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Abstract—Citywide Air Pollution Forecasting tries to precisely
predict the air quality multiple hours ahead for the entire
city. This topic is challenged since air pollution varies in a
spatiotemporal manner and depends on many complicated
factors. Our previous research [1] has solved the problem
by considering the whole city as an image and leveraged a
Convolutional Long Short-Term Memory (ConvLSTM) model
to learn the spatiotemporal features. However, an image-based
representation may not be ideal as air pollution and other
impact factors have natural graph structures. In this research,
we argue that a Graph Convolutional Network (GCN) can
efficiently represent the spatial features of air quality readings
in the whole city. Specially, we extend the ConvLSTM model
to a Spatiotemporal Graph Convolutional Recurrent Neural
Network (Spatiotemporal GCRNN) model by tightly integrat-
ing a GCN architecture into an RNN structure for efficient
learning spatiotemporal characteristics of air quality values
and their influential factors. Our extensive experiments prove
the proposed model has a better performance compare to the
state-of-the-art ConvLSTM model for air pollution predicting
while the number of parameters is much smaller. Moreover,
our approach is also superior to a hybrid GCN-based method
in a real-world air pollution dataset.

1. Introduction

Air Pollution is a severe problem for many big cities in
the world. Accurately predicting air quality multiple hours
ahead is a challenging task in recent years. One of the most
concerning problems is that air pollution varies by both
spatial and temporal forms. As pointed in recent research
papers [1], [2], [3], [4], [5], the air cleanness in a city
changes from one location to other locations and time by
time. Therefore, we need a spatiotemporal architecture to
model air pollution features efficiently and effectively.

Our previous paper in [1] illustrated that many spa-
tiotemporal factors can affect a city’s air quality. These
factors include meteorological factors such as rain, humidity,
wind speed, wind direction; transportation factors like the
traffic volume or vehicle driving speed; and external factors

such as air pollution from nearby cities or areas. These men-
tioned spatiotemporal influences make the air pollution fore-
casting problem harder; thus, an air quality prediction model
should effectively represent the air pollution values and their
spatiotemporal impact factors. Our past research introduced
a large-scale real-world air pollution dataset collected from
Seoul city in South Korea to tackle the spatiotemporal air
pollution forecasting task. Using the collected Seoul data,
we proposed to use a combination of Convolutional Neural
Network (CNN) and Long Short-Term Memory (LSTM) in
a ConvLSTM model to interpolate and predict air pollution
for the entire city by leveraging an image-based approach.
The ConvLSTM model outperformed other Deep Learning
models in forecasting air pollution of Seoul city in 12 hours
ahead. However, the image-based representation may not
capture well the natural graph structures of air pollution
observation stations in a city and other impact factors such
as meteorology or traffic. This research tries to solve and
overcome the mentioned problem by leveraging a graph-
based method.

Figure 1: A Graph structure constructed for the air pollution
forecasting problem in Seoul city, South Korea. Each node
denotes an air pollution monitoring station. The labels of
edges are the real-world distances between stations (some
are omitted).

In Fig. 1, we show a graph structure constructed for the
air pollution forecasting problem in Seoul city, South Korea.
Each node denotes an air pollution monitoring station, and
edges are the connections between two stations weighted
by their distance. Inspired from recent success in using



Graph Convolutional Networks (GCNs) for spatiotemporal
problems and derived from the spatiotemporal basis of air
pollution data and its influential factors, we propose a
Spatiotemporal Graph Convolutional Recurrent Neural
Network (Spatiotemporal GCRNN) model. Our model
uses a GCN structure to encode the spatial feature and an
RNN architecture to model the time-series features of the
air pollution data. The most crucial point is that we tightly
integrate the GCN architecture into the RNN structure to
have a unified unit that efficiently learns the spatiotemporal
features at the same time. Our experiments prove that the
proposed method yields better performance than previous
approaches to Seoul data while the parameters are much
smaller.

In the ConvLSTM paper for air pollution interpolating
and forecasting [1], a large scale dataset of air pollution and
spatiotemporal related factors was constructed. This dataset
includes air pollution values in monitoring stations collected
in Seoul city for three years, from 2015 to 2017, and many
air quality impact factors that contribute to building an accu-
rate air pollution prediction model. However, we believe that
an even larger dataset will accelerate this field of research
with better prediction models. Therefore, in this study, we
collect more data from Seoul city in two recent years of 2018
and 2019 with all aforementioned spatiotemporal factors.
The new dataset has more extended period of data (from
2015 to 2019), more data points (a 75% bigger) which brings
a more significant training data for both air pollution and
spatiotemporal research.

In summary, our contributions in this paper are three
folds:

• Firstly, we introduce Spatiotemporal Graph Con-
volutional Recurrent Neural Network model, a
unified integration of GCN and RNN architectures,
which works efficiently and effectively for spa-
tiotemporal air pollution forecasting problems.

