splitting the
leaves of a decision tree algorithm are given (following [32]).
In section 3.2, we presented details of how the base-learner
hypothesis and sub-hypotheses can be constructed to fill the
hypothesis space.

By defining the base function, the leaves of the tree can
be optimally constructed through equations (1) to (7) with
the L2 regularization loss function. According to [28], [32]
the sub-leaves can be greedily added to grow the tree using
the information gain explained as follows.

weightoptimal = − ∆

(∆2 + λ)
(12)

∆ = ∂ẑ(m−1)e(zj , ẑj) (13)

∆2 = ∂2ẑ(m−1)e(zj , ẑj) (14)

Error(E) = −
T∑

j=1

∆2

(∆2 + λ)
+ γT (15)

If we consider the leaves on the stump of a tree to be
partitioned as left and right sub-leaves, then the deviations
from the partial derivatives on the error loss function can
be determined to greedily grow the tree. This leads to
definition of the information gain as:

1

2

[
∆2

l

(∆2
l + λ)

+
∆2

r

(∆2
r + λ)

− (∆l + ∆r)2

(∆l + ∆r) + λ)

]
− γT (16)



IEEE TRANSACTIONS ON SERVICES COMPUTING 6

where ∆l and ∆r are computations of the partial derivatives
of the left and right sub-leaves on the tree. Equation (16) is
the information gain that can be used to optimally split and
grow the tree. Usually no further splitting is necessary if the
gain is negative [32]. Further reading on information gain
can be found in [28].

4 EXPERIMENTAL DESIGN

This section consists of the various experimental methods
and tools set up in order to critically evaluate the conceptual
framework outlined for this research activity. This is a real
experimental testbed designed in the Microsoft Azure cloud
with resources distributed across different geolocations.

We designed and implemented a webservice platform
(http://mytwg.azurewebsites.net) that mimics a shopping ap-
plication like Amazon or eBay, designed to accept large
numbers of hits from simulated virtual users. In Azure we
provisioned six logically separate servers, running in three
distinct geographical regions (US East Coast, West Coast,
and Europe), and migrated the application to each of these
servers, to provide a high availability service with a failover
mechanism. For instance, if the main site being remotely
hosted in the East US data center is shut down for one
reason or another, a load-balancer can redirect traffic to one
of the six replicated servers. These six servers are networked
to communicate with each other with one server controlling
the entire domain of the virtual infrastructure.

We then programmed robot virtual users using the
JMeter server tool to distribute concurrent virtual users
which are driven by scripts under experimental control and
scheduled them to execute concurrently as clients of the
sales application. The users come in the form of Java threads
that are programmed to send requests to a server. We also
provisioned a generic load balancer in Azure that regulates
the network and user traffic that are directed to the appli-
cation server. In addition, the load balancer redirects the
workload to a new server if the target server is overloaded.

In addition to the virtual infrastructure network, the
web service platform is interfaced with Azure application
Insights [34] in order to monitor live server KPIs as the ex-
periment is being run. Instrumenting Google Analytics [35]
with the applications also allows the measure of metrics on
the remote procedure calls, user behaviour and navigation
patterns as they open sessions to the web platform. The
techniques of load balancing ensure that users requests are
uniformly distributed on the server without overburdening
a particular resource. These resources implemented within
the Azure cloud form the real testbed in order to measure
the key performance indicators characterizing the virtual
infrastructure network and the application server.

Below is a description of the steps taken when conduct-
ing the experiments on the virtual infrastructure network
and the application server of the web service platform.

4.1 The experiments
For the purpose of our data collection in building our pre-
dictive framework with the boosted decision tree algorithm,
we performed four main experiments in simulating different
user scenarios on the webservice platform. The results of
these experiments are shown in Fig. 1.

We aligned the streaming of the workload characteristics
of the virtual machines provisioned in Azure to be homo-
geneous in terms of CPU, RAM, and adopt the approach
in [13], [36]. A homogenous workload influx assumed here
can also be applied to heterogenous VMs and cloud re-
sources. In a co-located environment such as Azure, mul-
tiple VMs do run in parallel and in cases of high resource
demands, workload is evenly distributed among multiple
virtual machines [13].

In experiment One, the server was immediately loaded
with a high number, N , of virtual users from the start of the
experiment. The ramp-up period was set to zero, in which
case an idle time was set for the server to prepare and pro-
cess the load influx. The experiment was run for 180 minutes
before decreasing the load to zero. For this experiment we
employed the standard JMeter thread sampler for the load
distribution onto the server.

In experiment Two, the objective was to simulate a real
user behavior by employing the concepts of pacing and
think time. In a real world web platform, users do not
usually execute their actions on browsing an application
all at once but there is usually some delay in the series of
activities referred to as the user “think time”. To simulate
the behavior of the virtual users in a realistic manner,
the stepping thread group in JMeter was employed. The
parameter settings for this experiment can be described as
follows: A maximum constant number, N , of virtual users
was set on the thread group with a delay of 65 seconds
before starting the threads on the application server. After
the 65 seconds the experiment began by adding a constant
number of threads every 20 seconds with first a ramp-
period of 5 seconds. After reaching the maximum load of N
virtual users, then the server was programmed to delay the
execution of the load for five seconds (the server was kept
idle for this period of time). The application then allowed
the virtual users to browse the platform for 60 minutes and
then it started decreasing the load with 10 virtual users
every second.

In Experiment Three, instead of defining a constant
maximum load influx, the uniform random timer in JMeter
was used so that a random number of virtual users could
be added on the application server. This experiment was
intended to depict a real-world scenario in which one does
not know the rate of user load influx on the application
server. It was also intended to show how a server responds
to highly randomized user activities.

