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The apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like (APOBEC) mutational signature has only recently been
detected in a multitude of cancers through next-generation sequencing. In contrast, APOBEC has been a focus of virology
research for over a decade. Many lessons learnt regarding APOBEC within virology are likely to be applicable to cancer. In this
review, we explore the parallels between the role of APOBEC enzymes in HIV and cancer evolution. We discuss data supporting
the role of APOBEC mutagenesis in creating HIV genome heterogeneity, drug resistance, and immune escape variants. We
hypothesize similar functions of APOBEC will also hold true in cancer.
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Introduction

Apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-

like 3 (APOBEC3; A3) is the name of a seven-membered family

of single-stranded DNA cytosine deaminases in humans.

Independent approaches including analyses of next-generation

sequencing data implicated APOBEC-catalysed DNA damage

and mutagenesis in breast cancer [1, 2]. Subsequent studies con-

firmed and extended the involvement of APOBEC in mutating

the cancer genome to at least 16 other cancer types [3–5].

APOBEC signature mutations (C-to-T and C-to-G in TCA and

TCT trinucleotide motifs) are the most prevalent in cancer after

those attributable to ageing (C-to-T in CG dinucleotide motifs,

most likely due to water-mediated deamination of methyl-

cytosine) [4]. Furthermore, the clinical relevance of APOBEC in

cancer is underscored by associations with poor patient outcomes

and treatment resistance [6, 7], activation of oncogenic drivers

[8–10], tumour subclonal diversification [9, 11, 12], and

increased prevalence in metastases in comparison with primary

tumours [13].

Although involvement of APOBEC mutagenesis in cancer has

only recently come to light, these enzymes have been a focus of

virology research for over a decade, beginning with the near

simultaneous discoveries of APOBEC3G (A3G) as an HIV-1

restriction factor and as a DNA cytosine deaminase [14, 15]

(reviewed elsewhere [16, 17]). We envision that many lessons

learnt regarding APOBEC within virology will be applicable to

oncology. For this reason, we explore the parallels between the

role of APOBEC in HIV and cancer mutagenesis. We will espe-

cially focus on how APOBEC mutagenesis can promote intratu-

mour heterogeneity, drug resistance, and immune escape.
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The AID/APOBEC superfamily: a diverse set

of cytosine deaminase enzymes implicated

in cancer

APOBEC3 belongs to the AID/APOBEC superfamily, consisting

of activation induced deaminase (AID), APOBEC1 (A1),

APOBEC2 (A2), APOBEC3A-H (A3A, A3B, A3C, A3D, A3F,

A3G, and A3H), and APOBEC4 (A4). AID deaminates cytosines

at the immunoglobulin locus, enabling antibody gene diversifica-

tion via somatic hypermutation, and class switch recombination

[18]. A1 was identified originally as an RNA editing enzyme,

deaminating apolipoprotein B mRNA at a specific position to

create an early stop codon [19], but it also has robust DNA deam-

ination activity [14, 20]. The functions of A2 and A4 are still

unclear and these proteins have yet to show enzymatic activity.

In general, the A3 family members are considered part of the

innate immune system, forming overlapping barriers to virus and

transposon replication. Consistent with such a physiological

function, A3 genes show profound copy number and amino acid

variation in mammals. For instance, most humans have seven A3

genes arranged in tandem, whereas rodents have only one at the

same genomic location [21, 22], and each A3 gene in humans as

well as several other mammals manifests high levels of amino acid

variation due to positive selection [23].

A3G has been studied intensely in the field of virology, as it was

recognized early on to deaminate cytosines in cDNA reverse tran-

scription intermediates of retroviruses including HIV-1 [24, 25].

Reverse transcriptase places an adenine opposite to the newly cre-

ated uracil nucleobase, introducing a viral genomic strand G!A

mutation [26]. This inhibits HIV replication by directly render-

ing the viral genome dysfunctional or by indirectly triggering

viral cDNA degradation by subsequent uracil DNA glycosylase

activity and endonuclease digestion [26, 27]. A3G can also

directly bind to HIV-1 genomic RNA and interfere with viral

cDNA synthesis [28]. A3D, A3F, and A3H also contribute to

HIV-1 mutagenesis through similar mechanisms, and it is gener-

ally accepted that different subsets of A3 family members restrict

the replication of different classes of viruses and transposons

(reviewed elsewhere [16, 17]).