• Secondly, we conduct extensive experiments to
prove the proposed method produces better per-
formance than the state-of-the-art ConvLSTM
model and outperforms a recent GCN based ap-
proach. We implemented the two most common
graph convolutional operators, such as spectral graph
and diffusion graph convolution, in our model.

• Lastly, we enlarge the previous large-scale dataset
of Seoul data to a new massive dataset to bring
researchers a large-scale data source for both air
pollution and spatiotemporal related problems.

The rest of the paper is structured as follows: First,
we review relating literature in the related work section.
The following are detailed descriptions of our proposed
method and architecture. The empirical experiments are then
presented and evaluated. Finally, we conclude and discuss
our future research directions.

2. Related work

2.1. Spatiotemporal Deep Learning for Air Pollu-
tion Forecasting

Many Deep Learning based models have been adopted
for spatiotemporal air pollution prediction. In [2], the au-
thors proposed a method that used a spatial predictor as a
neural network to model the spatial correlations at different
locations. Their approach defined spatial neighbors of a
station within three circles from farthest (e.g., 300km) to
nearest (e.g., 30km), and then aggregated the air pollutant
values and related factors such as meteorological data in
these circles. Their spatial learning algorithm is complicated
and uses hand-crafted features (e.g., the circles’ diameters).
In contrast, our approach uses graph convolution to auto-
matically learn the graph structures of air pollution stations
and related factors in any locations in a city.

Similarly, in [3], the authors introduced a real-time air
pollution prediction model based on big data; and in [4],
an LSTM-based encoder-decoder method was employed to
forecast air pollution in South Korea. A more recent re-
search [5] models air pollution influential factors using a
multi-modal approach for air pollution forecasting in Seoul
city. Nevertheless, none of those aforementioned solutions
leverages the graph structure for air pollution data as in our
current research.

Air pollution forecasting is also a time series predic-
tion problem. There are some well-known machine learn-
ing algorithms for time series forecasting such as Auto-
regressive Integrated Moving Average (ARIMA), Support
Vector Regression (SVR), and Recurrent Neural Networks
(RNNs). In [5], the authors did experiments to show that
the ARIMA, SVR, and pure RNN models were inefficient
in middle-to-long-term air pollution prediction since they
could not exploit spatiotemporal information from many
impact factors. On the other hand, some RNN variants
such as Long Short-Term Memory (LSTM) [15] and Gated
Recurrent Units (GRUs) [16] enable us to handle longer
training sequence and create more accurate prediction for
long-term foreseeing. Many recent papers have leveraged
and proved the advantages of LSTM and GRUs structures
in air pollution forecasting [1], [4], [5]. In this paper, we
follow previous papers and propose to use GRUs as an RNN
architecture to learn temporal features of air pollution data.

2.2. Spatiotemporal Graph Convolutional Net-
works

In recent years, Convolutional Neural Networks (CNNs)
have been generalized to arbitrary graphs based on the spec-
tral graph theory. Graph Convolutional Networks (GCNs)
were first introduced in [6], which connects the spectral
graph theory and deep neural networks. Paper [7] proposes
ChebNet model to improve GCN with fast localized spectral
convolutional filters. Paper [8] simplifies ChebNet by param-
eterizing each spectral filter by the first order Chebyshev



polynomials and achieves state-of-the-art performance in
semi-supervised classification tasks.

GCNs are now trending for spatiotemporal problems
like traffic forecasting. In [9], the authors represented the
pair-wise spatial correlations between traffic sensors using a
directed graph in which nodes are sensors, and edge weights
are closeness between the sensor pairs denoted by the roads
network distance. The proposed model was a graph diffusion
convolution model to capture the spatial dependency of
traffic sensors. Many following papers also suggest using
GCN in traffic forecasting and produce reasonable results
[10], [11].

Similarly, GCNs have been started using in air pollution
forecasting problems. A paper in [12] proposed a geo-
context based diffusion convolutional recurrent neural net-
work (GC-DCRNN) model for forecasting short-term PM2.5

concentrations. In the paper [13], the researchers introduced
to use a sequential combination of graph convolutional
neural network and long short-term memory model for spa-
tiotemporal PM2.5 forecasting in 72 hours ahead. A newer
paper [14] defined a knowledge enhanced graph neural
network model for PM2.5 forecasting. These papers both
leveraged the GCN model as the spatial representation for
air pollution features but still have shortcomings compared
to our approach.

