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Beyond proneural: emerging fun
ctions and regulations
of proneural proteins
François Guillemot1 and Bassem A Hassan2
Proneural proteins, which include Ascl1, Atoh1 and

Neurogenins épinière in vertebrates and Achaete-Scute

proteins and Atonal in Drosophila, are expressed in the

developing nervous system throughout the animal kingdom

and have an essential and well-characterised role in specifying

the neural identity of progenitors. New properties and

additional roles of these factors have emerged in recent years,

including the regulation of stem cell proliferation and the

capacity to reprogram many types of cells into neurons. This

review will focus on these recent findings. The review will also

discuss the mechanisms that allow proneural proteins to

induce the transcription of their target genes in different

chromatin contexts and the phosphorylation events and other

post-transcriptional mechanisms that regulate the proneural

proteins themselves.
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Introduction
Proneural proteins, first identified in Drosophila in the

1980s and later in vertebrates and other invertebrate

species, are a small group of transcription factors of the

basic-loop-helix class, which are necessary and sufficient

to confer a neural (i.e. neuronal + glial) or neuronal fate to

progenitor cells in the developing nervous system. This is

an ancient function conserved through evolution from

cnidarians to mammals, although variations exist between

phyla regarding the exact stage in development at which

these factors are expressed and function. Early expression
www.sciencedirect.com
in multipotent cells and a role in fate specification distin-

guish proneural proteins from neuronal differentiation

factors such as members of the mammalian Neurod

family, which are first expressed in cells already commit-

ted to a neuronal fate and promote their differentiation

[1]. In addition to committing progenitor cells to a neu-

ronal fate, proneural proteins also specify their identity,

for example, sense organ identity in flies and the neuro-

transmission phenotype of mammalian neurons [1]. Al-

though proneural proteins primarily act in progenitor

cells, they sometimes remain expressed transiently in

postmitotic neurons and regulate their migration and

axonal and dendritic growth [2–4]. In this review, we will

not discuss these well-established modes of expression

and functions. We will focus instead on more recent

findings, and specifically on a newly identified function

of the proneural protein Ascl1 in neural stem cells, on a

role for Ascl1 as pioneer factor, and on phosphorylation

events that have recently been shown to greatly contrib-

ute to the regulation of the activity of proneural proteins.

Proneural proteins and stem cell proliferation
Although the primary function of proneural proteins is to

endow progenitors with a neuronal fate, they also often

drive progenitors out of the cell cycle and initiate their

differentiation [1]. A few exceptions exist however, in-

cluding mouse Atoh1 promoting granule cell proliferation

during cerebellar development and in medulloblastoma

[5,6] and Drosophila Asense, which contributes to the self-

renewal of embryonic neuroblasts [7]. Ascl1/Mash1 has

also been shown to promote the proliferation of neural

stem cells and/or progenitor cells in the ganglionic emi-

nences of the embryonic telencephalon and in the neu-

rogenic regions of the adult mouse brain (dentate gyrus

and ventricular-subventricular zone) through direct in-

duction of cell cycle regulators such as Cyclin D genes

[8,9,10��]. In the adult dentate gyrus, Ascl1 expression is

restricted to stem cells and early intermediate progenitors

and the onset of differentiation and cell cycle exit are

induced by other factors including Tbr2 and Neurod1

(Figure 1). Possibly reflecting this proliferation-promot-

ing function, Ascl1 has been implicated in the tumorige-

nicity of glioblastoma and other tumours [11,12].

Moreover, Ascl1 is expressed in, and might promote

the proliferation of, neuronal progenitors derived from

parenchymal astrocytes following ischemia, neurotoxic

injury or viral-mediated transduction of Sox2

[13,14�,15�,16], suggesting a broader role of Ascl1 in

activation of neural stem cells in response to a variety

of physiological and pathological stimuli.
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Our current understanding of the timing of expression of proneural genes in different lineages. A generic neuronal lineage is represented on the

top of the figure. Continuous lines indicate the portion of the lineage when the proneural protein indicated above the line is consistently expressed,

while dashed lines indicate expression in some lineages but not others (e.g. Ascl1 is expressed in the embryonic ventral telencephalon in neural

stem cells in the ventricular zone, in all intermediate progenitors in the subventricular zone, and transiently in a subset of neurons in the mantle

zone, but only in neural stem cells and early intermediate progenitors in the adult dentate gyrus [1,9�]).
Proneural proteins and neuronal
reprogramming
The pioneering work of Harold Weintraub established

