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Abstract

To study the dynamics of infection processes, it is common to manually enumerate

imaging-based infection assays. However, manual counting of events from imaging

data is biased, error-prone and a laborious task. We recently presented HRMAn

(Host Response to Microbe Analysis), an automated image analysis program using

state-of-the-art machine learning and artificial intelligence algorithms to analyse

pathogen growth and host defence behaviour. With HRMAn, we can quantify intra-

cellular infection by pathogens such as Toxoplasma gondii and Salmonella in a variety

of cell types in an unbiased and highly reproducible manner, measuring multiple

parameters including pathogen growth, pathogen killing and activation of host cell

defences. Since HRMAn is based on the KNIME Analytics platform, it can easily be

adapted to work with other pathogens and produce more readouts from quantitative

imaging data. Here we showcase improvements to HRMAn resulting in the release of

HRMAn 2.0 and new applications of HRMAn 2.0 for the analysis of host–pathogen

interactions using the established pathogen T. gondii and further extend it for use

with the bacterial pathogen Chlamydia trachomatis and the fungal pathogen Crypto-

coccus neoformans.
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1 | INTRODUCTION

Pathogen infection of cells can be analysed by fluorescence micros-

copy and relies on accurate quantification of observed phenotypes to

reveal magnitudes of host and pathogen parameters and the kinetics

of their interaction. Manual scoring of infection processes from

microscopy images is laborious, biased and prone to errors. Often, it

restricts the number of samples and replicates that are included in an

experiment (Meijering, Carpenter, Peng, Hamprecht, &Olivo-Marin, 2016).

High-throughput image acquisition with automated high-content

imaging platforms opens the possibility of studying host–pathogen

interactions on a large scale (Pegoraro & Misteli, 2017), for instance

in combination with genome-wide depletion screens (Brodin &

Christophe, 2011; Usaj et al., 2016). However, our ability to produce

huge imaging datasets is curtailed by our ability to analyse them effi-

ciently and accurately (Meijering et al., 2016).

Innovation in automated image analysis has relied on either open-

source (Carpenter et al., 2006; Smith et al., 2018; Stöter et al., 2013)

or proprietary (e.g., Perkin Elmer Harmony) software for analysis. Typ-

ically, images are analysed by classical fixed-parameter imageDaniel Fisch and Robert Evans contributed equally to this work.
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segmentation algorithms (Kühbacher et al., 2015; Matula et al., 2009;

Osaka et al., 2012). However, data generated by these classical

approaches are usually restricted to quantifying the pathogen growth

on a single-cell level. Extracting information beyond this uppermost

layer of host–pathogen interactions, for example, analysing the redis-

tribution of proteins upon infection, is difficult due to the inherent

heterogeneity of imaging datasets and cellular responses. Further-

more, classic image segmentation approaches are dataset specific and

require manually altering the segmentation parameters (i.e., updating

the code/parameters of the program) to produce reliable data, if for

instance, the cell type or nature and/or intensity of stainings change

between experiments.

To overcome these limitations and enable infection researchers

to quantify their imaging data without the need for coding, we created

HRMAn (Host Response to Microbe Analysis) (Fisch et al., 2019).

HRMAn is a high-throughput, high-content, single-cell image analysis

pipeline that incorporates machine learning (ML) and an ensemble of

deep convolutional neural network (CNN) for infection analysis (www.

hrman.org). To assure its broad usability and future software support,

HRMAn is based on the data handling environment KNIME Analytics

platform (Berthold et al., 2008). The analysis relies on training of ML

algorithms and deep CNNs that can be tailored to individual

researchers' needs and experimental questions. The trained CNNs

contained within the analysis pipeline are used for image classifica-

tion, phenotype quantification and for instance segmentation, a hybrid

of semantic segmentation and object detection. CNNs work with the

image itself and make use of complex patterns (e.g., shapes) within the

dataset to learn phenotypes which they derive in a supervised fashion

from expert-labelled data (Krizhevsky, Sutskever, & Hinton, 2012). Deep

CNNs consist of several layers, mimicking the cortex of a brain. These

can comprise convolution, normalisation, pooling and fully connected

layers (Nielsen, 2015) which convolve features, normalise for local con-

trast enhancement (Krizhevsky et al., 2012) or down sample feature

maps to increase the sensitivity of the network. Combining several of

these layers all looking at the output maps of the previous layer creates

a deep CNN that step-by-step reduces the complexity of the input, size

of the tensor and extracts key features and patterns. In deep CNNs for

classification, the final layers are usually fully connected layers, which

produce the output (for an excellent overview please refer to LeCun,

Bengio, & Hinton, 2015). Use of AI for image analysis allows for

increased flexibility and versatility of HRMAn 2.0, without requiring the

user to update the code and analysis parameters for every dataset

(Godinez, Hossain, Lazic, Davies, & Zhang, 2017; Kraus et al., 2017;

Kraus, Ba, & Frey, 2016).

HRMAn was designed for quantification of high-content imaging

experiments and has direct compatibility with datasets from 96-well

or 384-well cell culture plates. Prior to analysis, stained specimens

(infected host cells) are imaged on a fluorescence microscope. Ideally,

the use of automated high-throughput imaging platforms allows for

rapid acquisition of images from multi-well plates, but standard fluo-

rescence imagers with a programmable stage can also be used for

image acquisition (reviewed in Fisch, Yakimovich, Clough, Mercer, &

Frickel, 2020).

Depending on the type of experiment, HRMAn allows the user to

choose from a range of analysis methods (Fisch et al., 2019). Simple

infection analysis only assesses host cell and pathogen numbers as

well as replication of the pathogens. This fast analysis provides the

same quantification as would have classically been obtained by man-

ual counting, but in a matter of minutes, for thousands of images,

rather than hours/days. Further insight into host–pathogen interac-

tions can be gained by studying the changing spatial distribution of

host and pathogen proteins, but quantifying this manually or by using

classical image analysis approaches is close to impossible. HRMAn

therefore relies on ML and deep CNNs to classify and quantify locali-

zation of proteins on a single-cell level. Readouts from this second

stage of analysis represent one of the more advanced analysis

methods offered by HRMAn (Fisch et al., 2019).

Two years ago, we presented the original HRMAn (Fisch

et al., 2019). Continued development of HRMAn now allows us to

release HRMAn 2.0 an even more powerful ensemble of ML and arti-

ficial intelligence algorithms for image analysis/quantification. In this

work, we present the major improvements and additions to the origi-

nal HRMAn and illustrate how HRMAn 2.0 can be used in new ways

to dissect the interaction between host cells and intracellular patho-

gens. We also present methods of ongoing data collection which

involve crowdsourcing classifications from non-expert volunteers.

Volunteer consensus data from the Zooniverse platform (https://

www.zooniverse.org) will be used in conjunction with pooled training

data generated by experts, to create unbiased CNN training datasets

for the continued development of HRMAn.