The geo-context based method in [12] tried to use geo-
graphic features around monitoring stations such as roads,
buildings, green lands, or water areas to model the spatial
relationships between stations. It also exploited a graph
convolutional recurrent neural network as in our system.
The biggest problem is that they used static data such as
geographic features collected from OpenStreetMap data. In
contrast, we use dynamic and real-time data like traffic
volume and average vehicle speeds on roads. Moreover,
in crowded cities like Seoul, the geo-context around each
monitoring station may be similar because of the high
density of buildings and roads. Therefore, the geo-context
is reduced to the real-world distances between stations as in
our method.

The approach in [13] firstly extracted the spatial features
of input data by graph convolution operations, and then fed
the extracted features into an LSTM model to learn the tem-
poral features. The final layer was a fully connected layer
to regress the PM2.5 values. This paper’s input data was
air pollution values and weather data in Jing-Jin-Ji (Beijing,
Tianjin, and Hebei) area in North China. The distinct steps
of GCN and LSTM layers in this method may not accurately
capture the complex correlations of many spatiotemporal
factors in the air pollution forecasting problem as in our
Spatiotemporal GCRNN model can capture both spatial and
temporal features at the same time. The more recent paper
[14] attempted to enhance the nodes and edges of a graph by
the knowledge from the air pollution domain such as the air
pollution transportation between cities, the meteorological
information, and the geographical knowledge (e.g., moun-
tains). We argue that their knowledge enhance approach
does not generalize well for other spatiotemporal forecasting
problems and they only consider the city-level prediction,

whereas we try to forecast air pollution at the station-level
for a city.

3. Methodology

In this section, we formalize the air pollution forecasting
as a GCN problem and describe how the Spatiotemporal
Graph Convolutional Recurrent Neural Network model can
capture well the spatiotemporal features.

3.1. Graph and Graph Convolutional Network
Representations

The most important concepts in the graph theory are
(Weighted) Adjacency Matrix (W ), Degree Matrix (D), and
Laplacian Matrix (L). For a graph G = (V,E), in which
V = {vi}, i = 1, .., N , E = {(vi, vj)}, the following
equations define W , D, L of a graph, and some common
types of Laplacian Matrices such as symmetric normalized
Laplacian (Lsym) or random walk normalized Laplacian
(Lrw):

W = {wij}, wij =

{
weighted value, if (vi, vj) ∈ E
0, otherwise

D = {dij}, dij =

{
deg(vi), if i = j,

∑
deg(vi) = 2|E|

0, otherwise

L = D −W (1)

Lsym = D−1/2(D −W )D−1/2

Lrw = D−1(D −W )

The following equation denotes the kernel of a GCN in
the ChebNet model [7]:

gθ(Λ) =

K−1∑
k=0

θkTk(Λ̃) (2)

where gθ is a kernel (θ represents the vector of Chebyshev
coefficients) applied to Λ, the diagonal matrix of Laplacian
eigenvalues (Λ̃ represents the diagonal matrix of scaled
Laplacian eigenvalues, Λ̃ = 2Λ/λmax − In, λmax is the
largest eigenvalue of L). k is the smallest order neighbor-
hood, and K indicates the largest order localization. Finally,
T stands for the Chebyshev polynomials of the kth order.

3.2. Problem Formalization

The goal of an air pollution forecasting task is to predict
the future air quality values given previously observed air
pollution from N correlated air pollution monitoring sta-
tions. We can represent the monitoring stations network as a
weighted graph G = (V,E,W ), where V is a set of nodes or
stations, |V | = N , E is a set of station relationships (edges),
and W ∈ RN×N is a weighted adjacency matrix denoting
the stations correlations. The distance of two observation
stations indicates the relation between two stations in the
graph. Let F is the number of features in each node (e.g., the



Figure 2: An air pollution forecasting task is constructed as
a graph-based problem. T is the number of historical graph
signals, T ′ is the number of future prediction graph signals.
X ∈ RN×F is an input graph signal, X̃ ∈ RN×1 is an
output signal, h(.) is the learned function given the graph
G.

air pollution values and other impact factors values at that
node), then the input graph signal of G is X ∈ RN×F . X(t)

denotes the input graph signal observed at time t, and X̃(t′)

is the output graph signal at time t′, X̃ ∈ RN×1 (because
we only output one estimated air pollution value for one
station at a time). The air pollution forecasting problem tries
to learn a function h(.) that maps T historical graph signals
to future T ′ graph signals, given a graph G:

[X(t−T+1), ..., X(t);G]
h(.)−−→ [X̃(t+1), ..., X̃(t+T ′)] (3)

Fig. 2 shows how an air pollution forecasting task is con-
structed as a graph based problem with the graph signals
representing the air pollution monitoring stations. Both input
and output graph signals have the same graph structure.

