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A serum proteome signature to predict mortality in severe
COVID-19 patients
Franziska Völlmy1,2, Henk van den Toorn1,2, Riccardo Zenezini Chiozzi1,2, Ottavio Zucchetti3,
Alberto Papi4, Carlo Alberto Volta5, Luisa Marracino6, Francesco Vieceli Dalla Sega7, Francesca Fortini7,
Vadim Demichev8,9,10, Pinkus Tober-Lau11 , Gianluca Campo3,7, Marco Contoli4, Markus Ralser8,9,
Florian Kurth11,12, Savino Spadaro5 , Paola Rizzo6,7, Albert JR Heck1,2

Here, we recorded serum proteome profiles of 33 severe
COVID-19 patients admitted to respiratory and intensive care
units because of respiratory failure. We received, for most pa-
tients, blood samples just after admission and at two more later
time points. With the aim to predict treatment outcome, we fo-
cused on serum proteins different in abundance between the
group of survivors and non-survivors. We observed that a small
panel of about a dozen proteins were significantly different in
abundance between these two groups. The four structurally and
functionally related type-3 cystatins AHSG, FETUB, histidine-rich
glycoprotein, and KNG1 were all more abundant in the survivors.
The family of inter-α-trypsin inhibitors, ITIH1, ITIH2, ITIH3, and
ITIH4, were all found to be differentially abundant in between
survivors and non-survivors, whereby ITIH1 and ITIH2 were more
abundant in the survivor group and ITIH3 and ITIH4 more
abundant in the non-survivors. ITIH1/ITIH2 and ITIH3/ITIH4 also
showed opposite trends in protein abundance during disease
progression. We defined an optimal panel of nine proteins for
mortality risk assessment. The prediction power of this mortality
risk panel was evaluated against two recent COVID-19 serum
proteomics studies on independent cohorts measured in other
laboratories in different countries and observed to perform very
well in predicting mortality also in these cohorts. This panel may
not be unique for COVID-19 as some of the proteins in the panel
have previously been annotated as mortality markers in aging
and in other diseases caused by different pathogens, including
bacteria.
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Introduction

The coronavirus disease 2019 (COVID-19) pandemic caused by
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has
affected many people with a worrying fatality rate up to 60% for
critical cases. Not all people infected by the virus are affected
equally. Several parameters have been defined that may influence
and/or predict disease severity and mortality, with age, gender,
body mass, and underlying comorbidities being some of the most
well established. To delineate best treatments and recognize disease
severity early on, so that clinicians candecide on treatment options, it
would be very helpful to discover markers helping to define disease
severity, ideally having prognostic value, and/or predict a specific
phase of the disease (1 Preprint). Unfortunately, not many prognostic
biomarkers are yet available that can distinguish patients requiring
immediate medical attention and estimate their associated mortality
rates.

Here, we attempted to contribute to this urgent need aiming to
find serum biomarkers that can be used to predict mortality in a group
of COVID-19 patients. For the present purpose, we prospectively
assessed serum protein levels at different time points by using mass
spectrometry–based serum proteomics in a cohort of moderate-to-
severe COVID-19 patients admitted to hospital because of respiratory
failure (ATTAC-Co study–registered at www.clinicaltrials.gov number
NCT04343053).

Given the central role of proteins in biological processes as a whole,
and in particular in diseases, we applied mass spectrometry–based
proteomics to identify protein biomarkers that could discriminate
between the COVID-19 patients who recovered and those who did not
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survive. Several proteomic studies (2, 3, 4, 5) or even multi-omics
studies, including proteomics (6, 7), have to date investigated the
serum or plasma of COVID-19 patients for the most part comparing
a cohort of COVID-19 patients with control subjects (no disease) (2, 3).
Of special relevance to our work, an extensive study by Demichev et al
(8) has already investigated the temporal aspect of COVID-19 pro-
gression in individuals to predict outcome and future disease pro-
gression. Although their cohort did comprise some patients who did
not survive, for the most part, the subjects recovered and were dis-
charged. The unique cohort described in our study allows us to focus
on survivors compared with non-survivors and to define clinical
classifiers predicting outcome by using subjects recovered from the
disease as a control group.

We chose a robust data-independent acquisition (DIA) approach
to profile the serum of this patient cohort, as this method cir-
cumvents the semi-stochastic sampling bias specific to standard
shotgun proteomics, and benefits from high reproducibility. The DIA
approach, although not novel (9, 10), has recently increased in
popularity in part due to new hardware and software solutions (11)
but also due to the efforts of the proteomics community to develop
DIA setups that do not require a reference spectral library. In this
work, we chose to exploit the DIA-NN software suite (12), which
makes use of deep neural networks and signal correction to process
the complex spectral maps that arise from DIA experiments. This
results in a reduction of interfering spectra and in confident sta-
tistically significant identifications thanks to the use of neural net-
works to distinguish between target and decoy precursors.

We observed that the group of survivors and non-survivors could be
well separated by just a small group of around a dozen abundant
serum proteins, and pleasingly best at the first time point, that is,
shortly after admission to the ICU. This panel of proteins includes
various functionally related proteins, including all major serum type-3
cystatins (histidine-rich glycoprotein [HRG], fetuin-B [FETUB], fetuin-A
[FETUA], and kininogen-1 [KNG1]) and several protease inhibitors
(Serpin A2 [SERPINA2], inter-alpha-inhibitor heavy chain 1 and 2 [ITIH1
and ITIH2]). As this panel is already able to distinguish the patient
groups at the early onset, it may have a good predictive value.
Statistically most significant, the type-3 cystatin HRG and FETUB
were consistently more abundant in survivors than in non-survi-
vors. These two proteins have previously been identified as pre-
dictors of mortality in patients affected by Staphylococcus aureus
bacteremia (13), but also as general mortality markers in studies
looking at aging (14). Therefore, the panel we observe here may not
be specific for patients suffering from COVID-19, and be more
generally applicable to predict mortality risk (15).

