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Abstract
The bone marrow microenvironment (BMM) regulates the fate of hematopoietic stem cells (HSCs) in homeostatic and 
pathologic conditions. In myeloid malignancies, new insights into the role of the BMM and its cellular and molecular actors 
in the progression of the diseases have started to emerge. In this review, we will focus on describing the major players of 
the HSC niche and the role of the altered niche function in myeloid malignancies, more specifically focusing on the mes-
enchymal stroma cell compartment.
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Introduction

The HSCs, the cell population capable of reconstituting the 
entire blood system, have been highlighted for the first time 
by Till and McCulloch [1, 2]. Several functional techniques 
both in vitro and in vivo are able to demonstrate the pres-
ence of the HSCs. These techniques are indirect, proving 
the presence of the stem cells by their capacity of differ-
entiation, i.e., in vitro, the colony forming cells (CFC) and 
the long-term culture-initiating cells (LTC-IC) assays [3]. 
The best proof of the presence of HSCs is the xenograft 
experiment: when injected in sub-lethally immunodeficient 
mice, the HSCs are capable of long-term reconstitution of 
the entire hematopoietic system and capable of repopulation 
into secondary recipient mice, thus proving their stem cell 
multi-lineage and self-renewal status [4].

The HSCs are located in BM “niches”. The concept of 
stem cell niches has been introduced for the first time by 
Schofield [5]. By studying CFU-S, he stated that the HSCs 
needed to be associated with other cells to determine their 
behavior. The niche concept is a way of explaining the 

dependence of HSCs to their microenvironment [6]. This 
concept implies that HSCs would not have the same self-
renewing capacity without the support of the BMM cells. 
Niches are composed of cellular and molecular components 
that regulate the fate of the HSCs, i.e., quiescence, self-
renewing capacities, differentiation and mobilization [7, 
8]. More recently, the concept of the niche determining the 
fate of the HSC has been reexamined. Indeed, HSC fate has 
been proven to be highly specific, both in vivo and in vitro 
and defined by intrinsic epigenetic features [9]. The niche-
restricted HSCs differentiation only to maintain their stem 
cell status, and thus having a permissive rather than instruc-
tive role [9]. Nevertheless, stroma modifications have been 
reported to contribute to abnormal hematopoiesis such as 
myelodysplastic syndromes (MDS), myeloproliferative neo-
plasms (MPN)-like disease (see paragraph: mouse models 
to study the role of BMM in myeloid malignancies). Thus, 
these studies represent strong evidence that the microen-
vironment exerts more than a mere by standard effect in 
myeloid malignancies. The relationship between the niche 
and the malignant clone(s) has reactivated the concept of 
the “bad seed in the bad soil” theory proposed in 1889, by 
Stephen Paget, an English surgeon, to describe how bad 
environment (“the soil”) of tumor cells (“the seeds”) could 
favor metastasis development [10, 11].
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Normal bone marrow microenvironment

The bone marrow microenvironment (BMM) is a com-
plex cellular and molecular entity composed of mesen-
chymal stroma cells (MSC), endothelial cells, nerves 
from the sympathetic nervous system, accessory cells 
(T lymphocytes and monocytes), etc. that plays a role in 

BM homeostasis (see Fig. 1). This cellular and molecu-
lar microenvironment regulates the HSCs quiescence, 
their self-renewal and their differentiation via cellular 
interactions and paracrine effects [7]. MSCs play a cen-
tral role in the interactions with HSCs. Vascularization 
plays also a major role in the BM. There are two types 
of blood vessels: the fenestrated sinusoids in the endos-
teum and the medulla, and the arterioles in the endosteum. 

Fig. 1   The normal bone marrow microenvironment. The HSCs’ fate 
is regulated by a specific microenvironment in the BM: the niches. 
The endosteal niche is commonly described close to the endosteum 
and is composed of osteoblasts and osteoclasts. The vascular niche is 
in the central zone of the bone, close to the sinusoids. Several types 
of cells compose these niches: the MSCs (LepR+ cells, CAR cells, 

nestin+ cells and CD146+ cells), the endothelial cells, the megakar-
yocytes, the adipocytes and the sympathetic nervous system (SNS). 
Several couples of molecules are implicated in the HSCs fate: par-
ticularly CXCL12–CXCR4, SCF—c-kit, angiopoietin 1 (Ang-1)—
Tie-2, thrombopoietin (TPO)—MPL and osteopontin (OPN)—αvβ2 
integrin



1379Role of the microenvironment in myeloid malignancies﻿	

1 3

BMM is hypoxic displaying a decreasing gradient of oxy-
gen between the BM sinusoids and the bone remodeling 
units (6–1%) [7, 8], due to the dense vascularity of the 
center-medullary zone of the BM. Hypoxia is inducing 
HIF-1α and hypoxia-inducible factor (HIF-2α), essential 
factors for the long-term self-renewing of the HSCs [12]. 
There is also a high concentration of calcium ion (Ca2+) 
in the endosteal region due to bone remodeling [13]. In 
this microenvironment, the cross-talk between MSCs and 
HSCs is imperative for the homeostasis of adult BM.