3.3. Modeling Spatial Features

In this paper, we learn the spatial dependency between
air pollution monitoring stations by representing the station
network into a graph structure as in the Problem Formaliza-
tion section. After that, we employ the graph convolution
operators to model the spatial features of input graph signals.
The extracted spatial features are used in combination with
temporal features to predict future air pollution outputs.
We try with two well-known graph convolution definitions,
spectral graph convolution and diffusion graph convolution,
for modeling spatial dependency. The formulas of two graph
convolutional definition are presented below.

The spectral graph convolution [6], [7], [8] employs the
concepts of symmetric normalized graph Laplacian matrix
L = D−1/2(D − W )D−1/2 = ΦΛΦT . The convolution
operation over a graph signal X ∈ RN×F and a kernel gθ
is defined as below:

X:,f ?G gθ = Φ(

K−1∑
k=0

θkΛk)ΦTX:,f

=

K−1∑
k=0

θkL
kX:,f =

K−1∑
k=0

θ̃kTk(L̃)X:,f (4)

with the kernel gθ as in equation 2, θ are the learnable
parameters, f ∈ {1, ..., F}. ?G denotes the convolution over
a graph G. T0(x) = 1, T1(x) = x, Tk(x) = xTk−1(x) −

Tk−2(x) are the basis of the Chebyshev polynomials. L̃ =
2L/λmax − I represents a rescaling of the graph Laplacian
that maps the eigenvalues from [0, λmax] to [−1, 1] since
Chebyshev polynomial forms an orthogonal basis in [−1, 1].
We can approximate the kernel gθ by a truncated expansion
in terms of Chebyshev polynomials Tk(x) up to Kth order.
The graph convolution definition is now have the form:

X:,f ?G gθ′ ≈
K∑
k=0

θ′kTk(L̃)X:,f (5)

This expression is K-localized since it is a Kth-order
polynomial in the Laplacian, i.e. it depends only on nodes
that are at maximum K steps away from the central node
(Kth-order neighborhoods). Equation 5 is our spectral graph
convolution definition used in this paper.

A graph diffusion convolution was defined in the paper
[9]. The diffusion process is characterized by a random walk
on graph G with restart probability α ∈ [0, 1], and a state
matrix D−1W , where D is the degree diagonal matrix (see
equation 1). The resulted diffusion convolution from the
mentioned diffusion process is specified as:

X:,f ?G gθ =

K−1∑
k=0

(θk(D−1W )k)X:,f for f ∈ {1, ..., F}

(6)
where θ are the parameters for the filter gθ and D−1W
represents the transition matrix of the diffusion process. The
parameter K is the number of diffusion steps from a node
to its neighborhood, which corresponds to the Kth-order in
the spectral graph convolution.

Since spectral graph convolution and graph diffusion
convolution are two common graph convolution operators,
in this paper, we implement each operator for the GCN
layer and do experiments to compare their influences to the
prediction results.

3.4. Modeling Temporal Features

The previous paper [1] proved the power of a combina-
tion of CNN and RNN models in spatiotemporal forecasting
problems by using convolutional operators to replace the
fully connections in input-to-state and state-to-state transi-
tions of an LSTM cell. In this paper, we also leverage that
idea by replacing the matrix multiplications in a GRU cell
with the graph convolution to learn spatial and temporal
features of the input data simultaneously. A GRU or Gated
Recurrent Unit [16] model is a variant of RNN model
that can learn long-term sequence of data similar to an
LSTM model but with the smaller number of parameters. A
GRU cell with the graph convolution operators establishes
a spatiotemporal layer that we call a Graph Convolutional
Recurrent Neural Network layer, or GCRNN layer.

In detail, following are four transformation equations for
reset gate, update gate, candidate values and hidden states



Figure 3: The overall architecture of our Spatiotemporal
Graph Convolutional Recurrent Neural Network model.
Input Graph Signals are historical air pollution data repre-
sented in graph structures. Prediction Outputs are predicted
air pollution values in some hours ahead. A GCRNN Layer
includes a GRU cell with graph convolution operators. An
Encoder and Decoder architecture is applied to predict mul-
tiple future time-steps.

in a GRU cell of one GCRNN layer.

r(t) = σ(Θr ?G [X(t), H(t−1)] + br)

u(t) = σ(Θu ?G [X(t), H(t−1)] + bu) (7)

C(t) = tanh(ΘC ?G [X(t), (r(t) �H(t−1))] + bC)

H(t) = u(t) �H(t−1) + (1− u(t))� C(t)

where X(t), H(t) denote the input and output at time t,
r(t), u(t) are reset gate and update gate at time t, C(t)

are candidate values at time t, respectively. ?G means
the graph convolutional operator defined by spectral graph
convolution (equation 5) or diffusion convolution (equation
6). Θr,Θu,ΘC are parameters for the corresponding filters.
� denotes the Hadarmad product or element-wise matrix-
matrix multiplication. σ and tanh are the activation func-
tions.