Finally, the performance of the mortality risk panel defined here
was evaluated against two recent COVID-19 serumproteomics studies
on independent cohorts and observed to be able to predict mortality
also in these cohorts, validating that plasmaproteomicsmayproduce
reproducible and meaningful biomarker panels.

Results

For our proteomics analysis, we analyzed 33 patients, selected to
obtain two comparable groups in terms of sex (73% males), phar-
macological treatment and comorbidities, as well as age as much as

was possible (median age 71 ± 7.6 versus 65 ± 9.8, survivor versus
deceased) (Fig S1A and B and Tables S1 and S2). Of the 17 survivors,
14 had blood withdrawn at three time points and 3 patients at only
two time points. In the non-survivor group of 16 patients, 6 patients
had blood sampled at three time points, whereas 5 had two time
points, and 5 had only one time point (Fig 1A). Following a serum
proteomics sample preparation workflow optimized in our group
and by others (16, 17), we set out to process all 81 samples simulta-
neously to avoid introducing batch effects which may confound the
results. DIA was performed by analyzing all samples in a randomized
order to also further avoid batch effects. The cohort and the exper-
imental approach used are schematically summarized in Fig 1A–E
and further described in the Materials and Methods section.

In total, and after excluding numerous detected variable im-
munoglobulin protein fragments (Table S3), we could quantify
a mean number of 452 proteins per sample (min = 302, max = 578)
(Fig 2B and C). In serum proteomics, it has been well established
that the total intensity of a protein in label-free quantification
(i.e., label-free quantification [LFQ]- or intensity based absolute
quantification [IBAQ]-values) can be used as a proxy for protein
concentrations. To better relate the abundance of serum proteins
to clinical data, we converted the median log label-free quantified
values per protein from our mass spectrometry experiments into
serum protein concentrations. For this conversion, we performed
a linear regression with 22 known reported average values of
proteins in serum (A2M, B2M, C1R, C2, C6, C9, CFP, CP, F10, F12, F2, F7,
F8, F9, HP, KLKB1, MB, MBL2, SERPINA1, TFRC, TTR, and VWF) (18). This
analysis yielded a sensible correlation coefficient of R2 = 0.78 between
the proteomics concentrationmeasurements and the average values
reported in literature (Fig S2). We therefore decided to convert all
mass spectrometric values by using this concentration scale (mg/dl)
(Table S4). Moreover, gene names are used throughout this work as
identifiers when referring to proteins we measured.

A first look at the proteins present in our serum samples across
all patients revealed a few potential clear outliers. At single time
points and in single patients, several proteins originating from
either red blood cells (e.g., HBA1, HBB, CA1, CA2, and PRDX2) or fi-
brinogen (e.g., FGA, FGB, and FGG) were extremely prominent (Fig
S3A and B). These features are more often observed in serum
proteomics and are likely caused by sample preparation artefacts
(19). Fortunately, they do not negatively affect the abundance
measurements of the other serum proteins. Therefore, we decided
to exclude a panel of well-described RBC contaminants (Table S5)
from all further analyses. We then sought to determine the dif-
ferences in serum proteome expression stratifying survivors and
deceased patients. For this, at each time point separately, we
performed a two-sample t test and identified proteins significantly
differentially expressed between survivors and non-survivors (Fig
2A and Table S6). At t1, just after admission to the ICU, 42 proteins
were found to be significantly differentially expressed (28 higher in
survivors and 14 higher in non-survivors) taking as threshold a
P-value of 0.05. At t2, 30 proteins were found to be differentially
expressed (19 higher in survivors and 11 higher in non-survivors)
(Fig S4A). Finally, at t3, 19 proteins were significantly different (10
higher in survivors and 9 higher in non-survivors) (Fig S4B). In our
dataset, two proteins were significantly different between survivors
and non-survivors at all time points (HRG and haptoglobin-related
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protein [HPR]). Of note, at the latest time point, t3, we unfortunately
could include only a lower number of non-survivors, likely affecting
the observed P-values adversely. The overlap in proteins (denoted
by their gene names throughout this work) significantly different
between survivors and non-survivors at the first two time points
was nine (HRG [P-value at t1: 1.88 × 10−6; t2: 5.32 × 10−4; t3: 3.54 × 10−2],
FETUB [P-value at t1: 6.9 × 10−3; t2: 3.12 × 10−4; t3: 2.53 × 10−1], ITIH1
[P-value at t1: 1.76 × 10−3; t2: 8.08 × 10−5; t3: 1.17 × 10−1], ITIH2 [P-value at
t1: 2.94 × 10−4; t2: 1.5 × 10−2; t3: 2.75 × 10−1],HPR [P-value at t1: 2.16 × 10−2;
t2: 3.67 × 10−2; t3: 3.13 × 10−3], SERPINA3 [P-value at t1: 2.17 × 10−2; t2: 3.61 ×
10−2; t3: 2.64 × 10−1], LCAT [P-value at t1: 9.81 × 10−3; t2: 4.85 × 10−6;
t3: 8.12 × 10−2], IGFALS [P-value at t1: 9.87 × 10−3; t2: 9.29 × 10−3; t3: 5.11 ×
10−1], and IGFBP3 [P-value at t1: 3.77 × 10−3; t2: 1.02 × 10−2; t3:7.28 × 10−1]).
The nature of the first two time points as well as the number of
patient samples available at these time points led us to focus first on
these as they would enable the most appropriate comparison (at t1
there are 16 survivors and 15 non-survivors, compared to t2 with 15
versus 11 and t3 with 16 versus 6). We did choose to first focus on the

data for t1, as this represents also the most narrowly defined time-
frame, when compared to t2 and t3. Although we thus do deliberately
not focus on time point t3, due to the lower statistics, we did observe
at this last time point that several neutrophil originating proteins,
such as MPO, PRTN3, and LCN2, indicated in yellow in Fig 2A, were
more abundant in the non-survivors. Four proteins that were clearly
significant at time point 1 but that did not pass the significance
threshold at time point 2, and are of particular interest were FN1 (P-
value at t1: 4.82 × 10−3; t2: 1.61 × 10−1; t3: 4.37 × 10−1), IGHA1 (P-value at t1:
2.45 × 10−3; t2: 1.21 × 10−1; t3: 2.67 × 10−1), IGHA2 (P-value at t1: 1.11 × 10−2;
t2: 7.9 × 10−1; t3: 1.25 × 10−1), and KNG1 (P-value at t1: 2.67 × 10−3; t2: 8.29 ×
10−2; t3: 5.68 × 10−1).

