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Infection with Citrobacter rodentium constitutes an attack on

the intestinal barrier and results in concerted action by innate

and adaptive immune responses to limit bacterial translocation

and destroy those bacteria that have breached the intestinal

barrier. Among the many immune cell types that are involved in

the defence against this infection, Th17 cells as the major

producers of the barrier protective cytokine IL-22 during the

adaptive phase of the response are most numerous. Their

extensive plasticity furthermore results in the production of

additional cytokines that previously were ascribed to Th1 cells,

such as IFNg. The timely and coordinated repair of damaged

epithelium requires input from environmental factors derived

from diet and microbiota metabolism of tryptophan which are

transmitted through the aryl hydrocarbon receptor (AHR). Thus,

the combination of a robust immune response, coupled with

intestinal stem cell differentiation guided by environmental

factors, ensures resistance to barrier destruction by intestinal

infection.
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Introduction
Infection with Citrobacter rodentium is a mouse model of

human infection with pathogenic Escherichia coli and has

been widely studied for its impact on the mucosal

immune response in the gut. The importance of T and

B cell responses as well as cytokines such as IL-12 or

IFNg in the defence against this pathogen are well

established [1,2]. Because of the complexity of intestinal

immune cell types involved and their roles at different

stages of the infection there is ongoing research trying to

define many of the molecular mechanisms underlying

Citrobacter-induced changes in mucosal immunity. In
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addition to more direct effects of Citrobacter on immune

cells, there are also indirect effects on the immune system

via perturbations of the microbiota and the involvement

of environmental factors transmitted via the ligand

dependent transcription factor aryl hydrocarbon receptor

(AHR). The activation of a particular CD4 T cell subset,

Th17, by C. rodentium was first demonstrated by Torch-

insky et al. [3] who showed that this infection creates the

cytokine conditions that promote the in vivo differentia-

tion of this T cell subset via phagocytosis of infected

apoptotic cells by dendritic cells. However, the specific

role of Th17 cells in Citrobacter infection was only

addressed in later years and will be discussed in this

review. Likewise, the role of the aryl hydrocarbon recep-

tor (AHR) in immune cells was first defined in the Th17

subset [4]. The AHR is a ligand dependent transcription

factor from a family of transcription factors which are

environmental sensors. AHR had previously been studied

mainly in the toxicology field for its role in promoting the

toxic effects of man-made pollutants, such as dioxin [5].

However, in the last 10–12 years it has emerged that AHR

has important physiological functions particularly in bar-

rier organs, such as the skin, the lung and the gut [6]. It is

known that AHR is highly expressed in Th17 cells, where

its activation promotes the expression of IL-22, a crucial

cytokine in Citrobacter infection. Moreover, in the last few

years the AHR has also been shown to have prominent

additional roles in intestinal homeostasis and infection

which will be addressed in more detail here.

This review compiles findings over the past 3–5 years and

focuses on the role of CD4 T cells as orchestrators of

inflammatory as well as regulatory responses while briefly

mentioning other cell types that participate in the

defense against this infection. Furthermore, in light of

environmental influences on gut physiology via dietary

and microbiota metabolites, the impact of the environ-

mental sensor aryl hydrocarbon receptor (AHR) on infec-

tion with C. rodentium is discussed.

T cell responses and their consequences in
C. rodentium infection
This attaching and effacing pathogen elicits strong

immune response in keeping with the necessity to protect

the intestinal barrier from the destruction wreake attach-

ing and effacing pathogen d by this bacterium.

