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books, and databases. Chapter 1 outlines the whole-cell model methods. Chapters 2 and 3 discuss the
mathematics of each cellular state variable and process sub-model. Appendix A discusses the computational
implementation of the whole-cell model and in silico reconstruction. Chapter 4 outlines the experimental
methods of this study.

See also Table S3 which details the M. genitalium reconstruction on which the whole-cell model is based. See
also SimTK (http://simtk.org/home/wholecell) for whole-cell model source code, training data, and detailed
results.

mailto:mcovert@stanford.edu
http://simtk.org/home/wholecell


Contents

1 Computational Methods 1

1.1 Whole-Cell Simulation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Cellular Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Cellular Process Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.6 Experimental Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.7 Computational Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.8 Computational Simulation & Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Cellular State Methods 8

2.1 Chromosome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 FtsZ Ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Host . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6 Metabolic Reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.7 Metabolite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.8 Polypeptide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.9 Protein Complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.10 Protein Monomer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.11 Ribosome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.12 RNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.13 RNA Polymerase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.14 Stimulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.15 Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.16 Transcript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Cellular Process Methods 29

3.1 Chromosome Condensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Chromosome Segregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Cytokinesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 DNA Damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 DNA Repair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.6 DNA Supercoiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.7 FtsZ Polymerization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.8 Host Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.9 Macromolecular Complexation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.10 Metabolism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

ii



3.11 Protein Activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.12 Protein Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.13 Protein Folding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.14 Protein Modification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.15 Protein Processing I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.16 Protein Processing II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.17 Protein Translocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.18 Replication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.19 Replication Initiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.20 Ribosome Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.21 RNA Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.22 RNA Modification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.23 RNA Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.24 Terminal Organelle Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.25 Transcription . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.26 Transcriptional Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.27 Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.28 tRNA Aminoacylation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4 Experimental Procedures 106

4.1 Media Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.2 Frozen Stocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.3 Colorimetric Growth Assay Serial Dilutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.4 Colorimetric Growth Assay Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.5 Quantitative PCR to Measure Cell Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

A Computational Implementation 109

A.1 Whole-Cell Model Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A.2 Test-Driven Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

A.3 Distributed Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

A.4 Computational Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

A.5 Knowledge Base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

A.6 Source Code Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

A.7 Key Classes & Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

A.8 Third-Party Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

B List of Abbreviations 120

iii



Chapter 1

Computational Methods

The goal of this study was to predict the complex phenotypes of individual cells in terms individual molecules
and their interactions. The primary challenges to building a unified whole-cell model of a single cell are three-
fold: (1) complexity, processes relevant to cellular behavior are diverse and span a wide range of length and
time scales, (2) heterogeneity, cellular networks have heterogeneous mathematical structures and are typically
investigated using heterogeneous experimental methods, and (3) sparsity, little quantitative data rigorously
describing single cell physiology is available. We felt that the flexibility of a hybrid model allowed us to best
meet our goal while navigating these challenges. This chapter discusses the mathematical foundation and
construction of the M. genitalium whole-cell model, as well as model fitting and validation. Appendix A
provides further discussion of the implementation, execution, and testing of the whole-cell model.

1.1 Whole-Cell Simulation Algorithm

Overall, the whole-cell model is similar to a system of ordinary differential equations (ODEs) where the
16 cellular states are analogous to the state variables and the 28 cellular processes are analogous to the
differential equations. Therefore, the whole-cell model is simulated using an algorithm comparable to those
used to numerically integrate ODEs, such as the Runge-Kutta 4th order method928. Algorithm S1 summarizes
the whole-cell simulation algorithm. First, the cell state variables are initialized. Second, the temporal
evolution of the cell state is calculated on a 1 s time scale by repeatedly allocating the cell state variables
among the processes, executing each of the cellular process sub-models, and updating the values of the cell
states. Finally, the simulation terminates when either the cell divides, or the time reaches a predefined
maximum value. The principal differences between the whole-cell model algorithm and numerical ODE
integration methods are (1) the whole-cell model “equations” are grouped into 28 processes, (2) the whole-
cell model “variables” are grouped into 16 cellular states, and (3) the state variables must be allocated among
the processes at each time step to satisfy the sub-model independence assumption.

1.2 Cellular Processes

Because biological systems are modular, cells can be modeled by (1) dividing cells into functional processes,
(2) independently modeling each process on a short time scale, and (3) integrating process sub-models at
longer time scales. We divided M. genitalium into the 28 functional processes illustrated in Figure 1 of
the accompanying manuscript, and modeled each process independently on a 1 s time scale using different
mathematics and different experimental data. The sub-models spanned six areas of cell biology: (1) transport
and metabolism, (2) DNA replication and maintenance, (3) RNA synthesis and maturation, (4) protein
synthesis and maturation, (5) cytokinesis, and (6) host interaction. Sub-models were implemented as separate
classes. See Chapter 3 for further discussion of each sub-model.

1
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Algorithm S1 | Whole-cell dynamic simulation algorithm.

Construct whole-cell simulation objects using the KnowledgeBase classes
Computationally align processes and fit parameters
Identify initial conditions variance control parameters using Algorithm S2
Initialize cell state using Algorithm S3 and the fit values of the cell state variance control parameters
repeat

Increment the time by 1 s
Set the external conditions based on Table S3F and Table S3H
Allocate shared resources:
foreach metabolite i in compartment j do

foreach process k do Calculate the demand, dijk, of process k for metabolite i in compartment j
Divide the total count, mij , of metabolite i in compartment j into temporary dedicated pools, mijk, for each

process proportional to demand, mijk ← mij
dijk∑

k
dijk

Compute temporal evolution:
foreach process i do

Retrieve the current values of cell state variables and the counts of metabolites allocated to process i
Compute the contribution of process i to the temporal evolution of the cell state
Update the values of the cell state variables

until cell divided or time > 1.5× average mass doubling time

1.3 Cellular Process Integration

Cell States

We integrated the sub-models in three steps. First, we structurally integrated the process sub-models by
linking their common inputs and outputs. However, rather than directly linking these inputs and outputs,
we mapped the inputs and outputs of each sub-model onto 16 state variables which together represent the
complete configuration of the modeled cell: (1) metabolite, RNA, and protein copy numbers, (2) metabolic
reaction fluxes, (3) nascent DNA, RNA, and protein polymers, (4) molecular machines, (5) cell mass, volume,
and shape, (6) the external environment including the host urogenital epithelium, and (7) time. Each cellular
state variable was implemented as a separate class. See Chapter 2 for further discussion of the mathematics
and computational implementation of each state variable.

Shared Resource Allocation

Second, to satisfy our sub-model independence assumption, at each time step we computationally allocated
common sub-model inputs. At each simulation time step, prior to the evaluation of the sub-models, we esti-
mated the metabolite resources required by each process and divided the total pool of each metabolite among
the processes proportional to demand. Resource requirements were estimated by calculating the expected
metabolite consumption of each process conditioned on the current cell configuration and an infinite metabo-
lite supply. Algorithm S1 outlines the shared metabolite allocation algorithm. Because macromolecules and
enzymatic capacity are less heavily shared by the cellular processes, we chose not to implement similar
procedures for these sub-model inputs.

Process Alignment & Parameter Fitting

Third, because the 28 cellular processes were trained using different experimental data obtained by different
investigators under different conditions using different techniques and different model organisms, we refined
the values of the sub-model parameters to make the processes mutually consistent. This was necessary
for example, because amino acid production by the Metabolism process, which was trained using the ob-
served amino acid composition of M. gallisepticum reported by Morowitz et al.870, conflicted with the amino
acid requirements of the Translation process, which was trained using the observed Mycoplasma genetic
code53,168,607, the reported M. pneumoniae mRNA expression569, and the N-end rule586. Specifically, Mo-
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rowitz et al. reported that cysteine was only present in trace amounts, whereas the combination of the genetic
code and observed mRNA expression is consistent with low, but not insignificant cysteine incorporation.

First, we manually identified constraints among groups of parameters spread across multiple processes.
Among these constraints, we identified equality constraints between the cell chemical composition used to
train the flux-balance analysis (FBA) metabolic objective and the expected metabolite requirements of the
cellular processes. We also identified inequality constraints among the kinetic rate, expression, and required
enzymatic capacity of each enzyme which describe the minimum expression of each gene consistent with all
28 sub-models.

Second, we computationally identified a set of parameter values which (1) satisfy all of these constraints
and (2) deviate minimally from their experimentally observed values. Initially, we attempted to rigorously
formulate this problem as a non-linear constrained optimization problem, and identify the parameter values
which minimize the sum of squared differences between the adjusted and observed parameter values among
all sets of parameters which satisfy the constraints. However, we were unable to find a feasible solution,
much less the globally optimal solution, to this optimization problem. Instead, we focused on identifying a
mutually consistent set of parameter values, and developed a heuristic procedure that uses the constraints
to calculate a consistent set of parameter values from a subset of the parameters. This procedure primarily
adjusted the gene expression. The adjusted gene expression correlated highly with that observed by Weiner
et al.569 (R2 = 0.68, see Figure S1A). Section A.7.8 and the FitConstants class provide further discussion
of the implementation of the parameter refinement procedure.

1.4 Initial Conditions

Cell theory919 states that all cells are created from old cells, or, more mathematically, that on the time scale
of a single-generation, mother and daughter cells are statistically identical. This principle relates the initial
and final cell state distributions of the whole-cell model, providing a rigorous way to define the initial cell
state distribution in terms of the dynamic model.

We applied this principle in seven steps (see Algorithm S2). First, we developed a method that calculates
the expectation value of each cell state variable. Second, we approximated the distribution of each cell
state variable by a standard, well-behaved statistical distribution, and set the mean of each distribution to
its calculated value. For example, we assumed that the copy number of each RNA and protein species is
multinomially distributed, and that the total cell mass is normally distributed. Third, we parameterized the
variance of the distribution of each cell state variable and initially set the variance of each distribution to
zero. Fourth, we developed the procedure outlined in Algorithm S3 to sample these distributions and set
the initial value of each state variable. Fifth, we simulated a population of wild type cells using this cell
state initialization procedure and calculated the variance of the final distribution of each cell state variable.
Sixth, we set the initial variance of each state variable to its calculated final variance. Finally, we repeated
steps five and six until convergence.

Algorithm S2 | Initial conditions identification algorithm.

Initialize the initial cell state variance control parameters: σm ← 0, ηr ← 0, ηp ← 0
repeat

Simulate the life cycle of a population of wild type cells using Algorithm S3 to initialize the value of each cell state
variable
Randomly segregate the cellular content into two daughter cells
Calculate the variances of the total cell mass, RNA copy number, and protein copy number states
Set the values of the initial distribution control parameters of each state equal to that of the final distribution
σm ← standard deviation of the final cell mass distribution
ηr ← σ2

r/Nr, where Nr and σ2
r are the mean and variance of the final RNA copy number distribution

ηp ← σ2
p/Np, where Np and σ2

p are the mean and variance of the final RNA copy number distribution

until the initial variance control parameters (σm, ηr, and ηp) converge
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Algorithm S3 | Cell state initialization procedure.

Input: σm ← standard deviation of the initial total cell mass distribution
Input: ηr, ηp ← RNA and protein copy number distribution initial variance control parameters
Input: fr, fp ← reconstructed fractional cell RNA and protein composition
Input: er, ep ← expected relative expression of each RNA and protein species
Input: wr, wp ← molecular weight of each RNA and protein species
Input: Ni (fi, ei, wi)← fim/ (e′

i ∗ wi) total initial RNA (i =r) and protein (i =p) copy number functions
Set time ← 0 s
Set values of external stimuli and metabolites according to Table S3F and S3H
Set total cell mass, m←∼ N (µ, σm), and calculate cell volume and shape
Set the metabolite counts according to the total cell mass and reconstructed cell composition (see Table S3I)
Initialize the Chromosome state with one methylated chromosome; decrement dNMP counts to maintain cell mass
Set mature RNA copy numbers according to multinomialRand(ηrNr, er)/ηr; decrement NMP counts
Set mature protein monomer copy numbers according to multinomialRand(ηpNp, ep)/ηp; decrement amino acids
Form macromolecules by calculating the steady-state of the Macromolecular Complexation process
Set the RNA Polymerase and Transcript states to a steady-state of the Transcription sub-model
Set the Ribosome and Polypeptide states to a steady-state of the Translation sub-model
Set the FtsZ state to a steady-state of the FtsZ Polymerization sub-model with no septal rings
Set the growth rate and metabolic reaction fluxes to a steady-state of the Metabolism sub-model
Set the Host state to a steady-state of the Host Interaction sub-model
Set the chromosome protein occupancy to a steady-state the chromosome-interacting sub-models

1.5 Reconstruction

The M. genitalium whole-cell model was based on a detailed reconstruction of M. genitalium physiology
developed from over 900 primary sources, reviews, books, and databases. First, we reconstructed the organi-
zation of the M. genitalium chromosome including the locations of each gene, transcription unit, promoter,
and protein binding site primarily based on studies by Weiner et al.411, Güell et al.418, and the CMR
genome annotation168. We also reconstructed the affinity of RNA polymerase for each promoter based on
the reported expression569 and half-life602 of each RNA species.

Second, we functionally annotated each gene beginning with the CMR168 annotation. We annotated genes
with additional information from the BioCyc6, KEGG113, NCBI61, and UniProt96 genome annotations. To
fill gaps in the reconstructed organism, such as observed reactions without reported enzyme catalysts, and
to maximize the scope of the model, we also expanded and refined each gene’s annotation using primary
research articles and reviews identified by systematically searching PubMed and Google Scholar for each gene
and homologs of each gene. Table S3J lists all functional annotations assigned beyond the CMR annotation.
Additionally, we curated the reported essentiality193 of each gene product.

Next, we curated the structure of each gene product, including the sequence of each protein, the post-
transcriptional and post-translational processing and modification of RNA and protein, the signal sequence
and localization of each protein, the DNA footprint of each DNA-binding protein, the chaperones and
prosthetic groups required to fold each protein, the subunit composition of each protein and ribonucleoprotein
complex, and the disulfide bonds of each protein and complex.

After annotating each gene, we categorized the genes into 28 cellular processes. We curated the chemical
reactions of each cellular process with particular emphasis on reactions needed to interface the processes. For
example, we added several metabolic reactions to provide the metabolites required for RNA modification. We
also added metabolic reactions to catabolize modified nucleotides produced by the degradation of modified
RNA. We reconstructed the stoichiometry and catalysis of each chemical reaction based on the databases
BioCyc6 and KEGG113, a M. genitalium FBA metabolic developed by Suthers et al.610, and hundreds of
additional primary research articles. We reconstructed the kinetics of each reaction primarily based on the
databases BRENDA570 and SABIO-RK100.

We reconstructed the M. genitalium metabolome based on the substrates and products of the reconstructed
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chemical reactions, the observed chemical compositions of M. gallisepticum870 and E. coli393, and the re-
ported chemical composition of SP-4 Mycoplasma growth medium754–759. We reconstructed the structure
of each metabolite based on several metabolomic databases including PubChem587. We reconstructed the
protein regulatory properties of each metabolite primarily based on DrugBank847.

Finally, we calculated the empirical formula, molecular weight, and several other physical properties of
each metabolite, RNA, protein, and macromolecular complex using the KnowledgeBase classes, ChemAxon
Marvin594, and ExPASy ProtParam585.

Because M. genitalium is not well-studied, the M. genitalium reconstruction was primarily based on studies
of M. genitalium homologs identified by bi-directional best BLAST. Where possible, the M. genitalium
reconstruction was based on closely related organisms.

Table S3A-S3S define the reconstructed M. genitalium organism including the structure of every metabolite;
the sequence of every RNA and protein; and the stoichiometry, kinetics, and catalysis of every reaction.
Table S3T-S3BK describe the how the reconstructed organism was developed, including detailed notes on
how the value of each reconstructed property was derived by consensus of all available experimental observa-
tions and computational predictions. List S1 lists the principal sources of the M. genitalium reconstruction;
Table S3S provides a complete list of all the sources of the reconstruction. Table S2B-S2C list the compu-
tationally refined values of the reconstructed cellular composition and gene expression. See Chapter 2 for
further discussion of the reconstruction of each cell variable. See Chapter 3 for further discussion of the
reconstruction of each cellular process sub-model. See Section 1.3 for further discussion of modeling fitting
and computational refinement of the reconstruction.

List S1. Primary sources of the M. genitalium reconstruction.

Data source Content

Bernstein et al., 2002602 mRNA half-lives
BioCyc6 Genome annotation, metabolic reactions
BRENDA570 Reaction kinetics
CMR168 Genome annotation
Deuerling et al., 2003388 Chaperone substrates
DrugBank847 Antibiotics
Eisen et al., 1999891 DNA repair
Endo et al., 2007391 Chaperone substrates
Feist et al., 2007558 Metabolic reactions
Glass et al., 2006193 Gene essentiality
Güell et al., 2009418 Transcription unit structure
Gupta et al., 2007280 N-terminal methionine cleavage
KEGG113 Genome annotation, orthology
Kerner et al., 2005389 Chaperone substrates
Krause et al., 2004409 Terminal organelle assembly
Lindahl et al., 2000462 DNA damage
Morowitz et al., 1962870 Cell chemical composition
NCBI Gene61,777 Genome annotation
Neidhardt et al., 1990393 Cell chemical composition
Peil, 2009105 RNA modification
PubChem587 Metabolite structures
SABIO-RK100 Reaction kinetics
Solabia754–759 Media chemical composition
Suthers et al., 2009610 Metabolic reactions
UniProt96 Genome annotation
Weiner et al., 2000411 Promoters
Weiner et al., 2003569 mRNA expression
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1.6 Experimental Validation

The M. genitalium whole-cell model was validated by comparing the model’s predictions to three experimen-
tal datasets: (1) the essentiality of each M. genitalium gene reported by Glass et al.193, (2) the measured
growth rates of 12 non-essential M. genitalium single-gene disruption strains, and (3) the cytosolic concen-
trations of 39 E. coli metabolites reported by Bennett et al.392 and curated by Sundararaj et al.394. The M.
genitalium whole-cell model also reproduces several experimental measurements which were used to train the
model including the published cellular composition of M. gallisepticum870, the measured RNA composition
of E. coli393, the reported M. pneumoniae mRNA expression569, the observed E. coli mRNA half-lives602,
and the measured growth rate of wild type M. genitalium.

To validate the model against the observed gene essentiality and the observed disruption strain growth rates,
we first simulated the individual disruption of each gene. We ran 5 simulations of each single-gene disruption
strain by (1) randomly initializing the cell state using Algorithm S3, (2) deleting the in silico gene, and (3)
calculating the temporal evolution of the cell state for the first generation post-disruption. Gene disruption
was implemented in two steps: (1) we modeled insertion of a transposon of length zero which reduces the
stability of the terminal products of the deleted gene, and set the half-life of the RNA and protein products
of the deleted gene to zero; and (2) to more quickly highlight altered phenotypes, we deleted all RNA and
protein products of the deleted gene. Next, we calculated the mean predicted mass doubling time, cell cycle
length, terminal organelle protein mass, and damaged protein copy number of each disruption strain.

Third, we calculated the mean growth rate of each single-gene disruption strain at successive generations post-
disruption. Rather than simulating the complete dynamics of successive generations, which was infeasible
due to the significant computational cost of each simulation, we predicted only the growth rate of each
disruption strain at successive generations post-disruption by initializing simulations using a modified version
of the method described above. (1) We initialized cells using the wild type cell initialization method. (2) We
deleted the in silico gene as previously described. (3) To simulate the long-term effects of the gene disruption
and dilution resulting from cellular growth and division, we reduced the copy numbers of macromolecules
which are normally synthesized by the deleted gene product. (4) We calculated the growth rate using the
Metabolism process.

Fourth, we classified each in silico single-gene disruption strain as (quasi-)essential if the predicted first
generation cell cycle length was significantly (P ≤ 0.01) less than that of wild type in silico M. genitalium, if
the terminal organelle was protein mass was significantly (P ≤ 0.01) less than that of wild type in silico M.
genitalium, if the predicted damaged protein copy number was significantly (P ≤ 0.01) greater than that of
wild type in silico M. genitalium, or if the growth rate declined over successive generations. We found that
the model reproduces the observed gene essentiality with 79% accuracy. Figure 6B of the accompanying
manuscript illustrates these distinct disruption strain phenotypes. Figure S2 illustrates the distribution of
growth rates among wild type M. genitalium and the quasi-essential and essential single-gene disruption
strains. Table S2G lists the predicted growth rate of each disruption strain.

Fifth, we compared the experimentally observed and predicted growth rates of 12 non-essential single-gene
disruption strains (see Figure 7A of the accompanying manuscript and Table S1), and found that the model
correctly predicts the measured growth rates of 67% of the disruption strains.

To validate the model against the Bennett et al.392 and Sundararaj et al.394 datasets, we calculated the
mean concentration of each cytosolic metabolite in a population of 128 wild type cells. Figure 2E of the
accompanying manuscript and Table S2E compare the predicted and measured concentrations of 39 cytosolic
metabolites, illustrating that 70% of the model’s predictions are statistically consistent with the Sundararaj
et al. dataset. The model doesn’t reproduce the Bennett et al. dataset, and interestingly, there is significant
disagreement between the Bennett et al. and Sundararaj et al. datasets.
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1.7 Computational Implementation

The whole-cell model was implemented in MATLAB, and consisted primarily of the main Simulation class and
one class for each cellular state and process. The computational correctness of the whole-cell model algorithm
was validated using unit testing. The M. genitalium reconstruction was stored using a modified version of
the BioWarehouse schema918 in a MySQL relational database. The knowledge base was viewed and edited
using a web-interface implemented in PHP. Several KnowledgeBase classes represented the knowledge base in
MATLAB. Appendix A provides further discussion of the whole-cell model architecture and it’s computational
validation.