With a focus on the proteins showing differences in abundance
at time point 1, we applied an unsupervised clustering approach
and found as expected that the differentially regulated proteins
that resulted from the analysis of time point 1 samples show a clear
cluster that is distinct between the survivors and some non-sur-
vivors (Fig 3A). These same differentially regulated proteins also

Figure 1. Scheme of the cohort and timing of the blood sample collection, based on each patient’s admission to the hospitalization.
(A) Serum samples were collected from 33 individuals (17 survivors, 16 deceased) diagnosed with SARS-CoV-2 infection, at one, two, or three time points after their
admission to the clinic (t0). The time points t1, t2, and t3 represent blood collections at 96 h, 14 d, and later than 14 d after they arrived at the ICU of the hospital. The date of
discharge from the hospital is recorded here, although no blood was collected at that moment. The numbers represent the elapsed number of days starting from t1 for each
patient. These are represented by color gradients ranging from dark to light the longer the duration of the stay in the clinic. Patients where no color timeline is represented,
indicate cases for which no consecutive temporal collection points were available. Patient descriptors including age and gender aswell as indexes used throughout this report
are provided to the right of the timelines and color coded. Patient’s age is binned (10 yr/bin) and the darker the greyscale in column 1 the older the patient. The gender of each
patient is marked in column 2 as blue and pink. Patient indexes are color-coded for patient outcomes, with survivors in blue and deceased SARS-CoV-2 patients in red in
column 3. (B) Serum samples were proteolytically digested and the resulting tryptic peptides were purified using reverse-phase cartridges on an autosampler robot. (C) The
samples were analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS) applying a data-independent acquisition strategy. Spectra were extracted using
DIA-NN yielding as ameasure abundance for each protein. (D) Two-sided t tests were performed to determine significantly regulated proteins comparing survivors and non-
survivors. (E) These differentially regulated proteins were found to be largely functionally related, and define a potential panel of mortality markers, by which we can stratify
patients that might ultimately overcome or succumb from the infection, which can be diagnosed already at an early time point in the clinic.
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perform relatively well at time point 2 to stratify between patient
outcomes (Fig 3B).

Discussion

Here, we prospectively performed serum proteomics in moderate-
to-severe COVID-19 patients admitted to respiratory and intensive

care units because of respiratory failure. Our serum proteomics
data provided quantitative information about the abundance of
about 300–400 serum proteins on average per patient and per time
point, and thus provided quantitative information about changes in
protein abundances over disease progression per patient, but also
information about serum proteins being more or less abundant
when comparing the group of survivors and those that died.

Figure 2. Serum proteins that are differentially abundant in survivors and non-survivors per time point.
(A) Volcano plots showing the fold change and associated P-values. For each time point t1, t2, and t3, a two-sided t test was performed to identify the significance of the
differentially abundant serum proteins (significance threshold at P-value 0.05 indicated as dashed line). Proteins discussed here are represented in red if higher in
deceased patients and in blue if showing an increase in surviving patients. In the Volcano plot of t3, some proteins of neutrophil origin are highlighted in yellow. (B) The
number of quantified proteins per sample, with the dotted line indicating themean (452 proteins quantified on average). (C) The quantitative MS-based data converted
to the concentration scale for the 150 abundant serum proteins that are identified and quantified in all samples. Proteins we discuss as potentially stratifying survivors
and non-survivors are marked in red (AHSG, FETUB, KNG1, HRG, ITIH1, ITIH2, LCAT, SERPINA3, IGHA1, IGHA2, ITIH3, and ITIH4) and thus span the entire covered dynamic range.
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Analyzing the quantitative serum proteomics data, we were
intrigued by the fact that several of the highly abundant proteins
seemed to be significantly more (or less) abundant in the serum of
survivors versus the group of deceased patients. Strikingly, we
noted that many of the proteins being more abundant in the
survivors were structurally and functionally highly related, such as
the type-3 cystatins fetuin-B (FETUB), HRG and kininogen (KNG1),
and the the inter-α-trypsin inhibitors (ITIH1) and (ITIH2). The pro-
teins being more abundant in the deceased patients included α-1-
antichymotrypsin (SERPINA3), the immunoglobulins IgA (IgA1 and
IgA2), the functionally related inter-α-trypsin inhibitors ITIH3 and
ITIH4. Moreover, fibronectin (FN1) showed a higher abundance in
non-survivors, whereas decreasing in survivors. This group of
proteins may potentially be considered as candidates for a panel
that can be used for mortality risk assessment (Fig 5).

Before determining the optimal composition of such a predictive
multi-protein panel, we first discuss in more detail the functional
role and relationship of the serum proteins observed to be po-
tentially discriminative between survivors and non-survivors.

FETUB, HRG, and KNG1 are in our data, some of the most dis-
tinctive differentially abundant serum proteins between survivors
and non-survivors, with their levels all about a factor two tofour
more abundant in the survivors, at almost all three time points
sampled. The fourth type-3 cystatin is fetuin-A (AHSG), which al-
though not significant in our analysis, followed a similar trend (Fig
4A). Notably, the type-3 cystatins, FETUB, HRG, KNG1, and AHSG, are
all closely located to each other on human chromosome 3 (Fig 4E).

