
Article
Mesoscale cortical dynam
ics reflect the interaction
of sensory evidence and temporal expectation
during perceptual decision-making
Highlights
d Mice performed a visual change detection task based on

uncertain sensory evidence

d Task design separated the processes of deliberation and

action execution

d Sensory evidence modulated secondary motor cortex in

absence of movement

d These responses were selective, sustained, and modulated

by temporal expectation
Orsolic et al., 2021, Neuron 109, 1861–1875
June 2, 2021 ª 2021 The Authors. Published by Elsevier Inc.
https://doi.org/10.1016/j.neuron.2021.03.031
Authors

Ivana Orsolic, Maxime Rio,

Thomas D. Mrsic-Flogel,

Petr Znamenskiy

Correspondence
t.mrsic-flogel@ucl.ac.uk (T.D.M.-F.),
petr.znamenskiy@crick.ac.uk (P.Z.)

In brief

Orsolic et al. reveal how the mouse

neocortex is modulated by sensory

evidence in a visual change detection

task. They show that recruitment of the

secondary motor cortex emerges with

learning and reflects the interaction of

sensory evidence and prior knowledge of

task structure.
ll

mailto:t.mrsic-flogel@ucl.ac.�uk
mailto:petr.znamenskiy@crick.ac.�uk
https://doi.org/10.1016/j.neuron.2021.03.031
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuron.2021.03.031&domain=pdf


OPEN ACCESS

ll
Article

Mesoscale cortical dynamics reflect the
interaction of sensory evidence and temporal
expectation during perceptual decision-making
Ivana Orsolic,1,2 Maxime Rio,1,2,4 Thomas D. Mrsic-Flogel,1,2,5,* and Petr Znamenskiy1,2,3,*
1Sainsbury Wellcome Centre, University College London, 25 Howland Street, London W1T 4JG, UK
2Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
3The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
4The National Institute of Water and Atmospheric Research, 301 Evans Bay Parade, Hataitai, Wellington 6021, New Zealand
5Lead contact

*Correspondence: t.mrsic-flogel@ucl.ac.uk (T.D.M.-F.), petr.znamenskiy@crick.ac.uk (P.Z.)

https://doi.org/10.1016/j.neuron.2021.03.031
SUMMARY
How sensory evidence is transformed across multiple brain regions to influence behavior remains poorly un-
derstood. We trained mice in a visual change detection task designed to separate the covert antecedents of
choices from activity associated with their execution. Wide-field calcium imaging across the dorsal cortex
revealed fundamentally different dynamics of activity underlying these processes. Although signals related
to execution of choice were widespread, fluctuations in sensory evidence in the absence of overt motor re-
sponses triggered a confined activity cascade, beginning with transient modulation of visual cortex and fol-
lowed by sustained recruitment of the secondary and primary motor cortex. Activation of themotor cortex by
sensory evidence was modulated by animals’ expectation of when the stimulus was likely to change. These
results reveal distinct activation timescales of specific cortical areas by sensory evidence during decision-
making and show that recruitment of the motor cortex depends on the interaction of sensory evidence
and temporal expectation.
INTRODUCTION

As animals form judgments about the sensory scene, information

represented in sensory cortical areas influences motor actions

by engaging a distributed network of sensorimotor pathways.

Neural correlates of decision-making have been identified

across modalities and species (Hanks and Summerfield, 2017)

through recordings targeting individual brain areas (Newsome

et al., 1989; Hanes and Schall, 1996; Shadlen and Newsome,

1996; Roitman and Shadlen, 2002; Romo et al., 2002; de La-

fuente and Romo, 2005; Ding and Gold, 2010; Raposo, et al.

2014) or many brain areas in parallel (Hernández et al., 2010;

Hanks et al., 2015; Siegel et al., 2015; Allen et al., 2017; Scott

et al., 2017; Gilad et al., 2018; Zatka-Haas et al., 2018; Musall

et al., 2019; Steinmetz et al., 2019).

Perceptual decisions involve interaction of sensory informa-

tion with subjects’ expectations and prior knowledge leading

up to behavioral choice (Gold and Shadlen, 2007; Summerfield

and de Lange, 2014). Attributing neuronal responses to these

pre-decision processes is challenging because they are inher-

ently correlated with subsequent motor execution-related sig-

nals (Murakami and Mainen, 2015), which have a widespread

effect on neural activity. Specifically, behavioral choice influ-

ences representation of sensory stimuli (Nienborg and Cum-
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ming, 2009), whereas neural correlates of task-related and

spontaneous overt behaviors dominate global brain activity (Al-

len et al., 2017;Musall et al., 2019; Stringer et al., 2019). Although

primate studies have set the gold standard in experimental

design probing decision-making (Gold and Shadlen, 2007), the

tools available with mice offer an opportunity to look at the

distributed nature of decision-related processes. Mice can be

trained in a range of perceptual tasks involving discriminating

or detecting changes in visual stimuli (Harvey et al., 2012; Glick-

feld et al., 2013; Poort et al., 2015; Burgess et al., 2017) and

accumulating visual sensory evidence (Odoemene et al., 2018;

Pinto et al., 2019).

To separate pre-decision processes from activity related to

motor execution, we designed a behavioral task for mice that

allowed us to independently probe the influence of sensory infor-

mation and temporal expectation on neural activity while control-

ling the animals’ motor output. The task required mice to lick for

reward in response to sustained changes in speed of a noisy

drifting grating stimulus. Mice were encouraged to respond as

soon as they detected the change by restricting the window

when the reward was available. Because speed changes were

often ambiguous, their timing variable, and the trial difficulty ran-

domized, mice had to continuously monitor the sensory stimulus

during an extended period preceding the change. Using a
June 2, 2021 ª 2021 The Authors. Published by Elsevier Inc. 1861
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combination of experimental manipulations and post hoc ana-

lyses, we separated neural responses underlying evaluation of

sensory evidence from those related to execution of motor re-

sponses. Importantly, by manipulating animals’ expectation of

when sustained changes in speed were likely to occur, we deter-

mined how the responses to the same stimulus speed fluctua-

tions were influenced by expectation of when the stimulus was

likely to change.

We first identified the behavioral strategy used by the mice to

detect sustained changes in stimulus speed, showing that they

combine stimulus information on a timescale of hundreds of mil-

liseconds with their prior expectation of the timing of changes.

Using wide-field calcium imaging of the dorsal neocortex, we

identified a cascade of activity induced by fluctuations in stim-

ulus speed. Such fluctuations triggered transient responses in vi-

sual areas and culminated in more persistent activation of motor

areas in the absence of choice execution. This recruitment of the

motor cortex depended on the animals’ experience of the task

and was modulated specifically by their temporal expectation

of stimulus change. This localized pre-decision cascade con-

trasted with the widespread emergence of action-related signals

associated with the execution of behavioral choice.

RESULTS

Visual change detection task
We trained head-fixed, food-restricted mice in a visual change

detection task, which required them to lick for reward in

response to a sustained increase (hereafter referred to as

change) in the speed of a drifting grating stimulus (Figures 1A

and 1B). The temporal frequency (TF) of the grating stimulus var-

ied around the mean every 50 ms during the baseline (log2 TF =

0 ± 0.25) and the change periods on 70% of trials (referred to as

noisy trials; Figure 1C). Such noisy trials provided a window to

determine the strategies mice might use to perform the task

and to probe stimulus-evokedmodulation of cortical activity dur-

ing decision-making (Huk and Shadlen, 2005; Hanks et al.,

2015). After a randomly chosen delay period, the mean TF

increased, and the mice were required to lick within a response

window of 2 s to receive a drop of soy milk (Figure 1B). The fre-

quency of correct licks depended on the magnitude of the TF

change, with mice reliably detecting large increases in TF (Fig-

ure 1D; 19,734 noisy trials, 109 sessions, 6 mice). Reaction times

were alsomodulated by themagnitude of stimulus changes, with

mice responding more swiftly to larger increases in TF (Figures

1E and 1F). When mice licked prior to the change, the trial was

aborted, and mice were penalized with an air puff to the cheek.

In addition, we monitored their running speed and aborted the

trial in response to movement of the running wheel during the

baseline period (STAR Methods). We also collected a separate

dataset from the same mice when they were free to run during

the entire stimulus presentation (Figures S1A–S1C; 82,005 trials,

281 sessions, 6 mice).

To explore whether the timing of early licks was influenced by

animals’ expectation of when changes might occur in the sta-

tionary version of the task, we varied the distribution of change

times during the trial in blocks (Figures 1G and 1H). In early

change blocks, changes occurred between 3 and 8 s after
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stimulus onset in most trials (90%) and between 10.5 and

15.5 s in the remaining trials (10%). The timings were reversed

in late change blocks (Videos S1 and S2 show example early

and late block trials). Mice varied the timing of early licks based

on the probability of changes as a function of time (Figure 1H;

probability of changes given that no change has occurred and

the trial has not been aborted). The early lick hazard rate (the

probability of licks occurring at a given time point given that no

early licks or changes have yet occurred) was elevated at the

start of the trial in early blocks (Figure 1I) when changes were

more frequent. Mice were also faster to respond to themost diffi-

cult change during this period when the change was expected

(Figure 1J). Therefore, prior expectation of when changes might

occur influenced animals’ decisions to lick.

A Gaussian process classification model uncovers
stimulus features driving mouse behavior
Several behavioral strategies could explain the features of

mouse behavior described above. For example, mice might

decide to lick by integrating visual signals or by detecting fast

outliers in the noisily drifting stimulus. Distinguishing between

these strategies based on trial-average statistics is challenging

(Brunton et al., 2013). To understand how sensory evidence is

transformed into a decision to lick, we took advantage of the sto-

chastic fluctuations in TF in noisy trials and examined the TF con-

tent of baseline stimuli preceding early licks by computing the

lick-triggered average stimulus. Early licks were preceded by in-

creases in temporal frequency spanning the period of�0.25–1 s

prior to lick onset (Figure 2A). This observation shows that sen-

sory information over this epoch contributes to animals’ behavior

but does not unambiguously reveal how subjects weigh evi-

dence in their decisions to lick (Okazawa et al., 2018).

To answer this question, we developed a statistical model

optimized to predict the momentary lick hazard rate during sus-

tained changes in stimulus speed and during the baseline period,

based on the history of visual input (2.5 s) and time elapsed since

the start of the trial (Figure 2B). To identify features of the stim-

ulus that drove animals’ choices, we restricted stimulus informa-

tion available to the model to a low-dimensional linear projection

of stimulus history, defined as the convolution of stimulus history

with a set of filter vectors. Filter outputs and elapsed time were

combined by a Gaussian process (GP) non-linearity to estimate

the log-odds of licking during each sample of the trial. Themodel

assumes that the contributions of time and stimulus information

to the log-odds of licking are additive, which is equivalent to

combining current sensory evidence with prior odds of licking

based on time since the start of the trial. Although this model

has no direct biological interpretation, it provides an unbiased

description of how mice transform stimulus information and

time since trial start into licks, akin to linear-nonlinear-Poisson

models used to characterize neuronal receptive fields. The

model accurately captured the trial-average statistics of mouse

behavior, including psychometric and chronometric curves (Fig-

ures 2C, 2D, and S2) and the timing of early licks (Figure 2E). The

full model outperformed models that received stimulus or timing

inputs alone (Figures S3A–S3H).

We next examined stimulus filters whose weights and

numbers were optimized during model training. The shapes of
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Figure 1. Stimulus speed change detection task and animal performance

(A) Mice were head fixed, and two monitors were placed on each side of the animal. Trials consisted of three epochs: an inter-trial period with a gray isoluminant

screen (light gray), a baseline stimulus period with a square patch of a drifting sine grating (dark gray, mean log2 TF of the grating = 0), and a change period when

the speed of the stimulus increased (blue). Stimulus speedwas updated every 50ms so that the new log2 TF of the grating was sampled from a normal distribution

(SD = 0.25 octaves), resulting in noisy drift of the grating.