over 25 years ago that forced expression of a single

transcription factor can be sufficient to convert a differ-

entiated cell into another cell type [17,18]. Proneural

proteins (e.g. Neurog1) and neuronal differentiation fac-

tor (e.g. Neurod1) were subsequently shown to have the

capacity, when ectopically expressed in embryos, to con-

vert non-neural ectoderm into neurons [19,20]. Magda-

lena Götz and colleagues extended this finding by

showing that forced expression of Ascl1 and Neurog2

converts astrocytes in culture into fully differentiated and

functionally mature neurons ([21,22]; Figure 2), and

Marius Wernig and colleagues and others showed that

Ascl1 in combination with other factors could directly

reprogram (i.e. without an intermediate proliferative pro-

genitor state) a variety of cultured cell types originating

from mice, humans and other primates, into induced

neuronal cells (iNs) [23–28]. Uniquely among proneural

factors, Ascl1 alone can reprogram fibroblasts into iNs

[29�]. Proneural proteins can also convert pluripotent cells

into iNs, and expression of Neurog2 in human ESCs or

iPSCs is currently the most efficient strategy to generate

homogeneous populations of human neurons with a cor-

tical-like identity [30�].

Given the efficiency of neuronal reprogramming of

cultured cells, transcription factors have also been
Current Opinion in Neurobiology 2017, 42:93–101
transduced into the mouse brain in vivo to circumvent

the notoriously limited ability of the mammalian brain to

replace lost neurons, by reprogramming glial cells, includ-

ing parenchymal astrocytes, NG2 glia and retinal Müller

glia, into neurons ([31–33]; Figure 3). The cocktail of

three transcription factors including Ascl1 that was origi-

nally shown to reprogram fibroblasts in vitro [23] can also

convert resident parenchymal astrocytes or transplanted

human astrocytes into neurons [34�]. However, the extent

to which Ascl1 alone is able to convert astrocytes in the

brain into neurons is disputed, with one study reporting

neuronal reprogramming of astrocytes in the midbrain,

striatum and cerebral cortex [35], while other studies

reported very little or no neuronal reprogramming by

transduction of Ascl1 alone into glial cells of the spinal

cord or cerebral cortex [13,36,37]. Neurog2 has the ca-

pacity to induce the conversion of glial cells into neurons

only when cells are both activated by injury and exposed

to exogenous growth factors, suggesting that the in vivo
environment of glial cells limits their lineage plasticity

[38�]. In contrast, Neurod1, a neuronal differentiation

factor acting downstream of Neurog2 during neurogen-

esis, can efficiently reprogram on its own reactive astro-

cytes and NG2 glia into mature neurons [39].

Ascl1 as a pioneer factor
The ability of Ascl1 to convert multiple cell types into

neurons suggests that it is able to activate target genes

when these genes are not expressed and are actively
www.sciencedirect.com
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Figure 2
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Summary of in vitro reprogramming experiments performed by transducing proneural genes in various cell types. The cell types reprogrammed are

indicated on the left of the figure, the proneural genes and the viral vectors used for their transduction are indicated in the second column, the

types of induced neuronal cells produced are indicated in the 3rd column, and the reference to the articles reporting the experiments are indicated

in the last column. Notes: a. cultured astrocytes originating from the postnatal cortex or the injured adult cortex; b. induced neuronal cells (iNs)

forming synapses and displaying electric activity; c. forced expression of Ascl1 produces iNs of mostly glutamateric excitatory character while in

the embryonic brain, Ascl1 induces predominantly GABAergic neurons; d. Neurog2 is unable to reprogram postnatal astrocytes that have been

maintained in culture, due to the recruitment of RE1-Silencing Transcription factor (REST) which progressively reduces chromatin accessibility at

Neurog2 target genes essential for reprogramming, including NeuroD4 [55�].

www.sciencedirect.com Current Opinion in Neurobiology 2017, 42:93–101
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Figure 3
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Summary of in vivo reprogramming experiments performed by transducing proneural genes in glial cells of the adult mouse brain. The cell types

reprogrammed are indicated on the left of the figure, the proneural genes and the viral vectors used for their transduction are indicated in the

second column, the time between gene transduction and analysis is indicated in the third column, the neuronal features assessed in the

reprogrammed cells are indicated in the fourth column, and the reference to the articles reporting the experiments are indicated in the last

column. Note that a study showed that expression of Ascl1 alone could convert reactive astrocytes in the midbrain, striatum and cerebral cortex

into mature neurons of both GABAergic and glutamatergic subtypes that integrate morphologically and functionally into existing circuits [35]. In

contrast, other studies have reported very little or no neuronal reprogramming by transduction of Ascl1 alone into glial cells of the spinal cord or

cerebral cortex [13,36,37,38�]. Although very similar, these different studies used different viral systems for Ascl1 delivery, resulting in different

levels of expression or target cell specificity, which may explain these different results.
repressed. Indeed, an analysis of genomic occupancy of

ectopically expressed Ascl1 in fibroblasts from the Wernig

lab showed that Ascl1 is an ‘on target’ pioneer factor that

is able to recognize the regulatory elements of its neuro-

nal target genes even when they are nucleosome-bound

in fibroblasts [40��]. This pioneering activity of Ascl1 has

been related to the structure of its DNA binding domain,

which is shorter than that of other bHLH proteins (i.e.