2 | RESULTS

2.1 | Improved input/output

HRMAn was originally designed to reliably and automatically quantify

host–pathogen interactions on a large scale. Now, HRMAn 2.0 has a

more streamlined user interface that guides the users through the

setup and additionally performs quality control on input images before

analysis commences (Figure 1a). The execution process (order, tim-

ings, memory management) of HRMAn 2.0 has been improved leading

TAKE AWAY

• HRMAn 2.0 allows host-pathogen interaction analysis

from imaging experiments

• HRMAn 2.0 extends the analysis into the 3D-space

• HRMAn 2.0 can be adapted for analysis of any intracellu-

lar pathogen

• HRMAn 2.0 uses AI for focus detection, segmentation

and phenotype quantification
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to overall shorter analysis times and more stability of the program.

Lastly, many parameter-extraction/-adjustment processes have been

automated and user input/output has been simplified and made more

graphical, for example, by including a user interface for defining the

assay layout (Figure 1b). Therefore, users now exclusively need to

direct the program to their image input directory, select their analysis

method and pathogen (Figure 1c) and the rest will be managed auto-

matically. For an overview of all changes and improvements see

Table 1.

In summary, the updated input/output system of HRMAn 2.0

makes it easier for the user to follow the analysis and assess whether

the program is working accurately. The updates also improve perfor-

mance and facilitate ease-of-use while maintaining accuracy and unbi-

ased analysis capabilities. Since image analysis is computationally

expensive, please refer to Table 2 for minimal and recommended sys-

tem requirements to run HRMAn 2.0 with and without GPU accelera-

tion and for an overview of expected analysis times for datasets of

different sizes.

2.2 | New image pre-processing

Image data pre-processing is important for any kind of large-scale

imaging-based experiment (Bray, Fraser, Hasaka, & Carpenter, 2012).

The original HRMAn already performed single-channel illumination

corrections, and this step has not been changed as it was performing

well (Fisch et al., 2019). Briefly, HRMAn 2.0 performs channel-wise,

retrospective illumination correction, by creating a bright image with-

out objects using a low-pass filter with a large kernel (Gaussian) and

subtracting this as background. Additionally, HRMAn 2.0 now pre-

screens images for contamination/imaging artefacts and for out-of-

focus images. These images need to be removed from the analysis

since they can, in the worst case, affect the quality of an experiment/

screen overall.

In order to do this, we implemented calculation of the percent

maximum metric for each image, as suggested by Bray et al. (2012),

into HRMAn 2.0 to exclude images with saturation artefacts. Further-

more, we added a two-tier focus quality detection strategy to HRMAn

2.0. In tier one, HRMAn 2.0 uses an artificial intelligence approach as

has been proposed and spearheaded by Yang et al. (2018) to judge

image quality. For tier one analysis, we trained a deep neural network

that works on 300�300 px tiles of the input image of the cell nuclei

and bins them into classes between 0 (in-focus) and 10 (out-of-focus)

(Figure 2a). Finally, for each individual image, the overall focus class is

calculated as a mean of the respective image tiles (Figure 2a). We

trained the neural network with more than 500,000 images that were

either in focus or artificially defocused as described by Yang

et al. (2018) and furthermore injected with Poisson noise to allow for

training of a more generalised model (Figure 2b). The final model

obtained after training was >95% accurate in classifying previously

unseen images (Figure 2b). The CNN-based quality assessment is

complemented in tier 2 by calculation of the power Log–Log Slope

(PLLS) which measures the slope of the power spectrum density of

intensities within an image (Bray et al., 2012). Combination of two

independent focus detection strategies now allows HRMAn to pre-

cisely pre-filter images prior to analysis (Bray et al., 2012; Groen,

Young, & Ligthart, 1985; Sun, Duthaler, & Nelson, 2004; Yang

et al., 2018). To do so, we have pre-configured HRMAn 2.0 to select

images with a focus that is deemed acceptable to produce reliable

results in the downstream analysis steps. However, these thresholds

can be changed by the user, if a more stringent filtering is required or

vice versa.

Indeed, combining the two tiers into one focus-quality assess-

ment strategy allowed us to accurately filter images in a larger experi-

ment that used images from 360 positions each with 16 different

focus positions (Figure 2c). Since HRMAn 2.0 was also set up to per-

form 3D analysis, the two-tiered focus determination method allows

for selection of the most in-focus planes in a series of z-stacks

(Figure 2d). We illustrated this in an experiment that on purpose had a

multi-well plate mounted in a high-content imager in a slight tilt. Here,

HRMAn 2.0, depending on the analysis type, was able to reject indi-

vidual fields, as would be the case in a 2D-experiment/analysis, or

correctly pick the most in focus images in the z-stack series when run

in 3D analysis mode (Figure 2e). We designed HRMAn 2.0 to auto-

matically connect to a remote CNN model repository to obtain the

trained focus-detection CNN without the user having to provide it

manually. Furthermore, HRMAn 2.0 reports which fields have not pas-

sed the quality control (and have therefore been excluded) to the user

and appends image quality notes into the results file for the user to

inspect subsets of their dataset that have been flagged and excluded

from the analysis.

2.3 | Improved object detection by instance
segmentation using trained CNNs

The original version of HRMAn relied on classical, thresholding-based

segmentation for object detection (e.g., cells, nuclei and pathogens)

before performing quantification of the images and the host–

pathogen interaction as well as host protein to pathogen recruitment

analysis using a CNN. While this was reliable for many different imag-

ing datasets, we added options to perform object detection using

F IGURE 1 The HRMAn 2.0 graphical user interface and analysis capabilities. The graphical user interface of HRMAn 2.0 (a) has been
streamlined to better guide the user through the analysis steps. Furthermore, entering the parameters of an analysis has been simplified by
addition of interactive menus, including list selections of analysis types and the graphical representation of multi-well plates to define the assay
layout (b). HRMAn 2.0 has different analysis methods, and the table in (c) provides an overview of settings, calculated readouts and pathogens for
which the analysis has already been validated for
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artificial intelligence in HRMAn 2.0, greatly increasing the program's

versatility (Caicedo et al., 2019). To do so, we have implemented an

adapted version of StarDist for nuclei segmentation (Schmidt,

Weigert, Broaddus, & Myers, 2018) and a full version of Cellpose for

(label-free) cell segmentation (Figure S1) (Stringer, Wang, Michaelos, &

Pachitariu, 2021).

In brief, StarDist combines a CNN with non-maxima-suppression

(NMS) to segment nuclei from fluorescence images (Schmidt

et al., 2018). Unfortunately, we were not able to perform NMS within

KNIME while maintaining ease of use. However, we setup HRMAn

2.0 to use the probability maps created by the StarDist CNN to

enhance nuclei detection (Figure S1a). With this approach, we could

greatly improve segmentation by prevention of over-segmentation

(as is sometimes, the case with water-shedding segmentation),

achieve better separation of overlapping or touching nuclei, suppress

staining artefacts or correct for uneven fluorescence. In very difficult

to segment images, we can still observe segmentation artefacts, but in

these cases, we would recommend optimising the experimental and

imaging conditions (e.g., cell densities). Again, HRMAn 2.0 can retrieve

the trained CNN from a central repository autonomously without the

user having to manually load the file.

