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Abstract—We assessed several state-of-the-art deep learning
algorithms and computer vision techniques for estimating the
particle size of mixed commercial waste from images. In waste
management, the first step is often coarse shredding, using the
particle size to set up the shredder machine. The difficulty is
separating the waste particles in an image, which can not be
performed well. This work focused on estimating size by using
the texture from the input image, captured at a fixed height
from the camera lens to the ground. We found that EfficientNet
achieved the best performance of 0.72 on F1-Score and 75.89%
on accuracy.

Index Terms—Deep Learning, Computer Vision, Waste Man-
agement, Mixed Commercial Waste, Size Estimation

I. INTRODUCTION

With the growing amount of mixed commercial waste,
waste management plans become necessary [1]. The first step
in waste management is coarse shredding for treating solid
municipal and commercial waste [2]–[4], followed by one or
more screening stages. Shredding reduces the particle size.
To optimize the shredding machine performance, the size and
material of waste particle needs to be known [5]. Generally,
human operators manually estimate size and classify material
using screens, magnetic separators or sensor-based sorting
machines.

With the improvement of computer and robotic technology,
smart waste factory concepts automated waste management,
reaching higher sorting and recycling rates. Recycling and Re-
covery of Waste 4.0 (ReWaste 4.0) [6] is a concept in which a
smart waste factory consists of several waste treatment plants,
which perform different tasks and are interconnected via data
stream and logistic systems (e.g. sorting plants, production
plants for solid recovered fuels, etc.). This connection enables
dynamic process control and various actuator systems actively
intervene in the processes. The new industry 4.0 approaches
(e.g. robotic, big data, digital networking, etc.) will be used in
the waste management to achieve smart waste factory goals.

We describe a method to estimate the size of waste particles
from images of mixed commercial waste, using machine
learning and computer vision techniques.

The paper was organized as follows. Section II describes
related work on waste estimation using computer vision and
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machine learning, Section III explains methods used, includ-
ing data acquisition, data preprocessing, algorithms for size
estimation and experiments, Section IV discusses the results,
and Section V concludes.

II. RELATED WORK

Many advanced computer vision and machine learning tech-
niques have been used to estimate the size of waste particles.
To characterize waste particles, Di Maria et al. [7] estimated
the particle size distribution based on image analysis, e.g.
image descriptors, to find image signatures (feature vectors),
auto-correlation, circular filters and granulometry (a set of
morphological filters at different scales). Kandlbauer et al. [8]
analysed individual waste particle images with a set of image
transformations to detect particles and a regression model to
estimate sizes. Zhang et al. [9] and Dunnu et al. [10] used
dimensionless coefficients, e.g. roundness or ratios between
the projected area of the object, and the area of a bounding
box, to describe the shape and size of particles.

Some of these works estimated object size of other than
the waste particle by using an image. Ponce et al. [11]
analysed images to estimate the size of olive fruit, e.g. image
segmentation by combining the mask of the global threshold
using Otsu’s method with the separated inverted value (V)
and saturation (S) channels of the image in HSV color space,
and estimate the size using a linear estimation model. Oo
et al. [12] estimated the size of strawberries using image
analysis with kite geometry, e.g. parallograms in the shape of a
traditional kite [13], which is similar in shape to a strawberry,
and calculated the size from the segmentation mask.

None of these works estimated particle sizes from input
images of mixed commercial waste. It is complex and difficult
to detect each particle in waste, e.g. the label on each can and
bottle and overlapping particles, can degrade waste particle
detection, and estimated size from detected particles will
not be accurate. Since convolutional neural networks (CNNs)
archived significant success for texture classification [14], our
hypothesis was that we could estimate waste particle size,
using image texture analysis with deep learning techniques, i.e.
ResNet-18, ResNet-50 [15], VGG-16 [16], MobileNet-V2 [17]
and EfficientNet [18].
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Fig. 1. Data acquisition: (a) Waste heap imaged by a camera mounted at
a fixed height, H , from ground to camera optical center, (b) Collection of
mixed waste images, and (c) Stitched image from (b) showing the partitions.

III. METHODOLOGY

Here we describe the acquisition and description of the
dataset, data preprocessing and augmentation, and algorithms
for particle size estimation on mixed commercial waste im-
ages.

A. Data acquisition

Since there is no publicly available dataset for size estima-
tion from images of mixed commercial waste, we collected
and created a new dataset. Our Mixed Commercial Waste Size
dataset contains mixed waste images with different particle
size ranges, including 20–40, 40–60, 60–80, 80–100, 100–
200, and 200–400 mm. We formed six heaps of objects in
the desired range of sizes. The camera was a Nikon D7500,
taking 2, 784×1, 856 pixel RGB images. It was mounted at a
fix height from the ground to the camera optical center. Each
image contained particles with similar sizes. Fig. 1 shows the
data acquisition process, and Fig. 2 shows samples of mixed
commercial waste image.

After we collected the images, we found that some parts of
one image overlapped with other images. This problem could
bias the experiment, because some sections of overlapped
images might appear multiple times in test data. Therefore,
we created a new dataset by stitching all images, in each size
range, using Image Composite Editor [19]. Then, we split the
stitched image into many 720 × 720 pixel images. Table I
shows the distribution of our dataset.
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Fig. 2. Sample of mixed commercial waste, grouped in six size ranges: (a)
20–40 mm, (b) 40–60 mm, (c) 60–80 mm, (d) 80–100 mm, (e) 100–200 mm,
and (f) 200–400 mm.