(B) Mice had to withhold licking and running wheel movement to initiate the stimulus presentation and throughout the baseline period until the change. If the

mouse detected the change (correct lick), then a drop of soymilk was given as a reward. If themouse licked before the change in the baseline period (early lick), an

air puff was delivered. If the mouse missed the change, no air puff or reward was given.

(C) Mice were trained to detect a range of stimulus speed increases (darker colors correspond to larger change magnitudes).

(D) Mouse performance in detecting changes was modulated by change magnitude (6 mice, error bars indicate 95% CI, change magnitude is expressed in

octaves as mean log2 TF).

(E) Cumulative distributions of reaction times across stimulus speed changes.

(F) Median reaction times are modulated by change magnitude (6 mice, error bars indicate 95% CI).

(G) Timing of stimulus speed changes across early and late change blocks.

(H) Probability of stimulus speed changes as a function of time (change hazard rate) in early and late blocks. Shading indicates 95% CI.

(I) The probability of early licks as a function of time (early lick hazard rate) is modulated by anticipation of change. Shading indicates 95% CI.

(J) At small change magnitudes, responses to early changes (3–8 s after stimulus onset) are slower in late blocks, when changes are not expected (p < 0.01,

Wilcoxon rank-sum test). Error bars indicate 95% CI.
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the top two filters were consistent across all mice (n = 6) whose

behavior we quantified (Figures 2F and S2). The weights of both

filters were close to zero for time lags of 0–0.25 s, a period equiv-

alent to non-decision time, reflecting sensory and motor delays.

The first filter resembled the lick-triggered average stimulus and
had large positive weights at time lags of �0.25–1 s and small

negative weights at lags of 1–2 s (Figures 2F and S2). It is there-

fore sensitive to sustained increases in the TF of the grating over

baseline. The second filter was almost symmetric and resembled

a derivative filter, with positive weights between �0.25 and
Neuron 109, 1861–1875, June 2, 2021 1863
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Figure 2. A GP classification model reveals animals’ behavioral strategy

(A) Average stimulus preceding licks during the baseline stimulus (n = 6 mice, shading indicates 95% CI).

(B) Structure of the GP classification model.

(C–E) Model performance for an example mouse (425 holdout trials). Themodel captures the animal’s detection performance (C) and reaction times (D) as well as

the timing of early licks (E), computed using a Gaussian kernel density estimate. Holdout data, dashed lines; model predictions, solid line and shading. Early and

late block trials are combined in (C) and (D). To fit and evaluate the model, 14,944 behavioral trials were assigned to training, validation, and test subsets (8,966,

2,989, and 2,989 trials, respectively). Of these, 1,277, 424, and 425 trials were recorded during hazard rate manipulation sessions in stationary mice. During the

remaining trials, mice were free to run during stimulus presentation. Shading indicates 2.5% and 97.5% quantiles of model predictions.

(F) Principal filters learned during model optimization. The first two filters reveal the main stimulus features sufficient to capture mouse behavior.
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�0.5 s and negative weights between�0.5 and�1 s (Figures 2F

and S2D). It is therefore sensitive to abrupt changes in TF of the

grating. The weights of the remaining filters were close to zero,

with the exception of the third filter in 2 of 6 mice, which resem-

bled the derivative filter but was shifted in time (Figure S2D).

To characterize the contribution of the two filters to model per-

formance, we examined GP models with coefficients of either of

the two filters set to 0. Eliminating the first filter dramatically

reduced the proportion of hit licks across all stimulus change

magnitudes in stationary and running mice (Figures S3I and

S3L). On the other hand, eliminating the second filter had a

more subtle effect on performance, primarily affecting animals’

responses in the running version of the task (Figure S3I) and

increasing reaction times, especially for large stimulus strengths

(Figures S3J and S3M). Both filters were more active at the time

of hits rather than early licks, with the first filter showing graded

activation across all stimulus change magnitudes and the sec-

ond filter being consistently active for large changes only (Fig-

ures S3K and S3N). Thus, both filters primarily contribute to licks

during the change period, with the first filter playing a more

prominent role. These analyses suggest that mouse behavior is

primarily explained by a strategy involving integration of TF on

the timescale of �1 s and by the expectation of when the sus-

tained changes in stimulus speed might occur.
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Imaging neural activity across the dorsal cortex during
the task
We next systematically characterized the patterns of neural ac-

tivity underlying processing of sensory signals and their trans-

formation into putative motor commands across the dorsal cor-

tex. To accomplish this, we imaged transgenic mice expressing

GCaMP6s in excitatory cortical neurons (Wekselblatt et al.,

2016; 11,130 trials, 47 sessions, 6 mice) using a low-magnifica-

tion epifluorescence microscope that allowed us to simulta-

neously capture bulk calcium signals across the entire dorsal

surface of the mouse neocortex (Figure 3A; STAR Methods).

To compensate for changes in fluorescence arising from hemo-

dynamic fluctuations, we interleaved illumination at 470 nm and

405 nm and used frames acquired at 405 nm to estimate the

hemodynamic component (Allen et al., 2017). In parallel, we

monitored animals’ pupil diameter and body and face (snout re-

gion) movements (Figure 3A). To identify the imaged brain

areas, at the end of each imaging experiment we reconstructed

whole-brain volumes using serial two-photon tomography and

defined cortical area boundaries based on the Allen Mouse

Brain Common Coordinate Framework (CCF; v.3; Figures 3A

and S4; STAR Methods). In the presentation of our results,

we focus on responses in four cortical areas, which show mark-

edly different patterns of wide-field activity during baseline and
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Figure 3. Stimulus onset broadly activates the dorsal cortex in trained animals

(A) Top: extent of the imaging site; orange, outlines of regions of interest (ROIs) analyzed after brain registration. Outer borders were cropped to the extent of the

imaging site. Center: schematic of the behavioral setup and wide-field macroscope. Bottom: example images from cameras capturing the animals’ pupil (green),

face (cyan), and body movements (magenta).

(B) Mean Z-scored fluorescence response around the onset of the baseline stimulus in trained (left, 6 mice) and naive animals (right, 3 mice). Inset: shading

indicates the analyzed trial epoch. Scale bar, 1 mm.

(C–F) Mean Z-scored responses of selected cortical areas around the onset of the baseline stimulus in trained and naive animals. Vertical lines mark baseline

stimulus onset. Prior to stimulus onset, activity in the primary visual area (VISp) and rostrolateral visual area (VISrl) in trained and naive animals decreased, likely

reflecting the offset of the visual stimulus in the previous trial. In trained animals only, this decrease in activity was also present in the primary motor area (MOp)

and secondary motor area (MOs), coincident with a reduction in overt movements (H–I), followed by an anticipatory increase in activity prior to stimulus onset

(shading indicates 95% CI).

(G–J) Quantification of overt movements in trained and naive animals in response to stimulus onset (traces are corrected by mean value in a 0.5-s window before

the stimulus; baseline values at time 0 are stated in brackets, shading indicates 95% CI) of (G) running speed (trained, 8.35 3 10�5; naive, 0.02 m/s), (H) face

motion (trained, �0.49; naive, �0.06), (I) body motion (trained, �0.56; naive, �0.03), and (J) pupil diameter (trained, �0.11; naive, 0.01).
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change periods: the primary and rostrolateral visual areas (VISp

and VISrl, respectively) and primary and secondary motor

areas (MOp and MOs, respectively). Responses in all imaged

regions of interest (ROIs) are presented in the Supplemental

information.

Visual stimulus onset engages a distributed cortical
network in trained mice
We first analyzed dorsal cortical activation patterns around the

time of onset of the baseline stimulus (Figure 3B). In trained an-

imals, trial onset was preceded by an anticipatory increase in

MOp and MOs activity (Figures 3E and 3F). Presentation of

the baseline stimulus triggered sustained activation of primary

and secondary visual areas (Figures 3C and 3D; 6,631 noisy tri-

als longer than 1.5 s, 47 sessions, 6 mice; Video S3), followed

by recruitment of the secondary motor area (Figure 3F).

Although grating onset triggered responses of similar or even
larger magnitude in visual areas in naive mice, onset responses

in the secondary motor area were markedly weaker (1,680

noisy trials from 10 sessions in 3 mice; Video S3). Thus, we

observed strong recruitment of the secondary motor cortex

by onset of the visual stimulus even in the absence of move-

ment (Figures 3G–3J) that depended on animals’ experience

of the task.

Action-related signals are represented throughout the
dorsal cortex
We next examined the patterns of activity evoked by sustained

changes in TF of the grating the mice were trained to detect.

Change onset triggered an increase in wide-field fluorescence

across the dorsal surface of the cortex in hit trials (Figure 4A;

1,974 noisy trials; Video S4). These responses were apparent

earliest in motor areas, reaching half-max (50% of maximum

response) 0.48 s after change onset for the strongest stimuli
Neuron 109, 1861–1875, June 2, 2021 1865
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Figure 4. Wide-field calcium responses across the dorsal cortex during the change period are global and dominated by action-related

activity

(A and C) Maps of mean Z-scored fluorescence across the dorsal cortex aligned to change onsets on hit trials (A) or lick onsets (C), sorted by change strength.

Insets: shading indicates the analyzed the trial epoch, and color indicates change strength. Scale bars, 1 mm.

(B and D) Mean Z-scored fluorescence of selected cortical areas aligned to change onset in hit trials (B) and lick onsets (D). Shading indicates 95% CI.

(E and F) Quantification of overt movements aligned to change onset in hit trials (E) and lick onset (F). Horizontal lines andmarkers represent the interquartile range

and median reaction times (E) or stimulus change times (F). Shading indicates 95% CI.

(G) Summary of the ridge regression model used to separate the contributions of task events and overt movements to wide-field fluorescence.

(H) Model coefficients corresponding to change onsets across change magnitudes and time lags corrected by coefficients for 1-Hz (no change) trials across the

dorsal cortex and for cortical areas shown in (B). Scale bar, 1 mm.

(I and J) Model coefficients corresponding to overt movements and licks across time lags across the dorsal cortex and for cortical areas shown in (B). Scale

bar, 1 mm.
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(MOs) compared with 0.6 s for the primary visual area (VISp) (Fig-

ures 4B and S5A). In more difficult trials, half-max latencies fol-

lowed the increase in reaction times. Across stimulus strengths,

the time course of neural responses followed the movement of

the mouse, as captured by the body camera even prior to detec-

tion of licks (Figures 4E, S5B, and S5C). This widespread modu-

lation of cortical activity was not observed in miss trials (Figures

S5D and S5E; 463 noisy trials).

When aligned to the onset of licking, wide-field fluorescence

responses were stereotyped across stimulus change strengths

(Figures 4C, 4D, S6B, and S6C; Video S5) and were similar to

early lick responses (Figures 4C, S6D, and S6E; 1,564 noisy tri-

als). Although lick-related activity was global, it did not appear

synchronously across the cortex. It was detectable earliest in

the secondary motor area and anterior visual and midline areas

(anterolateral visual area [VISal], 360 ms prior to lick; anterome-

dial [VISam], anterior [VISa], rostrolateral visual area [VISrl], MOs,

retrosplenial [RSPd], and anterior cingulate area [ACAd], 320ms;

quantified as the time to cross 10% of maximum response on

1.5-Hz change trials). The difference in timing of lick-aligned re-

sponses in the VISp and MOs was apparent across change

strengths (Figure S6A).

Lick-aligned activity dominated but did not fully account for

cortical responses following onset of sustained changes in stim-

ulus speed. To illustrate this, we first examined activity in hit trials

with long reaction times (>0.84 s). During these trials, change

onset triggered a gradual increase in fluorescence, which was

modulated by the strength of the stimulus (Figure S5F). However,

although no licks were present during this period, this activity

was correlated with other overt movements preceding licking,

as captured by the body camera (Figure S5G).