Similar to StarDist, Cellpose is a generalised cell segmentation

method relying on a trained CNN (Stringer et al., 2021). We fully

implemented Cellpose within HRMAn 2.0, and it can be used to seg-

ment cells of any kind and/or fluorescence stain (Figure S1b). As a

generalised model, Cellpose was also able to accurately detect label-

TABLE 1 Improvements of HRMAn 2.0 as compared to the previous version

HRMAN 1.0 Upgrades for HRMAN 2.0

Manual input of image information to setup analysis

parameters

Image information is detected automatically. Information that cannot be detected is entered

by user via pop-up dialogue boxes.

(Magnification, pixel size, number and order of channels, pathogen type, analysis type and

segmentation methods)

Assay layout uploaded as a counterintuitive

spreadsheet file

Clear graphical user interface that allows users to input assay layouts (96-well and 384-well

plates) with better overview. Additionally, users can create customisable layouts for images

from coverslips

No bulk input option for large-scale analysis Bulk upload option from template to circumvent manual parameter input for faster, large-scale

analysis

Simple inspection of segmentations as quality

control

Streamlined layout of the analysis pipeline to encourage quality inspection by the user and

better display of segmentations in an interactive view showing overlays of original data and

detected objects

No memory management, causing instability on less

powerful computer systems

Chunking of data and memory/temporary file management for increased stability of the

analysis pipeline

No updates on progress of the analysis Visual messages in the KNIME console inform users on the progress of the analysis. Acoustic

signals when analysis steps are done.

Manual upload of a reference dataset for ML

prediction of pathogen replication

Automatic choice of reference dataset for ML prediction of pathogen replication

Images to be named in a plate format, required pre-

formatting with separate workflow

All-in-one pipeline that automatically arranges images and requires no pre-formatting of

images

No support for 3D datasets Automated z-projections if 2D analysis is to be performed, option for full 3D analysis

Manual removal of corrupted files prior to executing

the analysis pipeline

Automated removal of corrupted images, replacement by empty fields of view using same

data structure

Unchanged input data folder Automated archiving of input images for long-term storage of raw data following the analysis

Manual creation of several empty output files to

save data following the analysis

Automated creation of a single spreadsheet output file which contains all calculated results

Storage of only the grouped final results Storage of all calculated results (assay layout, analysis parameters, data quality, data for each

individual cell and pathogen, grouped data for each field, well/coverslip and the sample

groups overall)

No information on quality of ML/AI performance Report of confidence values for prediction of pathogen replication and for protein recruitment

analysis with CNN (Allows judging of performance by the user)

No reporting of label IDs Reporting of unique labels IDs that allows tracing each label back to the raw data

No data inspection capability within HRMAn Interactive data dashboard for fast inspection of key data and statistics

Manual upload of trained CNN models Automated download of latest models from central repository

No news on new updates Automated messages inform users about availability of newer versions

Simple CUDA GPU acceleration Enhanced GPU-acceleration for maximum performance and stability when using GPU for

calculations

FISCH ET AL. 5 of 17



free cells in brightfield images (Figure S1b). We found that this seg-

mentation was versatile enough to segment brightfield images of the

yeast Cryptococcus neoformans not just mammalian cells for which

the algorithm is mainly used (Figure S1b). Impressively, by using

Cellpose, HRMAn 2.0 accurately separated densely packed cells, like a

confluent monolayer of human foreskin fibroblasts, a common model

host cell line in the field of host Toxoplasma interaction (Figure S1b).

Since running Cellpose is computationally expensive, we recommend

using GPU acceleration.

For both the StarDist-enhanced nuclei segmentation and

Cellpose-driven cell segmentation, we configured HRMAn 2.0 to allow

for the user to choose between the classical (faster) algorithms and

these more sophisticated methods, depending on their requirements

and capabilities of their computer. In summary, HRMAn 2.0 now

offers a full ensemble of state-of-the-art CNN-based instance seg-

mentation methods. These can be used without the user having to

write a single line of code.

2.4 | 3D analysis

Given the improved segmentation of cells using Cellpose and the

option to run it in 3D for z-stacks (Stringer et al., 2021), we were now

able to add 3D analysis capability to HRMAn 2.0 (Figure S2). This

allows for analysis of imaging screens that use 3D z-stacks for each

position. Cellpose is used to detect cells and their connecting labels in

all three dimensions, and, at the same time, pathogen segmentation

has been updated to allow for detection of corresponding labels in a

3D-stack (Figure S2a). For analysis of this type, users of HRMAn 2.0

need to ensure that their imaging setup, especially the z-step size,

matches the capabilities of their imaging system and the specificities

of the fluorescent stains. In this way, we could use HRMAn 2.0 to

measure pathogen vacuole volumes instead of areas and therefore

improve the sensitivity for pathogen replication and growth quantifi-

cation. Similarly, we designed HRMAn 2.0 to classify protein recruit-

ment to pathogens independently for each z-plane that the pathogen

vacuole was detected in. This improved specificity of the recruitment

classification (Figure S2a). To illustrate this new capability of HRMAn

2.0, we used the program to segment a confluent epithelium of A549

cells, which yielded impressive results and shows how HRMAn 2.0

might be used in the future (Figure S2b).

2.5 | Improved artificial intelligence recruitment
classification

The original HRMAn's greatest innovation was use of deep CNNs for

classification of protein recruitment to pathogen vacuoles (Fisch

et al., 2019). The original program used the DL4J deep learning frame-

work, which worked reliably, but is slightly outdated now. We there-

fore replaced the DL4J framework with Keras (Chollet, 2015) using a

TensorFlow backend (Abadi et al., 2016), which should future-proof

HRMAn 2.0 for the coming years. Importantly, use of Keras allowed

us to implement more modern and complex deep CNN architectures

and replace the original HRMAlexNet (Fisch et al., 2019; Krizhevsky

et al., 2012). HRMAn 2.0 now uses a modified version of ResNet50

(He, Zhang, Ren, & Sun, 2016) for image classification (Figure S3). We

have trained a total of six new models for different pathogens and

fluorescent stains, which all achieved a classification accuracy >92%

(Figure S4a–f). Since HRMAn 2.0 also reports classification

TABLE 2 System requirements for running HRMAn 2.0

Minimal Optimal Optimal (with GPU acceleration)

System requirements MacOS 10.12.6/ Windows 7 (or

newer)

QuadCore CPU >2.0 GHz (e.g., Intel®

Core™ i7-7700 or AMD Ryzen™ 3

2200)

8 Gb RAM

(e.g., 1600 MHz DDR3)

2 Gb of hard drive storage for KNIME

+ HRMAn 2.0 and additional

storage of about 5 times the size of

the image dataset (e.g., 50 Gb for

10 Gb of imaging raw data)

MacOS 10.14.6/Windows 10

Multicore CPU >4.0 GHz (e.g., Intel®

Core™ i9-10900 or AMD Ryzen™ 9

5950X)