Experiment Four combined both a constant load influx
for a period of time and then the load was decreased to
a minimum value and then a random number of load
influx was added again. Thus we increased the load and
decreased the maximum load randomly to near zero and
then increased the load for a constant load before bringing
the experiment to an end. The main goal with this experi-
ment is to show a mixture of random and a predetermined
user behavior – for instance, a server may be designated to
process a constant workload but for one reason or another
some additional load can be redirected to this server in
a random manner. For this experiment, we employed the
ultimate thread group (see [37] for more on JMeter ultimate
thread group) from JMeter in distributing the load across
the server.



IEEE TRANSACTIONS ON SERVICES COMPUTING 7

(a) The sampled average response times of the application server under
normal workload (vU < 1000) fluctuation at different sites.

0 20 40 60 80
Sample Point

0

5

10

15

20

25

30

35

40

C
P

U
 U

ti
li

z
a

ti
o

n
 (

%
)

(b) The sampled % CPU utilization under normal workload (vU < 1000)
fluctuation.

Fig. 2. Experimental results of the average response times
and the % CPU utilization of the application server and
the virtual infrastructure network under normal load (vU <
1000) influx.

These four main experiments were conducted repeatedly
for four weeks in generating and measuring the average
values of the key performance indicators characterizing the
application server and the virtual infrastructure network.
In addition to the response times from these experiments,
the remaining server KPIs measured include the percentage
of CPU utilization, latency, bandwidth fluctuation, server
hits per second, and throughput (requests per second) for
building the predictive models.

These KPIs are of fundamental importance in cloud data
centres management especially in designing SLAs, billing,
and load admission control. The work presented in [3]
explains in detailed how these KPIs are relevant in selecting
a suitable cloud service provider by a consumer.

Fig. 2a shows the aggregate results of the average re-
sponse times presented as box plots on the main experi-
ments conducted for the data collection. As shown in Fig. 2a
sampling on the TVs site has the lowest mean and median

response time indicated by the red line on the box plots.
The shop site indicates high response time with additional
high number of outliers (shown in red plus) shown as a
composite plot in Fig. 2. The rest of the sites do indicate
similar mean response times as shown in the remaining
six sampling sites. The mean response times from all the
sampling sites indicate an overall predictable average re-
sponse except for the few outliers highlighting some poten-
tial volatilities under a normal workload characteristic. We
defer the discussion on the high number of outliers sampled
at the shop site and some of the sampling sites until the case
study in section 7.1.

Fig. 2b shows the average % CPU utilization that is
quite predictable with the mean and maximum utilization
of 5.01% and 35.01% respectively. These percentage utiliza-
tions correspond to a normal workload influx simulated
at a slightly 1000 virtual users. The maximum utilization
of 35.01% is a little above the normal CPU characteriza-
tion (20%) under normal data centre workload as reported
in [36], [38]. The volatilities shown in the response time
(indicated in the outliers) plots are in line with the %
CPU utilization and we present a detailed case study on
the root cause of the high degradation of the application
performance (see section 7.1 on case study).

4.2 Data collection procedure

We rolled out live the web application designed for this ex-
periment on the Microsoft Azure cloud hosting environment
for virtual users (vU) to interact with the dynamic contents
of the application. Clients are required to generate events
through the web pages (e.g. by browsing and clicking on a
product image or a button) to create an HTTP request object.
Simulating client-server activities with a large number of
real users simultaneously interacting with the application
poses a huge challenge since it is difficult to attract large
number of real users on the website at a defined space of
time.

With the JMeter application, a Java API seen as an ideal
client-server emulator with the capability of generating 100s
to 1000s of HTTP user requests per server (e.g. for a system
with hardware requirements of 8 GB, 4 vCPU Cores, JMeter
can generate as many as 1000 virtual users on a particular
server) something that would be unimaginable to simulate
with real users at a defined time period. On JMeter, we
simulated the number of virtual users (vU) with Java thread
samplers implemented in JMeter that allow concurrent users
to browse the web application according to the four exper-
iments described in section 4.1. The JMeter samplers send
the HTTP requests to the web page or server and the ramp-
up period determines the frequency with which each virtual
user (vU) accesses a particular page of the application (e.g.
10 vU configured on a ramp-up time of 10 seconds means
that JMeter has 10 seconds to get all 10 vU threads up and
running. Each thread has access to the server 1 second (10
vU/10) after the previous thread executed its requests) [37].

In order to guarantee that we obtain accurate measure-
ments of the metrics we are investigating, we subjected the
web application to a prior functional testing regime. The
objective here is to have a test plan that performs assertion
tests on the functional blocks of the application. There are



IEEE TRANSACTIONS ON SERVICES COMPUTING 8

several assertion tests that can be performed on a web
application to ascertain its functional correctness some of
which include the HTML, response, MD5Hex, XML, and du-
ration assertions. Having verified the correct functionality of
the application we then deployed it live onto the different
servers geolocated across the East US Microsoft Azure cloud
data centres with our client emulator (JMeter API) sited at
the Microsoft European data centre in Ireland.

The main task then is to incrementally load all our ap-
plication servers concurrently with 1000s of HTTP requests
and then measure the load-capacity and server performance
metrics. Setting up our virtual infrastructure network and
the web application with these server configurations param-
eters allows us to monitor and collect the data needed for
building our predictive models the linear boosted decision
tree regression algorithm.

For instance, based on our simulated data, we want to
address such research questions as:

1) For a given number of users, can we forecast in advance
if the to-be-provisioned bandwidth would be adequate for
the set of servers in the virtual infrastructure network?

2) For a given application, would the response time, latency
or throughput from the servers be adequate or not?