We next used ridge regression to fit a linear model using stim-

ulus changes and overt body movements as predictors of wide-

field fluorescence (Figure 4G). Accounting for execution of motor

responses revealed components of wide-field fluorescence

related to processing of the sensory stimulus distinct from the

global responses following the change (Figure 4H). Based on

this regression analysis, change onset was associated with acti-

vation of anterior higher visual areas (e.g., area VISrl) and of the

secondary motor cortex and with a modest reduction in wide-

field fluorescence of the primary visual cortex. The signs of

change responses in areas VISp and VISrl may reflect the typical

temporal frequency preferences of neurons in these areas (An-

dermann et al., 2011; Marshel et al., 2011), whereas the relatively

small magnitude of VISp responses may be a consequence of

bulk averaging of neurons with heterogeneous selectivity. Re-

sponses of higher visual areas and the secondary motor cortex

were modulated by the strength of the stimulus (Figure 4H).

Licking was associated with a widespread increase in activity,

with strongest modulation of anterior regions of the primary and

secondary motor cortices (Figure 4J), consistent with previous

reports of involvement of these areas in licking behavior (Guo

et al., 2014).

These analyses reveal distinct patterns of activity following

change onset related to processing of the stimulus and execu-

tion of licking responses. The secondary motor cortex is

engaged by both of these processes, implicating it in transfor-

mation of sensory evidence leading up to animals’ choices.
Fluctuations in sensory evidence prior to choice trigger
a localized cascade of wide-field activity ranging from
transient responses in visual areas to sustained
responses in motor areas
We next focused on the extended baseline period of the task

when mice observed subthreshold stimulus fluctuations and re-

frained from overt movement. This allowed us to determine the

influence of sensory evidence on wide-field cortical activity

and its time course and interaction with temporal expectation

while directly controlling for the motor confounds described

above. To characterize the temporal progression of visual stim-

ulus processing in the dorsal cortex, we quantified the effect of

sensory evidence during the baseline stimulus onwide-field fluo-

rescence at different time lags using linear regression (Figures

5A, 5B, S7A, and S8A; Video S6; 1,039,391 stimulus samples

from 6,894 trials). To ensure that movement-related activity

immediately preceding licks did not affect this analysis, we

excluded fluorescence frames from trials interrupted because

of early licks or movement acquired less than 1 s prior to these

events as well as frames following change onset.

The temporal frequency of the baseline stimulus was corre-

lated negatively with bulk activity of the primary visual cortex

but correlated positively with that of anterior higher visual areas

(Figures 5A–5C). The latencies (defined as time until 50% of

maximum response; Figure 5D) of these responses were short-

est in the VISp (0.15 s) and posteromedial visual area (VISpm;

0.16 s), followed by anterior higher visual areas: VISrl (0.21 s),

VISa (0.22 s), and VISal (0.25 s). Because wide-field calcium sig-

nals represent bulk averages of largely local population activity

(Ma et al., 2016; Makino et al., 2017), this modulation is consis-

tent with the typical preference of the primary visual cortex and

higher visual area neurons. Although VISp neurons tend to prefer

slow visual speeds, neurons in the VISal, VISrl, and VISa respond

preferentially to high speeds (Andermann et al., 2011 Marshel

et al., 2011). Similar responses in visual areas were also present

in naive mice, consistent with their sensory-driven origins (Fig-

ure 5A). In trained mice, modulation of visual areas by temporal

frequency was followed by activation of the secondary motor

area (MOs; 0.33 s) and weaker recruitment of the primary motor

cortex (MOp; 0.63 s). Unlike responses in visual cortical areas,

modulation of motor cortical activity was not observed in naive

mice (Figure 5A; 362,291 frames from 1,680 trials; Video S6),

indicating that recruitment of these areas was dependent on

learning.

Cortical areas also differed in the offset dynamics of the wide-

field responses. Bulk activity in the primary visual cortex decayed

rapidly to baseline (VISp, half-decay time of 0.41 s; Figures 5B

and 5E), suggesting that it is largely modulated by the immediate

history of sensory stimulation. These responses in the primary vi-

sual cortex were similar to the reported half-decay time for so-

matic signals in GCaMP6s transgenics (Dana et al., 2014) and

provide an estimate of the indicator offset kinetics of wide-field

signals in this study. In contrast, responses in higher visual areas

andmotor areaswere sustained (VISrl, 0.79 s; VISal, 0.93 s; VISa,

0.97 s), with half-decay times exceeding 1.5 s in the MOs (1.7 s)

and MOp (1.82 s) (Figures 5B, 5E, and S7A).

The regression analysis described above revealed the sign

and time course of modulation of the wide-field activity of the
Neuron 109, 1861–1875, June 2, 2021 1867
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Figure 5. Baseline stimulus fluctuations trigger a localized cascade of activity across the dorsal cortex in the absence of overt movements

(A) Maps of regression coefficients of wide-field fluorescence against baseline stimulus TF in trained (left) and naive (right) animals across time lags. The units are

SD (changes in Z-scored wide-field fluorescence) per octave (log2-transformed stimulus TF). The color indicates the sign (red, positive; blue, negative) and

saturation the strength of the relationship between fluorescence and baseline stimulus fluctuations. Scale bar, 1 mm.

(B) Time course of regression coefficients of wide-field fluorescence against baseline stimulus fluctuations in example cortical regions; regression coefficients

(gray, 95% CI) and multiexponential fit (red). Time lags when the CI does not include zero indicate significant responses.

(C) Magnitude of modulation of cortical areas by subthreshold stimulus fluctuations.

(D) Response latency (time to half maximum) across cortical areas. Saturation is scaled based on response magnitude (C).

(E) Response half-decay time across cortical areas. Saturation is scaled based on response magnitude (C). Regions for which half-decay time could not be

determined are shaded gray.

(F) Maps of mean Z-scored fluorescence responses to slow (anti-licking, red) and fast (pro-licking, green) subthreshold stimulus fluctuations in trained mice

(6 mice). Scale bar, 1 mm.

(G and H) Mean Z-scored fluorescence of selected cortical areas (G) and quantification of overt movements (H) aligned to slow (red) and fast (green) baseline

stimulus fluctuations in trained mice. Shading indicates 95% CI. Gray bars indicate significant differences between responses to fast and slow fluctuations

(two-sample t test, p < 0.05).
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dorsal cortex by the visual stimulus. To characterize this rela-

tionship in more detail, we computed mean responses to the

extremes of the stimulus during the baseline period, which

carry different information for the animal: fast (pro-licking, n =

41,194) and slow (anti-licking, n = 42,253) stimulus samples

(1.5 standard deviations above or below the mean TF, respec-

tively), using responses to stimulus near the mean TF (±0.5

standard deviations, n = 467,681 samples) as a reference (Fig-

ures 5F, 5G, and S8B; Video S7; all imaged cortical areas

shown in Figure S7B). In the primary visual cortex and VISpm,

fast stimulus samples were associated with a decrease in bulk

fluorescence compared with the reference stimulus response,

whereas slow stimulus samples triggered an increase in bulk

fluorescence (Figures 5F, 5G, and S7B). These effects were

reversed in the VISrl, VISal, and VISa (Figures 5F and S7B). In

contrast, motor areas were activated preferentially by fast stim-

ulus samples, whereas slow samples had no significant effect

(Figures 5F and 5G). Thus, the secondary and primary motor
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cortex were recruited specifically by stimulus fluctuations

mice were trained to detect.

In the above analyses, we minimized the effect of movement-

related activity on our estimates of neural responses by limiting

our analysis to periods when the mice refrained from licking

and moving the wheel. However, other movements, such as

whisking or postural adjustments, could still occur sporadically

without interrupting the trial and could contribute to the observed

wide-field responses. To control for this possibility, we quantified

animals’ movements in response to fast and slow stimulus sam-

ples as captured by the body camera. Fast stimulus samples

triggered a small but significant decrease in face movement fol-

lowed by a small increase in bodymotion (Figure 5H). To account

for these differences in behavior, we used ridge regression to fit a

linear model of wide-field fluorescence, including the baseline

stimulus and videography data capturing overt movements as

predictors (Figures S9A–S9C). This analysis confirmed that the

pattern of wide-field activity triggered by baseline stimulus
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Figure 6. Average two-photon calcium responses to baseline stimulus fluctuations in the secondary motor cortex are consistent with wide-

field signals
(A) Localization of two-photon imaging sessions in the CCF (left) and depth from the cortical surface (right).

(B) Two-photon imaging site, average frame (left) and imaging site segmentation into somata (center) and neurites (right). Scale bar, 25 mm.

(C) Example single trial responses of individual two-photon ROI categories. Each row is an example trace from individual somata or neurites and the neuropil

surrounding them (note the difference in scale).

(D) Regression coefficients of average responses of ROI categories (Z-scored averages) and baseline stimulus fluctuations across different time lags (shading

indicates 95% CI).

(E) Comparison of the average wide-field MOs response and the responses of two-photon ROI categories (Pearson correlation of their average time courses in a

0- to 1.48-s window). As a measure of animal-to-animal variability, responses of individual mice in the wide-field cohort were compared with the average wide-

field response in the remaining mice (line, mean across mice).

(F) Mean Z-scored fluorescence responses to slow (anti-licking, red) and fast (pro-licking, green) baseline stimulus fluctuations across two-photon ROI cate-

gories. Shading indicates 95% CI. Gray bars indicate significant differences between responses to fast and slow fluctuations (two sample t test, p < 0.05).
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fluctuations could not be explained by these small overt move-

ments. Additionally, we used ridge regression to fit a linear model

of wide-field fluorescence that only included overt movements

as predictors (Figures S9D and S9E). We then repeated the

same analysis as described earlier (Figures 5A and 5B) on resid-

uals of this model. This analysis again confirmed that distinct

time courses of cortical engagement by sensory evidence,

culminating in recruitment of the motor cortex, cannot be trivially

accounted for by overt movements.

In a different variant of the task, mice were required to run

on the wheel to initiate a trial and were free to run during stim-

ulus presentation. Although not instructed in the task, mice

changed their running speed during the baseline grating stim-

ulus. Specifically, their average running speed decreased over

time during the baseline stimulus (Figure S1E), perhaps re-

flecting the temporal structure of the task. Additionally, mice

sped up after slow stimulus samples and slowed down after

fast stimulus samples (Figures S1H and S1I). The resulting

correlation between baseline stimulus TF and running speed
confounded the interpretation of wide-field fluorescence re-

sponses. In contrast to the localized cascade of activity we

observed in the stationary version of the task, fast stimulus

samples in running mice triggered widespread modulation of

dorsal cortical activity (Figures S1G and S10; Video S8). The

time course of these widespread responses resembled that

of running behavior but was opposite in sign (Figure S10A).

These observations highlight the importance of controlling

for task-instructed and non-instructed movement in interpre-

tation of neural data (Musall et al., 2019; Stringer et al.,

2019) and motivated us to focus our analyses on the station-

ary version of the task.

MOs wide-field responses to baseline stimulus
fluctuations reflect local population activity
Wide-field calcium signals are thought to reflect largely local

population activity of superficial cortical layers (Ma et al., 2016;

Allen et al., 2017; Makino et al., 2017), including neuropil, local

somata, and dendrites from neurons in deeper layers. To confirm
Neuron 109, 1861–1875, June 2, 2021 1869
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Figure 7. Modulation of wide-field responses to stimulus fluctuations by temporal expectation

(A) Regression coefficients of wide-field fluorescence against baseline stimulus temporal frequency during 0–6 s of the trial in early (orange) and late (purple)

change blocks and difference between the blocks (early-late). Shown are maps (left) and selected ROIs (right). Shading indicates 95% CI. Gray bars indicate

significant differences between early and late blocks (STAR Methods). Scale bar, 1 mm.