32 Gb RAM

(e.g., 3200 MHz DDR5)

2 Gb of high-speed PCIe 4.0 SSD

storage for KNIME + HRMAn 2.0

and additional storage of about 5

times the size of the image dataset

(e.g., 50 Gb for 10 Gb of imaging

raw data)

Same as optimal but with an

additional NVIDIA GPU with at

least 4 Gb of GDDR5 VRAM and

CUDA 10.0 compatibility

(e.g., NVIDIA GTX 1070Ti)

Expected analysis times

(60 wells, 15 fields of

view each)

Infection analysis:

�2 hr

Recruitment analysis:

�6 hr

3D-Infection analysis:

>1 day

3D-Recruitment analysis:

>1 day

Training novel CNN:

Not recommended

Infection analysis:

�1 hr

Recruitment analysis:

�3 hr

3D-Infection analysis:

�12 hr

3D-Recruitment analysis:

>1 day

Training novel CNN:

Not recommended

Infection analysis:

�1 hr

Recruitment analysis:

�1.5 hr

3D-Infection analysis:

�3 hr

3D-Recruitment analysis:

�4 hr

Training novel CNN:

�1–7 days (GPU-dependent)
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confidence to the user, analysis can be repeated with a different

model, should the user choose to. We also managed to train a general-

ised recruitment classification model using four different pathogens

(Toxoplasma gondii, Salmonella typhimurium, Chlamydia trachomatis,

Cryptococcus neoformans), more than 10 different fluorescent stains

and images from five different automated and non-automated and

confocal/widefield microscopes which achieved an overall accuracy of

95.80% (Figure S4c).

Further improvements were achieved by expanding the dataset

prior to classification. To do so, we configured HRMAn 2.0 to flip and

rotate each image and then run the classification separately for each

pathogen vacuole. Following this quintuplicate classification, the

mode (i.e., consensus) of classifications for each pathogen vacuole

was collected to obtain the final prediction (Figure 3a). In our test

dataset, consisting of >100,000 pathogen images, for more than 90%

of all pathogen vacuoles, the prediction was unique meaning it

remained the same regardless of orientation of the image (Figure 3a).

For the majority of the remaining images, the CNN prediction con-

tained two classes (Figure 3a). Importantly, this quintuplicate expan-

sion of the dataset and prediction followed by gathering of the

consensus increased accuracy of the generalised model from 95.80%

to 98.84% (Figure 3b). We further compared this new type of classifi-

cation to the old version (using just a single prediction per pathogen

vacuole) and observed that for the majority the confidence in predic-

tion was unchanged (Figure 3c). However, the overall confidence

increased from 87.3% in the single to 94.9% in the quintuplicate pre-

diction (Figure 3c). In most cases, confidence was improved for patho-

gen vacuoles that showed a high background, overlapping pathogens

or incomplete recruitment and can explain the increased overall accu-

racy of classification (Figure 3c).

Another innovation in use of the deep CNNs for image classifica-

tion comes with our introduction of a central repository (Figure 3d). In

this way, we designed HRMAn 2.0 to automatically connect to a cen-

tral database and let users choose which trained model they want to

use for their analysis (Figure 3d). Once we or other users have trained

a new neural network for use in HRMAn 2.0, this model can be depos-

ited in the repository and is then automatically available to all users of

HRMAn 2.0 (Figure 3d).

We furthermore added a second independent workflow to the

HRMAn 2.0 analysis suite (Figure 3e). This workflow allows users to

create their own annotated datasets and use them for training of cus-

tom CNNs for their fluorescent stains/protein recruiting to pathogens

inside any host cell (Figure 3e). This all-in-one workflow starts by pro-

viding regular fluorescence images, which will then be processed as in

HRMAn 2.0. Instead of calculating readouts and performing image

quantification, this pipeline creates cropped images and displays them

to the user in an interactive annotation tool with which the pathogen

inclusion can be classified by the user into recruited/non-recruited/

artefact classes (Figure 3e). Ideally, 2,000–5,000 images should be

annotated per class (“the more, the better”). Classes should be bal-

anced and contain equal number of example images for training to

exclude the possibility of the model skewing into one direction. Once

enough images have been annotated, the dataset is partitioned, and

the training images are augmented (flip, rotate, translate, zoom, bright-

ness, noise injection, random removal of image parts) to create a suffi-

ciently large image database for training of a good CNN model

(Shorten & Khoshgoftaar, 2019). From there, training of the new

KERAS ResNet50 architecture-based neural net commences (this step

requires use of a GPU), and following successful training the model is

saved and the performance is evaluated (Figure 3e). In this way, we

provide users with a tool to create their own custom neural networks

which can optionally be submitted to the central repository for other

users to benefit as well.

To further improve the CNNs used for protein-recruitment classifi-

cation, we established a project on the Zooniverse platform (https://

www.zooniverse.org) called “Microbe Watch” (https://www.zooniverse.

org/projects/sb99/microbe-watch). Microbe Watch allows us to pursue a

community-based approach to improve the accuracy of analysis in

HRMAn 2.0. It allows large numbers of specialists and non-specialists to

annotate data for training of CNNs (Figure 3f), by establishing a consen-

sus annotation for each image in the dataset thereby reducing bias in

training datasets (>130,000 individual annotations for >8,400 images, as

of April 20, 2021) (Pelt, 2020). Machine learning algorithms trained using

public- and expert-consensus have proven successful and can accurately

complete tasks such as image classification in an unbiased manner

(Segebarth et al., 2020; Spiers et al., 2020).

F IGURE 2 Focus quality determination performed by HRMAn 2.0. (a) Illustration of how raw microscopy images (top) are tiled into 300x300
image crops which are then individually classified on their focus quality using the trained convolutional neural network (CNN) with 0 being in
focus and 10 being out of focus. The overall focus class of the picture is determined as the mean of the parts. Picture shows nuclei of A549 cells.
Scale bar: 100 μm. (b) Learning curve displaying the non-linear loss and accuracy gain of the CNN during training for focus quality judgement (left)
and confusion matrix showing performance and accuracy of the obtained CNN model (right). Logarithmic colour scale; black no classification.
(c) Graphs illustrating performance of the trained CNN and calculation of the power log–log slope (PLLS) of the pixel intensity spectrum to classify
focus quality. n = 360 images for each focus position (27 positions ranging from �13 to +13 μm). (d) Graphical representation of HRMAn 2.0's