A number of cytokines, cytokine receptors and adhesion 
molecules have been implicated in the cross-talk between 
HSCs and cells of the BMM, particularly CXCL12 (SDF-
1)—CXCR4, SCF (stem cell factor)—c-kit, vascular cell 
adherence molecule 1 (VCAM1)—VLA-4 (α4β2), angi-
opoietin-1 (Ang-1) and Tie-2, thrombopoietin (TPO)—MPL 
[14]. In vitro studies showed that the BMM cells, notably 
the osteoblasts secrete hematopoietic cytokines such as 
CXCL12, SCF, Ang-1 IL-6 and Jagged 1 (Jag1, Notch 
ligand) [15, 16]. SCF and IL-6 support normal hematopoie-
sis but also the maintenance and quiescence of HSCs. SCF 
is principally expressed by the perivascular cells in the BM 
[17]. Ang-1 regulates HSCs quiescence and has an anti-
apoptotic effect [14]. TGFβ1 (transforming growth factor 
β1) has also been demonstrated to induce HSCs quiescence 
[18]. Osteopontin (OPN) is a glycoprotein synthesized by 
osteoblasts in the endosteal region that recognizes the inte-
grin αvβ1 on the HSC surface and plays a role in cell adhe-
sion, inflammatory responses and angiogenesis. OPN also 
plays a role in the localization, proliferation and mobiliza-
tion of HSCs [19]. A mouse model of OPN deficient mice 
shows that OPN retains the HSCs in the BM and regulates 
negatively their number [20]. The osteoblasts express TPO 
at their surface that activates the cMPL receptor present at 
the surface of the hematopoietic stem and progenitor cells 
(HSPCs). This TPO/cMPL interaction induces the quies-
cence of the stem cells via activation of the β-integrin path-
way [21].

The endosteal and vascular niches

Usually two types of niches are described: the endosteal 
niche and the vascular niche but theses niches are tightly 
linked anatomically and functionally inside the trabecular 
bone [7, 22, 23]. The HSCs niches are dynamic structures 
responding to physiological demands. In general, the closer 
the HSCs are to the endosteum, the more quiescent they 
are [23–25], proliferative HSCs being mostly located in the 
central zone of the BM.

The endosteal niche is located closer to the bone surface 
and mainly plays a role in the quiescence of the HSCs. The 
main actors of the HSCs regulation in this niche are the 
osteoblasts and osteoblastic progenitors. The osteoblasts are 

distributed along the endosteal surface of the bone. They 
are in close proximity to the vessels [24, 25]. In a trans-
genic mouse model with PTH/PTHrP receptors activated 
in the osteoblasts, the increase number of these cells was 
associated with an increased number of HSCs, and HSCs 
cell growth in the endosteal region of the BM [15]. The 
osteoblast cells support the HSCs and influence their func-
tions through Notch activation. Notch inhibition induces a 
decrease in the number of HSCs in the endosteal region [26]. 
The inactivation of the bone morphogenetic protein receptor 
(BMP) in another mouse model was shown to increase the 
number of osteoblasts and HSCs. The cell-to-cell contact 
between the HSCs and the osteoblasts is mostly mediated 
by N-cadherin and β-catenin [15, 27].

The vascular niche was first described as supporting the 
proliferation and differentiation of HSCs but there is now 
evidence of quiescent HSCs in the vicinity of sinusoids [17]. 
A study shows that nearly 85% of the long-term repopulating 
HSPCs are close to sinusoids [28]. In this zone, the HSCs 
are in contact with leptin receptor (Lepr+), CXCL12high cells 
[28] and endothelial cells who promote their maintenance 
[17]. The HSCs are physically close to the sinusoids and 
distant from the arterioles [28]. The Lepr+ cells are sur-
rounding the sinusoids. NG2+ cells, or polydendrocytes, are 
close to the arterioles in the endosteum, and play also a role 
in the maintenance of the HSPCs. The depletion of NG2+ 
cells induces HSCs proliferation and exhaustion of HSCs 
pool [29].