Early studies using knockout mouse models established

that both CD4 T cell responses and antibody responses

are needed to defend the body, whereas CD8 T cells
www.sciencedirect.com
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seem dispensable [1]. However, there is a period of about

5–7 days before the activation of adaptive T cell

responses which is bridged by innate immune cell

responses, notably innate lymphoid cells (ILC), particu-

larly the ILC3 subset as well as other innate immune cells

such as macrophages, dendritic cells and neutrophils

(Figure 1 left panel) [7]. A critical cytokine secreted by

ILC3 is IL-22, which contributes to barrier defence via

the induction of anti-microbial peptides from intestinal

epithelial cells, wound healing, fucosylation of mucins

and induction of complement [7,8]. IL-22 production by

the NCR+ subset of ILC3 is dependent on the provision

of IL-23 by dendritic cells and macrophages [9], which

itself is induced by IL-1 family members such as IL-36g
[10]. Furthermore, short chain fatty acids derived from

microbiota promote IL-22 [11]. ILC3-derived IL-22 is

particularly important in the early stage of infection to

protect against damage of the cecum, which is the first site

of C. rodentium colonisation [12]. Beyond day 5, however,

the adaptive CD4 T cell response takes over and over-

shadows the contribution of cytokines by ILC3 (Figure 1

middle panel). In addition to their cytokine-secreting

functions, the adaptive CD4 T cell response includes

the induction of B cell responses by T follicular helper

cells (Tfh) in draining lymph nodes to activate the crucial

humoral response to Citrobacter infection [13�]. In partic-

ular, antibodies of the IgG isotype are critical for the
Figure 1
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elimination of virulent bacteria in the gut with the help of

neutrophils that eliminate IgG-coated intraluminal bac-

teria [14].

Early studies on cytokine deficient mice suggested that

Citrobacter infection elicits type I skewed responses as

deletion of IL-12 and IFNg, cytokines required or typical

for type I responses, caused increased death from infec-

tion [2]. The interest in the field subsequently shifted to

the Th17 subset of CD4 T cells, which are characterised

by secretion of the cytokines IL-17 and IL-22. Th17 cell

differentiation is facilitated by Citrobacter-induced epi-

thelial cell death leading to the release of IL-6 and TGFb
by antigen presenting cells, such as dendritic cells [3].

While these are two important mediators favouring the

differentiation of Th17 cells, additional factors such as

caspase-1 expression in pathogen elicited Th17 cells

function in optimal priming of Th17 responses [15]

and the expression of resistin like molecule a (RELMa)
in epithelial cells promotes their cytokine response [16].

While older classification of T cell responses has empha-

sised the existence of different CD4 T cell subsets, such

as Th1, Th2, Th17 and Treg, it is now clear that there is

substantial plasticity in T cells which can blur such

boundaries. This has been demonstrated clearly in

Th17 cells with the generation of cytokine fate reporters

that allow detection of Th17 cells, based on induction of a
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permanent fluorescent marker when they activated IL-17

[17]. Importantly, the fluorescent marker makes it possi-

ble to follow such cells even if they no longer produce

IL-17. This established that Th17 cells in the context of

an inflammatory milieu rapidly expand their repertoire of

pro-inflammatory cytokines and often switch off produc-

tion of their hallmark cytokine IL-17 [17], thus disguising

their identity as Th17 cells if they are classified solely in

the basis of IL-17 expression. The IL-17 fate reporter

indicated that Th17 cells are the main source of inflam-

matory cytokines such as IFNg and GM-CSF during

infection with C. rodentium. An IL-22 fate reporter [18�]
that allowed determination of the origin of IL-22 in the

intestinal milieu confirmed that the initial source of IL-22

in the first 5 days after infection was ILC3, whereas

thereafter CD4 T cells were the main source [18�].