focus determination process for images from a z-stack. Two example images, one in-focus (magenta) and one out-of-focus (yellow) highlighted, to
illustrate the CNN-based focus classification and determination of the PLLS to then reach the final judgement of focus quality. The AI-based
focus-quality judgement (middle) illustrates the individual classes of image tiles as determined by the trained neural network. Graph on the right
shows the calculation of the PLLS of the two example images from the z-stack. Scale bar: 50 μm. (e) Graphical illustration of focus determination
for a whole multi-well plate. Arrow indicates well/field order during acquisition. HRMAn 2.0 judges focus quality for the whole well and for each
image individually (here from z-stacks), as indicated using the colour scale on the plate and the heatmap. Depending on the following analysis
type, images are either rejected from a 2D analysis, if they are out-of-focus, or the most in-focus planes are selected for a 3D analysis
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F IGURE 3 Improvement to the HRMAn 2.0 workflow for protein recruitment classification. (a) Graphical illustration of quintuplicate
expansion of the dataset prior to classification for increased accuracy. Classification distribution graph shows a test with n = 102,000 vacuole
images. (b) Quintuplicate expansion improves confidence in and accuracy of the classification, as shown in the confusion matrices either using a
single prediction (left) or quintuplicate expansion prior to prediction (right) with a generalised model. (c) Comparison of prediction confidences for
protein recruitment to pathogen vacuoles using a single prediction or using quintuplicate expansion prior to prediction. Overall confidence
improved, especially for images that are hard to classify (high background, touching vacuoles, incomplete recruitment, see highlighted examples).
(d) Illustration of the newly implemented central repository for trained CNN model for protein recruitment classification. (e) Steps of the second
workflow in the HRMAn 2.0 ensemble that allows users to train their own convolutional neural networks (CNN). This workflow handles images
like the HRMAn 2.0 analysis pipeline but then allows users to annotate their newly created training images and directly feed them into a training
routine also providing the naïve architecture of the KERAS ResNet50 as used by HRMAn 2.0. (f) “Microbe Watch” Zooniverse project for
annotation of vacuole images online or within a mobile phone app
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2.6 | New example analysis applications

HRMAn was able to accurately quantify host–pathogen interactions

on a high-throughput scale and computed more than 15 comprehen-

sive readouts. We have illustrated this before (Fisch et al., 2019), and

HRMAn 2.0 produces the same readouts (Figure 1c), although faster

and even more precisely. We therefore want to showcase more possi-

ble applications of HRMAn 2.0 and also demonstrate its usability for

pathogens other than T. gondii or Salmonella.

HUVECs are known to kill Tg by directly acidifying the vacuoles

(Clough et al., 2016). HRMAn 2.0 was therefore deployed to classify

vacuoles based on LysoTracker signal (Figure 4a), which revealed a

significant increase in the percentage of acidified vacuoles upon treat-

ment with 250 IU/ml IFNγ (Figure 4a). Furthermore, HRMAn 2.0 was

able to show that Tg parasites in acidified PVs stop replicating as indi-

cated by a reduced average size when compared to non-acidified PVs

(Figure 4a).

Differences between type I and type II parasites include the

recruitment of mitochondria to the PV. Type I Tg expresses a protein

called MAF1, which recruits mitochondria (Figure 4b) and aids in para-

site modulation of the host immune response (Pernas et al., 2014).

HRMAn 2.0 was able to reproduce these observations, when ana-

lysing MitoTracker fluorescence intensity around type I or type II PVs

(Figure 4b).

HRMAn 2.0 can also be used to examine the effects of pathogen-

derived virulence proteins, instead of focusing on questions derived

from host defence mechanisms. Type II Tg is known to express and

secrete the dense granule protein GRA15 which accumulates at the

PV membrane and leads to induction of NFκB signalling (Rosowski

et al., 2011). Using the protein localization analysis pre-configuration,

HRMAn 2.0 was able to measure the mean fluorescence of immune-

stained p65 signal in the host cell cytosol and the host cell nucleus

and calculate the ratio (Figure 4c). p65 accumulation in the nucleus is

a sign for NFκB activation (Gilmore, 2006). Comparing WT and

ΔGRA15 Tg infection of HFFs, HRMAn 2.0 could show that the

strength of NFκB activation directly correlated with the number of

vacuoles per cell (Figure 4c).

Robust segmentation of host cells, host cell nuclei and pathogens is

the backbone of HRMAn 2.0's analysis strength. Since all parameters

used for this segmentation can be changed, for example, the

thresholding method, image normalisation and saturation or filter values,

it is easy to adapt HRMAn 2.0 to work with different pathogens. First,

we trained HRMAn to be capable of working with C. trachomatis (Ctm)

infected cells. Ctm forms reticulate structures in the cytosol, known as

inclusion bodies (IBs) (Elwell, Mirrashidi, & Engel, 2016). These can vary

in size significantly, but HRMAn 2.0 was nonetheless able to accurately

segment the IBs (Figure 4d). We then used this segmentation and re-

trained the CNN to classify recruitment of murine Irg proteins

(Figure S4b). Irgs play a crucial role in the defence against Ctm in murine

cells (Pilla-Moffett, Barber, Taylor, & Coers, 2016), and using high-

throughput image analysis, HRMAn 2.0 could show that mIrgB6 accumu-

lated at Ctm inclusion bodies in an IFNγ- and mIrgM-dependent manner

in MEF cells of different genetic backgrounds (Figure 4d).

Another pathogen commonly infecting macrophages is

C. neoformans (Srikanta, Santiago-Tirado, & Doering, 2014). This fun-

gus grows as a unicellular yeast and replicates within cells by budding

(May, Stone, Wiesner, Bicanic, & Nielsen, 2016; Rudman, Evans, &

Johnston, 2019). A number of GFP-tagged wildtype (Bielska

et al., 2018; Voelz, Johnston, Rutherford, & May, 2010) and virulence

factor knockout (Evans et al., 2019) Cryptococcus strains are available

which make high content imaging possible. Alternatively, fungi can

also readily be stained with the fluorescent dye calcofluor white. Re-

training HRMAn to recognise intracellular Cryptococcus and using the

decision tree ML algorithm to classify budding, and thus replicating,

fungi (they appeared distinctively larger and with lower circularity),

revealed that IFNγ-treated human THP-1 cells were able to restrict

the growth of this pathogen (Figure 4e).

With the exception of viruses, we demonstrated that HRMAn 2.0

was able to work with any kind of intracellular pathogen, irrespective

of being bacteria, protozoans or fungi. Importantly, re-training

HRMAn only took little time, but resulted in a robust analysis pipeline

that can be used for many future experiments. All pre-set filters for

the different pathogens are available to users of HRMAn 2.0.

3 | DISCUSSION

Advances in computational hardware and software developments

have made deep CNNs a powerful image analysis tool (LeCun, Bottou,

Bengio, & Haffner, 1998; Russakovsky et al., 2015). CNNs are able to

generalise patterns independent of minor phenotypic differences and

allow for a more robust classification of images or parts thereof

(LeCun et al., 2015). Automated image analysis programs, some of

which incorporate machine learning elements, have been developed

and are successfully used for classical image segmentation (Osaka

et al., 2012), but when presented with the problem of classifying host

protein recruitment to a pathogen, inaccurate classical image segmen-

tation could lead to erroneous results (Pärnamaa & Parts, 2017).

HRMAn 2.0 circumvents these problems and delivers user-defined

automated and unbiased enumeration.