The mesenchymal stromal cells (MSCs)

In 1867, Cohnheim described for the first time, particu-
lar non-hematopoietic cells in the bone marrow capable 
of regeneration. It is only in 1970, that Dr. Friedenstein 
described the isolation of (MSC) [30] which has been 
described to be in close proximity of the HSCs within the 
BM [31] and were later isolated using the Stro-1 antibody 
[32]. Nowadays, the mesenchymal stromal/stem cells are 
defined by the International Society of Cellular Therapy 
(ISCT) by their capacity of adhesion to plastic; their capac-
ity to differentiate toward adipogenic, osteogenic and chon-
drogenic pathways and their specific phenotype [33]. The 
MSCs are described as a heterogeneous group of cells 
sharing the same positive and negative phenotype: CD73+, 
CD90+, CD105+ and CD34−, CD31−, CD45RA−, CD14−, 
CD19−, HLA-DR−. These criteria allow the standardization 
of MSCs characterization.

The MSCs are rare elements in the BM (0.01%) [34] but 
play a major role in the relationship between the BMM and 
the HSCs, in particular the CAR cells (CXCL12-abundant 
reticular cells), the nestin+ cells and the CD146+ cells [35]. 
The origin of the MSCs in the adult BM are the LepR+ (lep-
tin receptor) cells. The LepR+ cells represent 0.3% of the 
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cells in the BM and are quiescent but proliferate under stress 
[36].

The CD146+ cells are a subtype of MSCs mostly located 
in the human vascular niche. They represent 3% of the mon-
onuclear cells inside the BM. The CD146+ cells express 
Ang-1 and CXCL12 and interact with HSCs and endothelial 
cells by their expression of Tie-2 and CXCR4 [37].

The nestin+ cells are mostly perivascular. They represent 
0.08% of the mononuclear cells inside the BM and derive 
from the neural crest [37]. The nestin+ cells are also asso-
ciated with nerves from the sympathetic nervous system 
(SNS) [35, 38]. This specific type of MSCs supports the 
homing and reduces the mobility of HSCs. The nestin+ cells 
also regulate the quiescence of HSCs via a high expression 
of maintenance genes: CXCL12, SCF, Ang1, IL-7, VCAM-1 
and OPN [37]. In vitro, the nestin+ cells loose rapidly the 
nestin at their surface because of cell differentiation.

The CAR cells are more abundant than the nestin+ 
MSCs (0.27%). This type of MSCs is mostly located in the 
endosteal region of the BM. The CAR cells regulate the cell 
cycle and the self-renewing of the HSCs via a high expres-
sion of CXCL12 and SCF. It seems that most quiescent 
HSCs are in close contact with CAR cells [39]. This func-
tion has been confirmed in an in vivo model of CXCL12 
silencing in the CAR cells [40]. In this model, the number of 
HSPCs is decreased. The CAR cells control the proliferation 
and the maintenance of the HSC pool [10, 41].

Endothelial cells

MSCs and HSCs are in close contact with the endothelial 
cells in the BM. Several evidences point out the key role of 
the endothelial cells in the regulation of the HSCs in the BM 
niche. In a mouse model with disruption of VEGFR2 and 
VE-cadherin, a decreased number of HSPCs, with more dif-
ferentiated cells was observed [42]. A deletion of E-selectin 
at the surface of endothelial cells promotes the quiescence 
of the HSPCs [43]. In this Sele−/− mouse model, BrdU assay 
shows reduced HSCs turnover—more than 30% of HSC in 
G0 phase—compared to wild type or P-selectin knockout 
mice. These studies suggest clearly that the endothelial cells 
participate to the proliferation and quiescence of the HSCs.

Other cells, actors of the HSCs niche

Several other cell types play a major role in the regulation 
of the HSCs fate in the BMM such as the megakaryocytes, 
the adipocytes, nerves from the SNS and macrophages. The 
megakaryocytes are associated with the vascular niche, are 
in tight contact with HSCs and regulate their proliferation 
through various cytokines (IGFBP-3, IGF-1). They also 
regulate the HSCs quiescence by secreting platelet factor 
4 (PF4—CXCL4) [44, 45]. In a mouse model, the absence 

of megakaryocytes leads to a loss of HSCs quiescence and 
enhances differentiation [45]. The role of megakaryocytes in 
the HSCs quiescence is also mediated by TGFβ1 contained 
in their α-granules together with PF4 [46].

The adipocytic tissue in the BM has a mesenchymal ori-
gin [47]. Several evidences point to the fact that the adipo-
cytic cells support the HSCs maintenance and proliferation 
in their niche by producing the adipokine and adiponectin 
[48]. Interestingly, the number of adipocytes is inversely 
proportional to the number of HSCs and their decrease 
enhances the HSCs engraftment [49]. A recent study has 
shown that the adipocytic cells inhibit hematopoiesis and 
BM regeneration via the release of dipeptidyl peptidase 4 
(DPP4 or CD26), a protein associated with apoptosis and 
immune response [50].

