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A quantum computer is a computer that exploits
quantum mechanical properties, such as superposition
and entanglement to perform a computation. The
difference between bits and qubits is that a qubit can
be in a state other than 0 or 1.

Results: the classical computing model is restricted to only electronic circuits. However,
with quantum computing there exist a diverse range of architectures:

. standard model is based on circuit models (similar to classical computers)

. alternative is measurement-based model, a computation is achieved via a

Quantum Computational Supremacy is a milestone sequence of measurements applied to a fixed state (known as a cluster state).

when a universal quantum computer performs a

Fig.1.State of a classical deterministic bit and a

computational task that is beyond the capability of any  quantum bit (qubit. A qubit can be ina Our work explores the computational power of modifying the input state to a cluster state
classical computer superposition of states: 1 = «|0) + B|1), p B - . 4 - A ) r ) o
. where @, € Cand |a|? + |B|? = 1. computation. In other words, we ask when can we classically simulate a ‘modified

cluster state computation?
Why does it matter? Showing Quantum Supremacy provides evidence that a classical

computer can not perform any calculation that any other kind of computer can perform
efficiently - refutes Church-Turing thesis.

Theorem [2]: there is a region of pure states (see Fig.3) such that a cluster state
computation can be efficiently classically simulated.

Fig.3. Quantum Supremacy Sampling Proposal. 1. Choose an instance of your sampling problem — a quantum circuit C. 2. Classical computer calculates

Aim of Study: using computational complexity conjectures, we show that a particular type the ideal output distribution of our circuit C. 3. Quantum computer produces samples from probabilty distribution determined by circuit C.
) . . . Assert that a classical computer should not be able to produce a probability distribution that matches our quantum probabilty distribution. . . " .
of quantum architecture cannot be exactly (and approximately) classically simulated. - - - - Idea of proof: use generalised notion of separability to show that our state is not
e L , , Proving Quantum Architectures Are Hard To Simulate Classically | |entangled and therefore can be classically simulated.
Applications: Cryptography, Optimisation (weather forecasting, traffic problems etc.), ™ Al Th M T
Quantum chemistry (pharmaceuticals). ideri ifi eorem [1] : The non-collapse of the X ) . . X
v ) Weh"_"e cons;derl|ng a specific quantuml ) Polynomial hierarchy (a conjecture that is Future Work. We consider a different approach to rule out classical simulation for our
?rcf |te§tur§ in ‘(I:USt'I(?; states (see resu t; section | iarto P = NP) quantum architecture [1]. But now we do make assumptions about separability, but
Background or further etlals). I e aim is to prove that, using |~/ Classically sampling quantum output instead base our methods on computational complexity conjectures, see Fig.4. In
computationa  comp exity conjecturesl,our . L . particular, we are interested in two notions of approximate classical simulation:
quantum architecture cannot be classically distributions is impossible.
Sampling Problems. Modern supremacy proposals are based around sampling problems. simulated. The method can be viewed as follows: L
This is because quantum computers naturally produce probabilistic samples from a . Multiplicative approximation: TPxS QxS Cpy
. . . . . e . . . i i @ - Exact or 7 | & e . n
probability distribution p,. with probabilities determined by the Born rule: Input quantum states parametrised (described) kA . Additive approximation: Y [py — q| < €,
by surface of sphere and vary the radius. g --—-—-
px = Prob(outcome x) = |{x|C|0)|%. (€3] + We develop a method (see Fig.4) based on where ¢ > 1, € 2 0, p, is the target quantum distribution and g, is the classical
sampling problems and computational distribution.

. . . 030} : : Fig.5 Correspondence between cluster
While such samples are inherently simple to perform on a os| complexity conjectures. Modified Cluster State Computation Partition Function of Tsing Model states and lsing Partition Functions.
Quantum computer, they are immensely difficult for I . o shi
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Exact & Approximate Sampling. Kl [lj[_[ [ calculating imaginary valued partition
. . e T T functions of the Ising model.
The task of sampling from a quantum computation can be ouomns i Summary.
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amily is said to be (weakly) simulated if its output distribu lonF 2 Sempling Problem: G . Our previous methods from [2] show that we can classically simulate our quantum
px can be efficiently classically sampled. e oot prodies sameles socording ro. architecture as long as our inputs (parametrised by a sphere) are restricted to the
@ probabilty distribution D(x) over (0.1} . Fig.4 Outline of proof strategy for showing exact and approximate caps of the sphere.
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