In recent years, many programs have been developed that make

use of computer vision advances to drive scientific progress in basic

research (Eulenberg et al., 2017; Pärnamaa & Parts, 2017) and in

application in the clinic (Cireşan, Giusti, Gambardella, &

Schmidhuber, 2013; Esteva et al., 2017; Litjens et al., 2017; Roth

et al., 2018). For microscopy image analysis, these usually are focused

on one step, for example, image reconstruction from super-resolution

imaging (Ouyang, Aristov, Lelek, Hao, & Zimmer, 2018; Weigert

et al., 2018), segmentation of nuclei or cells (Ronneberger, Fischer, &

Brox, 2015; Schmidt et al., 2018; Stringer et al., 2021) or classification

of image parts (Falk et al., 2019). While we did not invent novel ways

of analysing images with CNNs, HRMAn 2.0 delivers a unique ensem-

ble of pre-trained networks, combining the power of these individual

solutions. Following the initial publication of HRMAn and application

for host Toxoplasma interaction, similar approaches have been made

for quantification of host Plasmodium interaction (Davidson
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F IGURE 4 Legend on next page.
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et al., 2021; Hung et al., 2020). With the release of HRMAn 2.0, we

now deliver a program with broad applicability to host–pathogen

interactions in general. We designed HRMAn 2.0 with a focus on

intracellular pathogens and the interaction with their host cell. Given

HRMAn's flexibility, extracellular pathogens prior to entry into the

host cell can be analysed, too. Experimental setup and appropriate

readouts can be tailored to pathogens outside host cells. For instance,

staining of extracellular pathogens prior to permeabilisation of imag-

ing specimens could be used to assess the invasion rate of the patho-

gen. However, we need to point out that although HRMAn 2.0 is a

versatile program, it is focused on host–pathogen interaction analysis

and is therefore not the “swiss army knife” of general image

analysis or for high-throughput imaging, where programs like ImageJ/

FIJI (Schindelin et al., 2012) and CellProfiler (Carpenter et al., 2006)

have their strengths, respectively.

The combination of automated image segmentation, decision tree

ML and another deep CNN for quantification makes HRMAn 2.0 a

powerful and user-friendly program for analysis of host–pathogen

interaction at the single-cell level. HRMAn 2.0 is capable of detecting

and quantifying multiple pathogen and host parameters, as illustrated

with several pathogens of varying sizes and growth morphologies.

Designed for biologists, HRMAn 2.0 requires no coding or specialised

computer science knowledge. The modular architecture and graphical

representation of the analysis pipeline, provided by the use of KNIME

Analytics platform (Berthold et al., 2008), allows users to tailor experi-

mental outputs to their own datasets and questions. Thus, HRMAn

2.0 can be rapidly applied to many similar large-scale, imaging experi-

ments. Similarly, HRMAn 2.0 can also be used to answer questions

that do not directly derive from host–pathogen interactions, but from

the pathogen's biology itself. As mentioned above, with elegant

staining strategies and experiment design, HRMAn 2.0's analysis capa-

bilities can enable users to assess invasion rates and extracellular

behaviour of pathogens. Furthermore, using higher-resolution imag-

ing, HRMAn 2.0 could be used to quantify the morphology of patho-

gens within vacuoles or for example chronic forms of pathogens such

as the Toxoplasma bradyzoite cyst, which are planned for the next

updates of HRMAn. As such, HRMAn 2.0 will allow a broad range of

researchers to extend into the realm of high-throughput single-cell

analysis of host–pathogen interaction.

HRMAn 2.0 includes performance improvements and provides

users with an even more precise image analysis tools. One major new

improvement was the extension of HRMAn 2.0 from a simple 2D, or

z-projected analysis to the three-dimensional space. Measuring vol-

umes instead of areas is especially useful for quantification of patho-

gen growth and the prediction of replication using decision tree

ML. High-throughput 3D analysis therefore promises to reveal even

more subtle phenotypes that would have been missed by manual enu-

meration of microscopy slides. Similarly, HRMAn will also be updated

to work with time-resolved image sequences from live-imaging exper-

iments in the future. Tracking intracellular pathogens and the respec-

tive host cells over time would enable grouping cells and/or

pathogens into subsets based on their fate, that is, growth, persis-

tence or killing (Fazeli et al., 2020). Making use of many excellent

algorithms for tracking of motile and immotile cells, for example,

TrackMate (Tinevez et al., 2017), will be useful for this. The culmina-

tion of these two analysis types would be time-resolved 3D image

analysis, which at present is restricted mainly by computational limita-

tions and dataset sizes.

Other improvements of HRMAn 2.0 were derived from the rap-

idly evolving field of computer vision. The original HRMAn relied on

F IGURE 4 New application of HRMAn 2.0 for analysis of host–pathogen interactions. (a) Left: Representative image of IFNγ-primed human
umbilical-vein endothelial cells (HUVEC) cells, infected with type II Toxoplasma gondii (Tg) for 4 hr and stained with LysoTracker. Cropped images
show Tg in acidified vacuoles (yellow arrowheads) and non-acidified vacuoles (white arrowheads). Green: Tg; Magenta: LysoTracker; Blue: Nuclei.
Scale bar 30 μm. Middle: HRMAn 2.0 quantification of the proportion of acidified Tg vacuoles in respect to different concentrations of IFNγ used
for priming at 4 hr p.i. and Right: Comparison of Tg growth in acidified versus non-acidified vacuoles as measured by the mean vacuole size and
proportion of vacuoles containing the indicated number of parasites at 12 hr p.i. (b) Left: Representative immunofluorescence image of type I
(RH) Tg infected human THP-1 cells at 24 hr p.i. and stained with mitochondria marker Tom20. Middle: Type I (RH) Tg infected human foreskin
fibroblasts (HFFs) at 8 hr p.i and stained with MitoTracker. Insets show recruitment of host cell mitochondria to the Tg vacuole. Green: Tg;
Magenta: Tom20/MitoTracker; Blue: Nuclei. Scale bar 50 μm. Right: HRMAn quantification of MitoTracker radial fluorescence intensity
surrounding vacuoles of type I or type II Tg at 8 hr p.i. (c) Left: Representative immunofluorescence image and intensity maps of human foreskin
fibroblasts (HFF) infected with type II Tg WT or ΔGRA15 for 6 hr and stained for p65. White arrowheads indicate examples of accumulation of
p65 in the host cell nucleus of cells infected with type II Tg WT and yellow arrowheads indicate nuclei without p65 accumulation in cells infected
with type II Tg ΔGRA15. Insets depict higher magnification with nuclei outlined by the dotted line. Green: Tg; Magenta: p65; Blue: Nuclei. Scale
of intensity map indicated below. Scale bars 50 μm. Right: HRMAn 2.0 quantification of the ratio between nuclear and cytosolic p65 fluorescence
signal and correlation with the number of Tg vacuoles per cell for type II Tg WT or ΔGRA15 infected HFFs. (d) Left: Example immunofluorescence
image and automated segmentation of Chlamydia trachomatis inclusion bodies (IB) in infected and IFNγ-treated mouse embryonic fibroblasts
(MEF) stained for mIrgB6. Inset 1 shows an IB without and inset 2 with IrgB6 recruitment. Green: Chlamydia IBs; Magenta: IrgB6; Blue: Nuclei.