The sympathetic nervous system (SNS) is implicated in 
the mobilization of HSCs in the BM [51]. The BM neu-
rons are β-adrenergic nerve terminals [51, 52]. The SNS is 
composed of non-myelinating Schwann cells that regulate 
the niche by activation of TGFβ1 [52]. The SNS regulates 
CXCL12 expression by perivascular BMM cells and HSCs 
retention via the circadian oscillation [53, 54].

The macrophages have been described as important ele-
ments of the BM niche. In a mouse model, the deletion of 
CD169+ cells (macrophages) is deleterious for the retention 
of the HSPCs by the niche [55]. The macrophages express 
also CXCL12 and osteocalcin [56] and are capable of modu-
lating the CXCL12 expression by MSCs [55, 57] leading 
to the retention of the HSCs in the niche and to support the 
survival of osteoblasts. The use of granulocyte colony-stim-
ulating factor (G-CSF) decreases the number of osteoblastic 
cells and depletes the macrophages in the endosteum [57], 
suggesting that macrophages support the osteoblasts in the 
retention of the HSCs.

BMM in myeloid disorders

Mouse models to study the effect of BMM 
in malignant development

Mouse models have been used to better understand the 
progression of myeloid malignancies and particularly the 
role of the BMM in their natural history. A mouse model 
of Osx-GFP-Cre+ Dicer 1fl/fl mice suggests that a modifica-
tion of the BMM could in itself induce MDS [58]. In this 
model, the deletion of Dicer1 gene in osteoprogenitors leads 
to an impaired hematopoiesis mimicking human MDS. In 
the osteoprogenitors of these mice, the expression of the 
Shwachman–Diamond–Bodian (SBDS) gene decreases. 
Moreover, KO SBDS mice display a MDS phenotype too. 
In a mouse model with a deletion of SBDS gene, the MSCs 
display non-functioning mitochondria associated with higher 
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oxidative stress and DNA damage in the HSCs, suggesting a 
possible role of the stroma in the development of a myeloid 
disease [59].

In an acute myeloid leukemia (AML) mouse model, the 
overactivation of the β-catenin pathway via overexpression 
of a constitutive active mutation of β-catenin in osteoblasts 
reduces the differentiation potential of myeloid and lym-
phoid progenitors, leading to MDS/AML progression [60]. 
In these osteoblastic cells, overexpressing beta-catenin the 
authors revealed an upregulation of NOTCH ligand Jag-
ged-1. They went on to demonstrate that in human AML BM 
biopsies, a nuclear-activated β-catenin in osteoblasts and 
elevated Notch signaling in hematopoietic cells providing 
evidence of the potential relevance of these results in human 
disease. Interestingly, the alteration of osteoblastic cells by 
activation of the PTH receptor in BCR-ABL induced mouse 
model of chronic myeloid leukemia (CML), decreases CML 
disease but enhances MLL-AF9 induced AML development, 
demonstrating that distinct myeloid disease required differ-
ent niches factors [61].

Several other mouse models demonstrate the implication 
of the BMM in the development and progression of non-
Philadelphia MPN. MPN disease was able to develop in a 
mouse model where deletion of the retinoblastoma (RB1) 
protein was introduced in both the hematopoietic com-
partment as well as the microenvironment [62]. In another 
study by the same group, a deletion of retinoic acid receptor 
gamma (RARγ) in the niche was sufficient to induce a MPN-
like disease [63]. In another study, Ptpn11-activating muta-
tion in the nestin+ MSCs but not in osteoblasts or endothelial 
cells, has a deleterious effect on HSCs and leads to MPN 
[64]. PTPN11-mutant MSCs overproduced CCL.3, which 
recruited monocytes secreted IL1β and other proinflamma-
tory cytokines to the HSC niche.

The number of nestin+ cells in the BM and the expression 
of nestin messenger were reduced in the BM of Jak2V617F 
mice, associated to expansion of leukemic initiating cells 
(LICs) and MPN progression [65]. In another murine model 
of MPN (Scl-tTA:TRE-BCR/ABL double transgenic mouse 
model), the influence of LICs on the microenvironment was 
associated with an increase in abnormal osteoblastic cells 
in the BM creating a myelofibrosis inflammatory environ-
ment. This “leukemic niche” promoted proliferation of LICs 
instead of normal HSCs, TGFβ and Notch pathways were 
implicated in this BM remodeling [66].

BMM modifications in patients with myeloid 
malignancies

In acute and chronic myeloid malignancies, the cross-talk 
of the neoplastic myeloid cells with the BMM plays an 
important role in the progression of the disease. In patients 

with myeloid neoplasia, there are morphological modifica-
tions of the BMM such as an increase of angiogenesis in 
patients with AML and MDS [67–69]. Similar angiogen-
esis and impair vascularity was also observed in AML-
PDX model [70]. BM fibrosis is frequently observed in 
patients with non-Philadelphia MPN [71] and in patients 
with MDS [72].