Adding to the complexity of seven A3 family members in

humans, different subsets of A3 enzymes are expressed in differ-

ent tissue types [29, 30]. Together with high levels of DNA

sequence similarity (near perfect identity in many regions), deter-

mining which of these enzymes is responsible for mutagenesis of

different cancer genomes has been challenging. Thus far, the

greatest numbers of publications support A3B and A3A

(reviewed more extensively elsewhere [31–33]). However, recent

reports indicate that A3H is also important and, together with

A3B, may account for the entire APOBEC mutation signature

observed in breast and lung cancers [34, 35].

APOBEC mutagenesis increases subclonal

diversity

APOBEC mutagenesis occurs independently within single cancer

cells and viruses, often resulting in strand-coordinated hypermu-

tations (sometimes referred to as kataegis [1]). Evidence for A3B

upregulation has been found in over half of all cancers [3]

(reviewed elsewhere [31]). Additionally, our groups and others

have identified APOBEC activity as contributing to branched

evolution and the acquisition of subclonal mutations later in the

evolutionary course of lung adenocarcinoma, estrogen receptor

(ER)-negative breast cancer, head and neck squamous cell carci-

noma, and esophageal adenocarcinomas [11, 35, 36]. A recent

analysis of the intratumour heterogeneity present in 100

TRACERx patients with untreated surgically resected primary

non-small-cell lung cancer revealed a significant correlation

between frequencies of APOBEC signature mutation and the

overall number of subclonal mutations [9]. Furthermore, in 19

patients, subclonal driver events were detected as occurring in

the APOBEC mutational context [9] (Figure 1A). Moreover,

tumours with the largest number of subclonal mutations had

extensive evidence of APOBEC mutational signatures, suggesting

that APOBEC activity is a strong mutagenic force late in cancer

evolution (Figure 1B and C). Subclonal mutations generated

from APOBEC activity could potentially drive cancer evolution

by enabling the acquisition of late driver mutations. Across mul-

tiple types of cancer, there is evidence that APOBEC mutagenesis

is responsible for creating driver mutations [5, 8, 9, 12, 31]. The

most striking examples are two helical domain hot spot muta-

tions in PIK3CA in papillomavirus-positive head and neck squa-

mous cell carcinomas (E542K and E545K) [8].

APOBEC expression has also been reported to impact

responses to cancer therapy. In ER-positive breast cancer, A3B

mRNA expression levels inversely correlated with clinical benefit

to tamoxifen, and A3B overexpression correlated with tamoxifen

resistance in mouse xenograft models, implicating the enzyme in

promoting drug resistance [6]. Similarly, an enrichment of A3B

mutations was observed in chemotherapy-resistant urothelial

carcinomas [37].

APOBEC-induced mutagenesis is also prevalent in HIV-1 pro-

viral DNA sequences [38], with some reports estimating the per-

centage of new mutations attributable to APOBEC activity to be

as high as 98% [39]. However, other studies have estimated lower

contributions for APOBEC in HIV-1 genetic variation, and defin-

itive work has yet to be done to dissociate the contributions of

APOBEC from mistakes made by the non-proofreading viral

reverse transcriptase [38, 40]. Nevertheless, APOBEC activity has

been linked to early diversification in newly infected individuals

as the transmitted founder virus adapts in response to the

immune pressure exerted within its new host [41]. Thus,

APOBEC mutagenesis has the capability to increase subclonal

diversity in both cancer and HIV, with the potential for a pro-

found impact on the subsequent evolution of both the tumour

and the virus (Figure 2).

The fact that APOBEC increases diversity is likely to be impor-

tant for the clinical course of both diseases, since genetic hetero-

geneity is a substrate for Darwinian evolution and is likely to

confound treatments. Indeed, in some cancers, increased intratu-

mour heterogeneity has been shown to correlate with a shorter

progression free survival [42, 43]. Additionally, measures of

genetic heterogeneity have been associated with poor progression

free survival in cancer [44] and intermediate thresholds of copy

number instability correlate with poorest clinical outcomes [31],

as they presumably allow for diversity without exceeding toxic

levels of genomic instability (Figure 2). Paralleling findings in
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Figure 1. Apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like (APOBEC) mutagenesis within the TRACERx 100 cohort. (A)
Phylogenetic trees of TRACERx patients harbouring a subclonal driver mutation in an APOBEC preferred motif are shown. The mutation is
indicated near the clone in which it occurs. Clonal clusters are shown in blue, subclonal clusters are shown in red, and subclonal clusters con-
taining the driver mutation in a preferred APOBEC motif are shown in orange. (B) The total numbers of mutations in each patient are shown,
with mutations in an APOBEC context shown in orange and all other mutational contexts shown in green. (C) The total number of driver
mutations in each patient are shown, with mutations in an APOBEC context shown in orange and all other mutational contexts shown in
green. (D) The fraction of subclonal mutations for each patient that could be attributed to APOBEC activity are shown, with mutations in an
APOBEC context shown in orange and all other mutational contexts shown in green.
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cancer, among patients with HIV exhibiting rapid disease pro-