Scale bar 30 μm. Right: Automated HRMAn classification and quantification of IrgB6 recruitment to Chlamydia IBs in naïve or IFNγ-primed MEF
cells of indicated genetic backgrounds. (e) Left: Example immunofluorescence image and automated segmentation of Cryptococcus from IFNγ-
treated, PMA-differentiated THP-1 cells stained with CellMask. Insets highlight image and segmentation of a budding Cryptococcus cell (yellow
arrowheads). Green: Cryptococcus; Magenta: CellMask; Blue: Nuclei. Scale bar 300 μm. Right: Automated HRMAn quantification of Cryptococcus
replication and scatter plot depicting Cryptococcus appearance and budding detection in naïve or IFNγ-primed THP-1 cells at 10 hr p.i. Data
information: Graphs in (a–c) and (e) from n = 3 independent experiments ± SEM and in (d) from n = 1 proof-of-principle experiment. **p ≤ .01;
****p ≤ .0001 in (a) from two-way ANOVA following adjustment for multiple comparisons and in (b) from unpaired t test; n.s., not significant
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the DeepLearning4J library, but newer libraries like Keras and Ten-

sorFlow (Abadi et al., 2016; Chollet, 2015) now deliver better deep

CNNs, that train faster and classify images with ever increasing accu-

racy (Nichols, Herbert Chan, & Baker, 2019). HRMAn 2.0, at this time,

is the only program for analysis of host–pathogen interactions that

makes use of powerful trained CNNs in every step of the analysis

(image quality assessment, object detection, image classification and

phenotype quantification). While for each of these problems, CNN-

based algorithms have been created as a solution individually

(Krizhevsky et al., 2012; Pärnamaa & Parts, 2017; Schmidt

et al., 2018; Stringer et al., 2021; Yang et al., 2018), HRMAn 2.0 com-

bines them into a single turnkey analysis pipeline. Alongside classical

image analysis stemming from signal theory, a custom CNN is pro-

vided for focus quality control. Another application of deep CNNs

within HRMAn 2.0 is instance segmentation. This computer vision

task involves prediction of object instances and their per-pixel masks.

Both StarDist and Cellpose now allow high-precision detection of

nuclei and host cells, respectively (Schmidt et al., 2018; Stringer

et al., 2021). Replacing the classic segmentation approach with deep

CNNs made segmentation more reliable and robust. This will help

HRMAn 2.0 to cope with a wide array of sample preparations and

imaging protocols without requiring additional user intervention.

Importantly, HRMAn 2.0, as a turnkey analysis pipeline, facilitates use

of these elegant methods, by not requiring the user to adapt them for

their specific dataset. Lastly, the previously implemented CNN for -

protein-recruitment analysis (Fisch et al., 2019) has been updated and

classification accuracy greatly improved using a newer CNN architec-

ture and quintuplicate expansion of the datasets. We also established

the Zooniverse project “Microbe Watch” with which we are gathering

large numbers of consensus annotations to train CNNs for protein

recruitment prediction that are not biased by annotation from a single

user. This annotation bias is a known problem for training of CNNs

(Pelt, 2020) and by gathering millions of annotations for thousands of

images the next CNNs for HRMAn 2.0 should deliver no or little bias.

Finally, the newly implemented central repository for trained deep

CNN models will facilitate exchange between different users and

make sure that HRMAn 2.0 can always access the latest

developments.

Taken together, HRMAn 2.0 is a useful tool for research and a

scaffold for future improvements that promise to elevate the level

automation and intelligence even further. Thus, HRMAn 2.0 has the

potential to become an integral analysis tool for the host–pathogen

interaction research community.

4 | EXPERIMENTAL PROCEDURES

4.1 | Cell, parasite and bacteria culture

THP-1 (TIB-202, ATCC, Male cell line, RRID:CVCL_0006) were

maintained in RPMI with GlutaMAX (Gibco) and 10% heat-inactivated

FBS (Sigma). THP-1 cells were differentiated with 50 ng/ml phorbol

12-myristate 13-acetate (PMA, P1585, Sigma) for 3 days followed by

a rest for 2 days in complete medium without PMA. HeLa (ECACC,

Sigma, Female cell line, RRID:CVCL_0030), A549 lung epithelial cells

(CCL-185, ATCC, Male cell line RRID:CVCL_0023), mouse embryonic

fibroblasts (MEF) and human foreskin fibroblasts (HFF, Male cell line,

RRID:CVCL_XB54) were maintained in DMEM with GlutaMAX

(Gibco) supplemented with 10% FBS. Cells were not used beyond pas-

sage 20. Human umbilical vein endothelial cells, HUVECs, (C12203,

Promocell), were maintained in M199 medium (Gibco) supplemented

with 30 μg/ml endothelial cell growth supplement (ECGS, 02–102,

Upstate), 10 units/ml heparin (H-3149, Sigma) and 20% FBS (Sigma).

Cells were grown on plates, pre-coated with 1% (w/v) porcine gelatin

(G1890, Sigma). HUVEC were not used beyond passage 6. Primary

MEFs were obtained by digesting E12.5–14.5 embryos in 0.25% tryp-

sin (Gibco) and then passaged in Dulbecco's Modified Eagle's Medium

(Gibco) supplemented with 10% heat-inactivated FBS (Sigma).

Tg expressing luciferase/eGFP (RH type I and Prugniaud [Pru]

type II) were maintained by serial passage on monolayers of HFF cells

in DMEM with GlutaMAX (Gibco) supplemented with 10% FBS.

C. trachomatis LGV-L2 was propagated in Vero monkey kidney cells.

All cells were regularly tested for mycoplasma contamination, cul-

tured without addition of antibiotics and grown at 37�C in 5% CO2

atmosphere. Cells were stimulated for 16 hr prior to infection in com-

plete medium at 37�C with addition of 50 IU/ml human IFNγ (285-IF,

R&D Systems).

4.2 | Cryptococcus culture and infection

Cryptococcus strain H99-GFP (Voelz et al., 2010) was grown from fro-

zen cultures onto YPD agar (Merck Sigma Aldrich) plates at 25�C

overnight. The day before infection (Day 1) a subculture was made

from the stock plate into 2 ml YPD broth (Merck Sigma Aldrich). Sub-

cultures were grown overnight at 25�C with constant shaking. On the

day of infection (Day 2), 500 μl of Cryptococcus overnight culture was

washed twice with PBS and re-suspended in 100 μl human serum

(S4190, Biowest). Cryptococcus cells were counted with a

haemocytometer, and the required volume was added to a second

tube to give the desired MOI (see below) and made up to final volume

with fresh human serum (20 μl final volume required per well of a

96-well plate). Tubes were incubated for 1 hr at room temperature for

serum opsonisation to occur.