TABLE I
DISTRIBUTION OF DATASET

Size range Number of images Fraction
[mm] [%]

20–40 17 18
40–60 14 15
60–80 16 17

80–100 12 12
100–200 25 26
200–400 12 12

Total 96 100

B. Data pre-processing and augmentation

After we split the images, the RGB images were re-
sized, without changing the aspect ratio, and zero padded
to 224 × 224 pixel squares to match ResNet-18, ResNet-50,
VGG-16 and EfficientNet requirements or 256×256 pixels for
MobileNet-V2. To match the software requirements, images
were normalized, so that pixels were floating point values in
(0, 1).

After preprocessing, we randomly split the dataset into k
non-overlapping partitions, with k = 5, using nested cross-
validation [20], [21]. The partitions, that were selected for
training data, were augmented to increase the number of
images. To augment the dataset, a one or more of these
operations—FancyPCA with σ = 0.6 [22], horizontal and
vertical flipping, image transpose, cutout [23] with square
patch size randomly set from 120 to 200 pixels and color
channel shuffling—were applied to the images. Although the
data set was augmented, the proportion of each class remained
the same.

FancyPCA augmented image by altering the intensities of
RGB channels, while maintaining the features and detail of



the image. The steps were:
• Images were reformatted to match the software input

requirements, i.e. w × h matrices of RGB triples were
converted to wh vectors of RGB triples,

• Principle Component analysis was used to find the eigen-
values, P , and eigenvectors, λ from the covariance ma-
trix,

• Eigenvectors were sorted in order of the eigenvalues,
• A random value, α, was drawn from a zero mean gaussian

with standard deviation, σ. We added multiples of the
principal components with magnitudes proportional to the
corresponding eigenvalues times, α. Therefore, to each
RGB image pixel, Ixy = [IRxy, I

G
xy, I

B
xy], we added the

following quantity:

[P1, P2, P3][α1λ1, α2λ2, α3λ3]
T (1)

where Pi and λi are ith eigenvectors and eigenvalues
of the 3 × 3 co-variance matrix of RGB pixel values,
respectively.

C. Algorithms for particle size estimation

We started with the selected state-of-the-art CNN models,
including ResNet-18, ResNet-50, VGG-16, MobileNet-V2 and
EfficientNet. Particle size was classified as belonging the size
ranges listed in Table I.

D. Experiments

We evaluated the performance of size estimation, using the
selected CNN models trained and tested on our dataset. Since
the data was limited, we used nested cross-validation. It used
an outer k iteration cross-validation loop to divide data into
training and test folds, and an inner loop iterated over each
of the k models. We divided the dataset into five partitions,
retaining the proportion of each size range and evaluated the
tuned algorithms to ensure that we used every sample for
evaluating the algorithm.

The five selected CNN models were fine-tuned from the pre-
trained ImageNet [24] classification. Models were trained for
300 epochs, using Stochastic Gradient Descent (SGD), to find
optimal parameters, with Nesterov momentum [25] set to 0.9
and learning rate to 0.0001. We selected the optimal models
for each inner-loop of nested cross-validation to evaluate the
model performance with data in the test fold on the outer-loop.

IV. RESULTS AND DISCUSSION

Table II reports the average performance across each of the
outer test partitions by using evaluation matrices—Precision,
Recall, F1-Score, and Accuracy—for the selected algorithms.
We found that all algorithms were reasonably successful
and generally assigned the correct size range to an image.
EfficientNet performed best on every evaluation metric, with
0.72 on F1-Score and 75.89% on accuracy, which benefitted
from applying compound scaling to all three dimensions of
the CNN: width, depth and resolution. It was followed by
ResNet-50 with 0.71 on F1-Score and 74.95% on accuracy.
Fig. 3 shows the confusion matrix comparing EfficientNet

and VGG-16, calculated by summing the predicted and actual
values on each testing iteration from the outer-loop of nested
cross-validation. EfficientNet performed better than VGG-16
for the smallest particles (20–40 mm), but neither algorithm
performed well on larger particles, between 80–100 mm to
200–400 mm.

TABLE II
EVALUATION SCORES FOR FIVE ALGORITHMS

Model Precision Recall F1-Score Accuracy
[%]

ResNet-18 0.65 ± 0.15 0.65 ± 0.11 0.62 ± 0.11 66.68 ± 13.13
ResNet-50 0.72 ± 0.17 0.72 ± 0.15 0.70 ± 0.16 74.95 ± 16.47
VGG-16 0.70 ± 0.14 0.70 ± 0.07 0.67 ± 0.09 73.89 ± 09.28
EfficientNet 0.76 ± 0.05 0.73 ± 0.10 0.72 ± 0.08 75.89 ± 11.08
MobileNet-V2 0.71 ± 0.17 0.71 ± 0.13 0.69 ± 0.14 71.84 ± 15.22

Fig. 3. Confusion Matrix comparing VGG-19 (top) and EfficientNet (bottom).

V. CONCLUSION AND FUTURE WORK

With the growing amount of mixed commercial waste, the
concept of Smart Waste Factory was introduced to allow
higher sorting and recycling rates. An automatic system (e.g.



robotic, big data, networking, etc.) is needded to improve
waste management. This work estimated the waste particle
size, using mixed commercial waste, captured from cameras
mounted at a fixed height above the waste. We tested several
state-of-the-art deep learning models, i.e. ResNet-15, ResNet-
18, VGG-16, MobileNet-V2, and EfficientNet, to classify
waste into a set of size ranges. EfficientNet performed best
on all metrics.
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