For multiple steps forecasting, a sequence to sequence
architecture (seq2seq) is applied [17]. Both the encoder and
decoder of the seq2seq consist of one or many GCRNN
layers. The final states of the encoder are used to initialize
the initial state of the decoder. The combination of GCRNN
layers and a seq2seq scheme builds up our Spatiotem-
poral Graph Convolutional Recurrent Neural Network
(Spatiotemporal GCRNN) model. Fig. 3 shows the system
architecture of our Spatiotemporal GCRNN model designed
for spatiotemporal air pollution forecasting. The input is the
historical time-series of air pollution represented as graph

signals, and the output is the future multiple hours of air
pollution prediction.

3.5. Modeling Spatiotemporal Impact Factors

As presented in previous paper [1], air pollution in a city
is influenced by many spatiotemporal factors. Regarding this
paper’s graph based approach, each spatiotemporal impact
factor will be represented as a graph signal with the same
graph structure as air pollution graph. We propose a strategy
to learn these impact factors and air pollution graph features
efficiently.

We fuse air pollution values and all spatiotemporal influ-
ential factors as one input graph signal with multiple features
at the corresponding node. Denotes Xa ∈ RN×Fa is the air
pollution graph signal, Xm ∈ RN×Fm is the meteorological
graph signal, Xt ∈ RN×Ft is the traffic volume graph signal,
Xs ∈ RN×Fs is the average driving speed graph signal, and
Xo ∈ RN×Fo is the outside air pollution graph signal. N is
the number of graph nodes, Fa, Fm, Ft, Fs, and Fo are air
pollution, meteorological, traffic volume, average speed, and
outside air pollution number of features, respectively. Then
the input graph signal X of the model is a concatenation
of all graph signals:

X = Xa ⊕Xm ⊕Xt ⊕Xs ⊕Xo (8)

⊕ is a vector concatenation operator. Therefore, the total
number of features for the input graph signals is F =
Fa +Fm +Ft +Fs +Fo. All graph convolution operations
(equation 5 and equation 6) and GRU equations (equation
7) are not changed except the input graph signals turn to
X(t) ∈ RN×F .

Fig. 4 shows the strategy of modeling spatiotemporal
impact factors as the combination of input graph signals.
The architecture of the Spatiotemporal GCRNN model does
not change.

Figure 4: Modeling spatiotemporal impact factors by fusing
all input data into a combined graph signal.



4. Experiments

In this section, we describe our extensive experiments to
prove the strength of the proposed Spatiotemporal GCRNN
model in spatiotemporal air pollution forecasting tasks. Af-
ter introducing the experiments’ setup, we conduct exper-
iments to directly compare the performance of the Spa-
tiotemporal GCRNN to ConvLSTM, a state-of-the-art air
pollution prediction method from the previous paper [1],
following are comparisons with a recent GCN-based air
pollution forecasting model. Lastly, we ablation study the
effects of many GCN configurations such as Kth-order,
weighted adjacency matrix construction, and different types
of graph convolutional operators.

4.1. Experiments Setup

We use the Seoul dataset as in the state-of-the-art paper
[1]. The Seoul dataset is a large-scale dataset that consists
of 3-year spatiotemporal data in Seoul city, Korea, from
2015 to 2017. This dataset includes air pollutants, such
as PM10, PM2.5,...; meteorological data, like temperature,
wind speed, wind direction, rainfall,...; traffic volume of
main roads; average driving speed on roads; and the air
pollution from 3 areas in China (Beijing, Shanghai, and
Shandong) that affects Seoul’s air quality. As mentioned in
the Introduction section, in this paper, we broaden the Seoul
dataset with a more extended period of air pollution and
related impact factors data. Table 1 shows statistics about
our new Seoul dataset compared to the existing one. Our
new dataset is 83% more in the number of air pollution
samples and 75% larger in the total number of all data
points. Nevertheless, to keep a fair comparison with previous
methods, we still do experiments with the existing Seoul
dataset and reserve the new dataset for further research.

TABLE 1: New Seoul dataset statistics and compared to the
existing one

Statistic New dataset Existing
dataset

Time Period 01/01/2015
∼
12/31/2019

01/01/2015
∼
09/30/2017

Total Hours 43,824 24,048
Total Number of Data Samples 193,217,386 110,468,780
Air Pollution Data Samples 1,716,952 937,872
Meteorology Data Samples 753,326 735,734
Traffic Volume Data Samples 10,716,240 5,955,072
Average Driving Speed Data Samples 179,951,956 102,761,187
China Air Pollution Data Samples 78,912 78,912

We follow the same data pre-processing of ConvLSTM
model from [1] for this paper’s experiments, including the
grid construction. Firstly, Seoul city is divided into a grid
of shape 32 × 32, and each grid-cell is assigned with the
corresponding observation stations or traffic survey points.
This step makes our experiments in this paper comparable

with the previous method. After the pre-processing, we
construct a graph for the grid-level air pollution forecasting
problem with each node is assigned by the corresponding
cell.

