
Introduction

A quantum computer is a computer that exploits 
quantum mechanical properties, such as superposition 
and entanglement to perform a computation. The 
difference between bits and qubits is that a qubit can 
be in a state other than 0 or 1.

Quantum Computational Supremacy is a milestone 
when a universal quantum computer performs a 
computational task that is beyond the capability of any 
classical computer. 

Why does it matter? Showing Quantum Supremacy provides evidence that a classical 
computer can not  perform any calculation that any other kind of computer can perform 
efficiently - refutes Church-Turing thesis.

Aim of Study: using computational complexity conjectures, we show that a particular type 
of quantum architecture cannot be exactly (and approximately) classically simulated. 

Applications: Cryptography, Optimisation (weather forecasting, traffic problems etc.), 
Quantum chemistry (pharmaceuticals).

Proving Quantum Architectures Are Hard To Simulate Classically

.

Results, Future Work and Summary

Results: the classical computing model is restricted to only electronic circuits. However, 
with quantum computing there exist a diverse range of architectures: 

• standard model is based on circuit models (similar to classical computers)

• alternative is measurement-based model, a computation is achieved via a 
sequence of measurements applied to a fixed state (known as a cluster state).

Our work explores the computational power of modifying the input state to a cluster state 
computation. In other words, we ask when can we classically simulate a ‘modified’ 
cluster state computation?

Idea of proof: use generalised notion of separability to show that our state is not 
entangled and therefore can be classically simulated.

Future Work. We consider a different approach to rule out classical simulation for our 
quantum architecture [1]. But now we do make assumptions about separability, but 
instead base our methods on computational complexity conjectures, see Fig.4. In 
particular, we are interested in two notions of approximate classical simulation:

• Multiplicative approximation:  𝑝 ≤   𝑞 ≤  𝑐 𝑝 , 

• Additive approximation: ∑ |𝑝  − 𝑞 | ≤ 𝜖, 

where 𝑐 ≥ 1, 𝜖 ≥ 0, 𝑝 is the target quantum distribution and 𝑞 is the classical 
distribution.

Summary.

• We consider a particular type of quantum architecture in cluster states.

• Our previous methods from [2] show that we can classically simulate our quantum 
architecture as long as our inputs (parametrised by a sphere) are restricted to the 
caps of the sphere.

• We now develop a new method, based on quantum supremacy arguments, to find 
obstacles to growing the caps of the sphere.
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Background

Sampling Problems. Modern supremacy proposals are based around sampling problems. 
This is because quantum computers naturally produce probabilistic samples from a 
probability distribution 𝑝  with probabilities determined by the Born rule: 

 𝑝 =  𝑃𝑟𝑜𝑏 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑥 = 𝑥 𝐶 0 .  1  

While such samples are inherently simple to perform on a 

Quantum computer, they are immensely difficult for 

classical computers to produce.

Exact & Approximate Sampling.

The task of sampling from a quantum computation can be 

viewed as a form of simulation. That is, a quantum circuit 

family is said to be (weakly) simulated if its output distribution 

𝑝 can be efficiently classically sampled.

Exact sampling:  we require our classical distribution to be

exactly equal to the target quantum distribution. 

Approx. sampling: no quantum computer would exactly 

sample from the output distribution due to errors – need 

that no classical sampler can even approximately sample from the same distribution.

Fig.1.State of a classical deterministic bit and a 
quantum bit (qubit).  A qubit can be in a 
superposition of states: 𝜓 = 𝛼 0 + 𝛽 1 ,
 𝑤ℎ𝑒𝑟𝑒 𝛼, 𝛽 ∈ ℂ 𝑎𝑛𝑑 𝛼 + 𝛽 = 1. 

Fig.2.Sampling Problem: Given an input 𝑥, you 
are required to produce samples according to 
a probability distribution 𝐷(𝑥) over 0,1  . 

An example probability distribution 𝐷 𝑥 over 
eight outcomes. The sequences of 0’s and 1’s 
are random samples according to the 
probability distribution above. The objective of 
a sampling problem is the compute samples 
like the sequences shown.

Fig.3. Modifying input states .to cluster state computation. Using the method 
described in Fig.4, for what values of 𝑟 is it possible to simulate classically?

If we input states from the X-Y plane (blue line), then we get the full power of 
quantum computation and we cannot classically simulate. Inputting states 
0  and 1 (green dots), we can classically simulate. For what radius ≤ 1 

(yellow line) can we classically simulate?

Fig.4 Outline of proof strategy for showing exact and approximate 
sampling hardness, based on an explanation from [3].

1. Show Quantum distribution p  is hard to exactly calculate but also 
hard to approximate. 2.Assume there exists a classical sampling 
algorithm  that produces samples according to classical distribution 
q which approximates p . 3. Via Stockmeyer’s algorithm produce 
approximation of q ⇒ Polynomial Hierarchy Collapses 
⇒Contradiction

Theorem [1] : The non-collapse of the 
Polynomial hierarchy (a conjecture that is 
similar to 𝑃 ≠ 𝑁𝑃) 

⇒ Classically sampling quantum output 

distributions is impossible.

We are considering a specific quantum 
architecture in cluster states (see results section 
for further details). The aim is to prove that, using 
computational complexity conjectures ,our 
quantum architecture cannot be classically 
simulated. The method can be viewed as follows:

• Input quantum states parametrised (described) 
by surface of sphere and vary the radius.

• We develop a method (see Fig.4) based on 
sampling problems and computational 
complexity conjectures.

• Show that for our input states we can or cannot 
classically simulate our quantum architecture.

Theorem [2]: there is a region of pure states (see Fig.3) such that a cluster state 
computation can be efficiently classically simulated.

Fig.5  Correspondence between cluster 
states and Ising Partition Functions. 

A key starting point to establishing a proof, 
as described in Fig.4, is to show that 
calculating quantum output probabilities is 
equivalent to classically intractable 
problems. An example of such a problem is 
calculating imaginary valued partition 
functions of the Ising model. 

Fig.3. Quantum Supremacy Sampling Proposal. 1. Choose an instance of your sampling problem – a quantum circuit C. 2. Classical computer calculates 
the ideal output distribution of our circuit C. 3.  Quantum computer produces samples from probability distribution determined by circuit C.
Assert that a classical computer should not be able to produce a probability distribution that matches our quantum probability distribution.