3) For some of the metrics described in section 3.3, we
selected suitable features to build the predictive models
based on the simulated data. For instance, given a certain
number of virtual users (vU), how much variation of
the response time do we expect for a mission critical
application (e.g. a flight radar tracking software.) like the
one built for this experiment?

These are some of the questions we desire to concretely
answer and discuss through the experiments described in
the previous sections. The next section presents the critical
analyses and the evaluation of the machine learning model
built with the boosted decision tree algorithm.

5 CRITICAL ANALYSIS AND EVALUATION

From the experiments described in sections 4.1 and 4.2, we
sampled data on the key performance indicators charac-
terizing the web service application server and the virtual
infrastructure network, including the server hits per sec-
ond, latencies/response time, throughput, CPU utilization,
and bandwidth consumption. Each dataset was saved as a
CSV file that would serve as the input for performing the
machine learning experiment.

In Azure machine learning [39], the basic program unit
for performing an experiment on a category of dataset is
known as a module. Each module is bounded by both input
and output ports that enable the flow of information from
one module to the next during processing.

The fundamental model features selected from the
dataset consist of the number of virtual users (simulated
here as the JMeter thread groups), the average response
time (which has a direct linear correlation with the laten-
cies), CPU utilization, average throughput, bandwidth, and
memory consumption. By training the boosted decision tree
regression model using the Azure machine learning studio,
the goal here is to be able to produce predictive analyses on
these features (server and VIN KPIs).

For instance, the question a cloud consumer may want
to ask is whether the allocated memory or any of the KPIs
characterizing the server application would be enough for
the deployment of a desired application. Thus the results of
predictions from these models can be used as a baseline in
proactively determining how a new application or resource
will perform when deployed on the cloud.

We applied the data cleaning module, available in the
experimental environment (the Azure machine learning ex-
periment canvas), after uploading the sampled data in order
to clean columns and rows with missing and redundant
dataset. We also applied data manipulation queries to trans-
form and clean the raw data into a suitable format that
would increase prediction accuracy.

Fig. 3 illustrates the machine learning experiments con-
ducted in Azure to train the models with the boosted
decision tree regression algorithm. Fig. 3a shows the ini-
tial settings and all the modules selected for the complete
machine learning experiments for training the dataset. The
validation experiment is shown in Fig. 3b where the results
of the entire experiment are converted into a webservice
input platform for external users to consume.

We designed the boosted decision tree regression exper-
iment on a single model parameter for the training mode
with a fixed learning rate of 1.0. We then experimented
with 20-maximum leaves on each tree and a default value
of 10 samples per node leading to a total construction of
100 trees per leaf on each run of the experiment. We did not
use a random seed number and the webservice parameters
were configured to average on the final hypothesis on the
evaluated model. Fig. 4 shows the 1st and 7th iterations of
the sub-hypotheses in filling the hypothesis space. The 100th

iteration of the decision trees indicates the final hypothesis
constructed for the hypothesis spaces of 100 trees Fig. 5. The
iteration trees depicted in these figures are sub-hypotheses
of the hypothesis space illustrated in equation (1). As de-
scribed in section 3.2, for example, the 9th iteration tree
shown in Fig. 5a represents the new function hm(xj) that
is added to the growing tree depicted by equation (6) at
j = 9 .

Further, as explained in section 3.2, for the design of the
boosted decision tree model we set out a finite hypothesis
space (M = 100) that averages on the final hypothesis space
as indicated in equations (1) and (2). Our parameter λ is
0.001 for the L2 regulation with a maximum learning rate of
1.0. Both training and validation dataset predict quite well
after a learning rate of 0.2 and there is not much variation
in the performance of the model as we further increase the
learning rate with the same λ parameter tuning. Tuning the
hyperparameters of the model from equations (7) and (11)
gives the final results of the model with the boosted decision
tree algorithm in these figures. Fig. 4 and Fig. 5 show the
iterative steps of the different trees generated within the
functional hypothesis defined in equation (2).

6 MODEL EVALUATION AND INTERPRETATION

To evaluate the performance of the models built with the
boosted decision tree algorithms, we measured the mean
absolute error (MAE), root mean squared error (RMSE),
relative absolute error (RAE), and relative squared error



IEEE TRANSACTIONS ON SERVICES COMPUTING 9

(a) The training experiments with the BDT algorithms. (b) Flow diagram of the testing and validation exper-
iments to deploy the model as a web service.

Fig. 3. These flow diagrams illustrate the machine learning experiments conducted with the boosted decision tree algorithm.

(a) 1st iteration tree.

(b) 7th iteration tree.

Fig. 4. The figures illustrate the constructed trees at the 1st

and 7th stages of the iteration with the BDT algorithm.

(RSE), the standard statistical metrics suitable for describing
the performance of a model for regression [39].

For the mean absolute error, we computed the difference
between the actual and the predicted observations and

(a) 9th iteration tree.

(b) 100th iteration tree.

Fig. 5. The figures illustrate the constructed trees at the 9th

and 100th stages of the iteration with the BDT algorithm.

defined this as an error on the performance of the model.
We also computed the RMSE as the error arising by taking
the average square roots of the predicted errors of the model
fitted to the dataset. Another metric of statistical significance
is the mean of the absolute errors computed in relation to
the absolute difference between the measured and actual



IEEE TRANSACTIONS ON SERVICES COMPUTING 10

value referred here as the relative absolute error (RAE) and
the square of this yielded an additional metric referred to as
the relative squared error.

