
LorenaABarba

12 Ways to Fool the Masses 
with Irreproducible Results
IEEE International Parallel and Distributed Processing Symposium



Instant classic!

https://www.davidhbailey.com/dhbpapers/twelve-ways.pdf 

https://www.davidhbailey.com/dhbpapers/twelve-ways.pdf


https://blogs.fau.de/hager/archives/5260 

https://blogs.fau.de/hager/archives/5260


https://www.hpcwire.com/2011/12/13/ten_ways_to_fool_the_masses_when_giving_performance_results_on_gpus/

1. Quote performance results only with 32-bit floating-point 
arithmetic, not 64-bit arithmetic.



1
Data (or code) available upon request



The American Economic Review, Vol. 76, No. 4 (Sep., 1986), pp. 587-603  







https://doi.org/gc8gkw 

…only 44% of requests led to receiving data and/or code 
from the original authors

https://doi.org/gc8gkw


https://doi.org/gdts9v 

…could recover data in just 26% (N=315) of cases

https://doi.org/gdts9v


https://sc19.supercomputing.org/



Community sentiment survey: 

…a majority said they now think differently about their research 
…35% said they used the appendices from papers



2

Report speedup, but do not report
base performance



Speedup
The most misused metric in the computing field

• The devil is in the denominator 

• George Hager’s stunt #1

Scalability! But at what COST?



Speedup
The most misused metric in the computing field

• Hoefler & Belli, SC’15: speedup is often 
meaningless 

while speedup can be used as a 
dimensionless metric for the scaling of a 
single algorithm on a single computer, it 
cannot be used to compare different 
algorithms or different computers.

https://doi.org/gfkzsg 

https://doi.org/gfkzsg


Speedup
The most misused metric in the computing field

• Machine learning “baselines” that are a naive 
method domain experts would never use 

• Fully transparent reporting: include every 
relevant detail, all factors that go into the 
denominator 

• results can be checked 

• experimental failings are revealed

https://doi.org/gfkzsg


3

Only publish (as in, make public) the
results of successful trials



Publication bias
Only positive results end up in the scholarly literature

• File-drawer problem 

• Affects work using null-hypothesis statistical testing 

• Computer science is not immune!



https://doi.org/gjbnx4 

https://doi.org/gjbnx4


4

Report that you used an external library
but don't document the version



https://doi.org/cztn 

https://doi.org/cztn


External libraries
A different version can lead to different results!

• David Bailey quotes analysis of collisions at LHC: 
change the math library and collisions were missed! 

• You could use containers, but why bother! 

• Command-line arguments?  
Lost in the shell history!



5

Take a simple problem and scale it to a 
large system, but don’t check for accuracy



Let’s showcase a new parallel framework…
Scale a simple demo to a large system!

• E.g., 2D PDE with classic scheme 

• Grid-refinement analysis: get observed order of convergence 

• Estimate grid resolution for a desired accuracy 

• IEEE 64-bit arithmetic? 



Scaling up applications has consequences
Accumulation of error!

• ICERM report, 2012: 

• Numerical round-off error and numerical 
differences are greatly magnified as 
computational simulations are scaled up to 
run on highly parallel systems.



6

See a change in floating-point test results:
relax the tolerance to make the test pass

Contributed by Mike Heroux



Golden master testing
With legacy code

• “Golden files” of reference output 

• Depends on strict numerical reproducibility 

• Stick to it! If tests fail: investigate. 

• He and Ding (2001): climate modeling 

• found that using double-double in two 
inner loops and using Kahan summation 
solved numerical issues 

https://doi.org/dqnn87 

https://doi.org/dqnn87


7

Observing non-deterministic measurements,

report a simple summary statistic



Non-deterministic data
Give variability information!

• Hoefler & Belli, SC’15: must-read!

https://doi.org/gfkzsg 

https://doi.org/gfkzsg


8

Describe the machine simply in terms of
number and model of processors, nodes,
and accelerators



Parallel performance benchmarks
Describe all details of the cluster architecture

• Georg Hager’s stunt #6 

• #of nodes, model: not enough 

• Network topology 

• File system, dedicated data node 

• I/O auxiliary system 

• Usage conditions: “quiet” machine?



9

Cite a technical out-of-your-control reason
for lackluster or non-deterministic results



Technical details you can use as an excuse
Many are misunderstood anyway!

• Georg Hager’s stunt #13 

• Compiler optimizations 

• Hardware features: prefetching, out-of-order exec 

• OS sytem noise 

• Don’t explain!



10

Cite a neural-network model’s speedup
compared to a traditional model 
but don’t report training time



Machine learning vs. traditional model
Only forward evaluation of the network matters!

• Authors report speed-ups (see Hager’s stunt #1) 

• Time required to train the network model? 

• Sometimes, training data generated using the 
traditional model in 100s of runs 

• Compounds a few tricks: poor reporting, weak 
baseline, limitations glossed over…



11

Put the code on GitHub the week before 
submitting the manuscript



Great going: you shared your code!
What are you missing?

• Developing in the open model 

• Use repo URL as evidence of code availability 

• Owners can delete their repo 

• Deposit in Zenodo or similar! 

• Bonus: submit your code to JOSS



12

Include lots of pretty pictures in your paper
(but not the scripts that generated them)



Pretty pictures
The ultimate tool for “evade and disguise” tactics

• David Bailey’s “12th way! 

• George Hager’s stunt #11 

• Question for the audience: 

• Have you ever found yourself digitizing a plot from 
a published paper?



Bonus slides!

Barba group Reproducibility 
Checklist
For computational science research, this is our standard



Checklist for reproducible research
Our standard

1. Code/application is developed using a version-control system (git) 
2. Code/application is developed in the open (Github) 
3. Code/application relies only on open-source dependencies 
4. Code repository contains detailed installation instructions and user-

facing documentation 
5. Computational environment is programmatically captured (Dockerfile 

and Docker image) 
6. Files to re-create the image of the computational environment are 

shared on a public repository 
7. Image of the environment is shared on a public registry (Dockerhub)



Checklist for reproducible research
Our standard

8. (optional) If the machine disallows Docker, consider using the 
Singularity container technology (it understands Docker images) 

9. (bonus) Use a public cloud service to submit and run the simulations  
10. Simulation inputs and parameters are documented in text files 

shared on a public repository 
11. Code repository is released and uploaded to Zenodo (to get a DOI) 
12. Tagged release that generated the results is cited in the manuscript 
13. Manuscript is written using a version-control system 
14. (bonus) Manuscript is written in the open (Github, Authorea)



Checklist for reproducible research
Our standard

15. Manuscript reports the hardware and machines used for the 
computational simulations 

16.Figures included in the manuscript can be re-generated; plotting 
scripts and necessary data are shared on a repository 

17. Figures of the manuscript are deposited on Figshare (to get a DOI and 
retain copyright)  

18. Manuscript preprint is uploaded to arXiv 
19. (bonus) comments from the reviewers and replies to them handled in 

the open (Github Issues)



LorenaABarba

12 Ways to Fool the Masses 
with Irreproducible Results
IEEE International Parallel and Distributed Processing Symposium