It is debated that there may be a Th22 subset [9], but the

fate reporter data suggest that such cells may be the

product of Th17 cell plasticity. A recent study attempted

to determine the state of effector T cells in the intestinal

environment following infection with Salmonella or Citro-
bacter by single cell transcriptomics. Similar to what was

found with fate reporters they report that the expression

of cytokines, which traditionally would have been linked

to T cell subsets, did not match transcriptomes of the

individual cells, but rather indicated that the infecting

agent plays a role in determining T cell heterogeneity

with polarisation towards particular cytokines irrespective

of subset defining transcriptomes [19]. Th17 cells activa-

tion by C. rodentium infection is initiated in the mesen-

teric lymph node (mLN) and the cells subsequently

migrate to the intestinal lamina propria [20]. They have

a distinct transcriptional and metabolic profile from the

indigenous Th17 population in the small intestine which

is induced by contact with segmented filamentous bacte-

ria (SFB) [21]. C. rodentium-elicited Th17 cells show a

typical effector cell profile and strong plasticity towards

IFNg expression with a metabolic profile typical of

inflammatory effector cells with high oxidative phosphor-

ylation as well as glycolysis, whereas SFB elicited Th17

cells have the metabolic profile of resting memory cells

and little plasticity towards inflammatory cytokines [22�].
Effector T cell generation in mesenteric lymph nodes and

their expansion in the colon depend on the expression of

mTOR as mTOR deficiency in T cells impairs the

response against C. rodentium infection [23]. Another

feature of the T cell response in C. rodentium infection

highlights the connection between the nervous and

immune systems. T cells recruited in this infection

express choline acetyl transferase (ChAT), the enzyme

required for biosynthesis of acetylcholine (ACh). T cell

specific deletion of ACh caused increased inflammation

with heightened levels of IL-6, IL-1b and TNF and

higher bacterial burden [24]. The latter was attributed

to reduced induction of NOS2 expression in epithelial

cells from such mice.
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Controlling tissue damage: regulatory T cells
and environmental triggers via AHR
While the inflammatory response to C. rodentium infection

is important for the defence against this pathogen, it also

represents a threat to tissue homeostasis. Defence against

a pathogen needs to be balanced with regulation and the

need for tissue restoration (Figure 1 right panel). Regu-

latory T cells expressing Foxp3 are an integral part of the

mucosal immune system and in the intestine many of

them co-express RORgt, the master regulator of the Th17

cell lineage which may facilitate their regulation of exces-

sive Th17 responses [25]. Plasmacytoid dendritic cells in

colon draining lymph nodes were shown to be involved in

induction of Foxp3+ Treg and their deficiency led to

increased accumulation of inflammatory markers [26�]. A

substantial amount of literature has focused on the cyto-

kine IL-10 which can be produced by macrophages,

dendritic cells, ILC2 [27], as well as T cells and act on

a range of cell types [28]. IL-10 deficiency in CD4 T cells

was reported to exacerbate IFNg and IL-17 responses

during infection with C. rodentium [29], albeit another

study described attenuation of intestinal inflammation

during infection in IL-10 deficient mice, attributing a role

in downregulation of inflammatory pathways to induction

of IL-27 [30]. Given the multiple sources for this cyto-

kine, different outcomes might be expected depending

on whether IL-10 was absent in all cells or deleted in

specific subsets.

The intestinal environment is also a site rich in expression

of the aryl hydrocarbon receptor (AHR), a ligand depen-

dent transcription factor, which shapes immune and

epithelial cell responses at mucosal sites such as the

gut (reviewed in Ref. [31]). AHR is activated by ligands

in the intestinal environment derived from indoles and

tryptophan metabolites generated by the microbiota or

formed from dietary pro-ligands that undergo transforma-

tion through non-enzymatic condensation reactions [32].