In patients with myeloid malignancies, a possibility to 
approach the modifications of the BMM is to isolate and 
study the BM MSCs. Indeed, a number of studies suggest 
that functional modifications of the BM MSCs are related 
to the natural history of myeloid diseases such as AML, 
MDS, non-Philadelphia MPN and CML [73, 74].

Here, we choose to focus on the genetic, epigenetic, 
gene expression, clonogenic and differentiation capacities 
of the MSCs of patients with myeloid neoplasia as well as 
bone marrow failure syndrome exemplified by Aplastic 
anemia (see Fig. 2).

The BMM of aplastic anemia (AA)

Aplastic anemia is a BM failure, associated with a hypo-
plasia and peripheral pancytopenia. Changes in the BMM 
of AA patients have been reported. In BM biopsy from AA 
patients, an increase of stromal cells expressing osteopon-
tin and a decrease of osteonectin expressing cells as well 
as endothelial cells have been described [75–77]. The AA 
BM has a decreased angiogenesis [77, 78] associated with 
a decrease of VEFG expression [79].

A number of studies have reported on AA MSCs, and 
showed that in general AA MSCs have either a normal or 
slightly decreased clonogenic potential compared to con-
trol [75, 80–82]. The AA MSCs are more incline to enter 
apoptosis in vitro [75]. Studies on MSCs differentiation 
from AA patients are heterogeneous and do not allow us 
to conclude [75, 77, 83].

One study reported that AA MSCs have a reduce capac-
ity to support a normal hematopoiesis in vitro [83]. But in 
a 3D in vivo scaffold, AA MSCs were capable to form a 
functional BM niche [81].

Several genes involved in biological processes such as 
proliferation, chemotaxis and interaction with HSCs are 
downregulated in AA MSCs [74]. VCAM-1 plays a crucial 
role in HSCs retention in the BMM and is particularly 
decreased in AA MSCs [83, 84]. AA MSCs secrete high 
levels of macrophage inflammatory protein 1 alpha (MIP-
1alpha) and GM-CSF but low levels of IL-1Ra compared 
to healthy control MSCs [85]. This abnormal gene expres-
sion in AA MSCs could explain at least partly the abnor-
mal HSCs regulation observed in AA patients.
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The BMM of MDS

MDS constitute a heterogeneous group of clonal myeloid 
diseases with diverse phenotypes, characterized by inef-
fective hematopoiesis with varying risk of leukemic trans-
formation. In vitro, MDS stromal cells were reported to be 
quantitatively and functionally impaired.

The results of cytogenetic analysis of MSCs from MDS 
patients are contradictory [86–89]. A study by Lopez-
Villar reported no cytogenetic abnormalities in the MDS 

MSCs despite cytogenetic abnormalities in the HSCs [87]. 
Other studies reported abnormalities of karyotype in MSCs 
obtained from MDS patients [73, 88]. The corresponding 
HSCs also displayed abnormalities but none were similar to 
those observed in the corresponding MSCs. It is important 
to underline that MSCs are known to be genetically instable 
in culture [89]. MDS-MSCs have a different methylation 
profile than normal MSCs. An increase of the methylation 
in genes involved in processes linked to cellular phenotype 
and transcriptional regulation has been reported [90].

Fig. 2   The bone marrow microenvironment in myeloid malignancies. 
The BMM confers a protective environment from apoptosis for the 
LICs via the CXCR4/CXCL12 axis. CXCR4 is highly expressed at 
the surface of LICs and CXCL12 is highly expressed by the MSCs. 

The maintenance and retention of the HSCs in the BM are decreased. 
The diminution of retention of the HSCs by the BMM is mediated by 
an impaired production of SCF by the MSCs
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A large majority of these studies deals with ex vivo 
expanded MSCs. In cultured, MDS-MSCs modification 
of expression of various genes has been observed: such as 
cytokines [91–94], adhesion molecules [95] and molecules 
involved in the interaction with the HSCs such as OPN, 
Jagged1, Kit-L and Ang1 [90]. CXCL12 was reported to 
be overexpressed in MSCs of MDS patients [94, 96, 97].

A recent study of isolated mesenchymal elements sorted 
directly from low-risk MDS BM patients by the mark-
ers CD45−/7AAD−/CD235a−/CD31−/CD271+/CD105+ 
describes a different transcriptomic signature of MSCs 
from MDS patients in comparison with normal MSCs 
or cultured MDS-MSCs. The directly sorted uncultured 
MSCs have characteristics of cellular stress and upregu-
lation of inflammation cytokines linked to inhibition of 
hematopoiesis [97]. Several studies demonstrated epi-
genetic and transcriptomic variations of cultured MDS 
MSCs. This was further confirmed in directly isolated 
mesenchymal elements compared to control MSCs with a 
specific increase in hypermethylation in enhancer regions 
[98, 99] and downregulation of pathways including the 
Wnt pathway [97, 100]. Interestingly, there were also dif-
ferences both at the epigenetic and transcriptomic level, 
between the native sorted stromal elements and cultured 
MSCs clearly, indicating that 2D-cultured system used for 
expanded MSCs (normal or from patients) influence these 
cells [97, 100].