1.8 Computational Simulation & Analysis

We used the whole-cell model to simulate 192 wild type cells and 3,011 single-gene deletants. All simulations
were performed with MATLAB R2010b on a 128 core Linux cluster. The predicted dynamics of each cell was
logged at each time point and subsequently analyzed using MATLAB. Appendix A provides further discussion
of the execution, logging, and analysis of the whole-cell model.
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Chapter 2

Cellular State Methods

The whole-cell model used 16 state variables to represent the instantaneous configuration of M. genitalium
and integrate the 28 modeled cellular processes. The 16 state variables represented seven areas of cellular
physiology: (1) copy numbers of metabolites, RNA and proteins, (2) metabolic reaction fluxes, (3) nascent
DNA, RNA, and protein polymers, (4) molecular machines, (5) cell-level properties, including mass, volume
and shape, (6) nascent polymers of DNA, RNA and protein, and (7) time. This chapter provides detailed
discussions of the mathematics and computational implementation of each state variable.

The Metabolite, Rna, Protein Monomer, and Protein Complex states represented the copy number of each
metabolite, RNA, protein monomer, and macromolecular complex. The complement of metabolite species
was indirectly reconstructed by reconstructing the chemical reactions of each cellular process. The RNA
complement was primarily reconstructed from the M. genitalium genomic annotation168, the experimentally
defined operon structure of M. pneumoniae418, and the reported complement of E. coli RNA polycistronic
cleavages and non-coding RNA modifications. The protein complement was primarily reconstructed from
the predicted localization and signal sequence of each protein gene product (see Table S3AM-S3AO), the
observed chaperone interactions of E. coli388,389 and B. subtilis391, the observed complement of M. genitalium
and M. pneumoniae protein modifications94,277,282,283,672, the reported N-terminal methionine cleavage of
Shewanella oneidensis MR-1280, and the inferred subunit composition of each macromolecular complex (see
Table S3AS).

The Metabolic Reaction state recorded the predicted flux of each metabolic reaction. The M. genitalium
metabolic network was reconstructed as described in Section 3.10.

The Chromosome, Transcript, Polypeptide, and FtsZ Ring states represented the configurations of the
chromosome, nascent RNA and protein polymers, and FtsZ septal ring. The Chromosome state represented
the polymerization, protein occupancy, and modification status of the chromosomes. The M. genitalium
chromosome was sequenced by Fraser et al.57. Protein binding sites and DNA footprints were reconstructed
from the primary literature and several databases (see Table S3M and S3N). DNA modification sites were
predicted based on the reported DNA motif of the MunI methylase96. The Transcript and Polypeptide

states represented the sequence of each nascent RNA transcript and polypeptide. The sequence of each
RNA and protein species was reconstructed as described in Chapter 3. The FtsZ Ring state represented
the configuration of the FtsZ septal ring. The structure of the FtsZ septal ring was reconstructed based on
the Li et al. iterative pinching model611.

The RNA Polymerase and Ribosome states represented the detailed configuration of each RNA polymerase
and ribosome. The RNA Polymerase state represented the status – free, non-promoter bound, promoter-
bound, or actively transcribing – of each RNA polymerase molecule, and the chromosomal location and
direction of each DNA-bound RNA polymerase. The affinity of RNA polymerase for each promoter was
primarily reconstructed from the observed expression of each RNA gene product569 and the observed half-
life of each E. coli mRNA602. The genetic code was reconstructed based on that of M. pneumoniae53.
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The Mass state represented the total cell mass. The Geometry state represented the cell shape and volume.
The average cell size, density, and mass were reconstructed from studies by Baldwin et al.553, Bray554, and
Zhao et al.555.

The Metabolite, Stimulus, Host, and Geometry states represented the configuration of the external envi-
ronment, including the extracellular copy number of each metabolite which was reconstructed as described
in Section 3.10. The Stimulus state represented the temperature, the fluxes of six types of radiation, and
the status of three common experimental stress conditions. Table S3F describes the reconstruction of the
Stimulus state. The Host state represented four properties of the host human urogenital epithelium: (1)
M. genitalium adherence, (2) activation of Toll-like receptors 1, 2, and 6, (3) activation of the host tran-
scriptional regulator NF-κB, and (4) activation of the host inflammatory response. The Geometry state
represented the volume of the extracellular environment.

Finally, the Time state represented the time elapsed from the beginning of the simulation.

2.1 Chromosome

Biology

Chromosomes encode the structure and function of every RNA and protein, and thereby control cellular
behavior. Due to their critical function and large size, cells dedicate considerable resources to chromosome
replication, maintenance, and compaction. This state represents the polymerization, winding, modification,
protein occupancy, and (de)catenation status of the chromosome(s).

Reconstruction

Structure and Organization
The reconstructed M. genitalium chromosome contains 525 genes based on the Comprehensive Microbial Re-
source (CMR) genomic annotation168 (see Table S3J) organized into 335 transcription units based on the M.
pneumoniae operon organization experimentally defined by Güell et al.418 and the M. genitalium promoters
computationally predicted by Weiner et al.411 (see Table S3U). The reconstructed genome also contains 17
transcriptional regulatory elements based on 15 studies and databases96,110,112,186,196,418–420,433–438,505 (see
Table S3P), 2,283 DnaA binding sites computationally identified based on the consensus binding motif re-
ported by Grimwade et al.744 and Speck et al.745 (see Table S3L), 760 MunI restriction/modification (R/M)
sites computationally identified based on the reported MunI binding motif96 (see DNA Repair process), and
19 short tandem repeats identified by Ma et al.183 and Washio et al.184 (see Table S3V). Additionally, the
location of the replication origin was reconstructed based on studies by Lobry880, Jensen et al.517, and oth-
ers521,848, and the predicted DnaA box sites. Finally, the reconstructed steady-state superhelicity is based
on the observed equilibrium helical repeat length of plasmid DNA879 and the observed superhelicity of E.
coli DNA749.

Protein Binding
The binding motif and footprint of each DNA-binding protein was reconstructed from several experimental
studies85,461,517,521,709,710,712,717,719–726,728,735–737,743,748 and the databases 3D-Footprint696, NDB697, and
ProNIT703. DNA-bound protein displacement reactions were assembled describing which proteins each
protein species is able to displace from the chromosome (see Table S3O). Functionally, displacement of
DNA-bound proteins enables proteins to access the chromosome and fulfill their chromosomal replication
or maintenance role. The affinity of RNA polymerase for each promoter was first reconstructed from the
observed RNA composition of E. coli393 (see Table S3U), the expression of each M. genitalium mRNA
reported by Weiner et al.569 (see Table S3W), the half-life of each E. coli mRNA reported by Bernstein et
al.602 (see S3Y, the observed amino acid composition of M. gallisepticum870, and the Mycoplasma genetic
code53,168,607 (see Table S3X). Subsequently, the affinity of RNA polymerase for each promoter was fit to
match the additional data used to train the 28 modeled cellular processes (see Section 1.3).
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Computational Representation

This state represents the polymerization, winding, modification, and protein occupancy of each nucleotide
of each strand of each copy of the M. genitalium chromosome, and the (de)catenation status of the two
sister chromosomes following replication. List S2 summarizes the mathematical representation of the M.
genitalium chromosome(s) including the size and type of each variable.

Mathematically, each quantity except winding, base and sugar-phosphate modification, protein occupancy
and catenation, is represented as a 3-dimensional Boolean tensor. Winding is represented as a 3-dimensional
real tensor which indicates the linking number density of each nucleotide. Base and sugar modification are
represented as 4-dimensional tensors which indicate the chemical identity l = {1..M} of each nucleotide,
where M = 722 is the number of distinct metabolite species represented by the Metabolite state. Protein
monomer and complex occupancy are represented as 4-dimensional tensors which indicate the identity,
l = {1..Bm} and l = {1..Bc} respectively, of the protein bound at each nucleotide, where Bm = 482 and
Bc = 201 are the numbers of distinct protein monomer and complex species represented by the Protein

Monomer and Protein Complex states. (De)catenation is represented as a Boolean scalar.

List S2. Mathematical representation of nucleotide i = {1..L} of strand j = {1..2} of chromosome copy k = {1..2}.

Physical Property Symbol Size Type

Polymerization pijk L× 2× 2 Boolean
Winding wijk L× 2× 2 Real
Modification

Gap site mg
ijk L× 2× 2 Boolean

Abasic site ma
ijk L× 2× 2 Boolean

Sugar-phosphate mp
ijkl L× 2× 2×M Boolean

Base mb
ijkl L× 2× 2×M Boolean

Intrastrand cross link mc
ijk L× 2× 2 Boolean

Strand break ms
ijk L× 2× 2 Boolean

Holliday junction mh
ijk L× 2× 2 Boolean

Protein occupancy
Monomer bm

ijkl L× 2× 2×Bm Boolean
Complex bc

ijkl L× 2× 2×Bc Boolean
Catenation s 1× 1 Boolean

Integration
The Metabolite state describes the identity of each modified base and sugar-phosphate. The Protein Mono-

mer and Protein Complex states represent the total DNA-bound copy number of each protein monomer and
macromolecular complex. For computational efficiency, the RNA Polymerase state redundantly represents
the chromosomal location of each bound RNA polymerase. The mass of the chromosome(s), including all
modifications and all DNA-bound proteins, is included in the cell mass calculated by the Mass state.

Ten processes access and modify the Chromosome state. The Replication Initiation process models
DnaA DNA-binding and formation of the oriC DnaA complex which promotes replication initiation. The
Replication process models bidirectional DNA polymerization from the oriC, continuously on the leading
strand and discontinuously on the lagging strand, and Okazaki fragment ligation. The Chromosome Seg-

regation process models sister chromosome decatenation following successful chromosome replication. The
Cytokinesis process models cell division following successful decatenation. The Chromosome Condensation

and DNA Supercoiling processes model SMC- and supercoiling-mediated chromosome compaction. The DNA

Damage process models stochastic and radiation- and chemically-induced DNA damage. The DNA Repair

process models three DNA repair pathways – base excision repair, nucleotide excision repair, and homologous
recombination. The DNA Repair process also models methylation and restriction of MunI (MG184) restric-
tion/modification sites. Finally, the Transcriptional Regulation and Transcription processes model
the binding of transcription factors and RNA polymerases to promoters and the synthesis of RNA.
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Initial Conditions
First, the Chromosome state is initialized with one supercoiled and fully methylated chromosome,

pij1 = 1 ∀ i, j

pij2 = 0 ∀ i, j

wij1 = (1 + σss)
L

h
∀ i, j

wij2 = 0 ∀ i, j

mg
ijk = 0 ∀ i, j, k

ma
ijk = 0 ∀ i, j, k

mp
ijk = 0 ∀ i, j, k

mb
ij1 =

{

1 i ∈ MunI methylation sites, ∀ j

0 otherwise

mb
ij2 = 0 ∀ i, j

mc
ijk = 0 ∀ i, j, k

ms
ijk = 0 ∀ i, j, k

mh
ijk = 0 ∀ i, j, k

s = 0,

where L = 580076 nt is the length of the M. genitalium chromosome, σss = −0.06 is the observed bacterial
steady-state superhelicity749, and h = 10.5 nt lk−1 is the observed equilibrium helical repeat length879.

Second, the Protein Monomer and Protein Complex states initialize the total copy number of each protein
species. Finally, the Chromosome Condensation, DNA Supercoiling, Replication Initiation, Tran-

scriptional Regulation, and Transcription processes initialize the protein occupancy of the chromo-
some.

Fitting
The chemical composition of M. genitalium and the objective of the flux-balance analysis metabolic model
were fit to match the mass and dNMP composition of the M. genitalium chromosome (see Section 1.3 and
2.5). The affinity of RNA polymerase for each promoter was fit to provide the gene products required by
the 28 modeled processes to reproduce the observed 9 h M. genitalium mass doubling time (see Section 1.3).
The oriC DnaA DNA-binding cooperativity was fit to match our intuition for the duration of the replication
initiation cell cycle phase (see Section 3.19). The expression and activity of DNA gyrase and topoisomerse
I were balanced to match the observed steady state superhelical density (see Section 3.6).

2.2 FtsZ Ring

Biology

Cytokinesis is the division of a cell into two daughter cells. M. genitalium contains a protein called FtsZ
that assembles into long filaments that are implicated in cell pinching. These filaments bind to the membrane
at the midline of the cell217. FtsZ is a GTPase, and when the GTPs bound in a membrane-bound FtsZ
filament hydrolyze to GDP, the filaments bend constricting the membrane421. We use a geometric model of
iterative filament bending modified from a model proposed by Li et al.611. See the Cytokinesis process and
Schematic S6, for more details about this model. In summary, the FtsZ ring at the midline of the cell can
exist in many states of various numbers of filaments in the bent and straight configurations. The purpose of
this state class is to keep track of the state of the FtsZ ring across timesteps.
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Reconstruction

In our model, the FtsZ ring is represented as a polygon of FtsZ filaments. As the circumference of the
midline of the cell (C) decreases with time, the number of edges in the inscribed FtsZ polygon decreases.
The FtsZ filaments are of a fixed length (l) of 40 nm217.

Computational Representation

The number of edges in the polygon (E) is determined by the maximum number of edges of length l that
can be inscribed in the given cell circumference. (The use of a fixed filament length is a simplification. See
the Cytokinesis and FtsZ Polymerization processes for more details about the assumptions used.) This
state class computes the number of edges in the FtsZ polygon using the inscribed polygon formula and the
current cell midline diameter (d):

E =
π

arcsin( l
d )

(S1)

The filaments may not perfectly inscribe the cell circumference, and so we round down, such that E only
accounts for full filaments in the FtsZ ring.

The Cytokinesis process determines how many straight and/or bent filaments reside at each edge of the
FtsZ polygon. At each edge, any of the following occupancies are possible:

• 1 straight filament
• 2 straight filaments
• 1 bent filament
• 2 bent filaments
• 1 bent filament and 1 straight filament
• 1 bent filament and 2 straight filaments

The FtsZ Ring state class keeps track of the filament occupancy of each edge. As the filament occupancy
in a timestep is highly dependent on the occupancy at the previous timestep, the tracking of the state of the
FtsZ ring is extremely important in the time evolution of Cytokinesis.

Integration
The FtsZ Ring state class reads the diameter of the cell’s midline (d) from the Geometry state class.

The Cytokinesis process class reads the number of FtsZ ring edges (E) and the filament occupancy at each
edge from the FtsZ Ring state class. The Cytokinesis process class updates the filament occupancy at
each edge, and this is stored in the FtsZ Ring state class.

Initial Conditions
An FtsZ ring is not assembled at the beginning of the simulation. Therefore, no initialization steps are
required for this state class.

2.3 Geometry

Biology

While M. genitalium divides by binary fission similarly to other bacterial species, its non-uniform shape,
lack of cell wall, and lack of complete division machinery make its growth and division distinctive from most
other bacteria. M. genitalium has a flask/pear-like shape, with a protruding adhesion structure called the
terminal organelle. This flask-like shape is rather fluid due to the lack of a cell wall872.
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Reconstruction

Since the growth and division of M. genitalium are not well understood, we chose to model the cell as varying
from a spherical to short rod shape. The cell is modeled as a cylinder with two hemispherical caps, and
growth is modeled in the cylinder length. Once cell pinching commences at the midline of the cell, the shape
and size of a “septum region” is also modeled. The Geometry state class calculates and keeps track of the
physical shape of the cell including its width, length, volume, and surface area. This state also keeps track
of the progress of cytokinesis, and the completion of cytokinesis is the trigger to end the entire simulation.

Computational Representation

The Geometry state uses a set of geometric equations to calculate the shape of the cell, given the width (w),
density (ρ), and cytokinesis progress of the cell. The state houses the calculations of cell length (l), volume
(V ), surface area (SA), and progress of cell pinching. The geometric representation requires us to assume
that the cell density and cell width are constant across the cell cycle. Various sources have indicated that
the volumetric density of a cell remains constant overtime874,875. The cell density used is that of E. coli,
which has been estimated as 1100 g/L553. Several sources have described the width of a rod-shaped bacterial
cell as remaining approximately constant across the cell cycle and across cell divisions873. The cell width
is calculated based on the initial cell mass (m0) and density and the assumption that the cell is a sphere.
The initial cell mass was fit to result in the measured M. genitalium cell width of 200 nm225. The general
geometric equations to represent the shape of a cell are inspired by Domach et al.305. These geometric
equations use the fixed width and fixed cell density assumptions to calculate all the other aspects of the cell
geometry.

Cell Geometry Calculations
The mass (m) and density (ρ) enable calculation of the volume at all time points:

V =
m

ρ
(S2)

Before cell pinching starts
The cell is modeled as a cylinder (length: lc, diameter: w) with two hemispherical caps (diameter: w). We
use the cell volume to calculate the cell length and surface area:

V =

2 hemispheres
︷ ︸︸ ︷

1

6
πw3 +

cylinder
︷ ︸︸ ︷

1

4
πw2lc (S3)

l =

2 hemispheres
︷︸︸︷
w +

cylinder
︷︸︸︷

lc (S4)

= w +
4

πw2

(

V −
1

6
πw3

)

(S5)

SA =

2 hemispheres
︷︸︸︷

πw2 +

cylinder
︷︸︸︷

πwlc (S6)

After cell pinching starts
Once cell pinching commences at the midline of the cell, there is a “septum region” as well (Schematic S1).
Here the cylinder length (lc), is the combined length of the two cylinders. The septum length (s) is the
length from the cell midpoint to the edge of the septum region. This septum length is calculated from the
“pinched diameter” property that is calculated in the Cytokinesis Process. Each half of the septum volume
is calculated as the area of two quarter circles (radius: s) and one rectangle (width: s, height: w − 2s),
integrated around the midline cylindrically (see Schematic S2). We use the cell volume to calculate the cell
length and surface area:
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V =

2 hemispheres
︷ ︸︸ ︷

1

6
πw3 +

2 cylinders
︷ ︸︸ ︷

1

4
πw2lc +

septum region
︷ ︸︸ ︷

sπ

2

(
(
8s2 − 4sw + w2

)
+ sπ (w − 2s) −

4

3
s2

)

(S7)

l =

2 hemispheres
︷︸︸︷
w +

2 cylinders
︷︸︸︷

lc +

septum region
︷︸︸︷

2s (S8)

= w +
4

πw2

(

V −
1

6
πw3 −

(
sπ

2

(
(
8s2 − 4sw + w2

)
+ sπ (w − 2s) −

4

3
s2

)))

+ 2s (S9)

SA =

2 hemispheres
︷︸︸︷

πw2 +

2 cylinders
︷︸︸︷

πwlc +

septum region
︷ ︸︸ ︷

4πs (w − s) (S10)

Once the pinched diameter is zero, this state records that the cell has divided, and this determines the end
point of the simulation.

l
c

2s

w

2

l
c

2

w

Schematic S1. Model representation of cell geometry.

s

s

w-2s w

Schematic S2. Representation of volume of septum region.

Integration
The Geometry state class obtains the initial mass of the cell (to determine the cell width) from the Mass

state class. It also obtains the mass of the cell from the Mass state class at all time points to determine the
cell volume.

The Metabolism, Protein Activation, Replication Initiation, and FtsZ Polymerization process classes
all obtain the cell volume from the Geometry state class. The Cytokinesis process class reads the pinched
diameter from the Geometry state class, and sends back the updated pinched diameter.

Initial Conditions
The initial cell volume is calculated based on the initial cell mass (m0) and density (ρ). The initial cell width
is calculated from the volume and the assumption that the cell is a sphere. All of the other parameters
describing cell geometry are evaluated from the mass, volume, density, and width.
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2.4 Host

Biology

As discussed in Section 3.8, the M. genitalium terminal organelle is believed to mediate attachment to the
human urogenital epithelium and enable its parasitic lifestyle. Upon attachment, lipoproteins are believed to
activate host Toll-like receptors (TLRs) 1, 2, and 6, the host transcriptional regulator NF-κB, and ultimately
the host inflammatory response. This state represents the instantaneous configuration of the human host.
The Host Interaction process describes the host response to M. genitalium.

Reconstruction

Section 3.8 describes the reconstruction of the interaction of M. genitalium with its human host.

Computational Representation

This state uses six Boolean variables to represent the instantaneous configuration of the human host:

• Adherent – true if M. genitalium is attached to its human host and false otherwise.
• TLR 1 activation – true if TLR receptor 1 is active and false otherwise.
• TLR 2 activation – true if TLR receptor 2 is active and false otherwise.
• TLR 6 activation – true if TLR receptor 6 is active and false otherwise.
• NF-κB activation – true if NF-κB is active and false otherwise.
• Inflammatory response activation – true if the host inflammatory response is active and false otherwise.

Integration
None of the other 15 states directly interact with the Host state. The Host Interaction process completely
determines the initial conditions and temporal dynamics of all six Boolean variables represented by this state.

Initial Conditions
As discussed in Section 3.8, this state is initialized to the steady-state of the host-interaction dynamic model.

2.5 Mass

Biology

Cells are composed primarily of water, DNA, RNA, and protein enclosed in a bilipid membrane. The Metab-

olite, Chromosome, Rna, Protein Monomer, and Protein Complex states represent the detailed molecular
composition of M. genitalium. The Mass state calculates the total cell mass from those states. The total cell
mass is used as a proxy for membrane surface area in several processes which are based on mathematical
models originally developed outside our integrated whole-cell modeling framework without calculations of
the membrane surface area.