They also share substantial sequence and domain homology, all
containing either two or three alike cystatin domains and KNG1 and
HRG share also a His-rich domain. HRG is present in human plasma
at a concentration of ~75–150 mg/ml in healthy donors and has
been implicated in quite a variety of biological functions (20). HRG
was also found to be a negative acute-phase reactant, and cir-
culating HRG levels were reported to be significantly lower during
acute inflammation and in patients with systemic lupus eryth-
ematosus. It has been suggested that HRG may play a critical role
in recognizing common molecular “danger” signals in the innate
response that protects against tissue damage and pathogen invasion

Figure 3. Surviving and non-surviving SARS-CoV-2 patients can be distinguished by a small panel of abundant serum proteins, already at t1.
(A) Proteins identified as differentially abundant at time point 1 are shown here to completely cluster samples with respect to patient outcome (16 survivors versus 15
non-survivors at time point 1). Proteins are annotated by their gene names, and those indicated in blue show higher concentrations in survivors, whereas proteins in red
show higher concentration in non-survivors. (A, B) The differentially abundant proteins at time point 1 (as shown in (A)) are used to distinguish the 15 survivors from 11 non-
survivors at time point 2. (B) Underlined proteins in (B) designate the proteins that were found to be regulated at both time points. Although the cohort consisted of 17
survivors and 16 non-survivors, at each time point, we missed for a few patients a blood sampling point, which then also could not be included in the clustering and is
indicated at the top of the dendrograms.
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as well as aiding wound healing. Still, a clear function of HRG in
plasma has not been defined, instead it has been termed an im-
portant multifunctional protein, or even Swiss Army knife because of
its ability to interact with a wide range of small molecules and other
plasma proteins as reviewed by Poon et al. Fetuin-A, referred to as
α-2-HS-glycoprotein (AHSG), is also an abundant and important
plasma protein, albeit also defined as a multifunctional protein (21,
22). FETUB is a close paralog of HRG; alignment of these two genes
reveals 35% identity. Also, its functional role in plasma is still, to some
extent, obscure and certainly alsomultifunctional. Finally, Kininogen-
1 (KNG1), also known as α-2-thiol proteinase inhibitor, is best known
as the precursor for the low molecular weight peptide bradykinin. It
contains three cystatin domains and shares a histidine-rich domain
with HRG. Thus, AHSG, FETUB, HRG, and KNG1 share domain structure
(cystatin domains), chromosome localization, and functionality. In
our serum proteomics data, the abundances of AHSG, FETUB, HRG,

and KNG1 are found to be highly correlated in each of the
sampled COVID-19 patients and are consistently higher in the
survivors. In general, it does, however, seem that the abundance
levels of these type-3 cystatins remain fairly constant during
disease progression.

Markedly, two recent studies have hypothesized that these
abundant plasma proteins may indeed represent mortality markers.
First, Hong et al (14) used a multiplexed antibody-based affinity
proteomics assay to screen 156 individuals aged 50–92 yr. This
dataset revealed a consistent age association for HRG. They con-
cluded, by validating this finding in several additional data sets (N =
3,987), that HRG associates with age and risk of all-cause mortality,
whereby a genome-wide association study (GWAS) analysis in-
dicated that particular mutations in HRG may influence the mor-
tality risk. Second, Wozniak et al (13) analyzed a cohort of around
200 patients by serum proteomics and metabolomics to assess

Figure 4. Serum abundance and structural and functional description of proteins being differentially abundant in survivors versus non-survivors.
(A) Serum abundance estimates, based on MS-based label-free quantification (Fig S2), of the four type-3 cystatins, comparing survivors (blue) with non-survivors (red).
At each time point the abundance of these cystatins is higher in the survivors compared to the non-survivors. Comparisons between survivors and non-survivors at
respective time points are denoted as significant using asterisks: *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, and ****P ≤ 0.0001. (B) Serum abundance of the four abundant inter-
α-trypsin inhibitors (IαI), with clear opposing trends between ITIH1 and ITIH2 as well as between ITIH3 and ITIH4. At each time point the abundance of ITIH1 and ITIH2 is
higher in the survivors compared to the non-survivors, whereas for ITIH3 and ITIH4 the opposite holds. (C) Serum abundance of other putative mortality indicators:
phosphatidylcholine-sterol acyltransferase (LCAT), HPR, alpha-1-antichymotrypsin (SERPINA3), and fibronectin (FN1). (D) Profiles of the IgA immunoglobulin variants IgA1,
IgA2, both less abundant in survivors. (E) Schematic domain-structures of the type-3 cystatins showing their sequence homology. Cystatin domains as well as His/Gly
and His/Pro domains are depicted as boxes.
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whether there are potential mortality risk biomarkers for patients
who suffered a S. aureus bacteremia. The statistically most sig-
nificant prediction marker they observed was FETUB, which was
consistently higher in survivors than in diseased patients. These
data and our current data therefore may indicate that high serum
levels of the cystatins fetuin-A (AHSG), fetuin-B (FETUB), HRG, and
KNG1 are general positive survival factors, independent of the
pathogen that induces the disease.

The family of inter-α-trypsin inhibitors (IαI)