The results of these metrics selected for evaluating the
performance of the model are presented in table I. Averag-
ing the MAE values at their respective learning rates gives
a result of 177.29 which is less than 180 for a model to
considered a good one [11]. From the results in table I, we
recorded the best R-Square value at a learning rate of 0.2
and as we further increased the learning rate, there was
not much variation in the coefficient of determination (CoD)
values. The observable trend has been that all values at the
differently tweaked learning rates are near to unity, a strong
indication of how well this algorithm fits to the model.

TABLE I. Statistics indicating the performance of the
boosted decision tree algorithm.

Learning Rate

Model metric 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Mean Absolute Error 145.35 154.34 167.12 185.70 185.70 200.60 202.23
Root Mean Squared Error 496.91 474.08 476.15 523.89 523.894452 545.69 542.14
Relative Absolute Error 0.020917 0.02221 0.024049 0.026723 0.026723 0.028866 0.029102
Relative Squared Error 0.000907 0.000825 0.000833 0.001008 0.001008 0.001094 0.001079
Coefficient of Determination 0.999093 0.999175 0.999167 0.998992 0.998992 0.998906 0.998921

Fig. 6a shows a log scale plot of the measured dataset on
the percentage CPU consumption which indicates the linear
Gaussian distribution characteristics of the sampled dataset.
The figure displays the histograms, plots of the cumulative,
and the probability density functions (CDF and PDF) on a
log scale of the first 10 bins of the sampled dataset. The
plots of the predicted values with the boosted decision tree
algorithm on the percentage CPU utilization and network
latencies are discussed in section 6.1.

These results in table I clearly indicate that the chosen
algorithm completely replicates the training and testing
dataset in the machine learning experiments. Similar results
(e.g. dataset on bandwidth, throughput, and server hits etc.)
are achieved with the application of the algorithm to the
other server KPIs mentioned in this paper but for the sake
of brevity, their plots are not included. We can generalize our
results and state that the boosted decision tree regression is a
suitable algorithm for predicting cloud server KPIs on cloud
application servers and the virtual infrastructure networks.

6.1 Benchmarking and comparison with the State-of-
the-art
We benchmark and compare the application of the boosted
decision tree (BDT) to two standard state-of-the-art mod-
els [9], [10], [40] : the ordinary least square linear regres-
sion (OLS) and the non-linear stochastic gradient (SGD)
algorithms in making predictions on the cloud server KPIs
measured in section 4. For this purpose, we followed the
approach in [10] with the L2 regularization.

In order to compare our results to these standard ML
techniques we ran extensive machine learning experiments
with the non-linear stochastic gradient descent from the
range 0 to 1 learning rate. We achieved 0.33 as the best
coefficient of determination on both training and test results
at a learning rate of 0.7 and any further increase of the
learning rate results in a continuous decay of the predicted
signal. Based on the mean absolute error and the coefficient
of determination, the SGD performs poorly compared to

(a) Percentage CPU utilization (Histograms, CDF and PDF)

BDT OLS Reactive (CA+LR) SGD

Algorithm

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F
in

a
l 
P

re
d

ic
ti

o
n

 E
rr

o
r

0.67

0.2

0.02
0.009

(b) Comparison of the four different algorithms in terms of performance
degradation (the smaller the value the better the performance).

Fig. 6. These figures illustrate the CDF and PDF of the %
CPU utilization as well as a comparison plot fo the four
algorithms.

the OLS and the BDT training algorithm. In addition to
the metrics shown in table II, the SGD requires a longer
training time versus accuracy compared to the OLS and BDT
in attaining its best training and testing results.

Running the experiments with the ordinary least squares
method improves the model accuracy of prediction with a
0.9989 coefficient of determination at the final learning rate
of 1 as shown in table II. Comparing the standard OLS
and the BDT, both algorithms achieve convergence on the
models at a very low learning rate with little variations in
the model performance as we further increase the learning
rates. As shown in table II the boosted decision tree achieves
its best coefficient of determination 0.9991 at a learning rate



IEEE TRANSACTIONS ON SERVICES COMPUTING 11

0 10 20 30 40 50 60
Sample Period (Minutes)

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4
lo

g
(L

a
te

n
c
y
)

(a) Scatter plots of the measured average latency on a log scale.

0 10 20 30 40 50 60 70

Sample Period (in Minutes)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

A
v

e
ra

g
e

 L
a

te
n

c
y

 i
n

 M
ic

ro
s

e
c

o
n

d
s Measured Latency

Predicted Latency

(b) The average latency predicted output.

Fig. 7. These figures illustrate the measured and predicted average latency. The actual predictions are shown in 7b with a
prediction accuracy of 98% in the training phase.

of 0.3 while the ordinary least squares achieves its best
coefficient of determination at a learning rate of 1.0 to closely
match the results of the Boosted decision tree.

In addition to comparing the performance of the boosted
decision tree regression algorithm to the two standard state-
of-the-art machine learning algorithms (SGD and OLS) we
further compare this approach with the reactive framework
presented in [13].

Ardagna et al. [13] proposed the VM capacity allocation
(CA) and load redirection (LR) reactive predictive models
that dynamically adapt the resources of cloud infrastructure
with the goal of optimizing the mean response times of
clients’ requests without violating consumer SLA parame-
ters. In this two-phase framework, the CA model charac-
terizes the complete number and properties of VMs that
are required to handle the arrival of clients request per
second without violating the average response time in the
SLA document. The LR on the other hand determines at
every time the total rate of executions of the web service re-
quests at a particular site and attempts to redirect workload
from overburdened VMs which seem to violate the mean
response time.

Experimental results indicate that a maximum percent-
age error on the average response time estimation is less
than 20%. Specifically, their approach is able to provide an
accuracy prediction quality that in terms of the mean square
error is always less than 10%. The VM cost optimization
technique integrated in this framework is one of the main
advantages of the proposed resource management frame-
work.