Reconstruction

The mass and chemical composition of M. genitalium were reconstructed based on an extensive review of the
primary literature (see Table S3I, S3AR-S3BE) and fit to match the 28 modeled cellular processes. First,
the average initial M. genitalium cell mass (13.1 fg) and dry mass (3.93 fg) were self-consistently calculated
assuming a spherical geometry with 200 nm diameter555, 1.1 g ml−1 density553, and 70% water composition
by mass554. Note this is comparable to the 18.9 fg M. genitalium cell mass reported by Morowitz869. Second,
the molecular composition of the dry mass was hierarchically reconstructed:

1. The M. genitalium dry mass was divided into eight classes – DNA/dNMPs, RNA/NMPs, protein/amino
acids, lipids, carbohydrates, polyamines, vitamins & cofactors, and ions.

2. The fractional mass (see Table S3AS) and molecular composition (see Table S3AU-S3BE) of each class
was reconstructed from the literature.

3. The complete molecular composition of M. genitalium was assembled (see Table S3I and S3AT).
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4. The dry mass composition was fit to match the 28 modeled cellular processes as described below and in
Section 1.3.

Computational Representation

This state calculates the total cell mass. The total cell mass is equal to the sum of that represented by
the Chromosome, Rna, Protein Monomer, Protein Complex, Transcript, Polypeptide, and Metabolite

states.

Integration
This state interacts with the Geometry state which calculates the cell shape, surface area, and volume from
the calculated cell mass and observed density. None of the processes directly modify the Mass state. The
Metabolism process uses the cell mass to bound the rates of exchange reactions. The Replication Ini-

tiation process models DnaA-ADP reactivation to DnaA-ATP as a function of membrane lipid mass. The
Metabolism and Replication Initiation processes use the cell mass rather than the cell volume because
these processes are based on mathematical models that were originally developed outside our whole-cell
modeling framework without more detailed calculations of the membrane surface area.

Initial Conditions
The cell mass is hierarchically initialized. First, the total cell mass is initialized according to a normal
distribution with mean 13.1 fg and standard deviation 0.66 fg. The mean initial cell mass was set to the
reconstructed value. The variance was fit to match that of the predicted final cell mass following cell
division. Second, the total cell mass is divided among individual metabolites according to the reconstructed
chemical composition (see Section 2.7). Third, the Chromosome, Rna, Protein Monomer, Protein Complex,
Transcript, and Polypeptide states are initialized as functions of the metabolite copy numbers, and the
metabolite copy numbers are decremented to maintain the initial cell mass.

Fitting
The mean initial cell mass was fit to the reconstructed value. The variance was fit to match that of the
predicted final cell mass following cell division.

Cellular composition is the balance of the production and usage of molecules by cellular processes. Conse-
quently, it was necessary to reconcile the reconstructed cellular composition with that predicted by the 28
modeled cellular processes. See Section 1.3 for further discussion. First, the DNA dry mass fraction, includ-
ing both chromosomal DNA and free dNTP, was increased 322% to be consistent with the predicted mass
of the chromosome and the free dNTP pool. The predicted chromosome mass accounted for the observed
chromosome sequence182, predicted modifications (see DNA Repair process), and predicted time-average
copy number (see Replication, Replication Initiation, and Metabolism processes). The predicted free
dNTP pool accounted for the free dNTPs needed support the observed 9 h M. genitalium mass doubling
time. Second, the RNA dry mass fraction, including both RNA and free NTPs, was increased 39% to be
consistent with the amounts of m-, r-, s-, and tRNA needed to support the observed 9 h mass doubling time.
The NMP composition of the RNA fraction was set equal to that predicted by the expression, sequence, and
modification of each RNA species (see Transcription, RNA Processing, and RNA Modification processes).
Third, the vitamin & cofactor and ion dry mass fractions were increased to match the amounts of vitamins,
cofactors, and ions needed for protein folding and catalysis (see Protein Folding process). Finally, the
protein dry mass fraction, including both proteins and free amino acids, was decreased 23% to offset the
increased DNA and RNA mass fractions. The amino acid composition of the protein fraction was set equal
to that predicted by the expression, sequence, and modification of each protein species (see Translation,
Protein Processing I, Protein Processing II, and Protein Modification processes).
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2.6 Metabolic Reaction

Biology

Cells grow by importing nutrients from the external environment and using those nutrients to construct
macromolecules. The Metabolism process models the dynamics of the 645 transport and chemical reactions
which provide the metabolic building blocks required for macromolecular synthesis and drive cellular growth.
Table S3O lists the reconstructed transport and chemical reactions.

Reconstruction

The M. genitalium metabolic network was reconstructed based on extensive review of the primary literature,
several databases, and the metabolic demands of all of the processes. See Section 3.10 for further discussion.

Computational Representation

This state records the instantaneous flux of each metabolic reaction in reactions per second as a floating
point vector. This state also records the instantaneous cellular growth rate predicted by the Metabolism

process in cells per second as a floating point scalar.

Integration
None of the other 15 states directly interact with the Metabolic Reaction state. The Metabolism process
calculates the flux of each metabolic reaction and the total cellular growth rate using flux-balance analysis
(FBA). The Metabolism process uses the predicted fluxes to update the copy number of each metabolite.

Initial Conditions
The Metabolism process initializes the flux of each metabolic reaction and the total cellular growth rate to
a steady-state of the FBA model.

Fitting
The FBA objective was set to the reconstructed M. genitalium chemical composition (see Mass and Met-

abolite states and Metabolism process). The cellular growth rate was fit to match the observed 9 h M.
genitalium mass doubling time using a modified version of minimization of metabolic adjustment (MOMA)876

(see Section 1.3 and Metabolism process).

2.7 Metabolite

Biology

The M. genitalium model accounts for the dynamics of 722 distinct metabolites (see Table S3G) which serve
many important functions in over 1,100 chemical reactions across three compartments – cytosol, membrane,
and extracellular space. First, cells use nucleic and amino acids to synthesize DNA, RNA, and protein.
Cells also use ions and other prosthetic groups to stabilize macromolecules. Second, cells use small molecule
bonds and gradients to store energy and drive cellular processes. In particular, cells drive many energetically
unfavorable reactions through hydrolysis of the high energy intermediates ATP and GTP. Third, cells use
coenzyme functional moieties to facilitate chemical catalysis. Additionally, cells use small molecules such as
Ca2+, ATP, and (p)ppGpp for communication and regulation. Finally, cells use small molecule antibiotics
to defend against predators and attack prey.

Reconstruction

The M. genitalium metabolite complement was indirectly reconstructed by reconstructing the chemical
reactions of each of the 28 modeled cellular processes. Table S3G lists the 722 reconstructed metabolites.

17

http://covertlab.stanford.edu/projects/WholeCell/knowledgebase/index.php?WholeCellModelID=PUB_0876


Metabolite Physical Properties
The empirical formula and structure of each metabolite was curated based on an extensive review of the
primary literature including two genome-scale metabolic models of M. genitalium610 and E. coli558, and
the databases BioCyc6, ChEBI593, Delta Mass589, FindMod590, KEGG113, LIPID MAPS588, Modomics267,
PubChem587, RESID592, and UniMod591. The molecular weight, van der Waals volume, pI, logP, and logD
of each metabolite was computed using ChemAxon Marvin594. Table S3G lists the physical properties of
each metabolite.

Metabolite Regulatory Properties
The regulatory properties of several antibiotics were reconstructed from the primary literature and the
database DrugBank847. See Protein Activation process for further discussion.

Cellular Chemical Composition
The molecular composition of M. genitalium was reconstructed based on an extensive review of the primary
literature. See Section 2.5 for further discussion.

Extracellular Medium Chemical Composition
M. genitalium was cultured in complex Spiroplasma medium #4 (SP-4 medium)878 for all experiments pre-
sented in this study. Accordingly, the chemical composition of the in silico external environment modeled
that of SP-4 medium. Because the chemical composition of SP-4 medium is undefined, the composition of
in silico medium was reconstructed based on the characterized composition of each SP-4 medium compo-
nent754–762 (see Table S3BJ), and supplemented with additional metabolites to support in silico growth.
Addition of supplemental metabolites was guided by the Metabolism process and by the M. pneumoniae
minimal medium defined by Yus et al.614. Table S3BI lists the composition of the in silico medium.

Computational Representation

This state represents the copy number of each metabolite in each of 3 compartments – cytosol, membrane,
and extracellular space – as an integer matrix.

Integration
At each time step of the simulation, the Simulation object simulates an M. genitalium cell culture incubator
which maintains the extracellular partial pressures of carbon dioxide and oxygen by setting the dissolved
extracellular copy numbers of these gases. Table S3BI lists the simulated partial pressures of carbon dioxide
and oxygen. To satisfy the assumption that each process is independent on the time scale of the 1 s simulation
time step, and because many metabolite species participate in multiple processes, the Simulation object
also allocates shared metabolites among processes at each time step. See Section 1.3 for further discussion.

Cytosolic- and membrane-localized metabolites are included in the cell mass calculated by the Mass state.
The Metabolism process models the import of extracellular nutrients into the cytosol and membrane, the
conversion of those metabolites into the precursors of DNA, RNA, protein, and lipids, and the export of
byproducts into the extracellular space. The exchange rate of each metabolite of the flux-balance analysis
metabolic model is limited by its extracellular copy number. 23 additional processes access and modify
the Metabolite state, primarily drawing cytosolic metabolites to support macromolecule synthesis. Four
processes do not directly interact with the Metabolite state: Host Interaction, Macromolecular Com-

plexation, Terminal Organelle Assembly, and Transcriptional Regulation.

Initial Conditions
After the Mass state initializes the total cell mass, the Metabolite state initializes the total cytosolic and
membrane copy numbers of each metabolite according to the calculated chemical composition of M. geni-
talium (see Section 2.7 and 2.7 and Table S3I). Additionally, after the Geometry state initializes the volume
of the extracellular compartment, the Metabolite state initializes the extracellular copy number of each
metabolite according to the reconstructed medium composition (see Section 2.7 and 2.7 and Table S3H). Fol-
lowing Metabolite state initialization, the Chromosome, Rna, Protein Monomer, Protein Complex, Tran-
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script, and Polypeptide states initialize the copy number of each macromolecule species, and decrement
the metabolite copy numbers to maintain the initial cell mass.

Fitting
The chemical compositions of M. genitalium and the extracellular medium were initially reconstructed based
on the experimentally characterized compositions of M. genitalium and SP-4 medium. The cell and medium
composition were both supplemented to support the metabolic demands of the 28 modeled cellular processes.
See Section 1.3, 2.5, and 2.7 for further discussion.

2.8 Polypeptide

Biology

The Polypeptide state class keeps track of the progress of translation. In our model, binding of free
ribosomes to mature mRNAs is determined by mRNA availability. Once bound, a polypeptide is sythesized
at a rate of up to 16 amino acids per second564. Therefore, polypeptides may take multiple 1 second timesteps
to be completed. The Polypeptide state class holds information about which mRNAs are ribosome bound,
as well as ribosomal progress of translating a transcript across timesteps.

For reasons such as limited resources, a ribosome may stall resulting in an incomplete polypeptide. In such
cases, a proteolysis tag (a short peptide added to the end of a nascent polypeptide) may be synthesized
to mark the ribosome for release and the aborted polypeptide for degradation. This state also houses the
progress of proteolysis tag synthesis and the amino acid sequences of the incomplete polypeptides that are
to be degraded.

Reconstruction

The Polypeptide state class serves as a “support system” for translation, providing it with infomation that
is required to translate polypeptides.

The state holds fixed information such as the length, tRNA sequence, and amino acid sequence of every M.
genitalium monomer and the length, molecular weight, tRNA sequence, and amino acid sequence of every
possible M. genitalium proteolysis tag.

Computational Representation

As the simulation progresses, this state class holds transient information such as the ribosome-bound mRNAs,
the lengths of polypeptides that are being translated, and the sequences of aborted polypeptides.

The state can calculate information from the transient properties such as the counts of each amino acid in
each polypeptide and the length of aborted sequences. Lastly, this state is able to calculate the weight of all
nascent polypeptides as the sum of the weights of the amino acid components.

Integration
The Translation process class reads all of the fixed parameters describing polypeptides and proteolysis
tags. It both reads and updates the time evolving parameters describing polypeptides and proteolysis tags.
The Protein Decay process class reads the sequence and length of each aborted polypeptide.

Initial Conditions
The simulation begins in a state in which ribosomes are already bound to mRNAs and in the process of
elongating. Each growing polypeptide is accounted for in the Polypeptide state class. No proteolysis tags
exist at the start of the simulation.
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2.9 Protein Complex

Biology

Protein complexes are used by almost all of the process classes in the system to perform their respective
functions. A protein complex could be as small as transketolase, a dimer, or as large as pyruvate dehydroge-
nase that has 192 monomeric subunits. A complex may contain a mixture of protein and RNA subunits (e.g.
ribosome), metabolites (e.g. DnaA protein bound to ATP), or ions (e.g. oxidized form of the protein thiore-
doxin). A complex can also exist in various locations within a cell including in the cytoplasm, membrane,
terminal organelle, and bound to the chromosome. The Protein Complex state class holds information
about complex composition, as well as the counts of each complex in the cell.

Reconstruction

The Protein Complex state class holds fixed parameters including the complex subunit composition, molec-
ular weights, amino acid composition, half-lives, and localization. Some essential functions require a certain
threshold abundance of particular protein complexes, and so this state class also holds the minimum expres-
sion of each complex.

Computational Representation

As complexes are produced by the Macromolecular Complexation process and other processes in the model,
their counts are stored in this state. This state can also compute the dry weight of each protein complex in
the cell.

Integration

List S3. Connections between the Protein Complex state class and other processes in the cell.

Connected Processes Read from Protein Complex Written to Protein Complex

Macromolecular Complexation • Counts of protein complexes • Updated counts of protein complexes

• Complex subunit composition

Ribosome Assembly • Counts of ribosomes • Updated counts of ribosomes

Replication • Counts of replication complexes • Updated counts of replication complexes

Replication Initiation • Counts of DnaA complexes • Updated counts of DnaA complexes

Protein Decay • Counts of protein complexes • Updated counts of protein complexes
• Complex half lives
• Complex amino acid composition

Transcription • Minimum average expression

Various other processes • Protein complex counts to

determine maximal enzyme activity

Initial Conditions
The system is initialized with a set of proteins. The determination of which proteins are expressed and at
what quantities is determined randomly based on expected protein expression and expected total protein
mass fraction.

2.10 Protein Monomer

Biology

Protein Monomers are the direct result of successful translation events. Upon Translation, a monomer
undergoes various steps towards maturation including deformylation, translocation, folding, and phosphory-
lation. As a result, a monomer can exist in many forms (nascent, processed (I), translocated, processed (II),
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folded, and mature) as it moves through the maturation pipeline (See Schematic S3).

Translation (100%)

Nascent 

Monomers

N-terminal peptide deformylation (100%)

N-terminal methionine cleavage (7%)

Processed (I) 

Monomers

Translocation into/through cell membrane 

and to terminal organelle (25%)

Diacylglyceryl transfer and signal peptide

cleavage (all membrane peptides)

Translocated

Monomers

Signal 

Sequences

Folded

Monomers

Protein folding (100%)
Processed (II) 

Monomers

Phosphorylation (3%)

Lipoate ligation (0.2%)

Glutamate ligation (0.2%)

Mature

monomers
Macromolecular complexation

(51%)

Protein

complexes

Misfolded

Monomers

Inactivated

Monomers

Damaged

Monomers

Bound 

Monomers

Schematic S3. Protein monomer forms diagrammed in the context of the maturity pipeline.

In addition to maturation, various processes can render a monomer non-functional, resulting in the misfolded,
inactive, or damaged forms. Further, a mature monomer may be freely floating in the cytoplasm or bound to
another molecule in the cell. For example, a translation factor may be bound to a mRNA, or a topoisomerase
may be bound to a chromosome. The quantities of monomers in each of the maturation phases, functional
forms, and non-functional forms are stored in this state class. Note that some functional enzymes are a
complex of monomers, and these complexes are stored in a separate state class called Protein Complex.

Reconstruction

The main purpose of the Protein Monomer state class is to hold the counts and attributes of the monomeric
species in the system.

This state class holds important information describing protein monomers such as their molecular weights,
amino acids composition, length (in amino acids), and half-lives. A subset of monomers are translocated to
different compartments in our model such as the membrane or terminal organelle. The Protein Monomer

state class contains information about where each monomer localizes.

The Protein Monomer state class also houses information that is important for the fitting and initialization
of the model. Some essential functions require a certain abundance of particular proteins. For example, the
Cell Division process may require at least some threshold abundance of the division protein FtsZ for cell
division to ever be possible. The sytem is then fit such that in an unperturbed state, at least this threshold
amount of FtsZ is produced. This state stores the minimum expression of each monomer.

The current version of this model involves a stochastic generation of the initial protein abundances in the
cell. The initial abundance of certain monomers is more rigid than others for the maintainace of a stable
system that can grow and divide. The Protein Monomer state class stores the degree of variation we allow
in the initial abundances of each monomer.
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Computational Representation

The Protein Monomer state class holds the counts of the monomeric species in each of the forms shown in
blue in Schematic S3.

Integration

List S4. Connections between the ProteinMonomer state class and other processes in the cell.

Connected Processes Read from Protein Monomer Written to Protein Monomer

Translation • Counts of nascent monomers • Updated counts of nascent monomers

Protein Processing I • Counts of nascent and processed (I)
monomers

• Updated counts of nascent and

processed (I) monomers

Protein Translocation • Counts of processed (I) and
translocated monomers

• Updated counts of processed (I) and

translocated monomers

Protein Processing II • Counts of translocated and processed
(II) monomers and signal sequences

• Updated counts of translocated and
processed (II) monomers and signal

sequences

Protein Folding • Counts of processed (II) and folded
monomers

• Updated counts of processed (II) and

folded monomers

Protein Modification • Counts of folded and mature
monomers

• Updated counts of folded and mature

monomers

Macromolecular Complexation • Counts of mature monomers • Updated counts of mature monomers

Protein Decay • Counts of monomers • Updated counts of monomers
• Monomer half lives • Assignment of damaged monomers
• Monomer amino acid composition • Assignment of misfolded monomers

Protein Activation • Counts of mature and inactivated
monomers

• Updated counts of mature and

inactivated monomers

Various other processes • Counts of mature and bound
monomers

• Updated counts of mature and bound

monomers
• Protein monomer counts to determine

maximal enzyme activity

Initial Conditions
The system is initialized with a set of proteins. The determination of which proteins are expressed and at
what quantities is determined randomly based on expected protein expression and expected total protein
mass fraction.

2.11 Ribosome

Biology

Composition
Ribosomes are large ribonucleoproteins which synthesize polypeptides. The M. genitalium 70S ribosome is
composed of two subunits – the 30S and 50S ribosomal subunits – which assemble on mRNA with assistance
from initiation factors 1-3 (MG173, MG142, MG196). The 30S subunit is composed of 1 RNA and 20 protein
monomer subunits. The 50S subunit is composed of 2 RNA and 32 protein monomer subunits. The 30S and
50S ribosomal subunits are believed to assemble in stereotyped patterns660,661, and six GTPases – EngA
(MG329), EngB (MG335), Era (MG387), Obg (MG384), RbfA (MG143), and RbgA (MG442) – have been
associated with ribosomal subunit assembly58,102,104,105,182,222,223. The exact functions of the six GTPases
are unknown.
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Translation
Following 70S ribosome assembly, ribosomes synthesize amino acid polymers according to nucleic acid tem-
plates specified by mRNA and decoded by tRNA. Upon reaching the stop codon UAG, ribosome release
factor (MG258) binds to the 70S ribosome, recognizes the stop codon, hydrolyzes the peptidyl-tRNA bond,
and releases the terminal tRNA. Finally, elongation factor G (MG089) and initiation factor 3 dissociate the
30S and 50S ribosomal subunits, the mRNA, and the ribosome release factor. See Section 3.27 for further
discussion of translation.

Stalled Ribosome Response
Upon prolonged translational stalling, tmRNA can displace both ribosome-bound tRNA and mRNA, leading
to the generation of chimeric polypeptides containing an N-terminal mRNA-coded domain and a C-terminal
tmRNA-coded degradation domain, or SsrA tag. Following translation termination, the protein degradation
machinery recognizes the SsrA tag and degrades the chimeric polypeptide. See Section 3.27 and 3.12 for
further discussion.

Computational Representation

The Ribosome state represents (1) the status – actively translating or stalled – of each 70S ribosome, (2) the
mRNA, or tmRNA in the case of stalled ribosomes, species each 70S ribosome is bound to and translating,
and (3) the position, in codons, of each 70S ribosome from the start codon. The status, bound (t)mRNA,
and (t)mRNA position of each ribosome are implemented as scalar integer variables.

Integration
The Polypeptide state represents the sequence of each nascent polypeptide. The Protein Complex state
represents the copy numbers of free 30S and 50S ribosomal subunits, and of mRNA-bound 70S ribosomes.
The Rna state represents the copy number of each mRNA species and of tmRNA.

Three processes – Translation, RNA Decay, and Protein Decay – access and modify the Ribosome state.
The Translation process models the formation of 70S ribosomes on mRNA, polypeptide synthesis catalyzed
by 70S ribosomes, and 70S ribosome disassembly following translation termination. The Translation process
also models ribosome stalling, tmRNA substitution, and SsrA degradation tag synthesis. Computationally,
the Translation process predicts the state of each 70S ribosome, the mRNA or tmRNA species each 70S
ribosome is bound to, and the elongation rate of each nascent polypeptide.

mRNA and tmRNA degradation events modeled by the RNA Decay process trigger early 70S ribosome
disassembly resulting in incomplete polypeptides. Similarly, 70S ribosome degradation events modeled by
the Protein Decay process result in incomplete polypeptides. Both processes decrement the copy number
of mRNA-bound 70S ribosomes represented by the Protein Complex and Ribosome states.

The Ribosome Assembly process models the assembly of 30S and 50S ribosomal subunits from rRNA and
ribosomal protein monomers. The Protein Activation process models the effect of antibiotics on the
catalytic activity of 30S and 50S ribosomal particles.