gression, there are fewer hypermutated viral sequences as well as

fewer minimally edited sequences, suggesting that suboptimal

APOBEC activity may enhance genetic diversity, allowing an

increase in pathogenicity [39] (Figure 2). From a clinical stand-

point, this suggests that successful and complete inhibition of

APOBEC enzymatic activity may provide a way to limit subclone

diversification and potentially enable normal adaptive immune

responses to control or clear HIV-1 infection [45]. Conceivably,

complete inhibition of APOBEC enzymatic activity may limit

tumour evolution and boost the efficacy of a variety of targeted

or immune therapies that often fail due to the acquisition of

escape variants brought about by resistance mutations and/or

subclonal neoantigens.

Additional lessons from HIV: APOBEC

mutagenesis fuels drug resistance and

immune escape

In order for HIV and cancer to replicate effectively in human

hosts, these pathogenic entities must constantly avoid detection

and destruction by innate and adaptive immune responses. As a

consequence of this predator–prey relationship, lentiviruses and

cancer have evolved elegant mechanisms to avoid or actively

counteract immune responses. One of these overlapping mecha-

nisms between HIV and cancer appears to entail co-opting

APOBEC mutagenesis as a means of immune evasion.

Lentiviruses and host A3 genes have co-evolved for millions of

years in non-human primate relatives [46] and more recently in

humans [47]. HIV-1, as well as other lentiviruses, has adapted to

suppress A3-mediated innate anti-viral activity through utilizing

the viral infectivity factor (Vif) as a defensive measure [15, 25].

Vif counteracts A3 functionality by polyubiquitination and pro-

teasomal degradation [48]. Additionally, Vif has been shown to

affect A3G translation through mRNA binding [49] and A3G

gene transcription through heterodimerization with the tran-

scription co-factor CBF-b [50]. These discoveries indicate that

targeting the Vif-APOBEC3 interaction may be a novel avenue to

combat HIV infection. However, over a decade of virology

research into the A3-mediated restriction mechanism has dem-

onstrated that interventions in this pathway may be a double-

edged sword. Several studies have found that the range of

APOBEC mutagenesis within HIV virions can vary largely. Lethal

HIV mutagenesis will be selected against in vivo, and moderate

APOBEC mutagenesis appears to induce sublethal variation

that fuels viral heterogeneity and immune escape [41, 51–53]

(Figure 3). Similar to cancer [54], viral genetic heterogeneity

together with an appropriate selective pressure can enable the

emergence of resistant populations. Sublethal G!A mutations in

the DNA sequence motif preferred by A3G have been observed in

drug-resistant HIV variants [55–58] and immune escape variants

[38, 41, 51, 53] (Figure 2). Mutations in the APOBEC motif are

enriched in cytotoxic T lymphocyte epitopes of HIV, and can

result in diminished CD8þT cell responses against previously

antigenic epitopes, suggestive of selection as a consequence of
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Figure 2. Parallels between APOBEC mutagenesis in HIV and cancer. (A) Within HIV, APOBEC mutagenesis is counteracted through Vif. As
APOBEC mutagenesis increases, the chance of lethal mutagenesis and population variation increases. The trade-off between lethal mutagen-
esis and population variation creates an optimal range in which APOBEC mutagenesis increases population fitness. (B) Within cancer, the
toxic effects of APOBEC mutagenesis are counteracted through DNA damage repair and DNA damage tolerance. As APOBEC mutagenesis
increases, the chance of lethal mutagenesis and population variation increases. The trade-off between lethal mutagenesis and population
variation creates an optimal range in which APOBEC mutagenesis increases population fitness.
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immune escape [38] (Figure 4). Finally, within cancer there is

early evidence that APOBEC correlates with the overexpression

of the immune checkpoint molecule PD-L1, potentially contribu-

ting to the development of immune exhaustion [59] (Figure 4).

Indeed, early clinical trial data suggest that reversing immune

exhaustion with an anti-PD-L1 antibody enhances the immune

response against HIV in a subset of participants [60].

Some of the evolutionary dynamics that have been identified in

HIV in response to therapy resistance also appear to apply to can-

cer. For example, in HIV-1, the V3 loop of gp120 interacts with

the host cellular coreceptor CCR5 in order to gain entry to the

cell. CCR5 antagonists bind CCR5 and prevent the entry of

CCR5-tropic HIV-1 [61]. A common route of CCR5 antagonist

resistance is the emergence of HIV-1 variants using CXCR4

instead of CCR5 as a coreceptor for cellular entry [62, 63].