MDS-MSCs clonogenic potential was shown to be clearly 
decreased at diagnosis as demonstrated by CFU-F assays 
[88, 95, 97, 101, 102]. Similarly, the proliferative capacity 
of MDS-MSCs is also decreased, no matter the patient IPSS 
score [90, 95, 102, 103]. The MDS-MSCs enter senescence 
earlier than normal MSCs [104, 105] and display a senescent 
phenotype in vitro [97].

The MSCs differentiation data are heterogeneous. Some 
studies show no alterations of the differentiation capacity of 
the MDS MSCs [86, 91, 92, 101, 103, 106]. The adipogenic 
and chondrogenic pathways were reported as decreased in 
some studies [87, 107]. The osteogenic pathway is often 
reported as impaired in high-risk and low-risk MDS [102, 
104, 108]. Genes linked to the osteoprogenitors and osteo-
blasts (Dicer, DROSHA, RUNX2 and SBDS) have been 
reported to have a weaker expression in the MDS-MSCs 
[58, 108, 109]. As suggested by a mouse model, the MSCs, 
especially those differentiating in the osteogenic pathway, 
could have a primary role in MDS development [58].

It has been demonstrated that MDS-MSCs have an 
impaired capacity to support a normal hematopoiesis in vitro 
[90, 94, 95, 102]. MDS-ICs have been reported to prolifer-
ate less when not co-cultured with their autologous MSCs 
[108]. When co-cultured with MDS-ICs, normal MSCs have 
a higher expression of LIF, VEGF, ANGPTL4 and CXCL12 
than the non-co-cultured counterpart [96, 107].

In vivo, primary MDS cells engraft poorly in the immu-
nodeficient mice [110]. A potential increase of MDS 
engraftment was reported when co-injected with either con-
trol or MDS MSCs in NSG-S mice (3/20 samples) [111]. 
Nevertheless, a recent study showed no difference of MDS 
engraftment in NSG or NSG-S mice when co-injected with 
MDS-MSCs [112]. Thus, the long-term effect of MDS-MSC 
on MDS engraftment is unclear, probably due to the fact that 
the implantation of MSCs (even after intra bone injection) 
in immunodeficient mice, do not really engraft long-term 
[112]. So far, there is no study using the 3D-scaffold model 
for MDS engraftment assessment in vivo.

The BMM of chronic MPN

Myeloproliferative neoplasms are a group of chronic mye-
loid diseases characterized by a BM hyperplasia of one or 
several myeloid lineages. Among MPNs are CML with Phil-
adelphia chromosome and bcr-abl transcript and the non-
Philadelphia MPN, i.e., polycythemia vera (PV), essential 
thrombocythemia (ET) and primitive myelofibrosis (PMF). 
The most common mutations in non-Philadelphia MPN are 
Jak2V617f, MPLW515 and CALR mutations.

Few studies focus on the MPN-MSCs ex vivo. MSCs 
derived from the BM of MF patients display the same clo-
nogenicity as normal MSCs in CFU-F assay and MF-MSCs 
have also been reported to have a similar capacity to support 
normal hematopoiesis as normal MSCs [113].

Nevertheless, the remodeling of BMM is particularly vis-
ible in the BM biopsies of pre-fibrotic MPN patients: the 
CD271+ cells are decreased in the endosteal and vascular 
niches and are associated with dysplastic megakaryocytes 
[114]. Interestingly, a reduction in the number of sympa-
thetic nerve fibers associated with the MSCs was reported 
in the BM of MPN patients [65].

The differentiation capacities of the MPN-MSCs seem 
to be impaired. Indeed, a report show in MF-MSCs, an 
increase capacity to differentiate into osteoblasts in vitro and 
to mineralize subcutaneously compared to normal MSCs 
and even MSCs derived from PV and ET patients [113]. In 
this study, this capacity was associated with an upregula-
tion of the expression of Runx2, Dlx5, OPN and IBSP and 
a deregulated transcriptomic signature related to osteogenic 
lineage in MF-MSCs.