(B and C) Mean Z-scored fluorescence responses to fast (pro-licking, B) and slow (anti-licking, C) subthreshold stimulus fluctuations during 0–6 s of the trial in

early and late change blocks. Notation as in (A). Gray bars indicate significant differences between early and late blocks (two-sample t test, p < 0.05)..
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that the wide-field responses in the secondary motor cortex are

consistent with the activity of the local population, we used two-

photon calcium imaging in mice performing the task (Figures 6A

and 6B). We examined the average activity of three ROI

categories representing possible sources of the wide-field

signal: somata, neurites (mostly dendrites), and adjacent neuro-

pil (Figures 6B and 6C; STAR Methods). Somata as well as other

ROI categories showed sustainedmodulation by stimulus fluctu-

ations (Figure 6D; 5,795 trials, 974,470 stimulus samples, 19 ses-

sions, 7 mice), demonstrating that MOs neurons are driven by

sensory evidence during the baseline period, as observed in

wide-field signals. Furthermore, the time course of wide-field

signals wasmost similar to that of somatic responses (Figure 6E),

comparable with the similarity of responses of individual wide-

field animals to the rest of the wide-field cohort. Although neuro-

pil fluorescence was also modulated by baseline stimulus

fluctuations (Figure 6D), thismodulationmay reflect the contribu-

tion of dendrites and axons of local somata as well as long-range

inputs. Analysis of responses to extreme stimulus fluctuations

across different ROI categories found that, although MOs

somata and neurites were modulated primarily by fast stimulus

samples, in agreement with the wide-field responses, neuropil

was modulated significantly by fast and slow stimulus samples

(Figure 6F; fast pro-licking samples, n = 63,216; slow anti-licking

samples, n = 65,201; relative to samples near the stimulus mean,

n = 381,865).
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These results suggest that the responses of layer 2/3 neurons

in the secondary motor cortex to baseline stimulus fluctuations

are consistent with the observed wide-field MOs responses

but do not exclude that other sources, such as apical dendrites

of deep-layer neurons, could also contribute to the observed

wide-field signals (Peters et al., 2021).

Temporal expectationmodulates activation of themotor
cortex by sensory evidence
When making decisions, animals take advantage of immediate

sensory evidence as well as their predictions of environmental

events, but how the cortex combines these signals is unknown.

To answer this question, we determined how the wide-field re-

sponses to fluctuations in sensory evidence during the baseline

stimulus were influenced by animals’ temporal expectation of

stimulus change.We compared the relationship between stimulus

speedandwide-field fluorescenceduring the same trial periodbe-

tween trials when animals were expecting a change to occur (in

early change blocks) and when the change was not expected (in

late change blocks) using linear regression as above (Figure 7A;

244,491 stimulus samples from 2,521 trials in the early block and

521,827 stimulus samples from 4,373 trials in the late block). We

focused on the period when the early lick hazard rate differed be-

tween blocks (0–6 s after baseline stimulus onset; Figure 1I).

We found that animals’ temporal expectation of stimulus

speed change specifically modulated the relationship between



Figure 8. Proposed functional flow of sensory- andmovement-related signals in themouse dorsal cortex based on wide-field signals during

the change detection task
Sensory information modulates activity in primary and higher visual areas. Pro-licking sensory signals modulate wide-field activity in the secondary motor cortex

on extended timescales. Animals’ expectation modulates the gain of secondary motor cortex responses to sensory evidence. When the animal executes its

choice, movement-related signals are broadcast broadly across the dorsal cortex.
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stimulus speed and wide-field fluorescence in motor areas (Fig-

ures 7A and S11A). The secondary and primary motor cortices

responded more strongly to stimulus fluctuations during early

blocks, where speed changeswere expected soon after the start

of the trial. In contrast, initial responses to sensory evidence in

visual areas were indistinguishable between early and late

blocks (Figures 7A and S11A), with significant differences

emerging only following peak response time.

To understand how animals’ temporal expectation affected

the wide-field responses to fluctuations of sensory evidence in

the motor cortex, we computed mean responses to fast (pro-

licking) and slow (anti-licking) stimulus samples during the first

6 s of the trial in early and late change blocks (Figures 7B and

7C; early change block: fast stimulus samples, n = 9,655; slow

stimulus samples, n = 9957; reference samples, n = 110,282;

late change block: fast stimulus samples, n = 20,864; slow stim-

ulus samples, n = 21,111; reference samples, n = 234,372). Re-

sponses to slow stimulus samples were similar between the two

change blocks. On the other hand, responses to fast stimulus

samples in the secondary motor cortex increased when animals

were expecting the change. Overt mouse behavior in the same

period showed small but significant differences between the

two expectation blocks (Figures S11B and S11C). However,

controlling for movement-related activity using ridge regression

(Figure S11D) did not explain the modulation of wide-field fluo-

rescence by expectation in motor areas (Figures S11E and

S11F). Thus, temporal expectation influences engagement of

the secondary and primary motor cortex by sensory evidence.

DISCUSSION

Visual change detection as a paradigm to study
perceptual decisions
To study the neural correlates of computations underlying

perceptual decisions, we developed a visual change detection
task where mice had to report sustained changes in speed of a

noisy stimulus. We identified the strategy used by mice in the

task using a combination of model-based and model-free ap-

proaches. This analysis suggested that mouse behavior was

best explained by a combination of two stimulus filters: the pri-

mary filter, reflecting the average of the stimulus speed on a

timescale of�1 s, and a secondary filter attuned to abrupt steps

in speed. Finally, by manipulating the timing of changes during

the trial, we showed that animals’ expectation of when stimulus

speed changes might occur contributed to their decision to lick.

Typically, neural activity in reaction time tasks reflects the

interaction of multiple concurrent and correlated signals,

including those related to sensory integration, action selection,

and execution (Park et al., 2014). The baseline period of our

task allowed us to independently characterize the patterns of

neural activity underlying processing of sensory evidence sepa-

rate from the responses associated with the execution of behav-

ioral choice (Figure 8). By taking advantage of the stochastic

nature of stimulus speed during the prolonged baseline period,

we used wide-field imaging across the dorsal neocortex to un-

cover the patterns of population activity preceding the commit-

ment to a decision, reflecting the transformation of sensory

evidence and its interaction with animals’ expectation while con-

trolling for overt motor responses.

A localized cascade of cortical activity reflects pre-
decision processing of sensory evidence
We found that stimulus speed fluctuations during the baseline

period specifically modulated wide-field activity of several areas

of the dorsal cortex. This modulation differed in sign and tempo-

ral dynamics across areas. Tracking the ongoing stimulus, areas

VISp and VISpm responded transiently and bidirectionally to

pro-licking (high speed) and anti-licking (low speed) stimulus in-

formation with short latencies. In areas VISa, VISal, and VISrl,

which form the core of the mouse posterior parietal cortex
Neuron 109, 1861–1875, June 2, 2021 1871
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(Hovde et al., 2019), bidirectional responses to fluctuations in the

visual stimulus speed were sustained over hundreds of millisec-

onds. This observation is consistent with electrophysiological re-

cordings in rats that suggest that the posterior parietal cortex

faithfully represents accumulated sensory evidence (Hanks

et al., 2015).Wide-field activity of visual cortical areas contrasted

with that of the secondary motor cortex, which responded selec-

tively to transient pro-licking stimulus samples in a sustained

manner, with fluorescence signals persisting on a timescale

exceeding 1 s. The difference in persistence of stimulus re-

sponses between visual and motor areas is consistent with the

hierarchy of activity timescales reported in primate and rodent

studies (Murray et al., 2014; Pinto et al., 2020). Although sensory

responses in primary and secondary visual cortical areas were

present in trained and naive mice, modulation of motor cortex

wide-field fluorescence by sensory stimulus fluctuations was

observed only in trained animals and was not accounted for by

overt movements. These observations suggest that acquisition

of the task shaped the flow of sensory information in the dorsal

cortex, leading to experience-dependent recruitment of the mo-

tor cortex by behaviorally relevant sensory evidence.

Recruitment of the motor cortex by sensory evidence
prior to choice commitment
The localized nature of wide-field responses selective to pro-

licking fast stimulus samples in the secondary and primary mo-

tor cortex is consistent with their recruitment by onset of the

stimulus speed change when accounting for animals’ motor ac-

tions. These results contrast reports of widespread cortical

activation during decision-making based on wide-field imaging

(Allen et al., 2017; Pinto et al., 2019). Our findings are in agree-

ment with systematic perturbations of activity across the cortex

in a tactile discrimination task, which identified an area of the

anterior motor cortex as uniquely required for preparation and

execution licking responses (Guo et al., 2014). Furthermore,

the rat homolog of the secondary motor cortex, which includes

the frontal orienting field (FOF), has also been proposed as a

key locus in the evolution of orienting decisions (Erlich et al.,

2011). In a task in which rats base their choices by integrating

auditory signals over hundreds of milliseconds (Brunton et al.,

2013), the FOF represents evolving behavioral choices (Hanks

et al., 2015) and is required for task performance (Erlich

et al., 2015). Inactivation studies indicate that the MOs plays

an important role in expression of behavioral choices in percep-

tual tasks (Guo et al., 2014; Allen et al., 2017; Zatka-Haas et al.,

2018). Sustained modulation of MOs activity by sensory input in

our task reveals that the MOs is engaged even in the absence

of overt motor responses and thus has a role beyond motor

execution. Wide-field imaging cannot discern whether these re-

sponses are carried by one homogeneous population or by

different populations with different time courses of activity (Har-

vey et al., 2012; Scott et al., 2017). The GP classification model

revealed that animals’ choices were influenced by the average

stimulus speed on a timescale of �1 s, and the sustained

recruitment of the secondary motor cortex by fluctuations in

the stimulus could provide the neural substrate supporting

this behavioral strategy. These observations suggest that this

area contributes to perceptual choices independent of sensory
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modality or motor readout, perhaps by representing an

emerging plan of action or the animal’s belief about the state

of the stimulus.

Temporal expectation modulates recruitment of the
motor cortex by sensory evidence
The expectation of when the stimulus speed might change influ-

enced the animals’ behavior in the task. Wide-field imaging

permitted us to survey the effects of temporal expectation on

sensory processing across the dorsal cortex at the population

level. Areas MOs and MOp responded preferentially to pro-

licking stimulus fluctuations during periods when stimulus speed

change was likely. On the other hand, the initial wide-field re-

sponses in sensory areas were not modulated by expectation,

contrary to earlier studies in rodents (Shuler and Bear, 2006; Jar-

amillo and Zador, 2011). This observation suggests that expec-

tation does not systematically modulate their responses,

although the bulk nature of wide-field imaging could have

masked bidirectional modulation of individual neurons. Modula-

tion of wide-field responses in the primary visual cortex did

emerge later, several hundred milliseconds after stimulus pre-

sentation, perhaps as a consequence of top-down feedback.

However, this modulation of visual cortical responses by expec-

tation was in part explained by subtle differences in overt

behavior (Figures S11E and S11F).

These results suggest that temporal expectation may influ-

ence the flow of sensory evidence from visual to motor areas.

Although emergence of such selective transmissionwith learning

has been implied previously (Makino et al., 2017), our results

suggest that it can also be modulated dynamically and is not ex-

plained by differences in overt movements. A key question is

how task-relevant inputs in the visual cortex are relayed to motor

areas. Our experiments cannot disambiguate whether these sig-

nals are transmitted through direct corticocortical or indirect

subcortical pathways that might be modified during learning.

Projections from the sensory cortex to the basal ganglia have

been implicated in acquisition and execution of perceptual tasks

(Znamenskiy and Zador, 2013; Ruediger and Scanziani, 2020). A

cortico-basal ganglion loop may play a similar role in our task by

relaying task-relevant visual signals to motor areas in an expec-

tation-dependent manner.