Initial Conditions
After the Rna and Protein Monomer states initialize the total copy number of each RNA and protein
monomer species and the Ribosome Assembly process initializes the total copy numbers of the 30S and
50S ribosomal subunits, the Translation process initializes the Ribosome and Polypeptide states. As
described in Algorithm S4, the Translation process forms 70S ribosomes equal to the minimum of the 30S
and 50S subunit copy numbers, and randomly positions each 70S ribosome on mRNA weighted by the copy
number of each mRNA.
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Algorithm S4 | Ribosome and Polypeptide state initialization.

Free 70S ribosomes ← min(free 30S, 50S ribosomal particles)

Decrement the copy numbers of free 30S and 50S ribosomal particles
foreach 70S ribosome i do

Select the mRNA of 70S ribosome i weighted by the product of mRNA copy number and length
Set the bound mRNA species of 70S ribosome i
Select the position of 70S ribosome i along the bound mRNA with uniform probability
Set the status of 70S ribosome i to actively translating
Decrement the copy number of free 70S ribosomes
Increment the copy number of bound 70S ribosomes
Set the sequence of the nascent polypeptide corresponding to 70S ribosome i

2.12 RNA

Biology

Transcription leads to the production of nascent RNA that, once mature, may be used in various cell
functions. mRNAs serve as a template for protein synthesis, rRNAs are a part of the ribosome structure,
tRNAs carry amino acids to growing polypeptides, and sRNAs act as regulators. tmRNAs come into action
when ribosomes stall on an mRNA during translation, helping recycle the stalled ribosome and adding a
proteolysis tag to the incomplete polypeptide.

Different nascent RNAs undergo various steps towards maturation, including cleavage from polycistronic
(transcription unit) to single RNA form, methylation, and thiolation (see Schematic S4). Maturation is
carried out by the RNA Processing and RNA Modification process classes. There is an additional step for
tRNAs which are coupled with amino acids by the tRNA Aminoacylation process.

In addition to the various forms an RNA can take in the maturation pathway, an RNA can also transition
between various non-functional and functional forms. RNAs may exist with proteins in a macromolecular
complex, and when the complex is marked for decay by the Protein Decay process class, its RNA subunits
are marked as damaged in the Protein Monomer state class. Damaged RNAs are degraded by the RNA

Decay process class. Further, a mature RNA may be freely floating in the cytoplasm or bound to another
molecule in the cell. For example, an mRNA may be bound to a ribosome. This is accounted for in the the
Bound RNA form. The quantities of RNA in each of these immature/mature and functional/non-functional
forms is stored in this state class (see Schematic S4).

Reconstruction

This state class holds information about RNAs such as their weights, compositions, lengths, and localizations.
It also holds important parameters for the maturation pathway of RNA, such as a number of matrices that
map one form of RNA to another, and the gene composition of transcription units. Other parameters such
as expected RNA half-lives and RNA weight fractions are included in this class, and are used to determine
the RNA Polymerase-DNA binding parameters associated with gene expression.

Computational Representation

The Protein Monomer state class contains the number of each RNA species in each RNA form.

Other properties are calculated by this state class. The RNA decay rates are calculated from the experimen-
tally measured half lives. The actual decay rates and RNA expression values used in the model are fit from
the experimentally measure values such that the cell will double its mass and successfully divide by the end
of the cell cycle.
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Schematic S4. RNA forms diagrammed in the context of RNA maturation.

Integration

List S5. Connections between ProteinMonomer state and other processes in the cell.

Connected Processes Read from Rna Written to Rna

Transcription • Counts of nascent RNAs • Updated counts of nascent RNAs

RNA Processing • Counts of nascent, processed, and
intergenic RNAs

• Updated counts of nascent, processed, and

intergenic RNAs

RNA Modification • Counts of processed and mature RNA • Updated counts of processed and mature

RNA

tRNA Aminoacylation • Counts of mature and aminoacylated
tRNA

• Updated counts of mature and

aminoacylated tRNA

RNA Decay • Counts of mature, misfolded, and
damaged RNA

• Updated counts of mature, misfolded, and

damaged RNA

Various Processes • Counts of mature and bound RNAs • Updated counts of mature and bound

RNAs

Initial Conditions
The system is initialized with a set of RNAs. The determination of which RNAs are expressed and at
what quantities is determined randomly based on expected RNA expression and expected total RNA mass
fraction.

2.13 RNA Polymerase

Biology

RNA polymerases are protein complexes that bind to gene promoters on the chromosomes and mediate the
synthesis of RNA transcripts. This state class helps keep track of the conditions and chromosomal locations
of RNA polymerases in the cell.
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Reconstruction

An RNA polymerase in our model can exist in one of four conditions:

1. Free (not bound to DNA)
2. Non-specifically bound (bound to the DNA, but not to a specific gene promoter and not transcribing)
3. Specifically bound (bound to a specific gene promoter)
4. Actively transcribing (moving along a gene to produce an RNA)

This state class stores properties relating to RNA polymerases such as the expected probabilities of a poly-
merase being in the above 4 conditions.

Computational Representation

As the simulation progresses, this state class stores the condition of each RNA polymerase in the simulated
cell. Transition between the conditions may involve RNA polymerase association and dissociation from the
cell’s chromosome(s). This state class holds the precise positions on the chromosome(s) where polymerases
are bound. The RNA Polymerase state class also handles basic accounting. For example, upon an RNA
polymerase decay event, a free polymerase is decremented. Further, this class records the premature release
of RNA polymerases from the chromosome(s) and passes information about the aborted transcript to the
Transcript state class.

Further, the Transcription process class requires the RNA Polymerase-promoter binding probability for
each transcription unit. These probabilities may vary during the cell cycle due to the effects of other processes
in the system, such as Transcriptional Regulation or DNA supercoiling. The fold changes to the base binding
probabilities incurred by these other processes is stored in the RNA Polymerase state class.

This state class can also calculate the total number of RNA polymerases in each condition.

Integration
The Chromosome state class updates the chromosomal positions of RNA polymerases in the RNA Polymer-

ase state class. The Transcript state class reads the aborted RNA sequences from and writes the updated
aborted sequences to the RNA Polymerase state class.

The Transcription process class reads the RNA polymerase conditions and progress from and updates
the RNA polymerase conditions and progress to the RNA Polymerase state class. The Transcription

process class also reads the RNA polymerase condition transition probabilities and RNA polymerase binding
probabilities from the RNA Polymerase state class. The Transcriptional Regulation and DNA Super-

coiling process classes record the fold change in RNA polymerase binding probabilities to the RNA Polym-

erase state class.

Initial Conditions
NA polymerases are initialized as follows:

1. Each RNA polymerase is randomly assigned (with replacement) to one of the actively transcribing, specif-
ically bound, non-specifically bound, or free states weighted by the expected occupancy of each state

2. Actively transcribing and specifically bound polymerases are randomly assigned to transcription units
weighted by the transcription unit binding probabilities (Ptu).

3. Actively transcribing polymerases are randomly assigned to positions within the assigned segment of their
assigned transcription unit (positions near the segment border are not allowed to prevent polymerases
from being too close to each other) with uniform probability.

4. Non-specifically bound polymerases are randomly assigned to an accessible region on the chromosome.
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2.14 Stimulus

Biology

Cells live in complex environments where they are exposed to physical and chemical stresses including
antibiotics, radiation, heat and cold. Furthermore, manipulation of the external environment is a powerful
tool for discovering new biology. This state represents the status of 10 properties of the external environment.

Reconstruction

Table S3F describes the reconstruction of the values of these 10 properties of the external environment.

Computational Representation

Specifically, this state represents the temperature in °C, six types of radiation in W m−2, Gy s−1, or
m−2 s−1 sr−1, and three Boolean-valued stress conditions. Computationally, each property is implemented
as a floating point scalar. Table S3F lists the values of these 10 properties used throughout each simulation.

Integration
This state does not directly interact with any of the other 15 states. The Geometry, Metabolite, Protein

Monomer, Protein Complex, and Host states represent additional properties of the extracellular environment.
The Geometry state represents the volume of the external environment. The Metabolite state represents
the copy numbers of extracellular metabolites including antibiotics. The Protein Monomer and Protein

Complex states represent the copy numbers of extracellularly localized proteins. The Host state represents
six properties of the host urogenital epithelium.

Three processes – Protein Activation, DNA Damage, and Metabolism – access the Stimulus state. The
Protein Activation process regulates the activity of four transcription factors as functions of temperature
and three stress conditions (see Table S3Q). The DNA Damage process models the rates of several types of
DNA damage as functions of radiation (see Table S3O). The Metabolism process models the generation of
hydroxyl radicals from water and γ-radiation (see Table S3O). None of the processes modify the 10 properties
of the external environment.

Initial Conditions
For this study the 10 properties of the external environment were initialized to the values listed in Table S3F,
and were not modified during the simulation.

2.15 Time

Biology

The physical, chemical, and biological processes relevant to cell physiology span a wide range of time scales.
To limit the scope of this study, we modeled M. genitalium on a 1 s time scale and averaged out the effects
of faster processes. M. genitalium can be approximated as a well-mixed system at this time scale.

Computational Representation

This state represents the time elapsed from the start of the simulation in seconds as a single integer variable.

Integration
The Time state directly interacts with only three parts of the simulation:

• The Simulation linearly advances time in 1 s increments (See Section 1.1).
• If the cell has not yet divided, each simulation terminates at a predetermined maximum time of 50,000 s,

approximately equal to 150% of the observed mean M. genitalium mass doubling time (See Section 1.1).
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• The concentrations of extracellular metabolites and the values of extracellular stimuli depend on time
(see Section 2.7 and 2.14).

None of the processes or other states depend directly on the Time state.

Initial Conditions
The Time state is initialized to zero and the other 15 states are initialized to the beginning of the cell cycle.
Consequently, the Time state also represents the time elapsed from the beginning of the cell cycle.

2.16 Transcript

Biology

During Transcription, an RNA polymerase binds to a gene promoter and facilitates the synthesis of an
RNA transcript. This state stores all of the information that pertains to nascent RNA transcripts and aids
in the time evolution of Transcription.

Reconstruction

There are multiple fixed properties relating to the gene templates of transcripts that are essential for tran-
scription and stored in the Transcript state. For each transcription unit, we store the 5’ coordinate of the
gene on the genome. This is the template for the 1st nucleotide in a growing transcript. In addition to this,
we store the direction in which the template is read, towards or away from the origin. We also store the
sequence and length of each transcription unit.

Computational Representation

Transcription proceeds at a maximal rate of 50 nucleotides per second562,563. Therefore, it may take several
timesteps to synthesize a transcript, and the progress of the RNA polymerase along the transcription unit
must be stored. This state stores the transcription unit to which each RNA polymerase is bound, including
which chromosome it is bound to and the progress of the RNA polymerase along the transcription unit.

An RNA polymerase may stall in the Transcription process or be knocked off of a gene by another protein.
In these cases, an incomplete transcript may result, and will be targeted for degradation by the RNA Decay
process. This state holds the sequence of each aborted transcript, such that the nucleotides can correctly be
accounted for upon degradation.

Multiple RNA polymerases may be bound to a given transcription unit, and this state can calculate the
total number of polymerases on each unit. Finally, the Transcript state also calculates the dry weight of the
nascent transcripts.

Integration
The Transcript state class reads about the existence of an aborted sequence from the RNA Polymerase

state class. Upon RNA polymerase displacement, the Transcript state class updates the Transcript state
in the Chromosome state class. It also records the start sites and directions of transcription units in the
Chromosome state class.

The Transcription process class uses all of the fixed properties and time evolving properties housed in the
Transcript state class.

Initial Conditions
An RNA polymerase may be initialized in the actively transcribing state. For all such polymerases, the
growing transcript is accounted for in the Transcript state class.
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Chapter 3

Cellular Process Methods

The whole-cell model is composed of 28 sub-models which span six major areas of cellular physiology: (1)
transport and metabolism, (2) DNA replication and maintenance, (3) RNA synthesis and maturation, (4)
protein synthesis and maturation, (5) cytokinesis, and (6) host interaction. The sub-models were modeled
using different mathematics and trained using different experimental data. Each of the 28 functional pro-
cesses, or cellular processes, represents a group of chemical reactions which transform chemical substrates
into products using enzyme catalysts. Computationally, the inputs and outputs of each sub-model are the
copy numbers of metabolites and macromolecules; the configurations of RNA, protein and DNA polymers;
and the catalytic capacity and configurations of the enzymes which participate in each sub-model. This
chapter provides detailed discussions of the mathematics and computational implementation of each cellular
process.

Metabolism

The Metabolism process modeled the import of nutrients from the external environment and their conversion
primarily into the metabolic building blocks required by the 27 other processes for macromolecule synthesis.
Therefore, the Metabolism process served as the primary interface between the external environment and
the 27 other processes, providing the nutrients required for each of the other processes and recycling and/or
exporting the metabolic byproducts of the other processes. The Metabolism process was reconstructed
primarily based on DNA sequence homology of M. genitalium to E. coli and a comprehensive metabolic
model of E. coli558. The Metabolism process was modeled using FBA and trained using the observed growth
rate of M. genitalium and the observed chemical compositions of M. gallisepticum870 and E. coli393. The
composition of the in silico growth medium was reconstructed based on the reported chemical composition
of the individual components of Mycoplasma SP-4 medium, with additional metabolites added to support
sustained in silico growth.

RNA Synthesis & Degradation

RNA synthesis and maturation was modeled by four processes: Transcription, RNA Processing, RNA

Modification, and tRNA Aminoacylation. Transcription modeled the state – free, non-promoter bound,
promoter-bound, or actively transcribing – of each RNA polymerase, transcription initiation at specific
promoters, transcription elongation and NTP allocation among nascent transcripts, and transcription termi-
nation. The state of each RNA polymerase was modeled as a Markov chain and trained with the observed
occupancies of each of the four modeled states775. Transcription initiation was modeled as a stochastic
process and trained using the reconstructed expression and decay rates of each transcription unit569,602. The
transcription unit organization of the chromosome was reconstructed from the observed operon organization
of M. pneumoniae418. Because transcription termination is not well-characterized, termination was modeled
as a deterministic process which proceeds to completion within the 1 s simulation time step if there is least
one copy of each of the characterized transcription termination factors.
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Transcriptional Regulation modeled the fold change effects of transcriptional regulators on the affinity of
RNA polymerase for specific promoters. The Transcriptional Regulation sub-model was reconstructed
using the database DBTBS419. Transcriptional Regulation was modeled as a stochastic process and
trained using reported fold change effects.

Following transcription, non-coding transcripts are cleaved, modified, and aminoacylated. The RNA Pro-

cessing sub-model modeled the cleavage of polycistronic non-coding RNA into individual non-coding
RNA gene products. The RNA Processing sub-model was reconstructed primarily based on reported E.
coli RNA cleavages39,105,649 and the complement of RNA processing enzymes contained in the M. gen-
italium genome. The RNA Modification process modeled the modification of specific bases of specific
non-coding RNAs and was reconstructed based on the observed complement of E. coli RNA modifica-
tions45,47,55,56,64,65,105,560,651,885. The tRNA Aminoacylation sub-model modeled the aminoacylation of tR-
NAs according to the observed Mycoplasma genetic code53,168,607. RNA Processing, RNA Modification,
and tRNA Aminoacylation were modeled motivated by mass-action kinetics and parameterized using the
observed kinetics of the RNA cleavage and modification enzymes.

RNA transcripts are hydrolytically cleaved into 10-30 nucleotide fragments by ribonuclease R, which in turn
are further degraded into individual NMPs. The RNA Decay sub-model modeled the decay of each RNA
species as a first-order Poisson process with rate parameters equal to the observed decay rates of E. coli
RNA602.

Protein Synthesis & Degradation

Protein synthesis and maturation was modeled by nine processes: Translation, Protein Processing

I, Protein Translocation, Protein Processing II, Protein Folding, Protein Modification, Macro-

molecular Complexation, Ribosome Assembly, and Terminal Organelle Assembly. Translation mod-
eled the assembly of 70S ribosomes on mRNA Shine-Dalgarno sequences, the polymerization of amino acids
into polypeptides, and the allocation of aminoacylated tRNAs among the multiple active ribosomes. The
Translation sub-model also modeled the role of tmRNA in the termination of stalled ribosomes as a rare
stochastic event.

Following translation, polypeptides are deformylated, cleaved, translocated, folded, and modified before
forming macromolecular complexes. Protein Processing I modeled the first steps in protein maturation:
polypeptide deformylation and N-terminal methionine cleavage. Protein Translocation modeled integral
membrane, lipoprotein, and secreted protein translocation into the membrane by the SecA translocase. Pro-

tein Processing II modeled lipoprotein diacylglyceryl transfer, and lipoprotein and secreted protein signal
sequence cleavage. Protein Folding modeled the folding of polypeptides into compact three-dimensional
structures. Protein Modification modeled the covalent modification of specific amino acids. Macro-

molecular Complexation modeled the formation of protein and ribonucleoprotein complexes. Ribosome

Assembly modeled the role of several GTPases in the assembly of 30S and 50S ribosomal particles. Ter-

minal Organelle Assembly modeled the observed hierarchical assembly of the protein content of the M.
genitalium terminal attachment organelle.

The eight post-translational processing sub-models were reconstructed based on specific N-terminal methio-
nine cleavages observed in Shewanella oneidensis MR-1280, the predicted localization and signal sequence of
each protein monomer (see Table S3AM-S3AO), the observed chaperone interactions of E. coli388,389 and B.
subtilis391, the observed complement of M. genitalium and M. pneumoniae protein modifications94,277,282,283,672,
and the inferred subunit composition of each macromolecular complex (see Table S3AS). The eight post-
translational processing sub-models were modeled motivated by mass-action kinetics and were parameterized
using the reported kinetics of the post-translational processing enzymes.

The Protein Decay sub-model modeled the hydrolytic cleavage of proteins into 10-20 amino-acid-long frag-
ments by protease La, as well as the cleavage of aborted polypeptides by protease FtsH. Similar to RNA

Decay, Protein Decay was modeled as a first-order Poisson process. The half-life of each protein was pre-
dicted using the N-end rule586. Additionally, the Protein Decay sub-model modeled protein misfolding
and ClpB chaperone-mediated refolding. Protein misfolding was modeled as a stochastic process. Protein
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refolding was modeled as a deterministic process governed by a single Boolean rule.

The Protein Activation process modeled the chemical regulation of protein activity. The Protein Act-

ivation process was reconstructed primarily based on the database DrugBank847. Because the exact mech-
anisms of protein chemical regulation are poorly characterized, Protein Activation was modeled as a
Boolean network.

Chromosomal Replication & Maintenance

Seven processes modeled chromosomal replication, damage, and maintenance: Replication Initiation,
Replication, Chromosome Segregation, Chromosome Condensation, DNA Supercoiling, DNA Damage, and
DNA Repair. The Replication Initiation process modeled the recruitment of DNA polymerase to the
oriC by the formation of a large DnaA complex at the R1-5 functional oriC DnaA boxes. Replication

Initiation was reconstructed using the reported DnaA DNA-binding motif, and implemented similar to
the E. coli replication initiation model developed by Messer924.

The Replication process modeled bidirectional DNA replication, dissolution of the oriC DnaA complex,
single stranded binding protein (SSB) binding to exposed single-stranded DNA, and Okazaki fragment
ligation. Allocation of dNTPs among elongating DNA polymerases was modeled similarly to Transcrip-

tion and Translation.

The Chromosome Segregation process modeled daughter chromosome segregation following chromosomal
replication. Because Chromosome Segregation is poorly characterized, Chromosome Segregation was mod-
eled as a single event governed by a simple Boolean rule.

Chromosome Condensation and DNA Supercoiling modeled DNA compaction mediated by structural main-
tenance of chromosome (SMC) proteins and topoisomerases. Chromosome Condensation was reconstructed
based on the reported DNA density of SMC proteins517 and SMC DNA-binding was modeled as a stochastic
process. DNA Supercoiling was modeled as the balance of the competing winding and unwinding effects of
topoisomerase I and DNA gyrase, and parameterized by the observed kinetics of topoisomerase I and DNA
gyrase502,750,922.

DNA Damage modeled spontaneous and chemically- and radiation-induced DNA damage as a stochastic pro-
cess parameterized by the reported efficiencies of DNA damage. DNA Repair modeled four modes of DNA
repair – direct damage repair (DDR), base excision repair (BER), nucleotide excision repair (NER), and
homologous recombination double strand break repair (HR-DSBR) – as well as the M. genitalium MunI
restriction/methylation (R/M) system. DDR, BER, NER, and HR-DSBR were modeled as stochastic pro-
cesses parameterized by their observed kinetic rates. R/M was reconstructed based on the reported MunI
DNA-binding motif and modeled as a stochastic process.

Cytokinesis

Following chromosomal replication and segregation, M. genitalium divides by binary fission. According to
the Li et al. hypothesis611, M. genitalium divides by iteratively pinching its the septal membrane using the
filamentous protein FtsZ. The FtsZ Polymerization process modeled the formation of septal FtsZ rings.
FtsZ Polymerization is implemented using the ordinary differential equations described by Surovtsev et
al.164. The Cytokinesis process modeled the iterative contraction of successively smaller FtsZ septal rings.
The Cytokinesis sub-model was parameterized using the observed rate of FtsZ-GTP hydrolysis421.

Cell Cycle

Three M. genitalium cell cycle phases were modeled: (1) pre-replication, or replication initiation, (2) repli-
cation, and (3) cytokinesis. All simulations reported in this study were initialized to the beginning of the
replication initiation phase. Starting at the beginning on each simulation, the Replication Initiation

process modeled the formation of the oriC DnaA complex, ultimately resulting in the recruitment of DNA
polymerase to the replication origin and the start of DNA replication. Following DNA polymerase recruit-
ment to the replication origin, the Replication process modeled DNA replication. After chromosomal
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replication the Chromosome Segregation process modeled daughter chromosomal segregation. Finally, the
FtsZ Polymerization and Cytokinesis processes modeled the formation and contraction of FtsZ septal
rings, ultimately resulting in cell division.