Independent studies detected minor CCR5 antagonist-resistant

variants containing resistance mutations in the APOBEC context

at baseline that were rapidly selected through therapeutic selec-

tive pressure [55, 56]. Complementary to these in vivo studies,

in vitro experiments point towards APOBEC mutagenesis gener-

ating subclonal resistance mutations, which are under positive

selection during drug exposure [58]. Similarly, in cancer, minor

drug resistant variants are rapidly selected upon treatment

(reviewed in Schmitt et al. [64]), although the contribution of

APOBEC in this process remains to be quantified.

An optimal range of APOBEC mutagenesis may exist for both

HIV and tumour evolution (Figure 2). It has been shown

that several Vif mutants are less potent in inhibiting A3G, with
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Figure 3. Potential roles of APOBEC supporting the escape and progression of HIV and cancer. (A) Sublethal APOBEC mutagenesis promotes
the formation of drug escape and immune escape variants in HIV that will be selected upon exposure to treatment or the immune system.
(B) Sublethal APOBEC mutagenesis promotes the formation of drug escape and immune escape variants in cancer that will be selected
upon exposure to treatment or the immune system. APOBEC mutagenesis also underlies the formation of driver gene mutations and poten-
tially also replication stress-induced genomic instability, although the latter is speculative.
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Vif-K22H incapable of fully neutralizing A3G and therefore

appearing to enable sufficient levels of sublethal A3G mutagenesis

for the emergence of antiretroviral resistance [57]. Thus, it appears

that suboptimal A3G mutagenesis is less effective in inactivating

the viral genome and in contrast may promote drug resistance and

immune escape [38, 45, 58]. There are also parallels in the context

of APOBEC mutagenesis of the cellular genome. Extensive A3B

and A3A mutagenesis induces a DNA damage response (DDR)

and at excessive levels it is toxic to the cell [2, 65–69]. Therefore,

similar to HIV, cancer cells may have to attenuate APOBEC muta-

genesis, enhance repair mechanisms, and/or dampen the DDR

pathways to help ensure optimal cell survival (Figure 2).

For instance, the loss of p53 enables DNA damage tolerance to

A3B-mediated mutagenesis [65] and correlates positively with

A3B overexpression in breast cancer [2]. Furthermore, a recent

report focusing on Y-family polymerases and PrimPol, a transle-

sion synthesis polymerase with re-priming properties, found that

PrimPol as well as POLK and POLI may serve to limit the detri-

mental effects of APOBEC mutagenesis [70].

In addition to sublethal APOBEC mutagenesis driving tumour

heterogeneity, APOBEC has recently also been shown to produce

replication stress in cancer [65, 71, 72]. This complements our

previous observation that replication stress itself can drive A3B

expression and activity [73], which suggests a positive feedfor-

ward loop involving replication stress and APOBEC mutagenesis

(Figure 5). We have previously implicated replication stress in
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Figure 4. APOBEC mutagenesis promotes HIV immune escape and potentially also that of cancer. APOBEC mutations have been identified
in cytotoxic T lymphocyte epitopes of HIV. APOBEC hypermutation has been linked to PD-L1 ligand overexpression and potentially contrib-
utes to immune exhaustion of tumour infiltrating lymphocytes. Studies within the HIV literature are suggestive of sublethal APOBEC muta-
genesis driving the expansion of escape variants.
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inducing a widespread endogenous DDR as a biological barrier to

tumour progression [74–76], as well as driving chromosome seg-

regation errors and ensuing chromosomal instability (CIN) [76,

77]. It is therefore conceivable that oncogene-induced and

APOBEC-induced replication stress itself is a driver of CIN in

cancer. Furthermore, APOBEC may provide a cancer cell the nec-

essary genomic plasticity to evade immune surveillance. Firstly, a

large subclonal neoantigen burden has been associated with a

poor response to immunotherapy [78] and conceivably

APOBEC-induced subclonal neoantigens may contribute to this

process. Although the mechanism of how subclonal neoantigens

potentially confound the response to immunotherapy is still

unclear, it is conceivable that subclonal neoantigens foster the

outgrowth of T cells that are reactive towards subclonal neoanti-

gens that outcompete T cells reactive towards clonal neoantigens.