Widespreadmovement-relatedmodulation of the dorsal
neocortex
We found that choice execution had a global influence on wide-

field fluorescence. Even prior to lick detection, movements re-

corded by the body camera were accompanied by widespread

recruitment of the dorsal cortex, masking neural signals underly-

ing processing of the sensory stimulus. Such global influence of

motor behavior on cortical activity is consistent with recent re-

ports (Allen et al., 2017; Musall et al., 2019; Steinmetz et al.,

2019; Stringer et al. 2019). However, the extent to which these

global signals arise as the result of preparation or execution of

movements or of sensory feedback associated with them re-

mains unclear. If these signals indeed represent a form of effer-

ence copy and broadcast the selected motor action throughout

the cortex, then they may serve as a substrate for reinforcement

learning (Fee, 2014).
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The ubiquity and magnitude of movement-related signals

poses a major challenge for interpretation of neurophysiological

signals when motor behavior is controlled or recorded inade-

quately. This challenge is illustrated by the version of the

change detection task in which mice were free to run on the

wheel during presentation of the baseline stimulus. The

extended baseline period and stimulus design in our task pro-

vide a way to capture neural activity resulting from the interac-

tion of sensory signals and animals’ expectation while control-

ling for global modulations associated with lick responses and

other overt movements. The stark differences in the patterns of

wide-field responses underlying processing of behaviorally

relevant sensory signals and those arising during and prior to

execution of behavioral choices highlight the importance of

task designs that disambiguate these related and often concur-

rent processes.

By controlling for movement-related signals through task

design and post hoc analyses, our results reveal how population

activity across themouse neocortex is modulated by the interac-

tion of sensory evidence and prior knowledge and highlight

the secondary motor cortex as a key region for further

studies aimed at addressing neural mechanisms of distributed

decision-making.
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(2017). High-Yield Methods for Accurate Two-Alternative Visual

Psychophysics in Head-Fixed Mice. Cell Rep. 20, 2513–2524.

Dana, H., Chen, T.W., Hu, A., Shields, B.C., Guo, C., Looger, L.L., Kim, D.S.,

and Svoboda, K. (2014). Thy1-GCaMP6 transgenic mice for neuronal popula-

tion imaging in vivo. PLoS ONE 9, e108697.

de G. Matthews, A.G., van der Wilk, M., Nickson, T., Fujii, K., Boukouvalas, A.,
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: organisms/strains

Mouse: Camk2a-tTA The Jackson Laboratory JAX#007004

Mouse: tetO-GCaMP6s The Jackson Laboratory JAX#024742

Software and algorithms

ScanImage, v5.7.0 Pologruto et al., 2003; Vidrio

Technologies, LLC.

http://scanimage.vidriotechnologies.com/display/SIH/

ScanImage+Home;jsessionid=7B68EEAE8A324DA

C3FC67B48B636C75B

LabView 13, 17 National Instruments https://www.ni.com/en-gb/shop/labview.html

MATLAB, 2017b, 2019b Mathworks https://www.mathworks.com/products/matlab.html

PsychToolbox-3 Kleiner et al., 2007 http://psychtoolbox.org/download

Suite2p Pachitariu et al., 2016 https://github.com/MouseLand/suite2p

Baking Tray https://github.com/Sainsbury

WellcomeCentre/BakingTray

https://doi.org/10.5281/zenodo.3631610

StitchIt Han et al., 2018; https://github.com/

SainsburyWellcomeCentre/StitchIt.

https://doi.org/10.5281/zenodo.3941901

Allen Brain Atlas API, CCF3, v3 Allen Institute for Brain Science http://atlas.brain-map.org/

Code for optimization and analysis

of Gaussian process models of

mouse behavior

This paper https://github.com/znamlab/rt_model_orsolic

Code for asymmetric Student-t model

for neuropil correction

This paper https://github.com/BaselLaserMouse/ast_model

Deposited data

Behavioral datasets and trained models This paper https://doi.org/10.6084/m9.figshare.13606583.v1
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to Thomas D. Mrsic-Flogel (t.mrsic-flogel@ucl.

ac.uk).

Materials availability
This study did not generate new unique reagents.

Data and code availability
Behavioral data and code for optimization and analysis of the GP classificationmodels of mouse behavior can be found at https://doi.

org/10.6084/m9.figshare.13606583.v1 and https://github.com/znamlab/rt_model_orsolic. Due to the large size of the imaging data-

set, the raw data have not been deposited in a public repository but will be made available upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All experiments were conducted in accordance with institutional animal welfare guidelines licensed by the Swiss cantonal

veterinary office or the United Kingdom Home Office. To express calcium indicator in excitatory cells throughout the cortex,

we crossed heterozygous Camk2a-tTA (JAX#007004) and homozygous tetO-GCaMP6s (JAX#024742) mice (Wekselblatt et al.,

2016). We used 11 adult male mice (84-104 days old) for widefield imaging and 7 adult male mice (93-168 days old) for two-photon

imaging.
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METHOD DETAILS

Animal housing and surgical procedures
Twoweeks before the start of behavioral training, mice were switched to reversed light-cycle. Standard environment enrichment was

provided in the form of a running wheel and cardboard tunnels or running wheel, clear tubes and wooded toys. After acclimatization,

animals underwent surgery to prepare them for behavioral training and imaging.

Animals in the widefield cohort were anaesthetized with a mixture of fentanyl (0.05 mg per kg), midazolam (5.0 mg per kg), and

medetomidine (0.5 mg per kg). Buprenorphine (0.1 mg per kg) and Enrofloxacin (5 mg per kg), were administered toward the end

of the surgery, and during recovery. The skull was exposed and cleaned, and a metal head plate was secured to the skull around

the edge of the occipital plate and the superior temporal line using dental cement (Super-Bond C&B, Sun Medical). The exposed

imaging site was covered with transparent dental cement (Polymer L-Type Clear, Sun Medical) and a glass coverslip (150 um thick-

ness), pre-cut using a diamond scribe to match the exposed surface of the skull (Silasi et al., 2016). A custom-made 3D printed light

shield was then cemented to the preparation.

Animals in the two-photon cohort were anaesthetized using isoflurane anesthesia (1 - 4%). Dexamethasone (2 – 3 mg per kg) and

carprofen (5 mg per kg) were administered prior to surgery. A head plate was implanted as described for widefield preparation, after

which a craniotomy was performed and a round glass coverslip (3 mm) was implanted, centered �1.5-1.7 mm anterior and �0.5-

0.7 mm lateral from Bregma.

Behavioral setup
Behavioral setups, similar to those previously described (Poort et al., 2015), were placed in sound isolated boxes. The mouse was

head-fixed and placed on a polystyrene wheel (20 cm diameter, 12 cm width). Wheel movements were monitored using a rotary

encoder (1000 pulses per revolution, K€ubler) coupled to the wheel axle. Two 21.5’’ monitors were placed on each side of the animal

(�20 cm away from the animal, slightly angled and tilted toward animal’s body), covering approximately 100x70 degrees of visual

space. Monitors were gamma-corrected with maximum luminance of �40 cd/m2 (Konica Minolta, LS-100 Luminance Meter).

Customwritten software in MATLAB controlled stimulation using PsychToolbox-3 (Kleiner et al., 2007). Soy milk rewards were deliv-

ered through the spout in front of the animal. Reward delivery was regulated via a solenoid pinch valve (NResearch). The spout was

coupled to a piezo element whose output was used tomeasure the animal’s licking. Custom electronic hardware was used to amplify

the piezo signals and control the valve. An air tube was placed �2 cm from the animal’s right cheek to deliver light air puffs (200 ms,

2 bar pressure, tip was cut open to 2mm). The animal’s right eyewas imagedwith aCMOScamera (Imaging Source, 30Hz) in order to

track eye movements and pupil diameter. A second camera was placed in front of the animal capturing its body movements. To in-

crease the throughput of behavioral training, animals were trained in parallel on 5 different setups (8 different setups for the two-

photon cohort). Animals were assigned to the setups randomly from session to session. Behavioral data were acquired using

custom-written code in LabView (National Instruments) and a PCI-6320 acquisition card (National Instruments).

Behavioral task
Each trial began with a gray isoluminant screen. After a randomized delay (minimum 3 s + sample from an exponential distribution

with the mean 0.5 s) the baseline stimulus appeared (sinusoidal grating with the spatial frequency of 0.04 cycles per degree, square

patch aperture equivalent to 3 grating periods, the direction of drift was randomized between upward or downward drift). The tem-

poral frequency of the baseline stimulus increased after a randomized baseline period. Change times were sampled from an expo-

nential distribution with a mean of 4 s truncated at 5 s and added to an offset of 3 s in early blocks and 10.5 s in late blocks. Initially in

the widefield cohort, the offset for early probes (early changes that occur in late block) was 4 s (29/109 sessions), in rest of the ses-

sions it matched the offset of the early block distribution. Removing trials outside of the 4-8 s overlap window during these sessions

did not affect our conclusions in Figure 1J. On noisy trials, temporal frequency of the grating was drawn every 50 ms (3 monitor

frames) from a lognormal distribution, such that log2-transformed TF had the mean of 0 and standard deviation of 0.25 octaves

and the geometric mean TF on noisy trials was 1 Hz. In a subset of trials (30%) no noise was added and the baseline stimulus

had a constant TF of 1 Hz. Mice were trained to report increases in mean temporal frequency by licking the spout to trigger reward

delivery (drop of soy milk). If mice did not lick within 2.15 s from the change, the trial was a miss trial. If mice licked before the change

happened, they received an air puff to the cheek. Responses in the first 150 ms (‘‘refractory licks,’’ 58/19734 trials in widefield and

36/8901 trials in two-photon cohort) were not rewarded and were excluded from analysis of hit trials. In stationary mice, baseline

stimulus was aborted if when movement exceeding 2.5 mm in a 50 ms window in either direction was detected.

Behavioral training
Before animals underwent training on the temporal frequency change detection task, several pre-training steps were taken in order to

habituate the animal to the setup. One week after the surgery, mice were food-restricted and behavioral training started. Animals

were handled for a minimum of 3 sessions, until mice were comfortable with the experimenter and were climbing on the experi-

menter’s hand while being given drops of soy milk. Animals were then introduced to short manual restraint periods in a soft cloth

after which they were given soy milk rewards. Next, animals were head-fixed and placed on the running wheel of the behavioral
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training setup (10 – 20 min) with the monitors turned off and were trained to run on the wheel for reward. This step typically took 4

sessions. Two mice were not trained further than this step and were assigned to the naive cohort of the widefield experiments.

Next, to ensure that the animals understood the relationship between the stimulus presented on the monitor and reward availabil-

ity, micewere pretrained on a simple task, where they had to lick in response to a change in the orientation of the grating. At this stage,

translation of the grating was linked to the running speed of the mouse. As soon as mice started responding to the change in grating

orientation, this step was complete. One mouse, which failed to learn to respond to orientation changes, was not trained further and

was added to the naive cohort. Eight widefield mice proceeded training on the temporal frequency change detection task. Two of

these mice were excluded from study due to lack of progress (too high abort rate due to early licks). It took the remaining six

mice 14-21 sessions to acquire the task. Mice were initially allowed to run during the task. After observing strong modulation of

cortical activity associated with running, mice were required to be stationary during the task.

Mice used for two-photon imaging were trained in the stationary version of the temporal frequency change detection task directly

and acquired the task in 8-12 sessions (6 mice) and 34 sessions (1 mouse).