The machine learning approach focused in this work
with the boosted decision tree regression algorithm out-
performs the adaptive method presented by Ardagna et
al. [13] in terms of the mean percentage-errors of less than
5% on both the training and testing examples. The models
trained and tested achieved a predictive accuracy of 98%
and equally outperforms the well-known state-of-the-art
ordinary least squares (OLS) and the stochastic gradient
descent algorithms (SGD).

The LR dual reactive scheme addresses an aggregated

way of balancing workload in which detailed information
about the mean response time of the incoming load is
determined in order to project the optimal workload. The
main drawback with this approach is that for highly dis-
tributed cloud systems, the response time predicted comes
with a noticeable network communication overhead. This
also leads to a noisier prediction model on the response
time with the VM capacity allocation. The mean percentage
error of our approach varies between 2% to 5% even at
a very low learning rate using the boosted decision tree
regression technique as against the total of 10% prediction
quality mean square error achieved in the work from [13].

TABLE II. This table compares the metrics of the three
regression algorithms.

Model Algorithm MAE RMSE RAE RSE CoD L2

Stochastic Gradient Descent 6057.18 16336.04 0.871653 0.980027 0.332885 0.001
Boosted Decision Tree 177.29 569.70 0.032033 0.001192 0.998808 0.001
Ordinary Least Squares 92.09 172.29 0.013252 0.000109 0.999891 0.001

Fig. 6b shows a comparison of the different algorithms
in terms of their performance degradation. The BDT with
a final prediction error of 0.009 outperforms all the others
whereas the non-linear SGD with a 0.67 final prediction
error has the worst performance.

Fig. 7a shows the sampled average latencies plotted
on a log scale. A composite plot of the sampled and pre-
dicted output on the average response latencies is shown in
Fig. 7b. The detected peaks show a simulated effects of load
spikes that indicate a potential violation of the QoS with
the response latency that is desired to be lower than 100
milliseconds. We present a detailed review of the cause of
the high latencies in section 7.

7 POTENTIAL APPLICATIONS AND THREATS TO
VALIDITY

We seek to provide a framework that helps consumers to
directly project resource performances especially for con-
sumers who want to have a priori knowledge about how
their applications are likely to perform when migrated into



IEEE TRANSACTIONS ON SERVICES COMPUTING 12

the cloud platform. For instance, the latency and throughput
metrics measurable at the consumer side can help determine
the best storage services offered by the provider. This further
supports not only the projection of performance characteris-
tics of applications to be deployed in the cloud environment,
but also a prediction framework that can be used to conduct
a comprehensive analysis on the quality-of-services (QoS)
that must be guaranteed within the cloud environment.

The work presented in [41] details the importance
of these metrics in comparing different cloud service
providers. Our predictive model analysis can help in con-
ducting these comparisons in a more comprehensive way.

Modeling and being able to predict the value of the
response time, bandwidth or latency is quintessential in
leveraging the control of workload fluctuations, manag-
ing resource contention and making optimal decisions. For
instance, having a well predicted information about the
performance characteristics of an application can help in
deciding how to manage the arrival rates of workload in
data centres, especially during peak periods.

Adagna et al. [13] in a related work underscored the
relevance of these metrics especially in a realistic estimate
of the QoS model parameters (which include bandwidth
variations, response time and network latencies).

7.1 Case Study
As shown in Fig. 8, these graphs contain a composite box
plots of the sampled response time and the percentage CPU
utilization as against a high influx of virtual users opening
sessions with the application. With respect to the three train-
ing algorithms, the response looks predictable with both the
BDT and OLS. As a result of the poor performance of the
SGD algorithm, it is unable to detect some of the volatilities
that have been captured by the BDT and the OLS (see table
II). As shown in the plots, the first half of the experiments
indicate a stable response time for the resource but tend to
be volatile in the last half of the experiment. These spikes
averaging more than 10 seconds could suggest the limiting
factor of the capacity of the provisioned A1-series VM. This
could also be due to a virtualization contention or high
demands placed on the resources at the backend. The server
degrades quickly as we further increase the number of users
beyond 1000 even though the CPU utilization dynamically
scales up to more than 200% as shown in Fig. 8b. Contrary
to normal desktops or servers, Azure virtual machines are
designed to be highly elastic and scalable that allow them
to dynamical adjust the CPU to as high as 600% [34]. This
indicates why as we simulated extremely high workloads,
the A-series virtual machine adjusted the CPU utilization
to more than 200% which is in tandem with the spikes
experienced as shown in the response time box plots in
Fig. 8a.

In order to determine the real cause of the abnormal de-
lay in latencies we contacted Microsoft Azure technical team
and who reviewed the platform from the server side and
found that there was no additional latency incurred from
the application infrastructure. This led to the conclusion
that the latency delays could be arising from the application
code. Together with the Azure technical team we scanned
and analyzed 620 slow requests and identified that mod-
ule(s) consuming most of the time are the FastCgiModules

(94.07%). Requests are spending most of the time in the
CGI module which means that the underlying application
code (PHP, NodeJS etc.) is taking a longer time. We resolved
this issue by debugging the application code which helped
eliminate the additional latency delays that we incurred.

Our goal with this case study is not only to demonstrate
the efficacy of the BDT and the selected benchmarking
training algorithms but to also draw meaningful conclusions
that could possibly help in a decision-making process. We
observe a linear increase in the response time, and the CPU
utilization corresponding to an increase in virtual users.
A suitable recommendation here could be a review of the
architectural properties of the applications such as scripts
for server instantiation or logins to the database that could
result in requests queuing.