This may result in the outgrowth of T cells that are only reactive

to a proportion of the tumour population, diminishing chances

of total tumour control. Secondly, ongoing chromosome misse-

gregations (i.e. CIN) may enable the dynamic loss of immuno-

genic clonal neoantigens [79]. In effect, CIN-mediated loss of

clonal neoantigens (provided these mutations are not required

for tumour fitness) as well as the acquisition of subclonal neoan-

tigens (due to APOBEC activity) could both aid immune evasion.

Interestingly, highly aneuploid (i.e. an abnormal state of chromo-

somal copy number) tumours have less immune infiltration and

are associated with a worse patient survival than less aneuploid

tumours [80, 81]. It is yet to be quantified to which extent

APOBEC-induced replication stress and potential ensuing CIN

contributes to the process of immune evasion.

Therapeutic considerations

By analogy to hypermutation and hypomutation within HIV

[45], there are at least two general strategies for targeting

APOBEC in cancer. The first strategy is therapy by hypermuta-

tion, by enhancing the mutagenic effects of APOBEC to the point

where cancer cells suffer catastrophic levels of DNA damage and

selectively die. Indeed, recent studies have suggested that DDR

inhibitors, such as PARP and ATR inhibitors, may sensitize

tumour cells with high levels of APOBEC to an APOBEC-

dependent death [65, 71, 72].

The second strategy is therapy by hypomutation, by inhibiting

APOBEC-dependent tumour evolution and potentially suppressing

adverse outcomes including recurrence, metastasis, and drug resist-

ance. Constraining cancer evolvability may be accomplished with

drugs to inhibit APOBEC gene expression [73, 82] or with chemical

inhibitors of DNA deaminase activity (for exemplary studies on

A3G see [83–85]). Proof of principle has been achieved with a

genetic knockdown of A3B causing an improvement in the durabil-

ity of tamoxifen treatment of ERþ xenograft tumours in mice [6].

Besides harnessing APOBEC through a cancer cell intrinsic

mechanism, a complementary strategy may be provoking

immune responses to cancer cells with high levels of APOBEC-

induced neoantigens. It is important to consider whether neoan-

tigens are present in the trunk of the tumour (clonal) or in the

branches (subclonal), since clonal neoantigens may improve

response to immune checkpoint blockade in contrast to subclo-

nal neoantigens [78]. Interestingly, one APOBEC-mediated

mutational signature (signature 2) is primarily found in the

branches of multiple different cancer types [12]. In contrast, the

other APOBEC-mediated mutational signature (signature 13) is

primarily found in the trunk of bladder cancer [12]. This could

potentially explain paradoxical effects of APOBEC mutagenesis

on immune surveillance and patient outcome. For example, in

breast cancer, A3B expression is reported to worsen overall

patient survival [6, 7]. In contrast, APOBEC mutagenesis within

bladder cancer has been correlated with an improved patient out-

come [86, 87], although the influence of APOBEC on survival in

bladder cancer is still a matter of debate [88]. Therefore, it is con-

ceivable that patients with tumours containing extensive clonal

APOBEC mutagenesis, in contrast to subclonal APOBEC muta-

genesis, are more suitable for immune checkpoint blockade.

It is also important to note that several APOBEC family mem-

bers including A3G and A3H are highly expressed in immune

cells, including tumour infiltrating T cells, and correlated with

improved outcomes [89, 90]. Thus, as studies advance, it will be

crucial to not only consider APOBEC expression and mutation

signature in the tumour itself, but also APOBEC expression in

the larger tumour microenvironment. Immunohistochemistry

approaches would be ideal to help address these relationships,

but specific monoclonal antibodies for each human APOBEC

family member have been challenging to develop due to extensive

protein similarity.

Discussion

Conclusions

Despite the numerous studies that have detected APOBEC-

associated mutations by sequencing clinical cancer samples, it is

Replication stress
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Chromosomal instability  /
subclonal copy number variation

Subclonal somatic point muations

Tumour evolution

Normal cell

(?)

Figure 5. A feedforward replication stress-APOBEC loop potentially drives subclonal somatic point mutations and copy number variations.
APOBEC induces subclonal somatic point mutations and has recently been shown to induce replication stress. APOBEC-mediated replication
stress could potentially contribute to CIN.
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still not fully clear why APOBEC mutagenesis is such a wide-

spread and recurring mutational signature. In this review, we

have postulated functions of APOBEC in cancer through explor-

ing the past virology research focused on HIV and APOBEC.

Within the field of virology, sublethal APOBEC mutagenesis of

HIV virions has been linked to increasing HIV diversity and the

creation of drug and immune escape variants. Conceivably, simi-

lar functions for APOBEC mutagenesis may be operating, and be

selected for, during cancer evolution with clear opportunities for

the development of novel therapeutic interventions.
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