In our dataset, a group of other functionally related proteins stand
out, all belonging to the family of inter-α-trypsin inhibitors. Four of
these are abundantly present in our serum dataset, namely, ITIH1,
ITIH2, ITIH3, and ITIH4. Notably, ITIH1 and ITIH2 are statistically
significant differently abundant in survivors and non-survivors, but
all four inhibitors also show opposite trends during disease pro-
gression (Fig 4B). Notably, the abundance levels of ITIH1 and ITIH2
correlate extremely well in each serum sample analyzed, which we
actually expected as they are known to form in serum an ~225-kD
complex, named IαI, containing Bikunin next to ITIH1 and ITIH2. We
should therefore observe a strong positive correlation between ITIH1
and ITIH2, which we do, providing confidence in our quantification.
ITIH1 and ITIH2 are consistently higher in survivors than in non-
survivors. In addition, the levels of these two proteins increase during
disease progression, both in the survivors and non-survivors. In
sharp contrast, the abundance levels of ITIH3 and ITIH4 (that do not
form a complex) show a decreasing trend during disease progres-
sion, and moreover these proteins are, although just below our
statistical cutoff, consistently lower in abundance in survivors than in
non-survivors. In a comprehensive recent review by Lord et al (23),
the structural organization and functional role of the members of
these inter–α-trypsin inhibitors (IαI) is described. The exact role of
these proteins in serum is not fully clear, although they all exhibit
matrix protective activity through protease inhibitory action. Next, IαI
family members interact with the extracellular matrix and most
notably hyaluronan, inhibit complement, and provide several cell
regulatory functions. Notably, a reduction in circulating IαI has been
reported in patients with sepsis which correlated with increased
mortality rates (24). Moreover, administration of exogenous IαI has
been shown to lead to reducedmortality, suggesting a protective role
of specific IαI family members (15). It is somewhat difficult to relate
these earlier findings with our data, as in these studies, using
a broad-spectrum antibody, no distinction was made between the
different inter–α-trypsin inhibitor family members. Still, as in our
samples ITIH4 is by far the most abundant in serum, it is nice to see
that its abundance is indeed lower in the non-survivors, consistent
with the findings of Lim et al and Opal et al, where inter–α-inhibitor
proteins were found to be reduced in severe sepsis, and failure
of recovery of IαIp levels over the course of sepsis was asso-
ciated with mortality. Our data confirm that hypothesis when
considering ITIH4 and ITIH3, but notably the opposite is observed
for ITIH2 and ITIH1. In summary, the four related inter–α-trypsin
inhibitor members possibly provide a panel for monitoring disease
outcome in a range of pathogen-caused diseases, among them
COVID-19. Of note, in the context of sepsis, IαI improves endothelial
inflammation, whereas their levels are inversely associated with

the levels of endothelial dysfunction biomarkers VCAM-1 and ICAM-
1 (25). Endothelial dysfunction is a feature of COVID-19 (26), and we
have previously observed that high levels of ICAM-1 (27) and VCAM-1
(28) at admission are associated with the mortality of our COVID-19
patients. Our new data suggest that IαI may provide protection from
endothelial complications of COVID-19, thereby potentially im-
proving survival.

Finally, IαI has been used in the treatment of inflammatory
conditions such as sepsis (one of the most common causes of
death for COVID-19 patients [29]) but also for Kawasaki disease,
which has recently been associated with SARS-CoV-2 infection in
children (30).

Other putative mortality predictors

Next to the family of type-3 cystatins and the family of inter–α-
trypsin inhibitors, only a few more serum proteins did stand out
significantly as potential mortality predictors. These included the
phosphatidylcholine-sterol acyltransferase (LCAT), an enzyme in-
volved in the extracellular metabolism of plasma lipoproteins,
which showed a trend similar to ITIH1 and ITIH2, consistently higher
in survivors than in non-survivors and increasing in abundance
during disease progression, both in the survivors and non-survivors.
Reversely, the family of immunoglobulin A, IgA1 and IgA2, seemed to
be more abundant in non-survivors as well as α-1-antichymotrypsin
(SERPINA3) (Fig 4C and D). Thereby, angiotensin and α-1-antichymotrypsin
showed a decrease in abundance over time, whereas the IgA levels
seemed to remain more constant over time.

Predictive power of various multi-protein panels

In our study, several plasma proteins displayed differences in
abundance in survivors and non-survivors. Moreover, many of these
serum proteins are structurally and functionally related. Therefore,
we investigated next whether we could define an optimal multi-
protein panel to predict mortality, based on the statistics, but also on
the functionality of the proteins and their abundance. Ideally, such
a panel is as small as possible but should also have the best
predictive power, not only in our cohort and time points but also in
independent cohorts.

Given that the HRG protein displayed by far the most significant
P-values in stratifying survivors and non-survivors in our Ferrara
cohort, we asked whether HRG alone could already predict disease
outcome (Fig 5A), or whether a panel of proteins would perform
better for predicting mortality. We trained a support vector machine
on the data from time point t1 for three different panels: HRG alone,
a 9-protein panel, and a 16-protein panel (Fig 5A). This model was
then used to classify the patients at time points t2 and t3 to assess
the model robustness by using receiver operating characteristic
(ROC) curves, using 10-fold cross-validation (Fig 5). At time point t1,
performance of the one-protein panel (i.e., HRG) was quite good
with an area under curve (AUC) of 0.92, showing HRG alone already
has some discriminatory power. HRG was found to be less dis-
criminating at time point t2 (AUC 0.85) and time point t3 (AUC 0.78)
(Fig 5B). Next, we evaluated the performance of the 9-protein panel,
the components of which were selected based on their significance
ranking at time point 1 and/or due to their functional relationships
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(Fig 5A). This panel displayed improved predictive power in com-
parison to the one-protein HRG panel, providing in the ROC analysis
AUCs of 0.96, 0.92, and 0.88 at time points t1 (training set), t2, and t3,
respectively. Finally, we evaluated a third panel consisting of 16
proteins (Fig 5A), extended by the inclusion of more functionally
related serum proteins. This panel performed even better at time
point 1, with an AUC of 1, but this panel did not keep its predicting
power at the later two time points t2 and t3, whereby the AUCs
diminished to 0.77 and 0.71, respectively.