Widefield calcium imaging
Widefield calcium imaging was carried out using a custom-built tandem-lens epifluorescence macroscope using two photographic

lenses (85mm f/1.8D objective, 50mm f/1.4D tube lens, Nikon) placed in face-to-face orientation (Ratzlaff and Grinvald, 1991). Exci-

tation light from two LEDs: 470 nm (M470L3, Thorlabs, with excitation filter FF02-447/60-25, Semrock), and 405 nm (M405L3, Thor-

labs, with excitation filter FF01-405/10-25, Semrock) was combined using a dichroic (FF458-Di02-25x36, Semrock) and delivered in

Koehler configuration through a dichroic mirror (FF495-Di03, Semrock) placed in the infinity focused imaging path. Average power

was �0.05 mW/mm2, similar to that in other studies (Wekselblatt et al., 2016). Images were acquired using an emission filter (525/

50-25, Semrock) and an sCMOS camera (pco.edge 5.5, PCO) at 50 Hz in rolling shutter mode and binned on the fly 2x2 using manu-

facturer software. This lens combination resulted in a resolution of �20 mm per pixel. Excitation wavelengths were temporally inter-

leaved by amicrocontroller (Teensy 3.2) triggered by the camera rolling shutter exposure output. To avoid rolling shutter artifacts and

crosstalk between 470 nm and 405 nm excitation frames, illumination was restricted to periods when all the lines being acquired cor-

responded to the same imaging frame (tglobal in manufacturers’ documentation). A photodiode (PDA100A-EC, Thorlabs) recorded the

onset of each visual stimulus frame to ensure precise alignment between visual stimulation and imaging data.

Two-photon calcium imaging
Two-photon calcium imaging was conducted using a custom-built resonant scanning two-photon microscope (INSS, UK) with a 16x

water-immersion objective (NA 0.8, Nikon), at 930 nm excitation wavelength, �50 mW of power (Mai Tai, SpectraPhysics). GCaMP

fluorescence was captured through a 520/40 emission filter (ET520/40 m, Chroma). Single imaging planes of 512 3 512 pixels,

capturing a field of view of �440 3 440 mm, were acquired at �30 Hz using ScanImage v5.7.0 (Pologruto et al., 2003). To avoid

cross-talk between imaging and visual stimulation, the monitor backlight was synchronized to the turnaround of the resonant mirror

(Leinweber et al., 2014). A photodiode (PDA100A-EC, Thorlabs) recorded the onset of each visual stimulus frame to ensure precise

alignment between visual stimulation and imaging data. At the end of the imaging session a Z stack was acquired capturing the sur-

face of the brain and revealing the surface vasculature used for site localization. We imaged 7 mice, 34 sessions, at depths spanning

200 – 330 mm from the brain surface, at various locations over the secondary motor cortex.

Registration to Allen CCF reference atlas
At the end of the imaging experiments, mice from the widefield cohort were anaesthetized and five DiI (Invitrogen D3911) tracks were

made across the imaging site by inserting a glass micropipette coated with DiI. Locations of the DiI tracks were recorded under the

widefield macroscope to ensure that imaging frames could be successfully registered to ex vivo brain volumes. However, since we

found that blood vessel patterns could be reliably reconstructed from ex vivo data, DiI tracks were not used for ex vivo / in vivo

registration.

The mice were then anaesthetized with sodium pentobarbital and transcardially perfused with 4% paraformaldehyde. The brains

were extracted, post-fixed overnight in 4% paraformaldehyde, and stored in 50 mM phosphate buffer. Brains were coronally

sectioned (100 or 80 mm steps) and imaged at two optical planes per physical section resulting in voxel size of 1.32 3 1.32 3

50 mm or 23 2 x 40 mm using a custom serial two-photon tomography microscope. After illumination correction and image stitching,

brain volumes were registered to the Common Coordinate Framework provided by the Allen Institute for Brain Science (CCF, v3 ª
2015 Allen Institute for Brain Science, Allen Brain Atlas API, available from https://portal.brain-map.org/api/index.html) using Elastix

(Klein et al., 2010) by applying rigid affine transformation followed by non-rigid deformation as previously described (Han et al., 2018).

To reconstruct the superficial blood vessel pattern from serial two-photon tomography volumes, we first identified the dorsal sur-

face of the volume as the locations of the first voxel crossing a manually selected brightness threshold. We smoothed the location

values with a median filter and used the fluorescence of the voxels near the surface to reveal blood vessels (Figure S4). Center lo-

cations of the two-photon imaging sites were manually determined based on the vasculature patterns of in vivo imaging sites and

ex vivo stacks transformed to CCF atlas coordinates. Widefield imaging sites were first aligned to the reference imaging session

for eachmouse, and then aligned to the ex vivo stack transformed to CCF atlas coordinates by affine transformation based onmanu-

ally selected control points.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Behavioral data analysis
In the widefield cohort we included all the sessions after mice crossed the threshold of detecting more than 80% easiest changes in

no-noise trials and interrupted less than 55% of no-noise trials due to early licking. Average detection rate across sessions for the

easiest change was 96.9 ± 9.3% (mean ± sd), average early lick rate 19.4 ± 16.3% (mean ± sd). We excluded 6/115 sessions due

to high abort rate due to movement. In the remaining sessions the average abort rate due to movement was 43.4 ± 17.8%

(mean ± sd) where 52% of all movement induced aborts happened during the first 3.5 s of the stimulus. For two-photon imaging

data analysis we included sessions where performance on two easiest changes was larger than 80% (19/34 sessions). Average

detection rate across these sessions for the easiest change was 98% ± 0.2% (mean ± sd), average early lick rate 41.8% ±

21.7%, average movement abort rate 25.1% ± 20.7%.

When computing behavioral performance, all error bars are 95% confidence intervals, unless otherwise stated. For psychometric

curves and hazard rates, confidence intervals were estimated using binofit in MATLAB, for chronometric curves they were calculated

as the 0.025 and 0.975 quantiles of 2000 bootstrap samples with replacement.

To estimate hazard rates, the number of early licks and changes in one second bins was normalized by the total number of trials,

excluding trials where early lick or change have already happened, or trial was aborted due to movement prior to the start of the bin.

To compute lick triggered averages, stimuli preceding early licks were averaged across animals, revealing mean stimulus informa-

tion content prior to the lick. Confidence intervals were estimated by resampling early licks (2000 bootstrap samples with

replacement).

GP classification model
A Gaussian process classification model (Rasmussen, 2006) was trained to predict the lick hazard rate in discrete time samples cor-

responding individual TF fluctuations (50ms). The formulation and implementation of themodel are described in detail below. In brief,

the model received as its inputs the history of the visual stimulus over the past 50 samples (2.5 s) and time elapsed since the start of

the trial. The stimulus history was filtered by multiplying the stimulus vector with a filter matrix, whose columns define the stimulus

features that best predict mouse behavior (Vivarelli andWilliams, 1999; Snelson andGhahramani, 2006). The effective dimensionality

of the filtered stimulus space was controlled by placing a hierarchical Gaussian prior on each column of the filter matrix, shrinking

superfluous projections to 0 (Bishop, 1999; Beal, 2003). The time input was passed through a non-linear monotonic warping function

parametrized as a sum of tanh functions (Snelson et al., 2004), to account for non-stationary nature of timing behavior (Gibbon, 1977)

and excess early licks immediately following the onset of the baseline stimulus (Figure 1I). Filtered stimulus history and warped time

served as inputs to the GP component of the model, whose output predicted the log-odds of licking. The covariance of the GP prior

was defined as the sum of Matérn 5/2 kernels on filtered stimulus and warped time. To jointly fit behavior in different hazard rate

blocks and across running and stationary versions of the task, the model was extended to include a hierarchy across experimental

conditions (Hensman et al., 2013) by modifying the kernel to include population and hazard block-specific components. Computer

code for model optimization and analysis of model fits can be found at https://github.com/znamlab/rt_model_orsolic.

Model structure
We aim to predict whether and when the mouse would lick in response to the visual stimulus on individual trials of the task. Since the

trial is terminated once themouse licks, we accomplish this bymodeling the lick hazard rate – the probability of licking conditioned on

the fact that the mouse has not licked up to that point during the trial. If we discretize time during each individual trial into ‘‘samples,’’

we will only have the opportunity to observe a lick in the ith sample of a trial, if there have been no licks in each of the i� 1 preceding

samples. Therefore, wewill represent each trial outcome as the vector y – a series of zeros terminated by 1 or 0 depending onwhether

themouse licked on the particular trial. The likelihood of observing a particular trial outcome y is the product of conditional likelihoods

over the whole trial:

pðyjXÞ=pðynjyn�1 = 0; xnÞ
Yn�1

i = 2

pðyi = 0jyi�1 = 0; xiÞ pðy1 = 0jx1Þ; (1)

given the designmatrixX= ½x1;.; xn� containing inputs over the course of the trial. Each input vector xi combines the stimulus history

in the Q preceding samples and the time elapsed since the stimulus onset:

xi = ½si; si�1;.; si�Q+ 1; ti�u: (2)

For convenience, we sample the behavior every 50 ms – the duration of individual stimulus fluctuations in the task.

To capture the relationship between the inputs X and behavior observations y, we assume a latent function f representing the log-

odds of licking. Therefore, the lick hazard rate at the ith moment in time is the logistic function of fðxiÞ:

p yi = 1jyi�1 = 0; xiÞ=pðyi = 1jyi�1 = 0; f xið Þð Þ= 1

1+ exp �f xið Þð Þ: (3)
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In order to minimize assumptions on f, we do not impose a specific parametrization of f but introduce a prior distribution over func-

tions, using a Gaussian process (GP) with a mean function mðxÞ and covariance function kðx;x0Þ:
f xð Þ � GP m xð Þ; k x; x0ð Þð Þ: (4)

The GP prior distribution implies that the log-odds of licking at different moments in time during the session are jointly Gaussian, with

the covariance defined as a function the stimulus immediately preceding each moment and time since trial onset:

p f xið Þ; f xjð Þð Þ=N m xið Þ
m xjð Þ
� �

;
k xi; xið Þ k xi; xjð Þ
k xj; xið Þ k xj; xjð Þ
� �� �

ci; j˛ 1; n½ �: (5)

In this framework, given a training dataset D= fðxi; yiÞgNi =1 aggregating all samples for the training trials, we can predict the mouse

behavior at any sampled time point n of a test trial using the predictive distribution:

pðy�jX�;DÞ=
Z

pðy�n
��y�n�1= 0; f�nÞ

Yn�1

i =2

pðy� i = 0
��y� i�1= 0; f� iÞ pðy�1= 0

��f�1Þ pðf�jDÞ df� (6)

where X� = ½x�1;.; x�n� is the test input data, f� = ½f�1;.; f�n�u = ½fðx�1Þ;.; fðx�nÞ�u the vector of corresponding latent function values

and y� = ½y�1;.; y�n�u the behavior whose probability is evaluated.

The next section will describe how to evaluate the posterior distribution of f and what it implies in terms of training. The approach is

based on the work of Hensman, et al. (2015) and is summarized here for the sake of completeness and reproducibility. The subse-

quent sections will describe the kernel and mean functions and summarize specifics of the implementation.

GP posterior estimation
The posterior distribution can be rewritten as an integral of two terms:

p f�jDð Þ=
Z

p f�jfð Þ p fjDð Þ df; (7)

where f= ½f1;.; fN� is the vector of latent function values on the training data. The first term is the conditional distribution of the latent

function values for the test data given the latent function values of the training data. As a property of the GP prior, we can analytically

derive its form as the density of a multivariate normal distribution, that we note pðf�jfÞ = Nðm�;S�Þ. The mean and covariance param-

eters ðm�;S�Þ depend on the covariance of the training data ½Kff�i;j = kðxi;xjÞ, and the covariance of the test data with the training data

½K�f�i;j = kðx� i;xjÞ:
m� =m X�ð Þ+K�fK

�1
ff f�m Xð Þð Þ and S� =Kff � K�fK

�1
ff K

u
�f ; (8)

where mðX�Þ= ½mðx�1Þ;.;mðx�nÞ�u and mðXÞ = ½mðx1Þ;.;mðxNÞ�u.