Home Cart Products Clothings Laptops Appliances TVs Shop

http://mytwg.azurewebsites.net/

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

R
e
s
p

o
n

s
e
 T

im
e
 i
n

 m
il
li
s
e
c
o

n
d

s

104

(a) The sampled average response times of the application server
under extreme workload (vU > 1000 ) fluctuation at different sites.

(b) The sampled and predicted % CPU utilization under extreme
workload (vU > 1000 ) fluctuation.

Fig. 8. The average response times and the % CPU utiliza-
tion of the application server and the virtual infrastructure
network under extremely high workload influx.

The discussions by far lead us to conclude on the an-
swers to the questions in section 4.2 that with a suitable
algorithm (e.g. the BDT) it is possible to project in advance
the performance metrics (e.g. response time, CPU, latency
etc. ) of an application server before an application can



IEEE TRANSACTIONS ON SERVICES COMPUTING 13

be deployed onto the cloud environment. This analysis is
helpful in comparing different cloud service providers for
the type of resources they offer. We have also been able to
demonstrate that our application performed quite optimal
only under normal workload (vU < 1000). Under extremely
high workload (vU > 1000) influx, resources degraded
quickly where the requests were queuing at the FastCGI
module. We had to debug the application in order to im-
prove the performance metrics of the application server.

7.2 Threats to validity

According to the Gauss-Markov theorem, the least means
square regression presents the best linear estimator with un-
biased linear coefficients [29]. The potential threat to validity
in the application of this regression algorithm is that in the
presence of outliers and noise, the minimization of the sum
of squared errors can have negative performance effects on
the algorithm. This constitutes a potential threat to internal
validity especially where measurements are performed in a
highly dynamic and noisy setup.

The performance of the boosted decision tree regres-
sion algorithm is characterized with very high confidence
intervals indicating how suitable this algorithm fits to the
dataset. The problem of data peeking is a general problem
that can surface when applying this algorithm to a training
set example. Peeking is said to occur when data intended for
the testing phase of the model building is somehow leaked
to the algorithm before its performance is validated [28],
[29]. We mitigated this problem by having a totally different
set of training and testing data.

In all types of mathematical and machine learning prob-
lems the phenomenon of model overfitting can occur if one
is not careful especially by placing emphasis on meaning-
less and irrelevant data. We highlight this as a threat to
external validity. The problem of overfitting can lead to
wrong predictions (e.g. if emphasis is placed on outliers)
and the way this was handled with the boosted decision tree
algorithm was through pruning of the leaves grown from
the hypothesis generated as subfunctions for the stumps of
the tree.

8 CONCLUSIONS AND RECOMMENDATIONS

We proposed a real cloud testbed for proactive cloud re-
source monitoring, adaptation, and information gathering
on cloud virtual infrastructure network and application
server KPIs. To this end we designed a web service platform
and remotely hosted this at different geolocations. We aimed
to simulate real user behavior by programming robot users
that open sessions and consume our cloud resources in Mi-
crosoft Azure. We employed JMeter as our client-server em-
ulator for distributing a huge amount of workload streamed
from different geolocations onto our application server and
the virtual infrastructure network. We further interfaced our
webservice platform with Google Analytics and the Azure
application Insights for live server metrics monitoring and
sampling. The sampled server KPIs then served as inputs
for building our predictive analytic framework.

Our framework applied the BDT machine learning algo-
rithm in training and evaluating models on the KPIs. The

application of the boosted decision tree regression method
yielded predictions of the cloud server KPIs with confidence
intervals of 98.57% which completely replicates the input
signal. The high confidence intervals from the training and
testing evaluations are strong indications of how well the
model fits to the dataset.

A comparison with some state-of-the-art reactive solu-
tions indicate that the ML approach with the BDT algorithm
outperforms these techniques. A further comparison with
the well known standard OLS and the non-linear SGD
shows that the BDT algorithm has the best performance
in terms of prediction accuracy. The framework is suitable
for conducting fundamental analyses on cloud application
servers before deploying resources to the cloud environ-
ment. We aim in future research activities to compare this
linear algorithm with other adaptive filtering techniques
(Kalman filters and state space models).

REFERENCES

[1] K. Fatema, V. C. Emeakaroha, P. D. Healy, J. P. Morrison, and T.
Lynn, ”A survey of Cloud monitoring tools: Taxonomy, capabili-
ties, and objectives,” in Journal of Parallel and Distributed Computing,
vol. 74, No. 10, Article No. 10, pp. 2918–2933, 2014

[2] P. Mell and T. Grance, ”The NIST definition of cloud computing
(draft),” NIST special publication, vol.10, pp. 800–845, Jan. 2011.

[3] A. Li, X. Yang, S. Kandula, and M. Zhang, ”Cloudcmp: comparing
public cloud providers,” in Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement, 72, pp. 1-14, 2010.

[4] C. Delimitrou and C. Kozyrakis, ”HCloud: resource-efficient pro-
visioning in shared cloud systems,” in Proceedings of the 21st Intl.
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), Atlanta GA, April 2016.

[5] E. Kalyvianaki, T. Charalambous, and S. Hand, ”Adaptive re-
source provisioning for virtualized servers using Kalman filters,”
in LACM Transactions on Autonomous and Adaptive Systems, ASSOC
COMPUTING MACHINERY, vol. 9, No. 2, Article No. 10, pp. 1–35,
2014.

[6] M. Colajanni, M. Pietri, S. Tosi, and M. Andreolini, “Adaptive,
scalable, and reliable monitoring of big data on clouds,” in Journal
of Parallel and Distributed Computing, vol.79–80, pp. 67–79, 2015.

[7] M. Colajanni, M. Pietri, S. Tosi, and M. Andreolini, “Real-Time
adaptive algorithm for resource monitoring,” in 9th International
Conference on Network and Service Management 2013 (CNSM 2013),
Zuerich, Switzerland , vol.8226, No. 1, pp. 67–74, Oct. 2013.