Host Interaction

The Host Interaction process modeled the interaction of M. genitalium with its host human urogeni-
tal epithelium. The Host Interaction process was reconstructed based on the observed composition of
the protein content of the M. genitalium terminal organelle408,409 and the reported M. genitalium-host
interactions88,176,194,313,842,844. Because the interaction of M. genitalium with its human host is poorly
characterized, Host Interaction was implemented as a Boolean model.

3.1 Chromosome Condensation

Biology

Bacterial chromosomes are compacted 104-fold in volume in order to physically fit inside of a cell921. Com-
paction is also necessary to support various cellular processes including chromosome replication, cell division,
and chromosome segregation to opposing poles of the cell921. Bacteria employ several mechanisms to compact
DNA including ”clamping” of the DNA by structural maintenance of chromosome (SMC) proteins, DNA
supercoiling, macromolecular crowding, and charge neutralization921. M. genitalium has the machinery to
perform all of these levels of DNA compaction, and we explicitly model DNA Supercoiling in a separate
process class and DNA clamping by SMC complexes here in the Chromosome Condensation process class.

Reconstruction

SMC complexes consist of an SMC core protein (Smc: MG298) and segregation and condensation proteins
A and B (ScpA: MG213, ScpB: MG214). Together, the SMC complex is a “V” shaped structure (with a
head and two legs) that induces positive supercoils in double stranded DNA848. The complexes are believed
to work with a lock and key mechanism in which first DNA is looped around the legs of the SMC complex,
and then an ATP is bound between the two tails to lock the SMC complex in place. The complexes bind and
clamp the DNA causing many loops in the DNA and DNA compaction. The loops around each leg occupy
90bp. A loop of about 450bp forms between the two SMC complex legs517,521. Further, it has been inferred
that there is about one SMC complex bound for every 7130bp of DNA (See Schematic S5)517. All of the
parameters used in the Chromosome Condensation process class are described in List S6.

SMC

ScpA
ScpB

ADP

450nt

90nt

l l l l = 2800nt

Average spacing = s = 7130nt

Schematic S5. SMC complex occupation of the DNA.
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List S6. Fixed parameters used in the Chromosome Condensation process class.

Parameters Value Symbol Source

Average separation of SMC complexes on the chromosome(s) 7130 nt s [517]
SMC complex threshold spacing 2800 nt l Fit
SMC DNA footprint 630 nt [517]
SMC arm DNA footprint 90 nt [517]
SMC inter-arm loop length 450 nt [517]

Parameter Assignment
Given that the DNA footprint of an SMC complex is much less than its average spacing, if we simply applied
a 1/s probability of each base being bound at each timestep, over time given an SMC abundance we would
see SMCs bound at intervals much less than s. the SMC complex threshold spacing parameter (l) prevents
this phenomenon by inhibiting SMC complex binding where the gap between existing SMC complexes on
the DNA is already much less than the desired spacing. Biologically, this parameter represents the notion
that SMC complex binding is not only determined by SMC complex abundance, but also the writhe and
physical properties of the DNA that prevent SMC complex to bind too close to each other. This parameter
was fit such that the average SMC complex spacing in the model is 7130 nt. The fit of this parameter was
assessed by various tests to assure an average SMC spacing of 7130 nt.

Computational Representation

This module models the contribution of SMC proteins to chromosome condensation. SMC-related DNA
condensing could be considered along with the effects of topoisomerases, but we model the effect of the
topoisomerases by tracking the effect of each topoisomerase activity on the DNA linking number (in the
DNA supercoiling process). Since SMCs do not act by strand-passing events (the causing of a nick in the
DNA, enabling two double stranded DNA regions to pass through each other, and the re-ligation of the
DNA), and since we do not know the exact effect of SMC complex activity on the DNA linking number, we
consider SMC condensation as compacting the DNA at a different level and model it independently of the
DNA linking number calculations in the DNA Supercoiling process. Macromolecular crowding and charge
neutralization are not presently modeled.

SMCs are bound at an average spacing (s) of 7130 bases517. Since it is unknown whether SMC complexes bind
to specific DNA motifs, at each timestep, we bind SMC complexes to random positions on the chromosomes.
The binding is weighed by calculated probabilities (P ) of a free SMC complex binding to each accessible
double-stranded DNA base. The probability distribution is calculated as a step function: bases within a
threshold distance (l) from another SMC complex have a zero probability of being bound, and bases beyond
a threshold distance, l, from other SMC complexes bind at a probability of 1/s. SMC complex disassociation
from the DNA occurs upon interaction with other DNA binding proteins and is handled by the Chromosome

state class.

Integration
The Chromosome Condensation process class reads from and writes to the Chromosome state class. It reads
in the regions of DNA that SMC complexes can bind to, and writes back the positions of SMC complexes
on the chromosome(s).

Initial Conditions
Before the start of the simulation, we iteratively run the SMC complex binding calculations described above,
to bind SMC complexes to the first chromosome until a steady state is reached, that is no more SMC
complexes can be bound.

Dynamic Computation
At each timestep, we perform the following algorithm:
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1. Calculate the maximum number of SMC complexes that can bind in the given timestep.

SMCBindingLimit = min (Number of free SMC complexes, Number of availableATPmolecules)

2. Bind SMCs
(a) Query the Chromosome state to determine the free bases where SMC complexes can bind. Accessible

bases are > l bases away from any DNA bound SMC complexes.
(b) Given that the probability of binding each accessible base is,

PBinding Accessible Base =
1

s − 2l

randomly choose sites to bind based on this probability up to the SMCBindingLimit
(c) Form an SMC-ATP complex, and hydrolyze the ATP to ADP.

i. Decrement a free SMC
ii. Increment and decrement free metabolites for ATP hydrolysis

(d) Bind the SMC-ADP complex to chromosome (facilitated by the Chromosome state)

3.2 Chromosome Segregation

Biology

DNA replication produces two chromosomes that are catenated, or connected like links of a chain. Before cell
division can take place, these chromosomes need to migrate to opposing sides of the cell and be decatenated.
Chromosome segregation in M. genitalium is not well understood, but is believed to result from both entropic
factors and enzymatic activity849,850.

Reconstruction

The Chromosome Segregation process class assumes that the chromosomes entropically segregate during
replication as described in Bloom et al. and Jun et al.849,850. That is, it is unfavorable for the two copies
of replicated DNA to exist too close to each other, thus as the replication fork moves, the replicated DNA
starts to migrate towards the poles. Enzymatic segregation activity is also modeled. The five chromosome
segregation proteins are a nucleotide binding domain (CobQ/CobB/MinD/ParA: MG470), an MraZ protein
(MraZ: MG221), a GTP binding protein (Era: MG387), a GTPase (Obg: MG384), and topoisomerase IV
(ParE: MG203, ParC: MG204). The other segregation protein, FtsZ is accounted for in the Cytokinesis

process class. These proteins assist in the chromosomal migration towards the cell poles and decatenate the
chromosomes following the completion of replication. However, there is no detailed understanding of the
function of these proteins, and much fewer proteins are present in M. genitalium than that required for the
detailed mechanisms for segregation described for other bacterial species. Further, the specific kinetics, and
metabolic costs of these proteins are not known.

Note that topoisomerase IV is also used in the DNA Supercoiling process class, as it is known to relieve coils
that form just downstream of the replication loops. Here it performs a decatenation function, the unlinking
of the two chromosomes.

All of the parameters used in the Chromosome Segregation process class are described in List S7.

List S7. Fixed parameters used in the Chromosome Segregation process class.

Parameter Value Symbol Source

GTP cost of chromosome segregation 1 GTP Eseg Value unknown
Superhelical density tolerance ± 0.1 σtol Value unknown
Equilibrium superhelical density -0.06 σ [922]

Parameter Assignment
The energetic cost of segregation has not been experimentally characterized. The energetic cost is set to a
nominal value of 1 GTP per segregation event. The superhelical density tolerance is also unknown, so the
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allowed range of DNA superhelical density was set to be quite wide.

Computational Representation

This process models enzymatically catalyzed sister chromosome separation and decatenation. Entropically
driven sister chromosome separation is not well understood and is not presently modeled.

Because the molecular biology of chromosome segregation is not well understood, we have chosen to imple-
ment this process as a simple Boolean process: the chromosomes are regarded as segregated immediately
after the following four conditions are met:

• The chromosome is replicated
• The chromosomes are properly supercoiled within a given tolerance of superhelical density
• There is at least one free and functional molecule of each of the five segregation proteins, and
• There are enough available GTP molecules

Note that Glass et al. gene essentiality study suggests that the cobQ/cobB/minD/parA gene is non-essential,
but we model this gene as essential because we don’t know its specific function and how the other segregation
proteins compensate in its absence.

Integration

List S8. State classes connected to the Chromosome Segregation process class.

Connected States Read from state Written to state

Chromosome • Is chromosome replicated? • Chromosomes are segregated
• Are chromosome superhelical densities within tolerance?
• Are chromosomes segregated?

Initial Conditions
The chromosome state is initialized with 1 chromosome with superhelical density within the acceptable
tolerance.

Dynamic Computation
At each timestep, the following conditional statement is performed: If

• The chromosome is replicated
• The superhelical density is in the range: σ ± σtol

• There is at least one free and functional molecule of each of the 5 segregation proteins
• Available GTP ≥ Eseg

Then, mark the chromosome as segregated.

3.3 Cytokinesis

Biology

Cytokinesis, the division of the cell into two separate daughter cells, is the final step in the cell cycle. The
major step of cytokinesis is the pinching of the cell membrane in a certain location (typically the midline of
the cell) until the membrane is separated and division is complete. Typically, a membrane-bound ring of a
tubulin homologue forms at the cell membrane around the pinching site, and the localization and assembly
of this ring requires a set of accessory proteins217. Both contractile forces of the ring filaments, and external
forces by the accessory proteins contribute to the pinching of the cell membrane217.

35

http://covertlab.stanford.edu/projects/WholeCell/knowledgebase/index.php?WholeCellModelID=PUB_0217
http://covertlab.stanford.edu/projects/WholeCell/knowledgebase/index.php?WholeCellModelID=PUB_0217


Reconstruction

M. genitalium has the tubulin homologue, FtsZ (MG224), but does not contain the accessory proteins
required for cell division in other bacterial species. Therefore, cytokinesis in M. genitalium is not fully
understood. However, Li et al. propose an “iterative pinching” model by which a cell can divide using only
FtsZ611. Their proposed mechanism invokes the formation of a contractile Z ring along the interior surface of
the midline of the cell membrane. The ring is comprised of GTP-activated FtsZ polymer filaments that bend
when their GTP is hydrolyzed. The bending draws the membrane-bound ends of the filaments together,
thereby constricting the cell membrane. Many such pinching events result in a complete constriction of the
cell. M. genitalium cytokinesis is thus a cycle of filament binding, bending, and dissociation.

Lluch-Senar et al. suggest that M. genitalium cell division can occur in the absence of FtsZ through motil-
ity796. We chose to use the Li et al. model because we do not have a descriptive model of M. genitalium
motility and FtsZ is known to be an essential gene in M. genitalium.

All of the parameters used in the Cytokinesis process class are described in List S9.

List S9. Fixed parameters used in the Cytokinesis process class.

Parameters Value Symbol Source

Length of an FtsZ filament 40 nm L [217]
Number of FtsZ subunits in an FtsZ filament 9 subunits S [217]
Rate of FtsZ-GTP hydrolyzing to FtsZ-GDP 0.15 s−1 khyd [421]
Rate of FtsZ polymers binding to the membrane 0.7 s−1 kbind Fit
Rate of FtsZ polymers dissociating from the membrane 0.7 s−1 kunbind Fit

Parameter Assignment
The kinetic rates of FtsZ filaments binding and dissociating from the membrane, kbind and kunbind, were
uncharacterized. Therefore, the rates were set to be rapid such that their values under typical protein
expression do not significantly limit the progression of cytokinesis.

Computational Representation

We represent cytokinesis using a modified version of the Li et al. model611. There are four main steps to
our iterative pinching model, as seen in Schematic S6. First straight FtsZ-GTP filaments bind inside the
cell membrane, such that they form an inscribed polygon (Schematic S6A). Next the GTP molecules in
these filaments hydrolyze to GDP, causing the filaments to bend. Since the filaments are cell membrane
bound, this bending pinches the membrane inwards. The filaments bend just enough to approximately form
a new circle. The new circumference of the pinched region is now smaller, and equal to the perimeter of
the inscribed polygon (Schematic S6C). The precise timing of the binding, hydrolysis, and dissociation of
the contractile rings allows us to maintain the contraction progress across iterative pinching steps. After
hydrolysis, one of the two bent filament rings is dissociated. The other remains, to maintain the progress of
cell pinching (Schematic S6D). Now a new set of straight filaments can bind and form a new polygon that
will be smaller than the previous (Schematic S6A). Upon binding, the residual ring of bent filaments can
dissociate (Schematic S6B). The cycle repeats, resulting in smaller and smaller pinched circumferences, until
the cell has divided.

We adapted the Li et al. model into our model framework as follows. First, we implemented cytokinesis
as a process that is only initiated upon chromosomal segregation. Next, the Li et al. model only explicitly
involves a single set of filaments binding at each edge during the binding stage. We have modified this such
that two sets of filaments bind (Schematic S6A). Multiple filament sets are required to maintain the progress
of membrane constriction. Indeed, Li et al. propose that the FtsZ filaments are more abundant and that a
new ring of filaments attaches to stabilize the membrane and maintain progress before the depolymerization
event. Osawa et al. also report that the FtsZ ring is 3-9 filaments thick depending on the bacterial strain455.
Using the lower bound, since M. genitalium is a very small bacterium, we assume that the FtsZ maintains a
thickness of up to 3 filaments. Our modified version of the Li et al. model requires two sets of straight FtsZ
filaments to inscribe the diameter of the cell. Then up to one set of filaments can depolymerize while two
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A. Straight filament binding B: Bent filament dissocia!on II

D. Bent filament dissocia!on I C. Filament bending

Schematic S6. Algorithm to bind, bend, and dissociate FtsZ filaments to pinch cell.

new sets of straight filaments bind the diameter of the cell. Only once the two new sets of straight filaments
have bound, can the second bent set of filaments depolymerize.

The output of this process is an indication of the profess of cell pinching, including the determination of
when the cell has successfully split into two daughter cells. Complete cell division is also the trigger to end
the entire simulation.

Integration

List S10. State classes connected to the Cytokinesis process class.

Connected State Read from state Written to state

FtsZ Ring • Number of filaments bound to each edge, and
whether they are bent or straight

• Updated number of filaments bound to each
edge, and whether they are bent or straight

• Calculation of number of polygon edges in
current cell diameter

Geometry • Pinched diameter of the cell • Updated pinched diameter of the cell
• Filament length parameters (L, S)

Chromosome • Has chromosome segregated?

Initial Conditions
Initialization steps are not required for this process, as Cytokinesis does not take place until late in the cell
cycle. Initialization of FtsZ polymers is handled by the FtsZ Polymerization process class.

Dynamic Computation
At each timestep we perform our modified version of the Li. et al. algorithm611. This involves binding a
pair of full length (9mer) FtsZ polymers along the circumference of the midplane of the cell. When these
filaments hydrolyze and bend we use circle and arc formulas to calculate the new smaller circumference of
the cell. Depending on the state of the FtsZ ring, one or more of the following five steps is performed.

1. Straight filament binding (Schematic S6A): If cytokinesis has just initiated (triggered by Chromosome
Segregation) or if the previous FtsZ ring has hydrolyzed and undergone dissociation I, attempt to bind

37

http://covertlab.stanford.edu/projects/WholeCell/knowledgebase/index.php?WholeCellModelID=PUB_0611


two straight filaments at each polygon edge, forming a regular polygon that inscribes the pinched cell
circumference:
(a) Determine the number of filaments to bind, based on the number of edges on the polygon that in-

scribes the pinched cell circumference. The number of edges (numEdges) is determined using the
pinched diameter of the cell calculated in the previous timestep (Dprev), and the length of the FtsZ
filament (L):

numEdges =




(

π

sin−1
(

L
Dprev

)






(b) Bind straight filaments such that each edge has a random chance of being bound and the probability
of binding each of two filaments is equal to kbind

(c) Upon each binding event, update the state of the FtsZ ring
2. Bent filament dissociation II (Schematic S6B): If there was a previous cycle and at least one straight

filament has bound each polygon edge, then dissociate the bent filament from each edge.
(a) Randomly dissociate bent FtsZ-GDP filaments such that the probability of dissociating each filament

is equal to kunbind.
(b) Dissociate unbound FtsZ-GDP filaments into FtsZ-GDP monomers.
(c) Upon each dissociation event, update the state of the FtsZ ring.

3. Filament bending (Schematic S6C): If all polygon edges have two filaments bound and all residual bent
filaments have dissociated, bend the edges of the newly completed polygon. When the filaments bend,
their length does not change, and the amount of bending is only sufficient to form a new circle. The
new circumference is therefore equal to the old polygon’s perimeter. Each fragment is now an arc. For
simplicity, all of the GTP molecules in the pair of filaments at a particular edge hydrolyze at the same
time. In this version of the model, all filaments are of a fixed length. When they are joined end-to-end
to form a regular polygon, the polygon may not fully inscribe the entire circumference. This remaining
portion of the circumference does not bend when the polygon does. It is preserved and accounted for in
the next iteration.
(a) Randomly determine whether to bend the filaments, such that the probability of bending each edge

is khyd. Bending at an edge can only take place if there are sufficient water molecules available to
hydrolyze all of the GTP molecules in the two filaments.

(b) Update the state of the the FtsZ ring and change the bent filament from FtsZ-GTP to FtsZ-GDP.
(c) If all the edges have been bent, calculate the new pinched diameter of the cell:

DiameterAfterHydrolysis =
circumference

π

=
numEdges × L

π

Adjust this diameter to account for the polygon not perfectly inscribing the cell circumference by
adding back the length of the old perimeter not accounted for by the inscribed polygon.

4. Bent filament dissociation I (Schematic S6D): If all the filaments have been bent, dissociate one bent
filament from each polygon edge. The other ring must remain to preserve pinching progress by maintaining
the new smaller circumference.
(a) Randomly dissociate bent FtsZ-GDP filaments such that the probability of dissociating each filament

is equal to kunbind.
(b) Dissociate unbound FtsZ-GDP filaments into FtsZ-GDP monomers.
(c) Upon each dissociation event, update the state of the FtsZ ring.

5. Termination: If the pinched diameter is smaller than the length of one filament, conclude cytokinesis.
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3.4 DNA Damage

Biology

DNA is not absolutely stable. Rather, DNA is susceptible to spontaneous modification including base loss
and deamination. DNA is also susceptible to modification by many exotic agents including UV-A and UV-B
radiation, α-, β-, and γ-radiation, oxygen, hydroxyl, carbon, and nitrogen radicals, and alkylating agents.
These diverse DNA modification modes generate equally diverse DNA structures including missing and
modified sugar-phosphates, missing and modified nucleobases, intra- and inter-strand cross links, and strand
breaks. Table S3O lists the modeled causes and types of DNA damage.

DNA damage is an evolutionarily important source of genetic variation. However, damaged DNA has also
been shown to deleterious to many processes including transcription and replication780–783. Consequently,
cells employ dedicated DNA repair machinery. See Section 3.5 for further discussion. The exact effect of
DNA damage on physiology is not well characterized. Tornaletti and Hanawalt have extensively reviewed
the effects of several specific DNA modifications on transcription781–783.

Reconstruction

DNA damage modes were reconstructed based on a review by Lindahl and Barnes462 and the primary liter-
ature461,465–468,471–474,476,479,480,490–493,497,501,504,506,507. Table S3O lists the reconstructed causative agent,
resultant base configuration, metabolite stoichiometry, and kinetic rate of each DNA damage reaction.

Computational Representation

Mathematical Model
Because DNA damage is rare, this process models each DNA damage reaction as an independent Poisson
process. The rate, ri, of each spontaneous DNA damage reaction i is given by the observed specific rate
ki. The rate, ri, of each DNA damage reaction i caused by radiation j is given by the product of the
experimentally observed specific rate, ki, and the radiation flux, sj ,

ri = kisj . (S11)

Chemically-induced damage reactions were reconstructed, but not modeled because M. genitalium is not
typically cultured with DNA damaging agents.

Integration
The Chromosome state represents the copy number, modification status, and protein occupancy of each
chromosome. The Metabolite state represents the copy number of each metabolite. The Stimulus state
represents the fluxes of six types of radiation: α-, β-, and γ-particles, electrons, protons, and UV-A and
UV-B.

The Metabolism process models the generation of hydroxyl radicals. The DNA Repair process models four
DNA repair pathways: direct damage reversal, base excision repair, nucleotide excision repair, and homol-
ogous recombination. The DNA Repair process also models DNA methylation at restriction/modification
(R/M) sites. All DNA modifications except methylations of R/M sites are assumed to impede protein
DNA-binding.

Initial Conditions
The Chromosome state initializes one chromosome, fully methylated at R/M sites and otherwise unmodified.
Several other processes including Transcription initialize the protein occupancy of the chromosome.