The second term pðfjDÞ, the posterior of the latent function values on the training data, is more problematic. As our likelihood is not

normally distributed (Equation 3, it cannot be expressed in closed-form; Rasmussen, 2006). We replace it with a normal variational

approximating distribution qðfÞ = Nðmf;SfÞ. The mean and covariance parameters ðmf;SfÞ are optimized to minize the Kullback-Lei-

bler (KL) divergence between pðfjDÞ and qðfÞ, a measure of discrepancy between the two distributions.

With this variational approximation, we can replace Equation 7 with an approximate posterior distribution:

p f�jDð Þzq f�jDð Þ=
Z

p f�jfð Þ q fð Þ df; (9)

which possesses a closed-form expression. Both terms in the integral being normal distribution density functions, the result is also a

normal distribution density qðf�jDÞ=Nð~m�; ~S�Þ with parameters defined as follows:

~m� =m X�ð Þ+K�fK
�1
ff mf �m Xð Þð Þ and ~S� =Kff � K�f Kff � Sfð Þ�1Ku

�f : (10)

For a given test input x� i, the posterior mean can be rewritten as:

~m� i =m x� ið Þ+
XN
j = 1

aik x�; xjð Þ where a=K�1
ff mf �m Xð Þð Þ: (11)

Making inferences using Equation 10 requires the entire training dataset D and becomes computationally intractable for large N. To

reduce computational complexity, we replace the training data with a set of M (such that M � N) pseudo input points, also called

inducing points, Z= z1;.; zM½ � and latent function values u = ½fðz1Þ;.; fðzMÞ�. In this scenario, the variational approximating distri-

bution becomes qðfÞ= R pðfjuÞqðuÞ du where qðuÞ = Nðmu;SuÞ. With this new variational approximation, the parameters of the

approximate posterior distribution in Equation 10 become:

~m=m X�ð Þ+K�uK
�1
uu mu �m Zð Þð Þ and ~S=Kuu � K�u Kuu � Suð Þ�1Ku

�f ; (12)
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where ½Kuu�i;j = kðzi; zjÞ and ½K�u�i;j = kðx� i;zjÞ. As a consequence, any computation involving these quantities only requires inverting a

M3M matrix, rather than a N3N matrix.

In this final formulation, training a model consists in optimizing the values of the inducing points and values ðZ;uÞ as well as the

variational distribution parameters ðmu;SuÞ, in order tominimize the KL-divergence between pðfjDÞ and qðfÞ. Minimizing the KL-diver-

gence objective is equivalent to maximizing the model evidence lower bound (ELBO) defined as:

L= EqðfÞ½log pðyjfÞ� � KLðqðuÞ kpðuÞÞ

=
XN
i =1

EqðfÞ½log pðyijyi�1; fiÞ� � KLðqðuÞ kpðuÞÞ: (13)

As the ELBO approximates themodel marginal log-likelihood, it is also used to learn themodel hyperparameters, i.e., the kernel func-

tion and mean function parameters. All parameters are optimized using a gradient descent technique. The definition of the ELBO

involving a simple sum over the training data, we employ a stochastic version the gradient descent using only a random subset of

the training data at each iteration.

Kernel and mean functions
In general the mean function mðxÞ can be set to 0 with no reduction in model performance, as the posterior distribution can

capture the mean. However, as the mean log-odds of licking are far below 0 (mice do not lick for the vast majority model sam-

ples), we include a constant mean function to ensure that the model makes sensible predictions outside of the range of the

training data.

We define the kernel function as the sum of stimulus and time dependent components:

kðx; x0Þ= ksðx; x0Þ+ ktðx; x0Þ; (14)

where ksðx; x0Þ and ktðx; x0Þ depend on stimulus history s or the time elapsed since the stimulus onset t, respectively. An advantage of

the additive form of the kernel is that stimulus- and time-dependent components of the log-odds can be readily separated. The pos-

terior predictive mean from Equation 11 can be decomposed into:

~m�i =mðx�iÞ+
XN
j = 1

aiðksðx�i; xjÞ+ ktðx�i; xjÞÞ

=mðx�iÞ+
XN
j = 1

aiksðx�i; xjÞ+
XN
j = 1

aiktðx�i; xjÞ

=mðx�iÞ+ ~mis + ~mit:

(15)

To identify stimulus features that best explain observed behavior, we first multiply the stimulus history by a Q3D matrix of filters W

(Vivarelli and Williams, 1999; Snelson and Ghahramani, 2006), where Q is the number of stimulus history samples included in the

model and D is the number of stimulus filters:

f= suW: (16)

Our approach is to select an arbitrarily large D and control the effective dimensionality of the filtered stimulus space by placing an

automatic relevance determination (ARD) prior onW (Bishop, 1999; Beal, 2003). The ARD prior assumes a zero-mean Gaussian prior

on each column wd of the matrix W:

p Wjnð Þ=
YD
d = 1

nd

2p

� �D=2
exp �ndwd

2

2

� �
; (17)

and a gamma distributed prior on the precision vector n = ½n1;.;nD�. This prior over n favors high precisions, consequently shrinking

the columns of W that do not contribute to the prediction performance of the model. To estimate the loadings of W, we infer an

approximate posterior distribution over ðW;nÞ using the automatic differentiation variational inference (ADVI) framework (Kucukelbir

et al., 2017), which extends the ELBO definition of the model (Equation 13) with additional terms.

We then use aMatérn 5/2 kernel over filter outputs f such that x = ½f1;.;fD; t�u. Since their magnitude can be adjusted by scaling

the columns ofW, the length scale of the stimulus kernel is fixed to 1 to avoid over-parametrizing the model. Therefore, ks depends

only on the euclidean distance L between f and f
0
:

ks x; x0ð Þ= s2
s 1+

ffiffiffi
5

p
L+ 5L2

.
3

� �
exp �

ffiffiffi
5

p
L

� �
; where L= f� f

0�� ���� ��
2
: (18)

It is well established that precision of timing behavior is not constant but varies with the duration of time intervals (Gibbon, 1977). To

account for this non-stationarity, we passed the input to the time component of the kernel through a non-linear monotonic warping

function, parametrized as a sum of tanh functions (Snelson et al., 2004):
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tw = t +
XJ
k = 1

aktanh bk t + ckð Þð Þ: (19)

We optimize the parameters ða;b; cÞ during model training. The time kernel kt is then computed as a Matérn 5/2 kernel over warped

time with its own length scale and variance parameters:

kt x; x
0ð Þ= s2

t 1+

ffiffiffi
5

p
tw � t0w

 �
[ t

+
5 tw � t0w

 �2

3[ 2
t

 !
exp �

ffiffiffi
5

p
tw � t0w

 �
[ t

 !
: (20)

Hierarchical structure
Our dataset contains trials recorded under different experimental conditions, such as blocks of trials with different distributions of

stimulus change times, as well as running and stationary conditions. We aimed to extend the model to capture the differences in

behavior between these experimental blocks, while also learning their shared features. The GP framework offers a simple and

rigorous approach for dealing with such structured data (Hensman et al., 2013).

We introduce an indicator variable b, which denotes the experimental block for each sample, and split each part of the covariance

kðx; x0Þ into population and block-specific components:

k x; x0ð Þ=
(
ksp + ksb + ktp + ktb when b=b0

ksp + ktp otherwise:
(21)

Population and block-specific covariance functions share the same forms, described by Equations 18–20, and stimulus features

defined by W but have their own hyperparameters, variances s2s and s2t , and length scale [t.

Model implementation and training
The model is implemented on the basis of the Stochastic Variational GP class of the GPflow Python package (de G. Matthews et al.,

2017), which relies on Tensorflow (Abadi et al., 2015) for automatic differentiation and GPU-based computations.

Model training was carried out independently for each mouse, using behavioral data from both stationary and trained versions of

the task. The block variable b (Equation 21) indicated whether a trial was acquired in the running task, or in early or late hazard rate

blocks in the stationary task. The dataset was split into training (60%), validation (20%), and test (20%) sets, stratified according to

change strength and experimental block.

We used 450 inducing points and assigned 150 to each experimental block. Inducing points were initialized using a mini-batch

variant of the K-means clustering algorithm, provided by the scikit-learn Python package (Pedregosa et al., 2011). We set the number

of stimulus history samples Q to 50, the number of filters D to 15, and the number of tanh functions J (Equation 19) to 5. Filter co-

efficients W and the parameters ða;b; cÞ were randomly initialized from a standard normal distribution.

We performed the optimization of all parameters using the Adam algorithm (Kingma and Ba, 2014) with the default settings and a

learning rate of 0.001 employing 12000 samples per mini-batch. Computations took place on Nvidia GeForce 2070 RTX or 2080 RTX

graphics cards, and were terminated after amaximum time of 10 hours or when convergence was reached as assessed by predictive

performance on the validation set.

Once a model was fitted, we estimated the predictive distribution for each time point of each trial with Equation 6, replacing

the integral with a Monte Carlo integral using 500 samples from the approximate posterior distribution. We did not use the full

posterior distribution of W but replaced it with the posterior mean. To assess the performance of the model and capture

uncertainty of its predictions, we generated behavior replicates by drawing licks from the predictive distribution for each trial

in the test set. If a sampled lick occurred after the baseline period, the corresponding replicate trial was labeled as a hit and

a reaction time was calculated as the time from change to the lick. We repeated this sampling procedure to obtain 500 repli-

cates of the test dataset and generated psychometric and chronometric curves and the distribution of lick times for each repli-

cate. Figure 2 and Figures S2 and S3 show the median, 2.5%, and 97.5% quantiles of the sampled curves. We also performed

model comparisons based on their predictive performance, using the averaged predictive log-likelihood of trials in the dataset

(Figure S3H).

To examine the effect of removing one of top two the stimulus filters in Figure S3, the corresponding column of the filter matrix W

was set to 0 before evaluating model predictions. Performance of the full and ablatedmodels was then compared by evaluating them

200 times over the entire dataset, including training, validation and test folds.

Neural data analysis
Pre-processing of widefield imaging data

Saved frames were checked for dropped frames and XY motion artifacts, binned 4x4 using a box kernel, and separated to 405 nm

and 470 nm channels. The camera offset (average of 10000 dark frames) was removed from each frame. Each pixel in each session

was low-cut filtered (cut-off at 0.00333 Hz), preserving the DC offset. For hemodynamic signal correction, 405 nm channel was
e7 Neuron 109, 1861–1875.e1–e10, June 2, 2021
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linearly interpolated to time points of 470 nm channel frames by taking the average of 405 nm frames immediately before and after

each 470 nm frame. The ratio of 470 and 405 channels was then normalized by the mean of the ratio:

f =
f 470=f 405

1
N

P
k f470k

�
f405k

:

Imaging was conducted at 50 Hz, resulting in a hemodynamics-corrected frame rate of 25 Hz. Frames were further downsampled 2x

resulting in 170 mm per pixel resolution. To correct for differences in illumination and prep quality across the imaging site within in-

dividual sessions, and across sessions and animals, fluorescence traces for each pixel were normalized by their standard deviation

within each imaging session. Finally, normalized imaging frames were aligned to the Common Coordinate Framework provided by

the Allen Institute for Brain Science (Figure S4).

Responses to task events

To compute fluorescence responses associated with the baseline stimulus onset, stimulus change, correct, and early licks, we first

identified the imaging frame, which was being exposed when a given event occurred. This frame corresponds to time 0 in fluores-

cence traces in Figures 3 and 4. We then extracted fluorescence traces around each event. Aligned fluorescence and movement

traces were then baseline corrected by subtracting the mean in 480 ms (for stimulus and change onset) or 2000 ms (for licks) prior

to event onset. For ROI-based analyses, we first computed the mean fluorescence within a given ROI and then processed the ROI

traces as described above.