Comparison with related recent COVID-19 plasma proteome
studies

Although the panel of plasma protein markers we here define as
putative mortality indicators is very significant in stratifying the
survivors from the non-survivors affected by COVID-19, our study
has a few limitations. First of all, it relates to a rather small cohort
of patients. Moreover, patients’ characteristics mainly related to
medical history and treatments can affect the measured outcomes.
However, we also believe that the prospective longitudinal design
adopted in the study and the rigorous clinical follow-up increase
the strength of the results, particularly in relation to clinical out-
comes. With this in mind, our study should ideally be compared to
alike plasma proteomics studies on other independent cohorts. In
the last months, the research efforts on COVID-19 have expanded
enormously. In this period, quite a few multi-omics and plasma
proteomics studies have appeared studying COVID-19 patients,
generating data comparable to ours, but with different research
questions and thus also different study designs (2, 5, 6, 7, 8 Preprint,
31 Preprint). Still, the outcome of these studies and their conclu-
sions can be compared with the data obtained in our cohort
(further termed “Ferrara cohort”). We made a selection, focusing on
recent studies most relevant to our data and compare their findings
with ours below.

First of all, Demichev et al in a study coordinated by the PA-C
OVID-19 study group (8 Preprint) measured the plasma proteome of
139 hospitalized patients at the Charité–Universitätsmedizin Berlin
and followed the time-dependent progression of COVID-19 through
different stages of the disease, combining several diagnostic
clinical parameters and plasma proteomes (here further termed
“Berlin cohort”). They used clinical parameters to classify the pa-
tients in cohorts of increasing severity and followed changes in the

patients’ clinical parameters and plasma proteomes over time.
From their data, they were able to define signatures for disease
states as well as observe age-related plasma proteome changes.
Relevant to our work, they report that low plasma levels of 54
proteins could be associated with disease severity. Comparing that
list with the list of 28 proteins that are found to be significantly
lower in non-survivors versus survivors at t1 in the Ferrara cohort,
we observe a large overlap, including HRG, FETUB, AHSG, IGFALS,
GPLD1, LCAT, TTR, SERPINC1, HPR, ITIH1, and ITIH2, all lower in
abundance in the plasma of severe COVID-19 patients. The list of 54
proteins of Demichev et al is larger than ours, but their dataset also
includes proteins we disregarded as RBC contaminants, such as
variants of hemoglobin (HBD,HBB, andHBA1) and carbonic anhydrase,
or excluded from our analysis for other reasons, such as albumin.
Reversely, we also examined the list of proteins they state as being of
high abundance in the plasma of patients with poor prognosis in the
Berlin cohort and also observe a substantial overlap. As was the case
for low abundant proteins in patients with poor prognosis, their list
includes proteins we disregarded, such as the fibrinogens FGA, FGB,
and FGG, as these levels may be affected by the sampling. Other
proteins they note are also in our list of proteins being higher in non-
survivors at t1, notably SERPINA3, AGT, ITIH3, and ITIH4.

From the Berlin clinical and plasma proteome data, the authors
ultimately defined a very narrow panel of proteins predicting future
worsening of COVID-19 disease. The four proteins defined by them
to be indicative of poor prognosis when their plasma levels are low
were AHSG, HRG, ITIH2, and PLG. Pleasingly, except for PLG, all these
proteins were also found by us to be substantially lower in the
Ferrara non-survivors than non-survivors. Surprisingly, ITIH1 was
not mentioned by Demichev et al in this panel, although the protein
levels of this protein are known to directly correlate with that of
ITIH2. Conversely, they defined seven proteins whereby high abun-
dance in plasma would be indicative of poor prognosis, including
SERPINA3 and AGT. Both these latter proteins are also part of the
small putative mortality panel we define here and are indeed lower
in abundance in Ferrara non-survivors. The data obtained for the
Berlin cohort are therefore in excellent agreement with our find-
ings. To illustrate this agreement more quantitatively, we show that
our 9- and 16-protein panels also show clear differences in patient
survival in the Berlin cohort (Fig S5A and B). To maintain a fair
comparison of survivors and non-survivors, we needed to select
a subset of relevant patients from the Berlin cohort. First, we

Figure 5. Performance of different multi-protein
panels in predicting mortality.
(A) Definition of the different panels of protein
mortality markers (1) histidine-rich glycoprotein (HRG)
as a single protein biomarker performs best at time
point 1. (2) Nine-protein panel consisting of the type-3
cystatins FETUB, KNG1, and HRG, the Inter-α-trypsin
inhibitors ITIH1, ITIH2, and LCAT, HPR, SERPINA3, and
AGT. (3) Sixteen-protein panel that includes next to
the proteins of panel 2 also the type-3 cystatin AHSG,
the Inter-α-trypsin inhibitors ITIH3, ITIH4, the
immunoglobulins A1 and A2, fibronectin FN1, IGFALS,
and AGT. (B) Performance of the different multi-protein
panels in our Ferrara cohort at time points 1, 2, and 3,
depicted by using ROC curve analysis, revealing that
the multi-protein panels outperform the single protein

HRG as a mortality predictor. The 9-protein panel performs best, especially at the earliest time points just shortly after critically ill patients have entered the ICU.
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selected those patients falling under World Health Organization
(WHO) category 6 or higher, which denoted receipt of invasive
mechanical ventilation, indicating an acute phase. This was done to
match with the state of patients in our Ferrara cohort, who were all
admitted to the intensive care unit (ICU). For each of these patients,
we selected the first and last time points available within the WHO
category (in some cases, the last time point corresponded to the
day of death). Furthermore, filtering was carried out to remove
patients with do-not-intubate/do-not-resuscitate (DNI/DNR) or-
ders as well as those not yet discharged from hospital as far as was
known to the authors at the end point of their study. Focusing on
the panel of 16 proteins defined in Fig 5, it may be observed that in
the Berlin cohort, almost all these 16 proteins display similar trends
as observed in the Ferrara cohort, despite the patients and study
design being very different (Fig S5B). We next used our three defined
panels (HRG, the 9-protein panel, and the 16-protein panel) to probe
the extent to which these can discriminate between survivors and
non-survivors in the Berlin cohort (Fig S6A) and observed that both
the 9- and 16-protein panel provide very good stratification with high
AUCs of all >0.85.