Forty eight hours before the day of infection (Day 0), THP-1 cells

were cultured, seeded, differentiated (1 day only) and treated with

IFNγ as described above. Cells were seeded at 3.2 � 104 cells per well

into 96-well imaging plates (655090, Greiner).

On the day of infection (Day 2), THP-1 cells were infected with

human serum opsonised Cryptococcus at an MOI of 1.5 by adding

20 μl of human serum containing Cryptococcus suspension to

each well.

Infected plates were incubated for 2 hr and then washed twice

with PBS to remove extracellular Cryptococcus cells, and medium was

replaced with IFNγ added for appropriate treatment conditions. Cells

were fixed with 4% formaldehyde for 15 min at desired timepoints,
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washed twice with PBS, and then stained with Cell mask/Hoechst as

described below for imaging.

4.3 | Chlamydia infection and imaging

Primary MEFs were plated onto glass cover slips and infected with

C. trachomatis at an MOI of 1 by centrifugation at 3000 rpm at 4�C

for 30 min. Twelve hours post-infection, infected cells were treated

with 100 μl IFNγ. At 20 hr post-infection, cells were washed three

times with PBS (Gibco) prior to fixation in ice cold methanol for 5 min.

Fixed cells were blocked with 2.5% (w/v) BSA (Equitech-Bio Inc) in

PBS for 30 min at room temperature. Blocked cells were incubated

with primary antibodies in 2.5% BSA-PBS for 1 hr at room tempera-

ture, washed three times with PBS, and then incubated with Alexa

Fluor-conjugated secondary antibodies (Molecular Probes) as well as

Hoechst 33258 diluted in 2.5% BSA-PBS for 1 h at RT. Stained cover

slips were mounted onto glass slides with a solution of 90% Mowiol

and 10% phenylenediamine. Samples were imaged using a Zeiss Axio

Observer Z1 inverted phase contrast fluorescence microscope.

4.4 | Toxoplasma infection

Parasites were passaged the day before infection. Tachyzoites were

harvested from HFFs by scraping and syringe lysis through a 25 G nee-

dle. The obtained suspension was cleared by centrifugation at 50g for

5 min and the parasites pelleted by subsequent centrifugation of the

supernatant at 550g for 7 min. Tg-containing pellets were washed with

complete medium once and finally re-suspended in fresh medium. Viable

parasites were counted with trypan blue and used for infection at a mul-

tiplicity of infection (MOI) of 1. Infection was synchronised by centrifu-

gation at 500g for 5 min. Two hours after infection, extracellular Tg were

removed by washing with PBS three times.

4.5 | High-throughput imaging

For simple infection analysis, 50,000 THP-1 cells were seeded per

well of a 96-well imaging plate, differentiated and treated as described

above. HFFs were harvested by washing a confluent monolayer with

PBS and subsequent lifting of the cells with 0.05% trypsin–EDTA

(15400054, Gibco). Cells were centrifuged at 250g for 5 min, re-

suspended in fresh medium and 20,000 HFFs per well were seeded

the day before IFNγ treatment. Similarly, HUVECs were harvested,

and 15,000 cells per well were seeded in complete medium the day

before IFNγ treatment. A549s and HeLa cells were harvested in the

same way, and 8,000 cells per well were seeded the morning before

IFNγ treatment. All cells were seeded on 1% (w/v) porcine gelatin

(G1890, Sigma) pre-coated black wall, clear bottom 96-well plates

(Thermo Scientific). To grow A549 cells into an epithelium-like struc-

ture, the cells were allowed to grow fully confluent for 5 days. Cells

were treated and Tg-infected as described above. Following fixation

with 4% methanol-free formaldehyde (28906, Thermo Scientific),

specimens were permeabilised with PermQuench buffer for 30 min at

room temperature. Then PermQuench buffer containing 1 μg/ml

Hoechst 33342 and 2 ug/ml CellMask™ Deep Red plasma membrane

stain (C10046, Invitrogen) was added, and samples were incubated at

room temperature for 1 hr. After staining, the specimens were washed

with PBS five times and kept in 200 μl PBS per well for imaging.

For recruitment analysis, the cells were prepared as described

above, but they were seeded on 1% (w/v) porcine gelatin pre-coated

black wall, glass bottom 96-well imaging plates CG 1.0 (130–098-264,

MACS Miltenyi) to allow higher resolution imaging. After fixation, cells

were permeabilised identically and then stained with primary antibody

(p62, ab56416, Abcam; Ubiquitin FK2, PW8810, Enzo Life Sciences;

IRGB6, home-made [Traver et al., 2011]; p65, sc-8008, santa cruz;

Tomm20, ab56783, abcam) diluted in PermQuench buffer for 1 hr at

room temperature. After three washes with PBS, cells were incubated

with the appropriated fluorescently labelled secondary antibody and

1 μg/ml Hoechst 33342 diluted in PermQuench buffer for another

hour at room temperature. Then, the specimens were washed with

PBS 5 times and kept in 200 μl PBS per well for imaging.

Staining of cells with LysoTracker Red DND99 (L7528, Thermo-

Fisher) was performed by adding 50 nM LysoTracker 60 min prior to

fixation. Similarly, MitoTracker Red CMXRos (M7512, Invitrogen) was

added at 100 nM 30 min prior to fixation.

For simple infection analysis, 96-well plates were imaged on an

ArrayScan™ VtI Live High Content Imaging Platform (Thermo Scien-

tific), a Cell Insight CX7 High-Content Screening Platform (Thermo

Scientific) or a Celldiscoverer 7 (Zeiss) using 20� magnification and

depending on the experiment, 15–20 fields of view per well. For

recruitment analysis, plates were imaged on an ArrayScan™ VtI Live

High Content Imaging Platform (Thermo Scientific) or an Opera Phe-

nix High-Content Screening System (Perkin Elmer) but using

40�/60� magnification and depending on the experiment, 25–50

fields of view per well. In both cases, following image acquisition, the

images were exported from HCS Studio Cell Analysis, Zeiss Zen or

Perkin Elmer Harmony Software as single channel .tiff files before

they were fed into the HRMAn analysis pipeline. 3D rendering of

A549 epithelia segmentations was performed using Imaris 8.3.1.

4.6 | Data handling and statistics

Data were plotted using Prism 9.0.0 (GraphPad Inc.) and presented as

means of experiments as indicated (with usually three technical

repeats within each experiment) with error bars as SEM, unless stated

otherwise. Significance of results was determined by non-parametric

one-way ANOVA or unpaired t test as indicated in the figure legends.

Benjamini, Krieger and Yekutieli false-discovery rate (Q = 5%) based

correction for multiple comparisons as implemented in Prism was

used when making more than three comparisons.

All open-source KNIME workflows used in this work can be found

at: https://github.com/HRMAn-Org/HRMAn and on the homepage

hrman.org under GPLv3 open-source software license. The trained
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CNN models and their respective weights obtained through training

are deposited on GitHub, the homepage and can be directly obtained

within HRMAn 2.0 from the central repository.
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