We use the Tensorflow framework [18] to build the
model and Nvidia GPU for training and testing. All ex-
periments in this paper use the base learning rate of 0.001
and decay every ten epochs with the decay ratio 0.1 until
reaching the minimal value of 2.0e-06. The batch size is
64, the number of GRU hidden units is 64, and the number
of GCRNN layers is 2. We train with a maximum of 100
epochs but apply early stopping when the validation error
does not decrease after 50 epochs. The Adam optimizer
is utilized by its convergence speed and popular in deep
learning optimizing problems. We also employ the Root
Mean Squared Error (RMSE) loss to compare the differences
between the real observed and the estimated values. The
training set is two years, 2015 and 2016, and the test set is
the year 2017. This split strategy ensures the training and
test set have the same distribution but still makes our model
a good generalization.

Regarding test set errors, we apply the following metrics
to have numerous viewpoints on the testing performance.
The first metric is a common regression metric such as Root
Mean Squared Error (RMSE). Also, we utilized a correlation
coefficient R squared (R2) score, which was used in [13],
to show how good is our prediction values’ distribution fit
to the real observed values. Moreover, the citywide spa-
tiotemporal air pollution interpolation and prediction paper
[1] presented a novel spatiotemporal metric called spRMSE
(or spatiotemporal RMSE). This metric evaluates how other
spatiotemporal factors impact the efficiency of prediction
outputs. To calculate this measurement, we use the following
process: alternately remove one of the existing air pollution
values in a node of the input graph signal in test set but
still keep the features of other nodes and then compute
RMSE of predicted air pollution value with the ground-
truth one. The final error is the mean of RMSEs after this
procedure with all nodes in the testing data. We will compare
the spRMSE metric values of our proposed Spatiotemporal
GCRNN model to the ConvLSTM model.

4.2. Performance comparisons with the ConvL-
STM model for short-term air pollution forecasting

In this section, we conduct experiments of the Spa-
tiotemporal GCRNN model for air pollution forecasting. We
use PM2.5 air pollutants as in the experiments of the Con-
vLSTM model [1]. The number of nodes of the input graph
signals is 25 nodes (corresponding to 25 PM2.5 monitoring
stations). To prove the graph based model is better for spatial
data, we also perform experiments with PM10 air pollutants,
which are observed by larger monitoring stations, 37 stations
corresponding to 37 nodes of the input graph signals. The
forecasting time-steps are similar to the paper [1], from 1
hour to 12 hours in the future.

Fig. 5 shows RMSE metric values on testing data of the
ConvLSTM model and Spatiotemporal GCRNN model with



Figure 5: Compare testing performance of ConvLSTM
model (ConvLSTM) and Spatiotemporal GCRNN model
(ST-GCRNN) for PM10 and PM2.5 air pollution forecasting
from 1 to 12 hours in Seoul data (smaller is better).

PM2.5 and PM10 air pollution forecasting from 1 hour to
12 hours (smaller is better). The Spatiotemporal GCRNN
model produces slightly better performance in RMSE
values compare to the ConvLSTM model with PM2.5 air
pollution prediction but achieves significant better results
for PM10 prediction. These results claim that a graph-
based method can capture more information from a larger
and more complex structure than a image-based approach
in the ConvLSTM paper [1]. Moreover, one advantage
of the graph-based model is the smaller model size. The
ConvLSTM model with 12 hours forecasting has the num-
ber of trainable parameters more than 20.5M parameters
while the Spatiotemporal GCRNN model has only 371K
parameters, a 55x smaller. Hence, we can conclude that
the Spatiotemporal GCRNN model with a much smaller size
than a ConvLSTM model can produce better performance
for spatiotemporal air pollution forecasting.

Regarding comparing the performance of modeling the
spatiotemporal impact factors by ConvLSTM and Spa-
tiotemporal GCRNN models, we use both RMSE and
spRMSE metrics. We perform the experiments with the two
types of input graph signals, air pollution only and air
pollution with spatiotemporal impact factors, respectively.
The performance results of Spatiotemporal GCRNN and
ConvLSTM models are presented in Table 2. In the table,
ConvLSTM and ConvLSTM + All are ConvLSTM models
without and with spatiotemporal impact factors data, ST-
GCRNN and ST-GCRNN + All are Spatiotemporal GCRNN
models including only air pollution input data and including
all spatiotemporal impact factors, respectively. All experi-
ments are executed with PM2.5 air pollution 1-hour ahead
prediction (similar to experiments in [1]). The results re-
veal that a Spatiotemporal GCRNN model obtains better
performance in terms of RMSE and spRMSE metrics than
a ConvLSTM model in both input data are air pollution
only and air pollution with all spatiotemporal impact factors.
Even compare to the best RMSE in [1] with ConvLSTM
+ Meteorology data, the ST-GCRNN model still achieves

TABLE 2: Performance comparisons with spatiotemporal
(ST) impact factors by ConvLSTM and Spatiotemporal
GCRNN (ST-GCRNN) models on PM2.5 with 2 metrics,
spRMSE and RMSE (smaller is better).