Olig2, Neurod1, MyoD and Tal1) and therefore likely to

contact fewer nucleotides in its consensus binding site,

which might allow Ascl1 to bind to this site even when the

remaining nucleotides are engaged in nucleosome inter-

actions [41��]. Interestingly, Ascl1-occupied loci are

enriched in a trivalent chromatin signature comprised

of H3K4me1, H3K27ac and H3K9me3 in cell types that

are efficiently reprogrammed by Ascl1, whereas enrich-

ment is low in cell types that are refractory to Ascl1

reprogramming, suggesting a role for this trivalent chro-

matin state in Ascl1 recruitment [40��]. To convert hu-

man pericytes into neurons, Ascl1 cannot act alone but

requires co-expression with Sox2, suggesting that Sox2 is

required in these cells to induce a chromatin state per-

missive for Ascl1 binding, or alternatively that Sox2

guides Ascl1 to essential target sites [26�,42,43]. Impor-

tantly, Ascl1 appears to have a similar pioneering activity
Current Opinion in Neurobiology 2017, 42:93–101
during normal development, since it is also bound to

closed chromatin in neural stem cells and many of its

target genes shift to an open configuration during differ-

entiation [40��,44��,45]. In contrast to Ascl1, there is no

evidence that Neurog2 acts as a pioneer factor, although it

efficiently converts pluripotent stem cells and astrocytes

into neurons, probably reflecting the accessibility of the

regulatory elements of its target genes in these cell types

[21,30�].

Post-transcriptional regulation of proneural
proteins
Proneural genes are expressed in a transient manner in

discrete progenitor populations, through tight regulation

of their transcription [1]. In addition to this well-docu-

mented mode of regulation, proneural proteins have

recently been shown to undergo a complex set of phos-

phorylations that profoundly influence their activities.

The first evidence came from a pioneering study by

Franck Polleux and colleagues, who showed that the

phosphorylation of a mammalian-specific tyrosine residue

in Neurog2 is required for its role in neuronal migration

and dendritic morphology, but not for its proneural func-

tion [3]. Little else was reported on the subject afterwards

but in the last 5 years, a number of studies from the groups
www.sciencedirect.com
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of Anna Philpott and Carol Schuurmans have reported

extensive phosphorylation of all the major mammalian

proneural proteins in vivo. Phosphorylation of multiple

serine residues in Neurog2 and Ascl1 has been shown to

act as a rheostat regulator of DNA binding, a clear

departure from the classical all-or-nothing notion of pro-

neural protein function [46,47�]. These phosphorylation

events are regulated by cyclin-dependent kinases, sug-

gesting a model in which neuronal progenitors gradually

extinguish proneural protein activity by a succession of

phosphorylation events as they exit the cell cycle. Further

analysis showed that these serine phosphorylation events

influence the choice of transcriptional targets by pro-

neural proteins, suggesting a model whereby highly phos-

phorylated proteins (in cycling progenitors) are only able

to bind and activate target genes with an open chromatin

such as the Notch ligand gene Dll1, while un-phosphory-

lated proteins (in postmitotic neurons) are able to bind

and activate targets with a less accessible chromatin, such

as the differentiation genes Neurod1 for Neurog2 and Myt1
for Ascl1, through recruitment of chromatin-remodelling

factors [46–48].

Wnt signalling has been proposed to control the time

window of activity of proneural proteins through regula-

tion of their phosphorylation during development of the

mammalian cerebral cortex and of Drosophila sensory

bristles. By reducing the activity of the GSK3b/Shaggy

kinase, Wnt signalling promotes the de-phosphorylation

and stimulates the activity of Neurog2 in the mouse

cortex and of Drosophila Scute in sensory bristles. Phos-

phorylation by GSK3b modulates Neurog2 activity by

influencing its choice of dimerization partner rather than

its DNA binding affinity [49,50].

Most of the Cdk and GSK3b phosphorylation sites are

located outside of the bHLH domain, which mediates

DNA binding and heterodimerisation, and are not con-

served across proneural homologues and paralogues, sug-

gesting that each proneural protein has evolved its own

sophisticated fine-tuning regulatory mechanisms. In con-

trast, phosphorylation of a residue present at the very same

location in the bHLH domain of all Drosophila and verte-

brate proneural proteins has recently been shown to act as

an on/off switch for in vivo DNA binding and transcrip-

tional activity of all proneural proteins, and to be essential

for the rapid termination of their fate specification func-

tions in early neural progenitors [51��]. Interestingly, when

examined at endogenous levels using a knock-in approach

for Drosophila ato the data indicate that the phosphorylated

isoform — although lacking proneural activity — persist

for several hours in non-dividing neurons. Whether it plays

a role in early neuronal differentiation, akin to what has

been shown for phosphorylated Neurog2, remains unclear.