Dynamic Computation
Algorithm S5 outlines the implementation of the DNA damage model.
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Algorithm S5 | DNA damage simulation. See the Mathematical Model section above and List S2 for definition of the

mathematical notation.
Input: mi copy number of metabolite i
Input: Mij stoichiometry of metabolite i in reaction j
Input: zg

i , za
i , Zp

•i, Zb
•i, zc

i , and zs
i : final base configuration resulting from reaction i

foreach DNA modification reaction i do
Calculate base modification rate
switch trigger of reaction i do

case spontaneous
ri ← ki

case radiation
j ← index of radiation trigger
ri ← kisj

foreach base j in strand k of chromosome l susceptible to reaction i in a random order do
if insufficient metabolic resources to support reaction i (∃ j s.t. mj < −Mji) then

break

if poissonRand(ri) ≥ 1 then
Update the configuration of base j of strand k of chromosome k
mg

jkl ← zg
i

ma
jkl ← za

i

mp
jkl• ← Zp

•i

mb
jkl• ← Zb

•i

mc
jkl ← zc

i

ms
jkl ← zs

i

Update metabolite copy numbers: m← m + M•i

3.5 DNA Repair

Biology

DNA is susceptible to several intrinsic and extrinsic modes of damage (see Section 3.4). Because damaged
DNA is deleterious to many processes including transcription and replication780–783, organisms have evolved
specialized machinery to detect and repair damaged DNA. Eisen and Hanawalt have shown that the M.
genitalium genome contains the DNA damage sensor DisA and four DNA repair pathways: direct damage
reversal (DDR), base excision repair (BER), global genomic nucleotide excision repair (GG-NER), and
homologous recombination double strand break repair (HR-DSBR)891. In addition, M. genitalium employs
the type II restriction/modification (R/M) system MunI to selectively degrade foreign DNA.

Reconstruction

Damage Recognition
M. genitalium employs only one dedicated machine – DisA (MG105) – to recognize DNA damage. Bejerano-
Sagie et al. have shown that B. subtilis DisA recognizes strand breaks, base damage, and cross links513.
The mechanism of DisA damage recognition is not well understood. DisA is believed to signal DNA damage
through the absence of the second messenger cyclic-di-AMP. In the absence of DNA damage, DisA cyclizes
ATP to cyclic-di-AMP. In the presence of DNA damage, DisA is believed to bind DNA, adopt a catalytically
inactive conformation, and via an unknown mechanism possibly involving cyclic-di-AMP and the transcrip-
tional regulator Spo0A, delay sporulation. M. genitalium, however, does not have most of the downstream
signaling machinery associated with B. subtilis DisA-dependent sporulation delay.
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Direct Damage Reversal
DNA ligation is the only DDR pathway employed by M. genitalium891. DNA ligation is catalyzed by DNA
ligase LigA (MG254) by a NAD-dependent mechanism. DNA ligase repairs single strand breaks as well as
ligates DNA synthesized during replication, BER, NER, and HR.

Base Excision Repair
The primary role of BER is to repair small patches of oxidized nucleobases487,488,718. M. genitalium BER
repairs single damaged nucleobases. M. genitalium does not undergo long patch BER because M. genitalium
does not have a flap endonuclease.

M. genitalium BER repairs DNA via a four step mechanism. First, glycosylase Fpg (MG498) or Ung (MG097)
hydrolytically cleaves the glycosidic bond between the damaged nucleobase and the DNA backbone, creating
an abasic site. Second, two parallel subpathways cleave the phosphodiester bonds 3’ and 5’ to the abasic
site, introducing a gap site. The first subpathway begins with cleavage of the 3’ phosphodiester bond site
by AP lyase Fpg and ends with cleavage of the 5’ phosphodiester bond by 5’-deoxyribosephosphodiesterase
Nfo. The second subpathway begins with cleavage of the 5’ phosphodiester bond by 5’-AP endonuclease
Nfo (MG235) and ends with cleavage of the 3’ phosphodiester bond by 3’-(deoxyribose-5’-phosphate) lyase
DnaN (MG001). Third, DNA polymerase DnaN restores the missing base using the template provided by
the opposite strand. Finally, DNA ligase ligates the inserted base.

Nucleotide Excision Repair
The primary role of NER is to repair bulky distortions in the shape of the DNA helix of up to 12-13 bases in
length caused by UV radiation and nitric oxide. M. genitalium NER provides global protection against small
DNA lesions. M. genitalium does not undergo transcription-coupled NER because M. genitalium does have
the transcription-repair coupling factor mfd. Compared to BER, NER employs less specific endonucleases
and consequently has broader repair capacity.

M. genitalium NER repairs DNA via a four step mechanism. First, UvrABC (MG421, MG073, MG206)
identifies a DNA lesion and cleaves the phosphodiester bonds 6-7 bases 3’ and 5’ to the lesion. Second,
helicase PrcA excises the cleaved DNA. Third, DNA polymerase DnaN (MG001) restores the missing bases
using the template provided by the opposite strand. Finally, DNA ligase ligates the inserted base.

Homologous Recombination Double Strand Break Repair
HR repairs double strand breaks caused by ionizing radiation and stalled replication forks. HR also repairs
strand gaps generated by the interaction of replication forks with unrepaired lesions797. M. genitalium has
a very reduced complement of recombination repair proteins. Recombination repair is modeled as an eight
step process:

1. Initiation: 5’-3’ exonuclease removes dNMPs from the 5’ ends of the strand break, leaving 3’ overhangs
of at least 8 bases526. No traditional initiation gene has been identified in M. genitalium. We assumed
that polI-like 5’-3’ exonuclease (PolA, MG262) is the M. genitalium HR initiator.

2. Strand exchange: RecA (MG339) catalyzes the formation of a Holliday junction between one of the
damaged 3’ overhands and the undamaged homologous chromosome.

3. Polymerization: DnaN (MG001) polymerizes DNA guided by the undamaged chromosome template.
4. Ligation: LigA (MG254) ligates the newly produced DNA.
5. Second strand exchange: RecA catalyzes the formation of a second Holliday junction.
6. Holliday junction migration: RuvA and RuvB widen the distance between the two strand cross over points

by moving the Holliday junctions to the preferred sequence 5’-[AT]TTN[GC]-3’532.
7. Resolution: RecU nicks the DNA at the cross over points, creating four single strand breaks.
8. Ligation: LigA ligates the four strand breaks.

Additionally, HR is believed to be critical for M. genitalium antigenic variation797.

Restriction/Modification
Organisms employ R/M systems to distinguish foreign from self DNA. These systems maintain self DNA
in a fully methylated configuration by methylating self DNA during chromosomal replication and cleaving
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unmethylated foreign DNA which has not been exposed to self DNA methylases. M. genitalium contains
a reduced R/M system consisting of the type I DNA recognition subunit EcoD (MG438) and the type
II methylase MunI (MG184). EcoD is the DNA binding domain of a type I multimeric methylation and
restriction complex which recognizes the sequence 5’-TCARTTC-3’. Because M. genitalium contains only the
DNA recognition subunit and not the methylation and restriction subunits, we do not model type I R/M.
MunI methylates the third base of both strands of the palindromic sequence 5’-CAATTG-3’, producing N6-
methyladenine. Because M. genitalium does not contain a separate type II endonuclease and because type
II R/M systems are often monomeric, we assumed MunI also has restriction activity.

Metabolism of Damaged Nucleo-bases, -sides, and -tides
The metabolic byproducts of DNA repair are salvaged by oligonucleases. However, the mechanism of M.
genitalium oligonucleotide salvage is not well understood. No gene has been identified which cleaves DNA
oligonucleotides. Candidate oligonucleotide salvage genes include pcrA (MG244), mgpA (MG190), and polA
(MG262). Of these genes, we assumed that mgpA is responsible oligonucleotide salvage. Individual damaged
nucleotides are further metabolized and exported. See Section 3.10 for further discussion.

Reaction Stoichiometry & Kinetics
The DNA specificity and geometry, stoichiometry, and kinetics of each DNA repair reaction were recon-
structed based on an extensive review of the primary literature72,82,84,96,195,487,488,511–516,525,526,532,538,542,652,

653,707,708,714,718,719,733,742,743,780. Table S3O lists the reconstructed stoichiometry and kinetics of each reac-
tion. Table S3D lists the reconstructed DNA specificity and geometry of each DNA repair reaction.

Computational Representation

Mathematical Model
This process models four DNA repair pathways and methylation and restriction of MunI R/M sites. Because
DNA repair is not well understood on the genomic level, this process makes several simplifying assumptions.
First, this process represents each step in DNA repair, methylation, and restriction as a separate reaction,
and assumes that each reaction is independent. Consequently, the rate of each reaction is determined only
by the configuration of the DNA. Second, this process assumes that the mean arrive rate, vi, of each reaction
i is independently limited by (1) the copy numbers of intracellular metabolites, mj , and (2) the DNA repair
enzyme copy numbers, ej . Based on these assumptions, the function form of vi is given by

vi = min

















metabolites
︷︸︸︷
mj

Ms
ji

j








,











enzymes
︷ ︸︸ ︷

poissonRand






ej

Kji
∆t

j
















,










(S12)

where Mji is the stoichiometry of metabolite j in reaction i, Ms = max (0, −M) is the negative part of M ,
Kji is the experimentally observed catalytic rate of enzyme j in reaction i, and ∆t = 1 s is the simulation
time step.

This process also stochastically models the binding of free DisA to DNA lesions.

Integration
The Chromosome state represents the copy number, modification status, and protein occupancy of each
chromosome. The Protein Monomer and Protein Complex states represent the free and DNA-bound copy
numbers of each protein species. The Metabolite state represents the copy number of each metabolite.

The DNA Damage process models spontaneous and chemical- and radiation-induced DNA modification. The
Metabolism process models DisA diadenylate cyclase activity and modified nucleotide catabolism.
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Initial Conditions
The Chromosome state initializes one chromosome, modified only at R/M sites. Several other processes
including Transcription initialize the protein occupancy of the chromosome.

Dynamic Computation
Algorithm S6 outlines the implementation of the DNA repair model.

Algorithm S6 | DNA repair simulation.

Repair, methylate, and restrict DNA
foreach reaction i in a random order do

foreach base j of strand k of chromosome l susceptible to reaction i in a random order do
if sufficient enzymatic and metabolic resources to support reaction i then

Execute reaction i
Update DNA configuration
Update metabolite copy numbers
Decrement enzymatic capacity

Bind DisA to damaged DNA
while there is free DisA and at least 1 DisA-accessible DNA lesion do

Let i, j, k ← represent the base, strand, and chromosome of a DisA-accessible DNA lesion
Bind DisA to base i of strand j of chromosome k

3.6 DNA Supercoiling

Biology

DNA naturally exists at a certain level of helicity, and this level of helical density is important for the DNA’s
stability, its ability to fit in the cell, and its ability to bind proteins693. DNA supercoiling can also have an
effect on RNA transcription rates as the helicity of the DNA may make given genes more or less accessible920.

Reconstruction

M. genitalium has three topoisomerase proteins: DNA gyrase, topoisomerase I, and topoisomerase IV.
These proteins transiently break a DNA strand to wind (topoisomerase I) or unwind (topoisomerase IV,
gyrase) the DNA. The opposing actions of the topoisomerase enzymes help maintain a stable level of DNA
helicity694. This is especially important during replication because while the replication loops progress along
the chromosome unwinding the DNA, the coils that previously existed in the DNA persist and accumulate
downstream of the replication loop. This over-coilied region is relieved by the actions of topoisomerases923.

All of the enzymes and parameters used in the DNA Supercoiling process class are described in List S11
and List S12.

List S11. Enzymes and complexes used in the DNA Supercoiling process class.

Enzyme/Complex Composition Gene Name(s) DNA Footprint (nt)

DNA gyrase (2) MG003, (2) MG004 gyrB, gyrA 140
Topoisomerase IV (2) MG203, (2) MG204 parE, parC 34
Topoisomerase I (1) MG122 topA 19
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List S12. Fixed parameters used in the DNA Supercoiling process class.

Parameter Value Symbol Source

Supercoiling
Bases per turn in relaxed DNA 10.5
Equilibrium superhelical density -0.06 σ0

Supercoils introduced by 1 gyrase strand passing event -2 δgyr [695]
Supercoils introduced by 1 topoisomerase I strand passing event 1 δtopI [502]
Supercoils introduced by 1 topoisomerase IV strand passing event -2 δtopIV [922]
Strand passing events rate per gyrase 1.2 s−1 kgyr [922]
Strand passing events rate per topoisomerase I 1 s−1 ktopI [502]
Strand passing events rate per topoisomerase IV 2.5 s−1 ktopIV [750]
ATP hydrolyzed per gyrase-catalyzed strand passing event 2 Egyr [751]
ATP hydrolyzed per topoisomerase I-catalyzed strand passing event 0 EtopI [922]
ATP hydrolyzed per topoisomerase IV-catalyzed strand passing event 2 EtopIV [922]
Superhelical denisty above which gyrase acts -0.1 Tgyr [922]
Superhelical denisty above which topoisomerase I acts 0 TtopI [502]
Superhelical density below which topoisomerase II acts 0 TtopIV [922]
Gyrase logistic function steapness parameter 100 Lgyr Fit
Topoisomerase I losgistic function steapness parameter -100 LtopI Fit
Number of bases in the chromosome 580076
Enzyme DNA footprints See List S11 [693–695]

Processivity
Mean time gyrase stays bound to the DNA 45 s [922]

Supercoiling’s Effect on Gene Expression
Slopes of linear fit of gyrase σ-gene expression data 42.8 [920]
Slopes of linear fit of topoisomerase I σ-gene expression data -7.4 [920]
Slopes of linear fit of topoisomerase IV σ-gene expression data 1.1 [920]
y-intercepts of linear fit of gyrase σ-gene expression data 3.57 [920]
y-intercepts of linear fit of topoisomerase I σ-gene expression data 0.56 [920]
y-intercepts of linear fit of topoisomerase IV σ-gene expression data 1.07 [920]
σ bounds for applying linear fit of gene expression data -0.08, 0.07 σlower, σupper Fit

Parameter Assignment
The logistic function parameters (Lgyr, LtopI) were fit such that the equilibrium superhelical density, σ0,
could be maintained while still allowing both gyrase and topoisomerase I to act at the equilibrium σ0.
Linear fits were approximated for gene expression data experimentally measured at varying σ. The upper
and lower bounds of σ for applying the linear fit of the σ-gene expression data (σlower, σupper) were set in
there range where a linear fit was appropriate for the data.

Computational Representation

The supercoiling of the DNA is quanitfied using a metric known as the DNA linking number, LK. The
LKrelaxed is defined as (# of base pairs)/10.5, where 10.5 is the number of bases per turn in a relaxed double
helix. The LKcurrent may deviate from the LKrelaxed due to the actions of topoisomerases and the progression
of replication. The ∆LK is defined as the difference between the current level of DNA supercoiling and the
relaxed level of DNA supercoiling. DNA gyrase and topoisomerase IV each require 2 ATP to induce 2
negative supercoils each time they act236. Topoisomerase IV induces positive supercoils relatively rarely
and its positive coiling activity is therefore not considered in our model236. Topoisomerase I acts to induce
positive supercoils502. Gyrase, topoisomerase IV, and topoisomerase I act at rates of 1.2, 2.5, and 1 strand
passing events per second respectively502,750,922.

The helicity of different regions on the DNA are modeled separately. Before replication, the entire chromo-
some is represented as one region. During replication, two additional regions are defined and accounted for:
the replicated DNA upstream of the replication loops on each of the two chromosomes (see Schematic S7).
During replication, the unreplicated region of DNA (region downstream of the two replication loops) is
shrinking in terms of number of bases (see Schematic S7), and as a result, the LKrelaxed decreases. However,
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as the DNA replicative helicases unwind the DNA they push the existing coils into this region, and there
are more coils for fewer bases. This over-coiled region has a LKcurrent that is too high, and must be brought
down towards the LKrelaxed. Gyrases and topoisomerases help bring the DNA back to the relaxed state by
inducing negative supercoils. It is assumed that the newly replicated DNA is made in the relaxed state:
LKcurrent = LKrelaxed, but the supercoiling enzymes act in this region as well, helping maintain equilibrium
helicity. It is essential that the ∆LK in the region downstream of the replication loops be brought down to
0 by the end of replication. After replication is complete, only the two replicated regions exist (2 separate
chromosomes). While in general, DNA supercoiling involves the regions described above, DNA damage and
other processes can cause gaps in the DNA that result in additional regions.

oriC
oriC

Replicated

Region 1

Replicated

Region 2

Unreplicated

Region 

terC

Schematic S7. Regions of varying superhelical density on the replicating chromosome.

The superhelical density of a DNA region, σ, is defined as the (LKcurrent − LKrelaxed)/LKrelaxed. Exper-
imentally it has been shown that the steady state superhelical density, σ0, is -0.06923. The activity of
topoisomerases depends on the σ of the DNA922. Although there is likely a more complex relationship be-
tween the DNA supercoiling and enzyme activity, enzyme activity is modeled as a set of step functions and
logistic functions (see Schematic S8). It is known that the topoisomerases are unable to act beyond certain σ
thersholds (gyrase can only act above Tgyr, topoisomerase IV can only act above TtopIV, and topoisomerase I
can only act below TtopI), so the activities of the topoisomerases outside of the thresholds are set to zero922.
However, the exact enzyme activity profiles within these bounds is unknown. Fitting a logistic function
within the thresholds of gyrase and topoisomerase I allows the maintainance of σ approximately near σ0.
Topoisomerase IV is not active near σ0 and therefore acts more rarely than the other topoisomerases. As a
result, there was no need to assume a logistic profile for its activity. The proportion of full activity for each
topoisomerase was obtained from the profiles. This proportion was multiplied by the maximal activity to
determine the number of strand passing events for each topoisomerase for a given timestep.
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Topoisomerase I Gyrase Topoisomerase IV

σ

Full Activity

No Activity
000 -0.06-0.1-0.06

Schematic S8. Enzyme activity profiles.

Further, the model keeps track of enzyme processivity, or how long an enzyme can remain bound to the
DNA and continue to act. Topoisomerase IV and DNA gyrase are highly processive and may perform several
strand-passing events before falling off of the DNA. Topoisomerase I is not highly processive, it acts on the
DNA and falls back off right away.

Finally, it has been shown that there is an effect of supercoiling on transcription rates, and experimental data
in E. coli compares superhelical density to fold change of gene expression920. While expression fold changes
at different superhelical densities have been calculated for many E. coli genes, none have been measured for
M. genitalium, and therefore only the effects of supercoiling on the expression of the 5 supercoiling genes
gyrB, gyrA, parC, parE, and topA, are included. These genes exist in 3 transcription units. Peter et al. have
E. coli data for the fold change of expression (microarray data) of each of these genes at various values of σ
(ranging from σ -0.06 to 0.02) at various experimental conditions920. Despite the large variation of data in
a narrow σ range, we have decided to use linear fits of the data, as they fit the general trends in the data:
increased helicity leads to decreased or increased gene expression. The linear fits are constrained such that
the fold change is 1, at equilibrium σ, -0.06. The linear fits are extrapolated between the σ range of -0.08 to
0.07, where all the fold changes remain above 0. Outside of this range, a constant fold change of expression
is estimated. While there is a separate set of data for each of the 5 genes, the Transcription process class
requires a single probability of transcription for each transcription unit. The data for the first gene in each
transcription unit is used (gyrB and parE). topA is transcribed with genes that are not supercoiling related.
The expression of those genes (MG119, MG120, MG121) is also affected by supercoiling. The general trend
is that gyrase and topoisomerase IV will have an increased expression when σ is higher than the equilibrium,
and that topoisomerase I will have a higher expression when σ is lower than the equilibrium. The profiles of
fold change in promoter binding probabilities for varying σ can be seen in Schematic S9.
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Schematic S9. Fold change in the probability of RNA polymerase-gene promoter binding for three transcription
units.
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Integration

List S13. State classes connected to the DNA Supercoiling process class.

Connected State Read from state Written to state

Chromosome • Accessible positions on the DNA for
topoisomerases to bind

• Positions where topoisomerases are bound

• Start positions of transcription units affected by
supercoiling

• Fold change of transcription unit-RNA
polymerase binding probabilities

• Linking number, length, and start sites of
regions of DNA (considered independently in
terms of superhelical density)

• Updated linking number of regions of DNA

Initial Conditions
At the start of the simulation, the entire chromosome exists in a single double stranded region. The linking
number of this region is set such that the superhelical density is at equilibrium, -0.06. All of the existing
gyrase are bound to randomly designated positions around the chromosome. The transcription probabilities
of the affected transcription units are adjusted according to the superhelical density.

Dynamic Computation
The activities of DNA gyrase, topoisomerase I, and topoisomerase IV, and the progress of replication loops
can all affect the linking number (and superhelical density) of the DNA. The DNA Supercoiling process
class, evaluates the effects of all the free topoisomerases in random order, determines what regions they
can bind in, and randomly binds them to large enough open positions on the DNA. The linking number is
then adjusted based on the actions of all the bound enzymes, and the usage of ATP is determined. The
processivity of gyrase and topoisomerase IV are also tracked so that they can be unbound from the DNA
when appropriate.

Algorithm
1. Determine regions of DNA
The superhelicity of the chromosome is tracked separately for different each double stranded region. The
exact base positions and length in base pairs, l, of each region is determined based on the progress of
replication and positions of breaks in the DNA. If there are no breaks in the DNA, the following DNA
regions exist:

Before Replication:

• Region 1: Unreplicated DNA

During Replication:

• Region 1: Replicated DNA, Chromosome 1 (upstream of replication loops, increasing in length over time)
• Region 2: Replicated DNA, Chromosome 2 (upstream of replication loops, increasing in length over time)
• Region 3: Unreplicated DNA (downstream of replication loops, decreasing in length over time)

After Replication:

• Region 1: Replicated DNA, Chromosome 1
• Region 2: Replicated DNA, Chromosome 2

2. Calculate σ at each DNA region
The enzymes may act on the chromosome affecting the LKcurrent, and experimentally it has been shown that
the enzymes would obtain an LKcurrent such that the steady state σ = −0.06923. For each region of DNA,
the LKcurrent is stored across timesteps. The superhelical density, σ, of each region is calculated using the
LKcurrentas follows:
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LKrelaxed =
l

10.5

σ =
LKcurrent − LKrelaxed

LKrelaxed

3. Determine which topoisomerases can act in which DNA regions
Gyrase, topoisomerase I, and topoisomerase IV can only act on the DNA if the superhelical density (σ) is
within a certain range. A combination of step functions and logistic functions were used to determine the
activity of the enzymes for a given σ. The activity profiles can be seen in Schematic S8. An enzyme can act
in a DNA region if its activity profile is greater than zero at the current σ.