Air pollution only With ST impact factors
Metric ConvLSTM ST-

GCRNN
ConvLSTM
+ All

ST-GCRNN
+ All

spRMSE 15.4872 14.9522 11.0254 10.9960
RMSE 8.3147 5.5947 7.1703 5.5963

smaller RMSE value (5.5947 vs. 6.5809). In addition, the
Spatiotemporal GCRNN + All has a smaller spRMSE value
than Spatiotemporal GCRNN without spatiotemporal impact
factors. Therefore, we still recognize the efficacy of a GCN-
based model in learning spatiotemporal factors for air pol-
lution forecasting problems.

4.3. Performance comparisons with a GCN-based
air pollution prediction model for long-term fore-
casting

In this experiment section, we choose the model in [13]
as our baseline for GCN-based air pollution forecasting
comparisons. As pointed out in the related work section, the
GCN-based model in [13] is a Hybrid model that includes
a GCN model and an LSTM layer as our system but it
separates them to two consequential steps while we combine
two architectures into a unified system.

We implement the Hybrid model of GCN and LSTM
from the paper [13] in Seoul data. This model includes
three sequential layers, the first layer is a GCN model to
extract spatial features of the input data, the second one is
an LSTM model with input is the extracted spatial features
and output is the learned temporal features, and the last layer
is a fully connected (FC) layer to regress the predictions.
We implement GCN and LSTM layers of the Hybrid model
with the same hyper-parameters as in our Spatiotemporal
GCRNN model. We also apply the same training and testing
configurations as in section 4.1. The input graph signals of
the Hybrid model are identical to our model.

For performance comparisons of this Hybrid model with
our proposal model, we conduct experiments for medium to
long-term prediction time steps: forecasting 12, 24, and up
to 72 hours in the future with both PM2.5 and PM10 air
pollutants. Table 3 demonstrates the results on the same test
set of the Hybrid model and Spatiotemporal GCRNN with
PM2.5 and PM10 air pollution forecasting in 12, 24 and 72
hours ahead. Overall, our Spatiotemporal GCRNN model
achieves better performance in PM2.5 and PM10 forecasting
over the Hybrid model. In detail, our ST-GCRNN model
obtains a larger gap of the performance in PM2.5 forecasting
than PM10. The reason could be that the distributions of
PM2.5 air pollution values are more complicated than the
PM10 readings and our unified combination of GCN and
GRU models can exploit the complex correlations of PM2.5

air pollution better than sequential steps as in the Hybrid
model.



TABLE 3: Performance comparisons between the Hybrid
model, and Spatiotemporal GCRNN (ST-GCRNN) in PM2.5

and PM10 for 12, 24, and 72 hours air pollution forecasting.
The metric is RMSE (smaller is better).

T Hybrid model ST-GCRNN

PM2.5

12 hours 9.1880 8.5074
24 hours 12.9689 10.1350
72 hours 14.1043 12.5671

PM10

12 hours 16.8503 16.8093
24 hours 19.7901 19.1588
72 hours 24.4862 24.4360

TABLE 4: Statistical analysis of PM2.5 and PM10 air pol-
lutants experimental data: Mean and Std. deviation (data is
[0-1] normalized)

PM2.5 PM10

Statistical
measurement

Mean Std. de-
viation

Mean Std. devi-
ation

By time 0.136927 0.091587 0.040974 0.031563
By locality 0.136927 0.038279 0.040974 0.010903

We prove the above assessment by doing statistical
analysis for PM2.5 and PM10 air pollutants in Table 4.
We compute the mean and standard deviation values for
the following statistical measurements of the data: data
points changing by time (which means the distribution of air
pollution readings at each station over the time), and data
points changing by locality (equals to the distribution of air
pollution values over all stations in a city at a time). The
statistic values are computed based on the [0-1] normalized
data of PM2.5 and PM10 readings. From the table, the
PM2.5 air pollutant data has a higher standard deviation
than the PM10 regarding changing by time or by locality. It
means the distribution of PM2.5 values spreads around the
mean value more than PM10 data; thus, they need a more
efficient architecture to learn their correlations. Regarding
the less spreading PM10 values, our model is still better
the Hybrid model in 12, 24 and 72 hours forecasting. From
these experiments’ results, we can conclude that the tight
integration of GCN and RNN models in Spatiotemporal
GCRNN architecture learns the spatiotemporal air pollution
data better than separated layers in a GCN-based hybrid
approach. Furthermore, the number of trainable parameters
of the Hybrid model is 518K parameters, a 1.5x larger our
model.