MPN-MSCs have also been shown to have a protect-
ing role on LICs via paracrine secretion of IL-6, FGF and 
CXCL10 [115]. Two studies on PV patients report that the 
protecting role of MSCs against JAK2 inhibitor leading to a 
decrease in apoptosis of JAK2(V617F) mutated cells [115, 
116]. In PMF patients, Jak2V617f overactivates the complex 
CXCL12/CXCR4 via activation of the PI3K pathway and 
increases hematopoietic cells chemotaxis [116]. PV-MSCs 
overproduce fibrogenic and inflammatory cytokines such as 
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TGF-β1 and BMP-2, which stimulate the osteogenic differ-
entiation pathway [113, 117]. CD9 (tetraspanin 29) expres-
sion, known to be implicated in the HSCs interaction with 
the stroma, is decreased at the surface of CD34+ cells in 
PMF patients, this decrease being inversely correlated with 
fibrosis [118].

In a study using a 3D in vitro culture model, MPN-MSCs 
have been reported to have a decrease capacity to support 
HSCs and ET-MSCs to secrete lower levels of G-CSF and 
IL-17 [114]. In this study, the authors also reported an 
increased in fibronectin deposition by the MPN-MSCs, and 
confirmed this by tissue microarray of pre-fibrotic MPN-BM 
biopsies.

There are very few studies concerning CML-MSCs and 
their role in the CML BMM. A majority of studies have been 
done with stromal cell lines. The CML stromal cells have 
been reported to have a protective role on HSCs in vitro by 
decreasing their apoptosis [119], this role being mediated 
via the CXCR4/CXCL12 axis [120]. One study reported 
the presence of the same genetic aberration, particularly the 
fusion gene BCR-ABL, to be present in both the neoplastic 
clone and endothelial cells, suggesting that this molecular 
event occurred in hemangioblasts [121].

The BMM of AML

AML is a heterogeneous clonal disorder characterized by 
expansion of immature myeloid progenitors (blasts) in the 
BM and peripheral blood. Chromosomic aberrations are 
frequently observed in MSCs of untreated AML patients. 
The most frequent are translocations [73]. These aberra-
tions are never identical to those found in the HSCs of the 
same patients. Sequencing DNA from AML-MSCs also 
highlighted numerous gene mutations including mutations 
in plectin and chromatin remodeling genes [122]. Modifica-
tions of DNA methylation were also described: hypermeth-
ylation of PITX2 and HOXB6 genes and hypomethylation 
of HOXA3 and HOXA5 genes [123].

Gene expression modifications were also reported for a 
lot of genes including adhesion molecules [122], inflam-
matory cytokines [124–126], Notch pathway [127] and 
CXCL12 [128–130]. The link between MSCs and HSCs 
is mediated by CXCL12/CXCR4 in normal and in patho-
logical conditions, particularly myeloid neoplasms [116, 
120, 130]. CXCR4 is highly expressed on both normal and 
AML hematopoietic cells. A high level of CXCR4 expres-
sion on AML blasts is associated with a poor prognosis. In 
xenotransplantation models, the disruption of the interaction 
between CXCR4 and CXCL12 can induces an increase in 
the apoptosis rate and promotes leukemia regression, sug-
gesting the disruption of the microenvironment protection 
[120, 130]. Inhibition of the expression of CXCR4 using 
an antagonist leads to AML blasts death by apoptosis. This 

cell death was mediated by the upregulation of miR-15a/
miR16-1 which downregulates BCL-2, MCL-1 and cyclin-
D1 [131, 132]. CXCL12 deletion in CAR cells and perivas-
cular MSCs in genetically modified mouse model (Cxcl12fl) 
decreases HSCs quiescence and self-renewal potential while 
CXCL12 deletion in osteoprogenitors enhances HSCs mobi-
lization but does not affect their maintenance and quiescence 
[133, 134]. Furthermore, CXCL12 mRNA was reported to 
be more expressed by normal BM MSCs after co-culture 
with leukemic cells [96, 135].

In several studies, AML-MSCs clonogenic potential 
(CFU-F) was reported to be decreased at diagnosis [123, 
125, 135]. Moreover, a study indicates that the CFU-F fre-
quency was restored to a normal capacity when the patients 
were in complete remission [135]. In vitro, the AML BM 
MSCs proliferate less than normal BM MSCs and enter 
senescence faster [135]. Their maintenance in culture was 
shortened and may not exceed passage 2. On the contrary, 
another study using a large number of AML patients from 
good, intermediate and poor risk groups, indicated that 
AML-MSCs had an increase clonogenic potential and 
immunosuppressive capacity than healthy MSCs as well as 
an increase in anti-inflammatory signals like IL.10 [136].