Thus, while a conserved post-translationally modified

residue controls in a similar — potentially binary —

way all proneural proteins, modifications of non-conserved
www.sciencedirect.com
residues may fine-tune the context-specific functions of

individual proneural proteins (Figure 4). What this means

to their comparative differential endogenous activities

remains to be investigated, but the deep conservation

of the inactivating residue across all proneural proteins

indicates this may be a fundamental feature of neurogen-

esis across animal species.

Proneural protein oscillations
The finding that Ascl1 promotes both cell proliferation

and cell differentiation, sometime sequentially in the

same lineage (e.g. in the embryonic telencephalon and

adult ventricular-subventricular zone), raises the interest-

ing question of how the switch between different activi-

ties of proneural proteins is controlled. Besides the

change in level of protein phosphorylation between pro-

genitors and postmitotic neurons discussed above, other

mechanisms might also modulate the function of pro-

neural proteins by regulating their interactions with target

genes. The dynamics of proneural protein expression in

particular has been proposed to play an important role in

regulating their activity. The levels of Ascl1 and Neurog2

transcripts and proteins oscillate in neural progenitors

with periods of 2–3 hours, as a consequence of repression

by oscillating Hes proteins downstream of Notch signal-

ling [52,53��]. Proneural protein expression becomes sta-

bilised when Notch signalling is down-regulated and

progenitors exit the cell cycle and differentiate. Ascl1

oscillations have been shown to be required for its pro-

liferation-promoting activity while its sustained expres-

sion has been shown to promote neuronal differentiation

[53��]. Finally, while much recent attention has been paid

to phosphorylation as a mechanism of both hard and soft

tuning of proneural activity, other modes of regulation,

including the regulation of protein stability, are only

beginning to receive attention. Ascl1 is actively degraded

by the E3 ubiquitin ligase HUWE1/UREB1/MULE, and

the rapid elimination of Ascl1 from proliferating stem

cells in the adult hippocampus by HUWE1 has been

shown to be essential for their return to quiescence and

the long-term maintenance of hippocampal neurogenesis

[10��]. HUWE1 similarly destablises the proneural pro-

tein Atoh1 in cerebellar granule neuron progenitors, and

the signalling molecule Sonic hedgehog has been shown

to enhance Atoh1 expression by preventing its phospho-

dependent degradation by HUWE1 [54�].

How the stabilisation of its expression results in Ascl1

switching from progenitor-specific targets to neuron-spe-

cific targets, is still not understood. Other mechanisms,

such as changes in expression level, interactions with

temporally regulated co-factors and regulation of nuclear

entry and exit, might also contribute to the switch be-

tween the different activities of proneural protein.

Whether these different mechanisms operate indepen-

dently or act in concert to regulate proneural protein
Current Opinion in Neurobiology 2017, 42:93–101
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Figure 4
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Schematic representation of phosphorylation events modulating proneural protein function. While a conserved modification on a Serine residue

within the bHLH domain (solid line, red STOP sign) appears to act as a binary activity switch, several protein-specific, class-specific and species-

specific residues (dotted lines; green GO sign, orange CHANGE sign) act as rheostat-like modulators for context-dependent proneural protein

functions.
activity (e.g. oscillations or phosphorylation regulating

interaction with co-factors) remains to be studied.

Conclusion
Proneural proteins have long been known for their central

role in the regulation of neurogenesis, during which they

coordinate the acquisition of a neural cell identity with

the regulation of cell proliferation and the initiation of

differentiation. To fulfil these complex functions, pro-

neural proteins have evolved sophisticated modes of

regulation of their expression and activity that are only

beginning to be understood.
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signaling protects atoh1 from degradation mediated by the e3
ubiquitin ligase huwe1 in neural precursors. Dev Cell 2014,
29:649-661.

The authors of this paper show that the E3 ubiquitin ligase HUWE1
destabilises the proneural protein Atoh1 in cerebellar granule neuron
progenitors when it is phosphorylated. The signalling molecule Sonic
hedgehog stimulates Atoh1 expression by promoting its dephosphoryla-
tion and protecting it from HUWE1-mediated degradation.
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Guillemot F et al.: Transcriptional mechanisms of proneural
factors and rest in regulating neuronal reprogramming of
astrocytes. Cell Stem Cell 2015, 17:74-88.

In this paper, Neurog2 is shown to efficiently reprogram immature
astrocytes originating from the postnatal mouse brain into neurons.
However, Neurog2 becomes inactive when transduced in astrocytes that
have been maintained in culture, due in part to the repressor REST
preventing Neurog2 from accessing the promoter of Neurod4, a key
target gene during reprogramming.
Current Opinion in Neurobiology 2017, 42:93–101
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