4.4. Ablation study the effects of different GCN
configurations

To evaluate the effects of different GCN configurations
toward the forecasting results, we experiment with the
following parameters: K-order to explore the impact of
the graph convolutional filter’s receptive fields; weighted
adjacency matrix W threshold ε to vary the sparsity of W ;
and the graph convolution definitions (spectral or diffusion
graph convolution).

The K-order determines the number of nearest neigh-
bors of a node that will be considered as the filter’s receptive
fields in graph convolutional operation. When K increases,
the size of receptive fields larger, and the graph can capture
wider spatial dependency at the cost of increasing learning
complexity and the training time. Fig. 6 shows the results
with different K on the validate set. We observe that with
the increase of K, the validation loss first quickly falls (K
from 1 to 2), and then decreases slightly (K ≥ 3), while
the training time per epoch rises a lot. In this paper, we use
K = 2 as the default K-order value to balance between the
validation loss and the training time.

Figure 6: Effects of K-order values in Spatiotemporal
GCRNN model. When K increases from 1 to 4, the Val-
idation Loss decreases but the Training Time rises.

Regarding computing the weighted adjacency matrix
W , we use a threshold ε to control the sparsity of W .
All weights less than ε will be set to zero. A weighted
edge equals to zero also means there is no relationship
between two nodes of that edge. In graph based problems,
W can be built using a thresholded Gaussian kernel [19].
Wij = exp(−dist(vi,vj)

2

σ2 ) if dist(vi, vj) ≤ ε, otherwise
0. dist(vi, vj) denotes the distance between 2 stations in
station-level or 2 grid-cells in grid-level. σ is the standard
deviation of distances and ε is the threshold. In this paper,
we experiment with three decreasing values of ε: 0.1, 0.01,
and 0.0 (no threshold). From the experiments’ results in
Fig. 7, we can observe that when ε decreases from 0.1 to
0.0, the validation loss decreases, but the training time for
one epoch also goes up. Hence, we use ε = 0.01 as the
default threshold in building the adjacency matrix for the
graph since it has the trade-off between the validation errors
and the training time.

For the last ablation study, we explore the effects of
different graph convolution operators such as spectral
convolution and diffusion convolution. The spectral convo-
lution operation is implemented as in equation 5 while the
diffusion convolution is performed following equation 6.
From [9], the diffusion convolution implementation includes



Figure 7: Effects of adjacency matrix threshold ε values in
Spatiotemporal GCRNN model. When ε decreases from 0.1
to 0.0, the Validation Loss decreases but the Training Time
also goes up.

two cases, the first is a random walk diffusion, and the
second is a dual random walk diffusion with the diagonal
matrix D in equation 6 is split into 2 matrices: an out-degree
diagonal matrix and an in-degree diagonal matrix. Fig. 8
shows RMSE values for these studying graph convolution
operations with three time steps 1, 6, and 12 hours in
PM2.5 forecasting. As a results, the dual random walk
diffusion convolution achieves a slightly better performance
than other convolutional implementations.

Figure 8: Performance comparisons for different graph con-
volution operators of PM2.5 air pollution forecasting in
1, 6, and 12 hours ahead. Dual Random Walk Diffusion
Convolution produces slightly better performance among
two others.

5. Conclusion

In this paper, we introduce a spatiotemporal GCN-based
model for the citywide air pollution forecasting. The new

proposal model named Spatiotemporal Graph Convolu-
tional Recurrent Neural Network is a deep integration of
a GCN model for spatial features extraction and an RNN
model for temporal features learning. The Spatiotemporal
GCRNN model has the size 55x smaller than the state-of-
the-art ConvLSTM model for air pollution forecasting but
produces better results. Through a series of empirical experi-
ments, we prove that our Spatiotemporal GCRNN model has
better performance than the ConvLSTM model in short-term
air pollution prediction, and also achieves superior results in
medium to long-term air pollution forecasting compare to
a GCN-based hybrid model that separates GCN and LSTM
in discrete layers.

Moreover, in this research, we expand the previous Seoul
data from 3 years time period to a 5-year dataset (75%
bigger). We hope that this large-scale dataset will become a
valuable data source for researchers in air pollution as well
as spatiotemporal based research. We will public the new
dataset along with this paper.

In the future, we will enhance our research in the follow-
ing directions: first, exploiting advanced graph convolution
network models such as spatial-based graph convolution or
graph attention networks to achieve better performance; sec-
ond, due to the small size of the graph-based model, we can
deploy the trained model to build real-time spatiotemporal
forecasting for urban intelligent systems.
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