In general, physiological AHR activation by these natural

components serves to maintain barrier homeostasis by

direct effects on immune cell types as well as epithelial

cells, which generally ameliorates inflammation. Some

immune cell types in the intestine depend on AHR

signals for their survival, such as type 3 innate lymphoid

cells (ILC3) [33–35] or subpopulations of intraepithelial

lymphocytes (IEL) [36]. As ILC3 are the major producers

of the barrier protective cytokine IL-22 under steady state

conditions, AHR deficiency which results in loss of ILC3

will also deplete the intestine of IL-22. Under infection

conditions the initial protection by ILC3 is normally

taken over by the adaptive Th17 cell response that is

the major producer of IL-22 from day 5 after infection

with C. rodentium. However, AHR is essential for the

production of IL-22 in Th17 cells [4], while not affecting

their lifespan to the same degree as that of ILC3. Thus,

AHR deficient mice are extremely vulnerable to infection

with C. rodentium and succumb to widespread bacterial
www.sciencedirect.com



Immune and environmental factors in Citrobacter defence Stockinger 95
dissemination about 10 days after infection [37]. Absence

of AHR also affects regulatory T cells in the gut

environment, reducing their expression of gut homing

molecules and increasing the expression of inflammatory

cytokines such as IFNg [38], making them more likely to

contribute to inflammation rather than curb it.

AHR ligands are normally rapidly metabolised by cyto-

chrome P4501 enzymes such as Cyp1a1 which are

induced upon AHR activation and constitute a feedback

mechanism that curtails the duration of AHR signaling

[39]. Constitutive expression of Cyp1a1 results in exces-

sive metabolic clearance of AHR signaling and a pheno-

copy of an AHR deficient state [37]. Such mice succumb

to infection with C. rodentium as rapidly as AHR knockout

mice. In contrast to AHR KO mice, however, mice with

overactive Cyp1a1 can be rescued by feeding with a diet

supplemented with indole-3-carbinol(I3C) [37], an AHR

pro-ligand that is transformed in the acidic compartment

of the stomach into a high affinity AHR ligand, indolo[3,2-

b]carbazole (ICZ) [40]. Dietary supplementation with

I3C attenuates the intestinal inflammation in C. rodentium
infection and is suggested to reduce the risk of developing

colorectal cancer [41].

I3C supplementation restored the IL-22 response and

prevented systemic bacterial dissemination [37]. Never-

theless, it became clear that the reconstitution of the

immune protective arm is not able to fully restore the

defects to the epithelial barrier that occurs in C. rodentium
infection. This is due to the fact that AHR is an important

component facilitating the repair of damaged epithelium

by differentiation of new epithelial subsets such as mucus

producing goblet cells. AHR restrains the activity of the

Wnt pathway by increasing the expression of the negative

Wnt regulators Znrf3 and Rn43 [42]. A previously identi-

fied genetic determinant for susceptibility to C. rodentium
infection, Rspo2, a member of the Rspondin family which

potentiate the canonical Wnt pathway and function as

stem cell growth factors [43], is also associated with

impaired epithelial differentiation [44�]. Rspo2 expres-

sion on the other hand is reduced by exposure to AHR

ligands [45], emphasizing the regulatory role of AHR in

IEC differentiation.

Thus, both regulatory T cells as well as environmental

factors from diet and microbiota serve to counteract the

inflammatory consequences of C. rodentium infection.

While they do not directly constitute an anti-pathogen

response, their functioning is nevertheless crucial for the

recovery from the cytopathic effect and consequential

inflammatory immune response elicited by this infection.

Conclusions
A concerted interaction between innate immune cells in

the early stage after infection with C. rodentium and

induction of adaptive T and B cell responses is required
www.sciencedirect.com 
to induce immune protection against this pathogen. Cyto-

kines such as IL-17, IFNg and IL-22 play prominent roles

in the defense, but cannot be simply attributed to defined

T cell subsets as the adaptive CD4 T cell response is

highly plastic and contains intermediate stages that defy

subset categorisation. In addition, the counterbalance for

inflammatory T cell responses by regulatory T cells is an

essential feature for a successful outcome from infection.

Last, but not least the pathogen inflicted damage to

epithelium needs to be repaired to prevent barrier dis-

ruption and here the influence of environmental factors

such as microbial or dietary tryptophan metabolites that

activate the AHR is important to safeguard efficient

restoration of the barrier by regulated differentiation of

intestinal epithelial stem cells.
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