[8] Y. Liu, H. Zhang, L. Zeng, W. Wu, and C. Zhang, ”MLBench:
benchmarking machine learning services against human experts,”
in Proceedings of the VLDB Endowment, 11(10), 1220-1232, Rio de
Janeiro, Brazil 2018.

[9] D. Das, S. Avancha, D. Mudigere, K. Vaidyanathan, S. Sridharan,
D. D. Kalamkar, B. Kaul, and P. Dubey, ”Distributed deep learning
using synchronous stochastic gradient descent,” in CoRR, arXiv
preprint arXiv:1602.06709, Microsoft Academic, 2016.

[10] MLBench: ”Distributed machine learning benchmark,” 2019,
Available online: https://mlbench.readthedocs.io/en/latest/
index.html

[11] J. Gareth, W. Daniela, H. Trevor, and Robert Tibshirani, “An
Introduction to statistical learning : with applications in R,” New
York: Springer, 2013.

[12] T. Earl, Z. Mahmood, and R. Puttini, ”Cloud computing concepts,
technology, and architecture,” The Prentice Hall service technology
series from Thomas Earl. Prentice Hall., UPPER SADDLE RIVER, NJ,
BOSTON, INDIANAPOLIS, AND SAN FRANCISCO, PP. 359-415,
2014.

[13] D. Ardagna, S. Casolari, M. Colajanni, and B. Panicucci, ”Dual
time-scale distributed capacity allocation and load redirect al-
gorithms for cloud systems,” in Journal of Parallel Distribution
Computing, 72, pp. 796-808, 2012.

[14] A. Sackl, P. Casas, R. Schatz, L. Janowski, and R. Irmer, “Quantify-
ing the impact of network bandwidth fluctuations and outages on
web QoE,” in IEEE, 2015 Seventh International Workshop on Quality
of Multimedia Experience (QoMEX), pp. 1–6, 2015.

https://mlbench.readthedocs.io/en/latest/index.html
https://mlbench.readthedocs.io/en/latest/index.html


IEEE TRANSACTIONS ON SERVICES COMPUTING 14

[15] D. Menascé, V. Almeida, and L.Dowdy, ”Capacity planning and
performance modeling: from mainframes to client-server sys-
tems,” Prentice-Hall, Inc. NJ, USA, 1994.

[16] J. Rolia, and VVetland, ”Correlating resource demand information
with ARM data for application services,” in Proceedings of the 1st
international workshop on Software and performance. ACM, Santa Fe,
New Mexico, USA, pp 219–230, 1998.

[17] Q. Zhang, L. Cherkasova, and E. Smirni, ”A regression-based
analytic model for dynamic resource provisioning of multi-tier ap-
plications,” in Proceedings of the 4th ICAC Conference, Jacksonville,
Florida, USA, pp 27–27

[18] J. Kumar and A. K. Singh, “Workload prediction in cloud using
artificial neural network and adaptive differential evolution,” in
Future Generation Computer Systems, Elsevier B.V, Vol. 81, pp. 41–
52, 2018.

[19] T. Ban, R. Zhang, S. Pang, A. Sarrafzadeh, and D. Inoue, “Ref-
erential kNN regression for financial time series forecasting,”
Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), vol.8226,
No. 1, pp. 601–608, Oct. 2013.

[20] A. Eddahech, S. Chtourou, and M. Chtourou, “Hierarchical neural
networks based prediction and control of dynamic reconfiguration
for multilevel embedded systems,” in Journal of Systems Architec-
ture, Elsevier B.V., Vol. 59, No. 1, pp. 48–59, 2013.

[21] S. Islam, J. Keung, K. Lee, and A. Liu, “Empirical prediction
models for adaptive resource provisioning in the cloud,” in Future
Generation Computer Systems, Elsevier B.V., Vol. 28, No. 1, pp. 155–
162, 2012.

[22] Z. Chen, Y. Zhu, Y. Di, S. Feng, and J. Geng, “A high-accuracy
self-adaptive resource demands predicting method in IAAS cloud
environment,” in Neural Network World, Czech Technical University
in Prague, Faculty of Transportation Sciences, vol. 25, No.5 pp. 519–
539, 2015.

[23] T. Fan-Hsun, W. Xiaofei, C. Li-Der, C. Han-Chieh, and V.C. M.
Leung, “Dynamic resource prediction and allocation for cloud
data centre using the multiobjective genetic algorithm,” in IEEE
Systems Journal, Vol. 12, No. 2, pp. 1688–1699, 2018.

[24] J. J. Prevost, K. Nagothu, B. Kelley, and M. Jamshidi, “Prediction
of cloud data centre networks loads using stochastic and neural
models,” in IEEE 2011 6th International Conference on System of
Systems Engineering, pp. 276–281, 2011.

[25] R. Hu, J. Jiang, G. Liu, and L. Wang, “Efficient resources provi-
sioning based on load forecasting in cloud,” in The Scientific World
Journal, ScientificWorld Ltd., Vol. 2014, No. 2, pp. 3212–3231, 2014.

[26] A. Pahlevan, X. Qu, M. Zapater, and D. Atienza, ”Integrating
heuristic and machine-learning methods for efficient virtual ma-
chine allocation in data centers,” in IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 37, pp. 1667-
1680, August 2018.

[27] O. Biran, A. Corradi, M. Fanelli, L. Foschini, A. Nus, D. Raz, and
E. Silvera, ”A stable network-aware VM placement for cloud sys-
tems,” in Proceedings of IEEE/ACM Intenational Symposium Cluster
Cloud Grid Computing (CCGrid), Ottawa, ON, Canada, pp. 498–506,
2012.