4. Unbind Processive Enzymes
Topoisomerase IV and DNA gyrase are processive enzymes meaning that they may perform several strand-
passing events before falling off of the DNA. Topoisomerase I is not highly processive, it acts on the DNA
and immediately dissociates922.

Topoisomerase IV is highly processive and will stay bound to the DNA as long as σ is greater than zero.

• For each region, if σ ≤ 0,
• unbind all Topoisomerase IVs

Gyrase will stay bound to the DNA for about 30-60 s. Gyrase processivity is modeled as a Poisson distribution
with λ = 45 s.

• For each bound gyrase,
• if rand < 1/λ, unbind gyrase.

5. Bind Enzymes to Each Region
Topoisomerases may bind to the DNA without acting on the DNA. Therefore, binding is only limited by the
availability of free topoisomerases and space on the DNA.

• Randomize the order of binding each of the three topoisomerases, to fairly allocate space on the chromo-
some

• For each of the three topoisomerases i,
• For each region j where the σ permits topoisomerase i binding,

• Stochastically bind topoisomerases i in region j, up to:

max

{

Available positions in DNA regionj of length > footprinti

Number of free topoisomerasei

6. Calculate new Linking Numbers and Perform Metabolite Accounting
The DNA linking number is affected by the bound topoisomerases, up to the limits of available resources
and kinetic rates.

• For each DNA region j,
• For each of the three topoisomerases i that is able to bind region j given σ,

• Count the number of topoisomerase i bound in region j (Cij)
• Use the logistic/step functions (See Schematic S8) to determine the Probability (Pij) of topoisomerase

i acting in region j at the current σ
• Determine the number of strand passing events (Sij) for enzyme i in region j, given the kinetic rate

of topoisomerasei (ki) and the energy requirement per strand passing event for topoisomerase i (Ei):

Sij = min







round(CijkiPij)
available ATP

Ei

available H2O
Ei
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• Calculate the new linking number (LKcurrent) for region j, given topoisomerase i’s effect on the link-
ing number (δi):

LKcurrent = LKcurrent + δiSij

• Account for used metabolites, ATP and H2O, and produced metabolites, ADP, Pi, and H+

• Unbind all topoisomerase I, a non-processive enzyme

7. Determine the effects of supercoiling on transcription
Supercoiling effects the expression of the genes: gyrB, gyrA, parC, parE, and topA, which lie in three
transcription units. The DNA Supercoiling process calculates the fold change in the probability of an RNA
polymerase binding to the promoters of these transcription units.

• For each topoisomerase transcription unit i,
• Find the double stranded region where transcription unit i lies and the σ of this region
• Use the fold change profiles (See Schematic S9) to determine the fold change in probability of polymerase

binding to transcription unit i

3.7 FtsZ Polymerization

Biology

Cell division in many bacterial species requires the assembly of an FtsZ ring at the cell membrane around
the midplane of the cell217. FtsZ is a homologue of eukaryotic tubulin that assembles into long polymers.
These polymers are typically localized to the center of the cell, forming a membrane-bound ring217. FtsZ
is a GTPase, and GTP hydrolysis to GDP causes the FtsZ filaments to bend. This bending serves as
one of the forces enabling cell division611. (For more information about cell division, see the Cytokinesis

process class.) GTP only hydrolyzes to GDP at an active site formed at the interface of two FtsZ molecules,
meaning that FtsZ polymerization is required for GTPase activity611. This process addresses the assembly
FtsZ monomers into long polymers.

Reconstruction

This process addresses the assembly FtsZ (MG224) monomers into long polymers.

All of the parameters used in the FtsZ Polymerization process class are described in List S14.

List S14. Fixed parameters used in the FtsZPolymerization process class.

Parameter Value Symbol Source

Maximum length of an FtsZ filament 9 subunits n [611]
Rate of forward activation of FtsZ by GTP 1.1 s−1 kact1 [200]
Rate of reverse activation of FtsZ by GTP 0.01 s−1 kact2 [200]
Rate of forward exchange of FtsZ-GTP from FtsZ-GDP 1× 104 M−1 s−1 kex1 [164]
Rate of reverse exchange of FtsZ-GTP to FtsZ-GDP 5× 103 M−1s−1 kex2 [164]
Rate of forward nucleation of FtsZ-GTP to form a dimer 4.2× 106 M−1 s−1 knuc1 [164, 200]
Rate of reverse nucleation of FtsZ-GTP to dissociate a dimer 40 s−1 knuc2 [164, 200]
Rates of forward elongation of FtsZ-GTP into polymers of length 3 to 9 5.1× 106 M−1 s−1 kel1 [164]
Rates of reverse elongation of FtsZ-GTP from polymers of length 3 to 9 2.9 s−1 kel2 [164]

Computational Representation

Typically, FtsZ polymers of variable length are able to bind the cell membrane to form contractile rings.
The mean filament length in E. coli has been measured to be 100 nm (23 FtsZ monomers)217. The minimum
fragment length observed in C. crescentus is 40 nm (9 FtsZ monomers)611. Being such a small organism,
we hypothesize that M.genitalium would have filaments on the lower end of what is sufficient for contractile
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force generation. For simplicity of calculating the Cytokinesis progress, we use polymers of a fixed length,
9 subunits611.

This process class simulates polymerization of FtsZ-GTP monomers to 9mers. We use a differential equation
model developed by Surovtsev et al. to assemble the polymers164. During polymerization, FtsZ-GTP can
exist in any intermediate state: 1mer, 2mer, ... 8mer, 9mer. The set of differential equations models the
following reactions:

Activation of FtsZ monomers (F ) to FtsZ-GTP (FT )
Deactivation of FtsZ-GTP (FT ) to FtsZ (F )
Exchange of FtsZ-GDP (FD) to FtsZ-GTP (FT )
Reverse exchange of FtsZ-GTP (FT ) to FtsZ-GDP (FD)
Nucleation of two FtsZ-GTP molecules (FT ) to form a dimer (FT 2)
Reverse nucleation of a dimer (FT 2) into two FtsZ-GTPs (FT )
Polymer elongation adding an FtsZ-GTP (FT ) to an existing polymer of length 2-8 subunits (FT 2- FT 8)
Reverse elongation removing an FtsZ-GTP (FT ) from an existing polymer of length 3-9 subunits (FT 3-
FT 9)

Integration
The count full-length activated FtsZ (9mer) filaments is used by the Cytokinesis process class for cell
pinching.

Initial Conditions
The FtsZ polymerization differential equations are run a number of times (up to 50 iterations) before the
simulation starts, to ensure starting at a steady state distribution of polymer lengths. Iterations are run until
the change in the solution across consecutive iterations is less than a set tolerance (0.2% of the enzymatic
counts).

Dynamic Computation
FtsZ can exist in one of multiple states: inactivated monomer, activated monomer (GTP bound), nucleated
(dimer of two activated FtsZ molecules), elongated polymer of three or more GTP bound FtsZ molecules.
The hydrolyzed FtsZ polymers are only considered during cell membrane pinching in the Cytokinesis

process class. The FtsZ molecules can move to states of higher and lower polymerization at rates obtained
from Chen et al. and Surovtsev et al.164,200.

FtsZ polymerization is modeled using a set of differential equations modified from that described in Surovtsev
et al., involving the activation, nucleation, and elongation of FtsZ polymers164. The main modifications were
that the equations were simplified to not include annealing and cyclization of FtsZ polymers.

The following differential equation model is evaluated at each timestep:

dF

dt
= kact2FT − kact1F

dFD

dt
= kex2FT [GDP] − kex1FD [GTP]

dFT

dt
= kact1F − kact2FT + kex1FD [GTP] − kex2FT [GDP] − 2knuc1F 2

T + · · ·

+ · · · 2knuc2FT 2 − kel1FT

(
8∑

i=2

FT i

)

+ kel2

(
9∑

i=3

FT i

)

dFT 2

dt
= knuc1F 2

T − knuc2FT 2 − kel1FT FT 2 + kel2FT 3

dFT i

dt
= kel1FT FT i−1 − kel2FT i − kel1FT FT i + kel2FT i+1, for i ∈ 3..8

dFT 9

dt
= kel1FT FT 8 − kel2FT 9
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Solving these equations results in a real-value distribution of monomers and filament lengths at each timestep.
The model framework requires the storage of the count of each molecular entity rather than the concentra-
tion. This process class discretizes the distribution at each time step for compatibility with the rest of the
simulation.

3.8 Host Interaction

Biology

M. genitalium is a common extracellular urogenital epithelial parasite. Although M. genitalium is estimated
to colonize the urogenital tract of 3% of all women, most infections are asymptomatic, and most researchers
regard M. genitalium as an “ideal parasite” which lives in harmony with its human host313. Only a small
fraction of M. genitalium infections manifest clinically as urethritis, cervicitis, or pelvic inflammatory disease.

Reconstruction

Although M. genitalium is a common urogenital pathogen, the pathophysiology of M. genitalium is only
beginning to be elucidated. Razin and colleagues have studied the Mycoplasma terminal organelle, and
have shown that several lipoproteins (MG191, MG192, MG217, MG318, and MG386) are involved in host
adhesion and activation of the host immune response88,313. Shimizu et al. and McGown et al. have identified
3 additional lipoproteins – MG149, MG309, and MG412 – which activate the host immune response by
stimulating Toll-like (TLR) receptors 1, 2, and 6, which in turn activate the host transcriptional regulator
NF-κB194,842,844. Additionally, Duffy et al. have reported that MG075 is immunoreactive176. Razin and
colleagues have suggested that Mycoplasma also stimulates the host immune response by secreting hydrogen
peroxide and superoxide radicals which cause membrane oxidative damage and trigger inflammation313.

Computational Representation

Mathematical Model
Because the interaction between M. genitalium and its human host is not well understood, this process
implements a Boolean model of the effect of the M. genitalium terminal organelle and accessory lipoproteins
on six properties of the host human urogenital epithelium:

• Adherence – Mycoplasma adheres to its host if its terminal organelle is properly formed and all of its
adhesion proteins are expressed.

• TLR 1, 2, and 6 activation – Host TLR 1 is activated if the bacterium is adherent and MG149 or MG412
is expressed. TLR 2 is activated if the bacterium is adherent and MG149, MG309, or MG412 is expressed.
TLR 6 is activated if the bacterium is adherent and MG309 is expressed.

• NF-κB activation – NF-κB is activated if TLRs 2 and 1 or 6 are active.
• Inflammatory response activation – The host inflammatory response is activated if either NF-κB is active

or the bacterium is adherent and at least one of the MG075, MG149, MG309, or MG412 antigens is
expressed.

Integration
The Host state uses six Boolean variables to represent the status of the human urogenital epithelium. The
Protein Monomer state represents the copy number of each terminal organelle and accessory lipoprotein
synthesized and matured by the protein maturation pathway (see Section 2.10) and translocated into the
terminal organelle (see Terminal Organelle Assembly process).

Initial Conditions
After the Protein Monomer and Terminal Organelle Assembly states initialize the copy number of each
protein, the Host state is initialized to the steady-state of the Host Interaction Boolean model. Because
the Boolean model is acyclic, the model converges in one iteration.
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Dynamic Computation
At each time step, this process evaluates the six Boolean rules outlined in Algorithm S7 until convergence.
Because the Boolean rules are acyclic, the model converges in one iteration.

Algorithm S7 | Host-parasite interaction simulation.

adherent ← organelle proteins MG191, MG192, MG217, MG218, MG312, MG317, MG318, and MG386 expressed
tlr1 ← adherent AND (lipoproteins MG149 and MG412 expressed)
tlr2 ← adherent AND (lipoproteins MG309 expressed)
tlr6 ← adherent AND (lipoproteins MG149, MG309, and MG412 expressed)
nfkb ← tlr2 AND (tlr1 OR tlr6)
inflammation ← nfkb OR (adherent AND MG075, MG149, MG309, or MG412 antigen expressed)

3.9 Macromolecular Complexation

Biology

Many enzymes are functional as multimeric proteins or ribonucleoproteins. Macromolecular complexes are
believed to form quickly (kon ≈ 103 − 106 M−1 s−1), energetically favorably (∆G ≈ −12 kcal mol−1), and
stably (KD ≈ 10−4 − 10−10 M). This process models the formation of all macromolecular complexes except
the 30S and 50S ribosomal particles, the 70S ribosome, the FtsZ ring, and the oriC DnaA complex. The
Ribosome Assembly, Translation, FtsZ Polymerization, and Replication Initiation processes model
the more complex and better characterized formation of these complexes.

Reconstruction

An extensive review of the primary literature and several databases (see Table S3AI) suggested that M.
genitalium forms 201 distinct macromolecular complexes containing 269 protein and 5 RNA gene prod-
ucts6,96,386,570. Table S3N lists the reconstructed composition of each M. genitalium macromolecular com-
plex.

Computational Representation

Mathematical Model
This process models the formation of macromolecular complexes as a stochastic process. Because macro-
molecular complexation is poorly understood, this process makes several simplifying assumptions. First, this
process assumes that macromolecular complexes form spontaneously, uncoupled to other chemical reactions
and without assistance from chaperones or other proteins. The contribution of chaperones to the three-
dimensional folding of individual protein monomers is modeled by the Protein Folding process. Second,
this process assumes that macromolecular complexation is fast and proceeds to completion within the 1 s
time step of the simulation. Third, this process makes the simplifying assumption that each macromolecule
complex forms with the same specific rate. Fourth, this process assumes that complexes form by simultane-
ous collision of each subunit. Together these assumptions imply that the relative formation rate, ri of each
complex, i, is described by mass-action kinetics,

ri =
∏

j

(mj

V

)Sij

, (S13)

where mj is the copy number of gene product j, V is the cell volume, and Sij is the stoichiometry of subunit
j in complex i. This process models complex formation by (1) calculating the relative formation rate of
each complex, ri, (2) randomly forming one complex according to a multinomial distribution defined by
the relative formation rates, (3) updating the copy numbers of RNA and protein subunits and complexes,
and (4) repeating until insufficient protein and RNA subunits are available to form additional complexes.
Importantly, this algorithm resolves the order of macromolecular complex formation before several subunits
participate in multiple complexes.
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Integration
The Rna and Protein Monomer states represent the copy number of each RNA and protein subunit synthe-
sized by the RNA and protein synthesis pathways (see Section 2.12 and 2.10). The Protein Complex state
represents the copy number of each complex, ci. The Geometry state represents the cell volume.

Initial Conditions
After the cell volume and the total copy number of each RNA and protein gene product are initialized (see
Geometry, Rna, and Protein Monomer states), the copy number of each macromolecular complex is initialized
by iteratively evaluating the dynamic model until convergence, or more specifically until insufficient subunits
are available to form additional complexes.

Dynamic Computation
Algorithm S8 outlines the implementation of the macromolecular complexation model.

Algorithm S8 | Macromolecular complexation simulation. See Mathematical Model above for mathematical notation.

repeat
foreach protein complex i do

Calculate relative formation rate, ri ←
∏

j

(mj

V

)Sij

Select a complex k to form according to multinomialRand(1, ri/
∑

i
ri)

Increment copy number of complex k, ck ← ck + 1
Decrement copy numbers of complex k subunits, mj ← mj − Sk,j

until Insufficient subunits to form additional complexes

3.10 Metabolism

Biology

To grow and replicate cells transform external nutrients into cellular mass. The first step in this process is to
import nutrients from the external environment and metabolize those nutrients primarily into macromolecule
building blocks. Furthermore, cells must recycle and/or export byproducts. This process models the import
of extracellular nutrients and their conversion into macromolecule building blocks.

M. genitalium is believed to have adapted to the rich environment provided by its host human urogenital
epithelium by massive degenerative evolution from low G+C content Gram positive bacteria, eliminating
non-essential genes involved in oxidative phosphorylation, ATP synthesis via the pentose phosphate pathway,
and amino acid, nucleotide, lipid, and cofactor biosynthesis57,881,883. Several studies have also shown that
M. genitalium has evolved metabolic enzymes with relaxed substrate specificity444,596,798,882. M. genitalium
is generally cultured on SP-4 medium, a complex and undefined medium based on CMRL-1066565.

Reconstruction

Extracellular Medium
The in silico medium was based on SP-4 medium with supplementary metabolites added to facilitate in
silico growth (see Table S3BI). First, the chemical composition of SP-4 medium was estimated from the
characterized composition of each medium component (see Section 2.7 and Table S3BI). Second, additional
metabolites were added until the flux-balance analysis (FBA) metabolic model predicted non-zero growth.
Finally, the concentrations of several metabolites were increased to support sustained cell growth.

Cellular Composition
The in silico chemical composition of M. genitalium was based on its reconstructed cellular mass composition
(see Table S3AR-S3BG), and fit to match the 27 other modeled cellular processes (see Section 2.5 and 1.3).
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Energy
In addition to metabolic building blocks such as nucleic and amino acids, cellular growth and maintenance
requires energy. The in silico M. genitalium growth-associated maintenance energy (GAM) was based on
the characterized energetic requirements of E. coli558.

Reactions
The M. genitalium metabolic network illustrated in Figure S1B was reconstructed as previously described884

with guidance from the M. genitalium FBA metabolic model recently reported by Suthers et al.610. Briefly,
the metabolic network was reconstructed based on homology to previously modeled organisms558 and an
extensive review of the primary literature. In particular, the metabolic network was reconstructed to support
the metabolic demands of all 27 other modeled cellular processes. Table S3O lists the reconstructed metabolic
reactions.

Kinetics
Reaction kinetics were curated primarily from the proteomic databases SABIO-RK100, BRENDA570, and
BioCyc6 (see Table S3AL). The maximum exchange rates of carbon- and non-carbon-containing metabolites
were set to 12 and 20 mmol gDCW−1 h−1, comparable to recent FBA models of M. genitalium610 and E.
coli558 metabolism.

Computational Representation

Mathematical Model
This process models several critical cellular functions including (1) the uptake of external nutrients, (2) the
synthesis of the metabolic building blocks and intermediate energy carriers, (3) lipid assembly, membrane
insertion, and maturation, and (4) the recycling and export of the metabolic byproducts of other cellular
processes. This process makes two key assumptions and uses FBA686,687 to model M. genitalium metabolism.
In particular, this process calculates the flux, v, of each metabolic reaction. First, this process assumes that
the internal dynamics of the metabolome are fast compared to the 1 s time step of the M. genitalium
simulation, or equivalently, that the metabolic network can be considered to be at steady-state on the 1 s
simulation time scale. Second, this process assumes that the M. genitalium metabolic network maximizes
cellular metabolite production given the available extracellular nutrients and metabolic enzymes. See Orth
et al.687 for further discussion of the assumptions and mathematical formalism of FBA.

To be compatible with the 27 other modeled cellular processes, the metabolic sub-model has four key differ-
ences from most FBA metabolic models. First, the metabolic network, S, and the cellular mass production
pseudoreaction are expanded to produce all of the metabolites required by the 27 other processes, where Sij

is the stoichiometry of metabolite i in reaction j and Sib is the stoichiometry of metabolite i in the cellular
mass production pseudoreaction, b. Second, internal exchange reactions are added to recycle the metabolic
byproducts of the other processes (e.g. recycle ADP and Pi to ATP), that is to exchange metabolites be-
tween the cytosol and the metabolic network. Third, the optimization objective, g, is expanded to include
the construction of new cell mass as well as the recycling and export of the metabolic byproducts of the 27
other processes. g represents the relative fitness gains of intracellular metabolite recycling and novel cell mass
production, that is g represents how heavily the metabolic network favors novel cell mass production over
metabolite recycling. g was set assuming that the production/exchange of each molecule contributes equally
to cellular fitness. Specifically g was set such that the production/exchange of each individual molecule
is weighted equally. Fourth, the flux bounds, vl are vu, are functions of the cell dry mass, m, the copy
number and maximum exchange rate of each extracellular metabolite, nm and k±ex, the thermodynamics,
∆E, of each reaction, and the copy number and maximum catalytic rate of each metabolic enzyme, ne and
k±cat. Specifically, external exchange flux bounds are functions of the cell dry mass and the extracellular
copy numbers and maximum exchange rates of the exchanged metabolites; internal exchange flux bounds are
functions of the intracellular copy numbers of the exchanged metabolites; transport and chemical reaction
flux bounds are functions of the copy numbers and kinetics of the enzymes and the reaction thermodynam-
ics. Fifth, because the average energy used by the 27 other cellular processes is significantly less than the
observed GAM, this process also represents the turnover of the otherwise unmodeled energy consumption.
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Schematic S10 and Eq. S14 summarize the FBA metabolic model.
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Schematic S10. Metabolite perspective of the flux-balance analysis (FBA) metabolic model. a, Conventional FBA
metabolic model. b, Integrated FBA metabolic model.

v∗ = argmax
v

g⊺v subject to (S14)

Sv = 0 and

vl ≤v ≤ vu where

gi =







∑

j 6=bm Sj,b pseudoreaction i = b represents the synthesis of biomass (metabolite bm)

−1 reaction i represents an internal exchange

0 otherwise

vl = fl (m, nm, k−ex, −∆E, ne, k−cat)

vu = fu (m, nm, k−ex, ∆E, ne, k−cat)

Algorithm S9 describes the functional forms of fl and fu in detail.