Another recent plasma proteome profiling study related to ours
has been reported by Geyer et al (31 Preprint). They primarily
studied differences between the plasma proteomes of 31 COVID-19
patients versus 263 PCR-negative controls, from the University Hospital
of LMU Munich (here termed “Munich cohort”). In that analysis, Geyer
et al found that the protease inhibitors SERPINA3, ITIH3, and ITIH4were
increased in plasma abundance in COVID-19 patients, when compared
with controls, whereas the HRG and fibronectin (FN1) were decreased.
In the Ferrara study, we did not compare the COVID-19 plasma pro-
teomes to PCR-negative controls but focused on ICU-hospitalized
survivors versus non-survivors. Still, we also find that in the survivors,
SERPINA3, ITIH3, and ITIH4 were lower in abundance and HRG and FN1
higher in abundance, when compared with the non-survivors, con-
firming that low levels of HRG are potentially a hallmark of COVID-19
disease diagnosis and disease severity.

Next, Geyer et al also followed the protein abundances in the 31
COVID-19 patients over time in their Munich cohort. They measured
longitudinal trajectories of 116 proteins (a list including many
immunoglobulin variants, which we chose to exclude in our
analysis) that significantly changed over a disease course of up to
37 d. Their study, albeit with a similar size cohort, but with more
frequent sampling at a greater number of time points, cannot be
directly compared with our data for the 33 patients from Ferrara,
sampled at just three time points. However, it is striking and
pleasing to see that the trends in protein abundance observed are
in very good agreement, certainly for the small panel we define here
as putative mortality markers. Pleasingly the trends observed for all
the four abundant inter-α-trypsin inhibitors (ITIH1, ITIH2, ITIH3, and
ITIH4) are alike in both studies, with an increase over time for the
first two and a decline in the latter two (Fig S5A and C). Moreover,
the plasma proteins HRG, FETUB, KNG1, LCAT, AHSG, and FN1 in-
crease over time in abundance in the Munich cohort, thus sug-
gesting their regulation during COVID-19 disease development.
Finally, SERPINA3, found to decrease over time in our study was
observed to decrease over time in the Munich cohort as well. We
also aimed to use the Munich cohort data from Geyer et al to test
the validity of our protein panels. To do so, we selected a subset

matching in age and disease status with our cohort from survivors
from non-survivors at discrete time points. We thus selected only
persons tested positive for COVID-19 (thus disregarding healthy
control subjects) and further selected only three time points, 1, 7,
and 14 d after hospital admission. With this step, we aimed tomatch
this data as much as possible to the time points t1, t2, and t3 of the
Ferrara cohort. We show that also in this second independent
cohort analyzed by Geyer et al, the trends of our 9- and 16-protein
panel are in good agreement with the data obtained for the Ferrara
cohort (Fig S5C). Moreover, we used again our three defined panels
(HRG, the 9-protein panel, and the 16-protein panel) to probe the
extent to which these can discriminate between survivors and non-
survivors in the Munich cohort (Fig S6B) and observed that both the
9- and 16-protein panel provide very good stratification at the time
point 7 d after admission with high AUCs, all of >0.85, but with
weaker performance at the other time points. It should be noted
that the number of non-survivors included in our analysis of the
Geyer data is only a handful (n = 5–6), which may be a cause for the
somewhat less strong correlation found.

In addition, relevant to our work, Galbraith et al (6) reported
a very extensive multi-omics study, performing in parallel plasma
proteomics by mass spectrometry and SOMAscan assays, cytokine
profiling, and immune cell profiling via mass cytometry. They com-
pared 32 controls with 73 COVID-19 positive donors. They classified
the plasma of the donors infected by COVID-19 by their serocon-
version status and made the primary conclusion that the timespan
between exposure to the virus and seroconversion could be a key
determinant of disease severity. Classifying seroconversion in a low
and a high category, they found several molecular determinants to
be correlated. Most related to our work, in the high seroconversion
category, several proteins were found to be differentially abundant.
Among others, these included several complement related proteins
(which are not statistically differential in our data). Other proteins
observed to be significantly differential in the plasma proteomics
and SOMAscan analyses of Galbraith et al (6) include SERPINA3, SE
RPINC1, PLG, and KNG1, which follow the same trend as in the data of
Geyer et al (31 Preprint), Demichev et al (8 Preprint) as well as our
work. Overall, our data is in better agreement with the Geyer et al
and Demichev et al data sets, but that may also be due to the fact
that the classification made by Galbraith et al was based on se-
roconversion, and thus different from the classifications made by
the other groups.

Therefore, although the study designs as well as the patient
cohorts were completely different, our protein panels predicting
mortality perform extremely well in other cohorts. The huge con-
sistency in the findings provides credibility to these independently
made observations, especially considering the still modest number
of patients all three studies tackled.

In summary, in our study comparing one by one the serum
proteomes of a closely matched group of survivor and non-survivor
COVID-19 patients admitted to the ICU, we were able to extract
a small panel of proteins that can be used to predict the disease
outcome, already at an early stage, that is, shortly after admission
to the ICU. The ability to stratify patients at a single time point so
soon after hospital admission provides in our view essential in-
formation highly relevant to clinicians. This set of mortality in-
dicators consists largely of functionally related proteins, namely,
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several type-3 cystatins and the family of inter-α-trypsin inhibitors.
Although our patient cohort was rather small, our observations and
conclusions are in pleasing agreement with two other, independent,
recent serum proteome studies, which basically define the same
set of proteins as either markers or disease severity or mortality.