To minimize the impact of behavioral responses, for stimulus onset traces in Figure 3, we only included frames which occurred

during the baseline stimulus presentation, excluding frames acquired after change onset or occurring less 1 s prior to early licks

or wheel movement in trained animals. If the resulting fluorescence trace was shorter than 0.5 s, the entire trial was excluded.

Responses to baseline TF fluctuations

We first resampled the TF of the baseline stimulus at the sampling rate of imaging acquisition. To do this, we computed themean log-

TF presented during each imaging frame acquired during the baseline stimulus, weighted by their presentation duration:

s =

P
ipi log2viP

ipi

:

ni is the TF of the i-th monitor frame presented during a given imaging frame, pi is its duration (16.7 ms or less, for monitor frames,

which spanned two imaging frames).

For the regression analysis in Figures 5A, 5B, and 6D we evaluated the impact of stimulus samples s on future fluorescence re-

sponses f t by shifting the responses by time t (step = 50 ms, maximum shift = 2 s). To measure the change in fluorescence evoked

by the stimulus sample, each shifted fluorescence vector f t was then corrected by subtracting the fluorescence at the time of the

stimulus presentation f (0 ms lag). We then fit the following regression model relating baseline corrected fluorescence to log2-trans-

formed TF for each time lag independently:

f t � f = at + sbt + εt:

bt quantifies the modulation of fluorescence responses by the stimulus, while the intercept term at captures unrelated changes in the

time course of fluorescence responses. We only included fluorescence frames acquired during the baseline stimulus and at least 1 s

prior to early licks or wheel movements.Model coefficients and their confidence intervals were estimated using the function regress in

MATLAB.

In expectation manipulation analysis in Figure 7A, the above model was fit for each block independently. To quantify the effects of

temporal expectation manipulations, we added a predictor corresponding to the expectation block and an interaction term capturing

the effect of the expectation block on the slope of the fluorescence/stimulus relationship to the regression model above:

f
t
� f = at + sbt +ect +e+sdt + εt ;

where the indicator variable e is 1 for samples from the early block and 0 for samples from the late block, and e+s is an elementwise

product between e and s. Regression coefficients dt corresponding to this interaction term estimate how expectation modulates

fluorescence responses to fluctuations in the visual stimulus (Figure S11A), and determine periods in Figure 7A when this interaction

term is significantly different from 0 (p < 0.05).

We then quantified the time course of regression coefficients in different cortical areas by fitting a multiexponential model:

bt = bmax

�
1� e

�t=tr

�z

e
�t=td

Peak response bmax, power coefficient z, and rise and decay time constants tr and td were optimized using lsqnonlin in MATLAB.

The peak response in Figure 5C was directly given by the corresponding fit parameter. Response latency (Figure 5D) was estimated

as the time lag, at which the multiexponential fit exceeded 50% of its maximum absolute value. The half decay time (Figure 5E) was
Neuron 109, 1861–1875.e1–e10, June 2, 2021 e8
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estimated the as time following the response maximum, at which the fit, extrapolated if necessary, fell below 50% of its maximum

value. If this did not occur within a 4 s window from the stimulus sample, half decay time is reported as not determined (N.D.).

For ridge regression in Figure S9, we included stimulus and widefield data from the same period as for the model in Figure 5, but

now with additional continuous predictors of face and body movement videography, and running wheel movement. We then con-

structed a design matrix X,

X =

1 S Mbody Mface Mwheel

�
;

where 1 is a column of ones, S is the history of the resampled sensory stimulus over the past 2 s, and Mbody, Mface, and Mwheel are

movement predictors (overall body camera movement, face region, and wheel movement, respectively) over the past 2 s and 0.52 s

into the future. Each predictor except for the constant column was rescaled by its standard deviation.

We used 5-fold cross-validation to estimate the optimal ridge penalty. To this end, the design matrix X and fluorescence vector f
were divided into 5 equal contiguous blocks. For each fold, 4 of the blockswere assigned to the training set, while the remaining block

was assigned to the test set. The block approach was used to avoid overfitting on timeseries data. Since the training and test blocks

primarily contained data from different mice, it also encouraged selection of coefficients that generalized well across animals.

For each fold, we then estimated the regression coefficients btrain

btrain =


XT

trainXtrain + lI
��1

XT
trainf train;

where I is the identity matrix with zero replacing its first element to avoid regularizing the intercept of the model, and l is the ridge

penalty. We then evaluated the mean squared error for each fold, and selected the l that minimized the average mean squared error

across folds:

1

n
kXtestbtrain � f

test
k 2

2
:

This procedure was repeated selecting the optimal l for every pixel by searching over 36 values logarithmically spaced between 10�2

and 105. The optimal penalty was then used to estimate the ridge regression coefficients using the entire dataset:

bridge =


XTX+ lI

��1
XT f :

Some pixels on the edges of the imaging prep were only imaged in a subset of mice. For the three most common combinations,

we refit the model using the design matrix X and fluorescence vector f only including sessions acquired in the mice imaged for

those pixels. This left 116/2211 pixels on the extreme edges of the prep which were not used for the ridge regression analysis.

Ridge regression coefficients in the Figures were divided by the standard deviation of each predictor column to correct for re-

scaling of predictors prior to regression. Note that the coefficients of this regression model corresponding to baseline TF fluc-

tuations are not directly comparable to those in Figure 5B, as the latter considered one time lag at a time and did not use the

ridge penalty.

As amore stringent test of whether movements could explain widefield responses to TF fluctuations, we first used ridge regression

to estimate the impact of movements alone and then analyzed the residuals of this model. Using the design matrix

XM =

1Mbody Mface Mwheel

�
we estimated regression coefficients bMfollowing the procedure above. We then applied the same analysis as in Figure 5B to

characterize the effect of temporal frequency fluctuations on widefield fluorescence, using the residuals of this regression model

f � XMbM in place of raw fluorescence values. We used the same approach to correct for movement in the analysis of interactions

between TF fluctuations and expectation in Figure S11.

For the analyses of responses to binned TF fluctuations in Figures 5F, 5G, 7B and 7C, we computed mean fluorescence traces

aligned to resampled TF fluctuations within each TF bin, again only including fluorescence frames acquired during the baseline stim-

ulus and at least 1 s prior to early licks or wheel movements. To account for the overall time course of the baseline stimulus response

(Figure 3), we then subtracted the mean response to the middle bin from responses to extreme bins. Due to the large sample size

(tens to hundreds of thousands of imaging frames), confidence intervals were computed using the Normal approximation from

the standard errors of mean fluorescence responses in each bin.

As for analyses of responses to task events, to quantify ROI responses to baseline TF fluctuations, we first computed the mean

fluorescence within a given ROI and then analyzed the ROI traces as described above.

Responses to stimulus changes

For the ridge regression model of responses during the change period (Figures 4H–4J) we constructed a design matrix X,

X =

1 C1 C1:25 C1:35 C1:5 C2 C4 Mbody Mface Mwheel L

�
;

where 1 is a column of ones, Cs arematrices of categorical predictors corresponding to onsets of changes of sHz, time lagged over 2

s.Mbody,Mface, andMwheel are matrices of continuous movement predictors (overall body camera movement, face region, and wheel
e9 Neuron 109, 1861–1875.e1–e10, June 2, 2021
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movement) over the past 2 s and 0.52 s into the future, while L is a categorical predictor matrix corresponding to times of licks, time

lagged over 0.68 s past and up to 0.52 s into the future.

To account for fluctuations in fluorescence preceding change onset, fluorescence responses on individual trials were corrected by

the fluorescence value at the time of change onset before being assembled into the fluorescence vector f . The model was then fit

using ridge regression with 5-fold cross validation as described above for the analysis of baseline responses.

The vector of regression coefficients was then subdivided into components corresponding to different predictors:

bridge =
h
b1 b

T
C1

bT
C1:25

bT
C1:35

bT
C1:5

bT
C2

bT
C4

bT
Mbody

bT
Mface

bT
Mwheel

bT
L

i
To highlight components of the response evoked by the change in the sensory stimulus and not other time-dependent fluctuations in

fluorescence, Figure 4H depicts coefficients corresponding to different change strengths corrected by coefficients corresponding to

no-change trials, i.e., bCs
� bC1

.

Analysis of two-photon imaging data

Two-photon imaging frames were motion corrected and segmented using suite2p software https://github.com/MouseLand/suite2p;

Pachitariu et al. 2016). Cell and non-cell ROIs were manually curated for each session, and non-cells were further filtered based on

their size (non-cell ROIs larger than 1/3 of the largest cell ROI were excluded), aiming to include mostly dendrites in this category.

However, since we did not confirm each ROI as dendrite, we refer to this category as neurites.

ROI and surrounding neuropil traces were detrended by subtracting the rolling 10th percentile in a 4000 frame (�2minute) window,

and somatic and neurite traces were corrected for neuropil contamination using the ASt algorithm (https://github.com/

BaselLaserMouse/ast_model). The ASt algorithm fits both ROI and surround fluorescence to asymmetric Student-t (ASt) distribu-

tions, whose mean was determined by a common neuropil signal contributing to both ROI and surrounding fluorescence. The ASt

distribution has different degrees of freedom v1 and v2 for its left and right tails. We set v1 = 30 and v2 = 1, such that the left tail

was approximately Gaussian, while the right tail resembled the Cauchy distribution. Thus the model allows for large positive but

not negative deviations, consistent with the nature of calcium fluorescence signals. The advantage of this approach over widely

used methods, which involve directly subtracting the scaled surrounding fluorescence signal from the ROI fluorescence trace, lies

in the use of the ASt distribution to model deviations in both ROI and surround signals. The long right tail of the ASt distribution helps

prevent over-estimating the neuropil component for densely active cells. At the same time, the use of the ASt distribution for the sur-

round signal helps account for transient increases in fluorescence arising from unannotated neurites or cell bodies, which could

otherwise result in false negative transients in the corrected trace.

For comparison of two-photon and widefield calcium signals in Figures 6D and 6E, we calculated the mean fluorescence within

each two-photon ROI category (cells, neurites, neuropil) by averaging all z-scored detrended traces within each category. We

then repeated the same regression analysis as in Figure 5A. For the analysis in Figure 6E, the resulting two-photon traces (regression

coefficients across different time lags) were resampled to the widefield framerate using linear interpolation. We then computed the

Pearson correlation between the time courses of responses (0-1.48 s) of different two-photon ROIs and the widefield signal. We also

calculated the correlation of individual mice from the widefield cohort to the average widefield response of the remaining mice. For

the analyses of responses to binned TF fluctuations in Figure 6F, same analysis was repeated as for Figures 5F-G.

Videography data extraction
The right eye was illuminated with a custom-made IR-light source and imaged using a CMOS camera (DMK22BUC03, Imaging

Source, �30 Hz). Frames were filtered using a 2D Gaussian filter (s = 2) and thresholded to identify low IR light reflectance areas

(< 7.5% image max intensity). Regions were filtered based on circularity (perimeter squared to area ratio < 1.6 3 4p) and size (>

100 pixels). Edges of each region were detected using canny method and filtered using a Gaussian filter (s = 1). An ellipse was fitted

iteratively to the region matching the criteria by minimizing the geometric distance between the area outline and the ellipse using

nonlinear least-squares (Brown 2018). Pupil diameter was estimated as the major axis of the ellipse after z-scoring within each ses-

sion to correct for differences in illumination or camera position.

A second CMOS camera was placed in front of the animal capturing animal’s face and body. Body motion was expressed as the

mean squared difference between the two consecutive frames z-scored within each session. Video frames were cropped such that

the implant was not included, to avoid artifacts related to interleaved wavelength excitation. To measure fine facial movements, we

have created a separate ROI (100 pixels square), centered on the mouse’s nose.
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