The data on AML-MSCs differentiation are heterogene-
ous. Some studies indicate no alteration of this differentia-
tion capacity [123–125, 135]. Other studies report a decrease 
of the osteogenic differentiation pathway, this decrease being 
correlated with a decrease expression of genes related to 
osteoblastic lineage such as osterix and osteocalcin [135]. A 
larger number of CD146−166+ osteoblastic cells were found 
in sections of BM of AML patients in comparison with nor-
mal BM [135]. Only in poor risk AML, Diaz de la Guar-
dia et al., reported a decrease in adipo/osteogenic potential 
[136]. In two recent studies, AML-MSCs were reported 
to have a decrease in adipogenic and a parallel increase in 
osteo-lineage differentiation [137, 138]. In one of this study, 
they confirmed the decrease in adipogenesis in primary 
AML patients bone marrow and demonstrate that leukemic 
cells suppression of BM adipocytes led to an imbalance 
regulation of endogenous hematopoietic stem and progeni-
tor cells, resulting in impaired myelo-erythroid maturation 
[137]. In the second study, they show that AML-induced 
osteo-lineage differentiation support leukemic growth [138].

The MSCs ability to sustain hematopoiesis can be stud-
ied both in vitro, via co-culture models in 2D and 3D and 
in vivo via xenografts in immunodeficient mice. AML-
MSCs LTC-IC’s data suggest an impaired capacity of these 
cells to support a normal hematopoiesis [124–126, 135]. 
Few myeloid colonies are observed in methylcellulose after 
LTC-IC culture of normal HSCs with AML-MSCs. In addi-
tion, MSCs derived from AML patients were reported to 
support LICs in vitro better than healthy MSCs [136, 139]. 
Very few xenograft experiments involve the co-injection 
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of AML cells together with autologous MSCs, but when 
co-injected, the MSCs do not seems to improve the level 
of engraftment [140]. Subcutaneous scaffold injected with 
MSCs in  vivo using matrigel, or other materials, have 
recently been described and shown to improve the rate of 
LICs grafted in mice [141–143]. Similarly, implantation 
of these scaffolds, seeded with healthy MSCs, improve the 
engraftment of normal HSCs [141, 142]. The engraftment 
in the scaffold is reduced if the MSCs used are knockout for 
Hif-1α [140]. Thus, these 3D scaffolds seem to mimic the 
human niche environment and improve engraftment of the 
leukemic cells [140–143].

Several data suggest that the BMM has a protective 
effect on the leukemic cells. The contact with MSCs pro-
tects the leukemic cells from apoptosis [127, 144] and from 
various chemotherapies [127, 145–147]. It also maintains 
their undifferentiated status [139], self-renewing capacities 
[148] and survival [127, 144]. In vitro, AML-MSCs dis-
played the same chemoprotection capacities than healthy 
MSCs but have higher immunosuppressive and anti-inflam-
matory properties with a diminution of pro-inflammatory 
cytokines expression [136]. The protective effect of MSCs is 
modulated by various cytokines including the axis CXCR4/
CXCL12 [127, 132, 145, 146]. On the other hand, AML 
cells influence the microenvironment and decrease the pro-
liferation of normal MSCs in co-culture [123]. This obser-
vation suggests a bi-directional cross-talk between the LICs 
and the BMM in patients with AML.

Discussion

Over the past decade, the contribution of different stroma 
cells to the maintenance of HSCs has started to emerge. A 
better understanding of the relationship between the HSCs/
LICs and their microenvironment is a key to understand the 
natural history of myeloid neoplasia. Even though AA is a 
BM failure and not a myeloid malignancy, complication in 
AA can lead to secondary MDS or AML [149]. Thus, evalu-
ating qualitatively and quantitatively the composition of the 
bone marrow stroma during the evolution of AA to MDS 
and AML and dissecting the differences at different malig-
nant stages will be highly valuable to shed light into the 
specific role of certain microenvironment factors in myeloid 
malignancies and should help adapt therapeutics treatment 
targeting specifically the specific cross-talk between the 
malignant cells and their niche [150]. The difference in com-
position of the BM niche could also be possibly exploited 
as a potential clinical biomarker tool to predict response or 
relapse in clinical trial settings.

Drugs that disrupt adhesion of LICs from their protective 
niche have started to emerge in clinics such as CXCR4 and 
adhesion molecule (VCAM-1, VLA-4, E-selectin) inhibitors 

[150, 151 and see more details review 152]. As immuno-
therapy against MDS/AML are also expanding especially 
using different immune checkpoint inhibitors, the potential 
contribution of the stroma to immune escape to therapy 
resistance will have to be studied. Indeed, recently in pan-
creatic cancer, the CXCR4/CXCL12 axis has been linked 
to the resistance to immune checkpoint therapy [153]. Our 
understanding of the cellular composition of the normal, 
dysplastic, and leukemic niches and the complex interac-
tions between these cells is still in its infancy. Nevertheless, 
targeting the deregulated niche and restoring niche function 
is already providing a promising new therapeutic rationale 
in myeloid malignancies.
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