Materials and Methods

Ferrara patient cohort serum sample collection and chemicals

The present analysis included patients from the “Pro-thrombotic
status in patients with SARS-CoV-2 infection” (ATTAC-Co) study (32,
33). The ATTAC-Co study is an investigator-initiated, prospective,
single-centre study recruiting consecutive patients admitted to
hospital (University Hospital of Ferrara, Italy) because of respiratory
failure due to COVID-19 between April and May 2020. Inclusion
criteria were (i) age >18 yr; (ii) confirmed SARS-CoV-2 infection; (iii)
hospitalization for respiratory failure; (iv) need for invasive or non-
invasive mechanical ventilation or only oxygen support. Exclusion
criteria were prior administration of P2Y12 inhibitor (clopidogrel,
ticlopidine, prasugrel, and ticagrelor) or anticoagulant drugs (war-
farin or novel oral anticoagulants), known disorder of coagulation or
platelet function and/or chronic inflammatory disease. SARS-CoV-2
infectionwas confirmed by RT-PCR assay (LiaisonMDX; Diasorin) from
nasopharyngeal swab specimen. Respiratory failure was defined as
a PaO2/FiO2 (P/F) ratio ≤200 mmHg. Clinical management was in
accordance with current guidelines and specific recommendations
for COVID-19 pandemic by Health Authorities and Scientific Societies.
Three different blood samplings were made; just after admission (t1),
after 7 ± 2 d (t2), and after 14 ± 2 d (t3). Study blood samplings were
performed from an antecubital vein using a 21-gauge needle or from
central venous line. All patients underwent blood sampling in the
early morning, at least 12 h after last administration of anticoagulant
drugs. The first two to 4ml of blood was discarded, and the remaining
blood was collected in tubes for serum/plasma collection. The serum
and plasma samples were stored at −80°C. The planned blood sample
withdrawals were not performed in case of patient’s death or hospital
discharge. The ATTAC-Co study population consists of 54 moderate-to-
severe COVID-19 patients (32, 33). The subgroup of interest for the
present analysis is selected starting from the 16 cases who died.
From the remaining 38 survivors, we identified 17 cases who best
matched in terms of age, clinical history, and clinical presentation. This
selection was done with the aim to maximize the possibility to identify
differences between deceased and survivors andminimizing potential
confounding factors. The protocol was approved by the corresponding
Ethics Committee (Comitato Etico di Area Vasta Emilia Centro, Bologna,
Italy). All patients gave their written informed consent. In case of
unconsciousness, the informed consent was signed by the next of kin
or legal authorized representative. The study is registered at www.
clinicaltrials.gov with the identifier NCT04343053.

Serum sample preparation

24 μl of a detergent-based buffer (1% sodium deoxycholate (SDC), 10
mM tris(2-carboxyethyl)phosphine (TCEP), 10 mM Tris, and 40 mM

chloroacetamide) with Complete mini EDTA-free protease inhibitor
cocktail (Roche) was added to 1 μl serum to enhance protein de-
naturation and boiled for 5 min at 95°C. 50 mM ammonium bi-
carbonate was added and digestion was allowed to proceed
overnight at 37°C using trypsin (Promega) and LysC (Wako) at 1:50
and 1:75 enzyme:substrate ratios, respectively. The digestion was
quenched with 10% formic acid and the resulting peptides were
cleaned-up in an automated fashion using the AssayMap Bravo
platform (Agilent Technologies) with corresponding AssayMap C18
reverse-phase column. The eluate was dried and resolubilized in
1% FA to achieve a concentration of 1 µg/μl, of which 1 μL was
injected.

Serum proteome profiling

All spectra were acquired on an Orbitrap HFX mass spectrometer
(Thermo Fisher Scientific) operated in the data-independent mode
(DIA) coupled to an Ultimate3000 liquid chromatography system
(Thermo Fisher Scientific) and separated on a 50-cm reversed
phase column packed in-house (Poroshell EC-C18, 2.7 μm, 50 cm × 75
μm; Agilent Technologies). Proteome samples were eluted over
a linear gradient of a dual-buffer setup with buffer A (0.1% FA) and
buffer B (80%ACN, 0.1%FA) ranging from 9 to 40% B over 95 min,
40–55% B for 4 min, 55–95% B in 1 min, and maintained at 95% B for
the final 5 min with a flow rate of 300 nl/min. DIA runs consisted of
a MS1 scan at 60,000 resolution at m/z 200 followed by 30 se-
quential quadrupole isolation windows of 20 m/z for HCD MS/MS
with detection of fragment ions in the orbitrap (OT) at 30,000
resolution at m/z 200. The m/z range covered was 400–1,000 and
the Automatic Gain Control was set to 1 × 106 for MS and 2 × 105 for
MS/MS. The injection time was set to 100 ms for MS and “auto” for
MS/MS scans.

Data analysis

Spectra were extracted from the DIA data using DIA-NN (version
1.7.12) without a spectral library and with “Deep learning” option
enabled. The enzyme for digestion was set to trypsin and one
missed cleavage was tolerated. Cysteine Carbamidomethylation
and Methionine oxidation were allowed. The precursor false dis-
covery rate threshold was set to 1%. Protein grouping was done by
protein names and cross-run normalization was RT-dependent. All
other settings were kept at the default values. The gene-centric
report from DIA-NN was used for downstream analysis, and quan-
tification was based on unique peptides. When injection replicates
were available, the median of these values was used. All down-
stream analyses were carried out in R (34). For all proteins, the
concentration was estimated based on a set of reference proteins
using a log–log model (Fig S2). Significant proteins were determined
using results from a two-sided t test, with a P-value cutoff of 5 × 10−2.
The protein panels were chosen based on significant values at time
point 1, complemented by a few protein proteins being structur-
ally and functionally related. To estimate the ability to categorize
patient outcome, we constructed ROC curves based on a linear
support vector machine (SVM) model fitted onto the first time point
of the data, fitted onto the later time points. Reliability was de-
termined with 10× cross-validation where possible. SVMs were fitted
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using the e1071 R package (35), and results were plotted using
the pROC package (36). AUC and P-value were estimated using
the Wilcoxon–Mann–Whitney U test. Unsupervised hierarchical
clustering was performed using Ward’s algorithm with euclidean
clustering distance.

Data Availability

The mass spectrometric proteomics data have been deposited at
the ProteomeXchange Consortium via the PRIDE partner repository
(37) with the dataset identifier PXD024707.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
202101099.
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