[28] J. H. Friedman, “Greedy function approximation: A gradient
boosting machine,” in The Annals of Statistics, Institute of Mathe-
matical Statistics, vol.29, No. 5, pp. 1189–1232, Oct. 2001.

[29] S. J. Russell, ”Artificial intelligence : a modern approach,” Prentice
Hall series in artificial intelligence, Prentice Hall, 2nd ed, International
ed., Upper Saddle River, N.J., isbn. 0130803022

[30] T. Dietterich, A. Ashenfelter, and Y. Bulatov, ”Training conditional
random fields via gradient tree boosting,” in ACM International
Conference Proceeding Series; Vol. 69: Proceedings of the twenty-first
international conference on Machine learning; 04-08 July 2004 vol. 7,
December 2013.

[31] M. Schmid and T. Hothorn, ”Flexible boosting of accelerated
failure time models,” in BMC Bioinformatics, vol. 9, No. 1, pp. 269–
269, 2008.

[32] T. Chen and C. Guestrin, ”XGBoost: A scalable tree boosting
system,” in Proceedings of the ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, Association for Computing
Machinery, isbn 9781450342322, vol. 13-17, 2016.

[33] A. Enatekin and A. Eknoll, ”Gradient boosting machines, a tu-
torial,” in Frontiers in Neurorobotics, Frontiers Media S.A, vol. 7,
December 2013.

[34] D. Stephens and B. Wren, ”Azure monitor application in-
sights documentation,” Azure, Microsoft Research Academic,

2017, Available on: ”https://docs.microsoft.com/en-us/azure/
azure-monitorl/” Accessed: 2020-02-02.

[35] Google Analytics: ”All web site data (audience, behaviour, events
and conversions),” 2017, Available on: ”https://analytics.google.
com/analytics//” Accessed: 2020-02-02.

[36] L. Barroso and U. Hoelzle, ”The Datacenter as a computer: An
introduction to the design of Warehouse-Scale machines,” MC
Publishers, 2009.

[37] Apache JMeter - User’s manual, The Apache Software Foundation,
2017.

[38] C. Delimitrou and C. Kozyrakis, ”Quality-of-Service-Aware
scheduling in heterogeneous Datacenters with Paragon,” in IEEE
Micro, Special Issue on Top Picks from Architecture Conferences, vol.
34, No. 3, pp. 35–45, May 2014.

[39] Microsoft Azure: ”Machine learning studio documentation,”
Azure, Microsoft Research Academic, 2020.

[40] Y. Liu, H. Zhang, L. Zeng, W. Wu, and C. Zhang, ”MLBench: How
good are machine learning clouds for binary classification tasks
on structured data?,” in PVLDB, arXiv preprint arXiv:1707.09562,
Microsoft Academic 11(10), 1220-1232, 2017.

[41] A. Li, X. Yang, S. Kandula, and M. Zhang, ”Cloudcmp: comparing
public cloud providers,” in Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement, 72, pp. 1-14, 2010.

[42] C. Hankendi and A. K. Coskun, ”Scale and cap: Scaling-Aware
resource management for consolidated multi-threaded applica-
tions,” in ACM Transaction on Design Automation of Electronic
Systems, vol. 22, No. 2, pp. 35–45, March 2017.

Dr Thomas Weripuo Gyeera received a BSc
degree in computer science and communica-
tions engineering from the University of Duisburg
in 2005 and a Master of Science degree in com-
puter and network engineering with distinction
from the Sheffield Hallam University, UK in 2014.
He received a PhD degree in computer science
from the University of Sheffield UK in 2019. He
has been working on using machine learning
and adaptive algorithms for proactive cloud com-
puting resources monitoring and adaptation. He

has worked in the industry for Ford Motor company and Thales Group
as an application engineer from 2006 before going for a postgraduate
study. His major interest and work are in AI, Deep and Machine learning,
cloud computing, application development, Network engineering and
Big Data.

Dr Anthony J.H. Simons is a Senior Lecturer
and Director of Teaching Quality in the De-
partment of Computer Science, University of
Sheffield, where he leads object-oriented re-
search in verification and testing, type theory
and language design, development methods and
precise notations. He is also the director of the
undergraduate computer science program at the
University of Sheffield.

Dr Mike Stannett is a Senior Lecturer, and a
member of the Verification and Testing Research
Group, in the Department of Computer Science
at Sheffield University. He has a wide range of
interests, including: the verification and testing
of unconventional and heterotic computing sys-
tems; autonomic cloud computing platforms; the
use of formal modelling techniques to generate
new understandings of physical systems; and
computational modelling of macroeconomic sys-
tems. He is a member of Computing in Europe

(CiE) and the European Association for Theoretical Computer Science
(EATCS), and has previously served as a member of the London Math-
ematical Society’s Computer Science Committee.

https://docs.microsoft.com/en-us/azure/azure-monitorl/
https://docs.microsoft.com/en-us/azure/azure-monitorl/
 https://analytics.google.com/analytics//
 https://analytics.google.com/analytics//

	Introduction
	Structure of the Paper

	Related work
	Problem definition
	Conceptual framework
	The BDT algorithm
	How to Split the Leaves of the BDT

	Experimental design
	The experiments
	Data collection procedure

	Critical analysis and evaluation
	Model evaluation and interpretation
	Benchmarking and comparison with the State-of-the-art

	Potential Applications and threats to validity
	Case Study
	Threats to validity

	Conclusions and recommendations
	References
	Biographies
	Dr Thomas Weripuo Gyeera
	Dr Anthony J.H. Simons
	Dr Mike Stannett