Integration
The Metabolism process imports extracellular nutrients and converts them into the building blocks of macro-
molecular synthesis. The Metabolite state represents both the extracellular and cellular copy numbers of
each metabolite. The rates of extracellular nutrient exchange are functions of the total cell mass represented
by the Mass state and the extracellular metabolite copy numbers. Cytosolic and membrane metabolite copy
numbers limit the rates of internal exchange/recycling. The rates of chemical and transport reactions are
limited by the copy numbers and kinetics of metabolic enzymes synthesized by the protein synthesis and
maturation pathway (see Section 2.10) and represented by the Protein Monomer and Protein Complex

states. The Metabolic Reaction state records the calculated flux of each metabolic reaction. The Simu-

lation object allocates metabolites produced by the Metabolism process to the other 27 cellular processes
to support several functions including DNA, RNA, and protein synthesis and maturation. Additionally, the
other 27 processes generate byproducts which the Metabolism process either recycles or exports from the
cell.

Initial Conditions
The Metabolite state initializes the copy number of each metabolite. The Protein Monomer state initializes
the total copy number of each protein monomer. The Macromolecular Complexation process initializes the
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copy number of each macromolecular complex. This process initializes the cellular growth rate and reaction
fluxes to the steady-state of the metabolic network using the same FBA simulation used at each time step.

Dynamic Computation
Algorithm S9 outlines the implementation of the FBA metabolic model.

Fitting
The metabolic model was fit to match the observed M. genitalium mass doubling time, τ = 9 h. Specifically,
metabolic enzyme expression was fit using a modified version of minimization of metabolic adjustment
(MOMA)876. Let µo, vo be the FBA solution. Let µ∗ = ln 2/τ be the target growth rate. First, find a
neighboring flux distribution consistent with the target growth rate. If µ∗ > µo find a neighboring flux
distribution within the current flux bounds vl and vu,

v∗ = argmax
v

∣
∣
∣
∣

v − vo

vo

∣
∣
∣
∣

subject to (S15)

Sv = 0

vl ≤v ≤ vu

vb = µ∗.

If µ∗ < µo find a neighboring flux distribution by relaxing the flux bounds by µ∗/µo,

v∗ = argmax
v

∣
∣
∣
∣

v − vo

vo

∣
∣
∣
∣

subject to (S16)

Sv = 0

vl
µ∗

µo
≤v ≤ vu

µ∗

µo

vb = µ∗.

Second, invert fl and fu to calculate a set of enzyme expression consistent with v∗,

nm = max
(
f−1

l (v∗) , f−1
u (v∗)

)
. (S17)

The upper and lower bound of the expression of each enzyme consistent with the target growth rate was
calculated using a similar procedure.
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Algorithm S9 | Metabolism FBA simulation. See Mathematical Model section above for definition of the mathematical

notation.

Calculate flux bounds
begin

Initialize bounds: vl,i ← − inf, vu,i ← + inf
foreach thermodynamically irreversible reaction i do

Constrain reverse flux to zero: vl,i ← 0

foreach chemically catalyzed reaction i do
j ← index of enzyme which catalyzes reaction i
if k−,i is known then

bound flux by enzyme kinetics and expression: vl,i ← max (vli
, k−cat,ine,j)

else bound flux by enzyme expression: vl,i ← vl,i · (ne,j > 0)
if k+,i is known then

bound flux by enzyme kinetics and expression: vu,i ← min (vui
, k+cat,ine,j)

else bound flux by enzyme expression: vu,i ← vu,i · (ne,j > 0)

foreach chemical reaction i do
foreach protein substrate j of reaction i do

if protein substrate j is not expressed then constrain flux to zero: vl,i ← 0, vu,i ← 0

foreach internal exchange reaction i do
j ← index of metabolite exchanged by reaction i
Bound internal metabolite exchange by copy number: vl,i ← max (vli

,−nm,j)

foreach external exchange reaction i do
j ← index of metabolite exchanged by reaction i
Bound external metabolite exchange by copy number and maximum exchange rate: vl,i ← max (vli

, mk−ex,i),
vu,i ← min (vui

, mk+ex,i, nm,j)

Calculate the growth rate and flux of each reaction
begin

v∗ ← argmax
v

µ = vb subject to Sv = 0 and vl≤v≤vu

µ∗ ← v∗

b

Update the copy number of each metabolite species
begin

foreach extracellular metabolite i do
j ← index of reaction which exchanges metabolite i
nm,i ← nm,i + v∗

j

foreach intracellular metabolite i do
j ← index of reaction which exchanges/recycle metabolite i
nm,i ← nm,i + v∗

j

foreach metabolic objective component i do
nm,i ← nm,i − Si,bµ∗

Turnover extra energy produced beyond the demands of the 27 other modeled cellular processes,
∆GAM = GAM − used energy
nm,AT P ← nm,AT P −∆GAMµ∗

nm,ADP ← nm,ADP + ∆GAMµ∗

nm,P i ← nm,P i + ∆GAMµ∗

nm,H2O ← nm,H20 −∆GAMµ∗

nm,H+ ← nm,H+ + ∆GAMµ∗
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3.11 Protein Activation

Biology

The activity of mature protein monomers and complexes is not fixed, but rather can be modulated by small
molecules, DNA, RNA, and other proteins, as well as by temperature and pH. Furthermore, cells often
purposefully modulate protein activity to respond to external signals and maintain homeostasis.

Reconstruction

Protein chemical regulation was reconstructed based on extensive review of the primary literature and
several databases, with particular emphasis on antibiotics (see Table S3Q and S3AQ). The reconstructed
protein chemical regulation network contains 16 metabolites, three Boolean-valued pseudometabolites or
stimuli, and temperature which regulate 10 proteins including four transcription factors, topoisomerases II
and IV, the 30S and 50S ribosomal particles. The 10 putative chemically regulated proteins are critical for
transcription, supercoiling, and translation. The effects of physical properties such as temperature and pH on
protein activity were curated from BRENDA570, BioCyc6, and UniProt96 (see Table S3AO and S3AP). The
prosthetic groups and coenzymes required for maturation and catalysis were also curated (see Table S3AM).

Computational Representation

Mathematical Model
Because the exact effects of small molecules, temperature, and pH on the functional activity of proteins
are not well characterized, this process implements a Boolean model of their effects on the functional state
– enzymatically competent or incompetent – of mature proteins. Less well characterized effects of other
physical properties such as pH are not modeled. The functional state, Ii, of every copy of protein species i
is governed by a single independent Boolean function, fi (see Table S3Q),

Ii = fi

(
~m

V
,~s, T

)

, (S18)

where mj is the concentration of metabolite j, sj is the value of stimulus j, and T is the temperature.
Proteins with no known chemical regulation were assumed to be constitutively competent.

The Protein Folding process separately models the role of chaperones in protein folding and accounts for
the small molecule prosthetic groups required for protein folding. Several processes including Metabolism

model the coenzymes required for catalytic activity.

Integration
The Stimulus state represents the value of each pseudometabolite and temperature. The Metabolite state
represents the copy number of each metabolite. The Geometry state represents the cell volume. The Pro-

tein Monomer and Protein Complex states represent the competent and incompetent copy numbers of each
protein species. Proteins regulated by this process are synthesized and matured by several processes (see
Section 2.10).

Initial Conditions
After the temperature, cell volume, pseudometabolite values, and metabolite and total protein copy numbers
are initialized, the competency state of each of the regulated proteins is initialized to the steady state of the
regulatory network. Because the regulatory network is acyclic, the network converges in one iteration.

Dynamic Computation
Algorithm S10 outlines the implementation of the protein activation model.
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Algorithm S10 | Protein activation simulation.

Input: pc
i competent copy number of protein i

Input: pi
i incompetent copy number of protein i

foreach regulated protein i do
if regulatory rule fi(~m/V,~s, T ) then

Mark all copies of protein i competent

pc
i = pc

i + pi
i

pi
i = 0

else
Mark all copies of protein i incompetent

pi
i = pi

i + pc
i

pc
i = 0

3.12 Protein Decay

Biology

Protein degradation serves two critically important functions. First, protein degradation eliminates abnormal
and potentially toxic proteins including prematurely aborted polypeptides tagged with SsrA degradation
signals, and salvages their valuable metabolic resources to support protein synthesis. Second, degradation
controls protein expression, enabling cells to direct valuable amino acids away from ineffective or even harmful
proteins toward productive proteins, regulate protein activity, and respond to external signals. Tobias et
al. have shown that the degradation rates of E. coli proteins are correlated with their N-terminal residue,
suggesting that cells target proteins for degradation by manipulating their N-termini586. This relationship
is known as the N-end rule.

Protein refolding is an efficient mechanism for eliminating abnormally folded proteins, requiring less energy
than protein degradation and avoiding the large cost of resynthesis. The M. genitalium chromosome contains
one protein chaperone – the cytosol-localized and ATP-dependent protease ClpB (MG355) – dedicated to
protein refolding14,182. The kinetics and energetics of protein refolding are not well characterized.

This process models the degradation of protein monomers, macromolecular complexes, cleaved signal se-
quences, and prematurely aborted polypeptides as well as the misfolding and refolding of protein monomers
and complexes.

Reconstruction

Protein Half-Lives
The half-life of each protein monomer was predicted using the N-end rule reported by Tobias et al.586.
The half-life of each macromolecular complex was set equal to the weighted mean half-life of its RNA and
protein subunits. The half-lives of the damaged and misfolded configurations of each protein species, cleaved
signal sequences, and prematurely aborted polypeptides were set to zero to reflect their rapid degradation.
Section 2.12 and Table S3Y describe how RNA half-lives were reconstructed.

Proteolytic Machinery
The M. genitalium genome contains homologs of proteases FtsH (MG457) and La (MG239) and six pep-
tidases: aminopeptidase (MG324), cytosol aminopeptidase (MG391), glycoprotease (MG208), metalloen-
dopeptidase (MG046), oligoendopeptidase F (MG183), and proline iminopeptidase (MG020)182,634. The
membrane-localized protease FtsH is believed to cleave prematurely aborted polypeptides tagged with an
N-terminal SsrA tag into approximately 15 amino long fragments by an ATP-dependent mechanism30,634.
Bruckner et al. reported the kinetics and energetics of FtsH proteolysis31. The cytosol-localized protease
La is believed to processively cleave most other proteins into fragments 10-20 amino acids in length by an
ATP-dependent mechanism29. Lee and Suzuki reported the kinetics and energetics of La proteolysis29. Pep-
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tidases are believed to hydrolytically degrade the polypeptide fragments produced by peptidases FtsH and
La. The specific function of each of the six M. genitalium peptidases is unknown.

Computational Representation

Mathematical Model
Under conditions of excess proteases, peptidases, and ATP, this process models the configuration of each
protein as a five-state system – aborted, nascent, mature, misfolded, and damaged – and models the degra-
dation of protein i as Poisson process with rate parameter kd,i = ln 2/τ1/2,i where τ1/2,i = 20 h for the
nascent and mature states and zero for the aborted, misfolded, and damaged states. Under conditions of
limited proteases, peptidases, or ATP the model stochastically degrades proteins as a function of the copy
number and catalytic rate of each enzyme and the number of cytosolic ATP molecules. This models assumes
(1) cytosol-localized nascent, mature, misfolded, and damaged proteins are degraded by protease La and
six peptideases, (2) membrane and extracellular-localized proteins are not vulnerable to degradation by the
cytosol localized protease La, (3) aborted polypeptides are degraded by protease FtsH and six peptidases,
(4) protein degradation is kinetically fast and therefore this model doesn’t represent intermediate degrada-
tion states, and (5) aborted, misfolded, and damaged proteins are immediately degraded if proteases are
expressed and energy is available. Algorithm S11 outlines the implementation of the protein degradation
model.

This process models protein unfolding as a Poisson process with rate parameter ku set to the nominal rate
10−6 s−1 molecule−1. Cytosol-localized protein refolding is modeled as a single chemical event catalyzed
by the cytosol-localized chaperone ClpB and driven by the hydrolysis of a single ATP molecule. Because
protein refolding is not well characterized, this process assumes that if ClpB is expressed and excess ATP is
available, protein refolding proceeds to completion within the 1 s simulation time step. If ClpB is expressed,
but ATP is not present in excess, the model stochastically refolds proteins equal to the intracellular copy
number of ATP.

This model makes several simplifying assumptions. First, the model assumes that all protein species misfold
and refold at the same rate. Second, the model assumes that the kinetics of protein misfolding and refolding
are fast and therefore intermediate misfolded states can be ignored.

Integration
The Protein Monomer and Protein Complex states represent the copy number of each protein monomer
and macromolecular complex including the signal sequence, misfolded, and damaged copy numbers of each
protein species and the copy number of each proteolytic enzyme in each of five compartments: cytosol,
membrane, terminal organelle cytosol, terminal organelle membrane, and extracellular space. The Polypep-

tide state represents the amino acid sequence of each prematurely aborted polypeptide. The Chromosome,
FtsZ Ring, Ribosome, and RNA Polymerase states represents the detailed configurations of DNA-bound
proteins, the FtsZ septal ring, RNA polymerases, and ribosomes. These detailed configurations are updated
when DNA-bound proteins, FtsZ, RNA polymerase, or 70S ribosomes are degraded to reflect decreased
enzyme copy numbers. The Transcript and Polypeptide states are also updated upon RNA polymerase
or 70S ribosome degradation to reflect transcript and polypeptide abortion. The Rna state represents the
damaged copy number of each RNA species. See below for further discussion. The Metabolite state
represents the copy number of each intracellular metabolite.

This process marks RNA subunits of degraded macromolecules as “damaged” for immediate degradation by
the RNA Decay process.

Initial Conditions
The misfolded and damaged configurations of each RNA and protein species are initialized with zero copy
number because the typical occupancies these configurations are small compared to that of the mature
configuration. Similarly, the cell is initialized with no prematurely aborted polypeptides. The Rna, Protein

Monomer, and Protein Complex states initialize the total copy numbers of each RNA and protein species.
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Dynamic Computation
Algorithm S11 outlines the implementation of the protein decay model.

Algorithm S11 | Protein decay simulation.

Input: ku = 10−6 s protein unfolding rate
Input: kp

d,i = ln 2/τ1/2,i degradation rate of protein monomer species i
Input: kc

d,i = ln 2/τ1/2,i degradation rate of macromolecular complex species i
Input: kLon, kFtsH protease kinetic rates in amino acids per second
Input: mi copy number of metabolite i
Input: rd

i damaged copy number of RNA species i
Input: pa

i , pu
i , pd

i mature, unfolded, and damaged copy numbers of protein monomer species i
Input: ca

i , cu
i , cd

i mature, unfolded, and damaged copy numbers of macromolecular complex species i
Input: p← {pa

i , pu
i , pd

i } copy number of all forms of protein monomer species i
Input: c← {ca

i , cu
i , cd

i } copy number of all forms of macromolecular complex species i
Input: eLon, eFtsH copy numbers of proteases La and FtsH
Input: si sequence of prematurely aborted polypeptide i
Input: lp

i length of protein monomer species i
Input: ls

i length of prematurely aborted polypeptide i
Input: P m

ij reaction stoichiometry of metabolite i in the degradation of protein monomer j including ATP hydrolysis
Input: Cm

ij stoichiometry of metabolite species i in macromolecular complex j
Input: Cr

ij subunit stoichiometry of mature RNA species i in macromolecular complex j
Input: Cp

ij subunit stoichiometry of mature protein monomer i in macromolecular complex j
Input: Sm

ij reaction stoichiometry of metabolite i in the degradation of polypeptide j including ATP hydrolysis
Input: ∆t = 1 s is the simulation time step

Misfold proteins (see Algorithm S13)
Refold proteins (see Algorithm S12)
Degrade macromolecular complexes (see Algorithm S14)
Degrade prematurely aborted polypeptides (see Algorithm S15)
Degrade protein monomers (see Algorithm S16)

Fitting
The expression of the proteases and peptidases was fit to provide sufficient enzymes to quickly degrade dam-
aged proteins, or more specifically to prevent sustained accumulation of damaged proteins. See Section 1.3
for further discussion.
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Algorithm S12 | Protein refolding simulation. See Algorithm S11 for mathematical notation.

if ClpB chaperone is expressed (eClpB > 0) then
repeat

Select protein species i ∼ multinomialRand(1, {pu, cu}/
(
∑

j
pu

j +
∑

j
cu

j

)

)

Update protein copy numbers
if species i is a protein monomer then pu

i ← pu
i − 1, pa

i ← pa
i + 1

else cu
i ← cu

i − 1, ca
i ← ca

i + 1

Hydrolyze ATP
mATP ← mATP − 1
mADP ← mADP + 1
mPi ← mPi + 1
mH2O ← mH2O − 1
mH+ ← mH+ + 1

until (pu
i = 0 ∀ iandcu

i = 0 ∀ i) ormATP = 0

Algorithm S13 | Protein unfolding simulation. See Algorithm S11 for mathematical notation.

foreach protein monomer i do
Calculate protein unfolding extent: ∆pu

i ←poissonRand(kupa
i )

Update protein copy numbers: pa
i ← pa

i −∆pu
i , pu

i ← pu
i + ∆pu

i

foreach macromolecular complex i do
Calculate protein unfolding extent: ∆cu

i ←poissonRand(kuca
i )

Update protein copy numbers: ca
i ← ca

i −∆cu
i , cu

i ← cu
i + ∆cu

i

Algorithm S14 | Macromolecular complex degradation simulation. See Algorithm S11 for mathematical notation.

Calculate rates of protein degradation
foreach macromolecular complex i do

∆ci ← poissonRand(kc
d,ici)

Degrade specific complexes
repeat

Select protein species i ∼ multinomialRand(∆ci/
∑

j
∆cj)

if sufficient metabolic resources available (mj ≥ −Cm
ji ∀ j) then

Breakdown complex into metabolites and damaged RNA and protein subunits
∆ci ← ∆ci − 1
ci ← ci − 1

pd ← pd
i + Cp

•i

rd ← rd
i + Cr

•i

m← mCm
•i

else
∆ci ← 0

until ∆ci = 0 ∀ i

Algorithm S15 | Aborted polypeptide degradation simulation. See Algorithm S11 for mathematical notation.

Let z ←poissonRand(eFtsH/kFtsH∆t) be the FtsH enzymatic capacity
while all peptidases expressed (ei ∀ peptidasesi) do

Select an aborted polypeptides i ∼ multinomialRand(1, 1/npep)

if insufficient resources to degrade polypeptide (∃js.t− Sm
ji > mj and z ≥length(ls

i ) ≥ 1) then
break

Degrade polypeptide: si ← /0, m← m + Sm
•i , z ← z−length(ls

i )
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Algorithm S16 | Protein monomer degradation simulation. See Algorithm S11 for mathematical notation.

if all peptidases expressed (ei ∀ peptidasesi) then
Let z ←poissonRand(eLon/kLon∆t) be the Lon enzymatic capacity

Calculate rates of protein degradation
foreach protein monomer i do

∆pi ← poissonRand(kp
d,ipi)

Degrade specific monomers
repeat

Select protein species i ∼ multinomialRand(∆pi/
∑

j
∆pj)

if sufficient metabolic resources available (mj ≥ −P m
ji ∀ j and z ≥ lp

i ≥ 1) then
Breakdown protein into metabolites
∆pi ← ∆pi − 1
pi ← pi − 1
m← mP m

•i

z ← z − lp
i

else
∆pi ← 0

until ∆pi = 0 ∀ i

3.13 Protein Folding

Biology

Proteins are synthesized as long, catalytically inactive linear chains of amino acids (see Translation). Subse-
quently, proteins fold into energetically favorable, compact, and enzymatically competent three-dimensional
structures. While some protein species are believed to fold spontaneously, other proteins are believed to
require helper chaperone proteins to properly fold17,718. In addition, some protein species require metal ions
and other small molecule prosthetic groups to fold. This process models chaperone-mediated protein folding.

M. genitalium is believed to employ three chaperones to assist protein folding. First, trigger factor (Tig,
MG238) co-translationally binds all nascent polypeptides at the ribosome exit site (L23) and assists in early
protein folding5,9,14,17,388,644,718.

Second, chaperones GroEL (MG392) and DnaK (MG305) and their co-chaperones are believed to assist in
late folding. GroEL and DnaK are believed to fold 10-15% and 5-18% of all proteins, respectively. GroEL
and its co-chaperone GroES (MG393) are believed to help fold intermediate sized proteins (20-60 kDa)14,644.
GroEL is believed to bind each protein for 30 s to 10 min, and to couple folding to ATP hydrolysis14,644.

DnaK and its co-chaperones DnaJ (MG019) and GrpE (MG201) are believed to help fold large proteins
(> 30 kDa)14,644. DnaK is a monomeric protein which transiently (< 2 min) binds to the backbones of short,
linear, unfolded peptide segments. GrpE is believed to couple peptide release to ATP hydrolysis. DnaJ is
believed to regulate the activity of DnaK, as well bind the side chains of hydrophobic and aromatic residues
and directly assist protein folding.

Finally, FtsH and the lipids phosphatidyl ethanolamine and phosphatidyl glycerol have been suggested to
assist membrane protein folding14. However, the role of FtsH as a molecular chaperone is not well established,
and FtsH has been associated with several additional functions. Consequently, we chose not to model FtsH
as a chaperone. The contributions of phosphatidyl ethanolamine and phosphatidyl glycerol to protein folding
are also poorly understood, and are not modeled.

Reconstruction

M. genitalium GroEL substrates were reconstructed based on two proteome-scale studies of E. coli and B.
subtilis (see Table S3AG)389,391. M. genitalium DnaK substrates were reconstructed based on a proteome-
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scale study of E. coli (see Table S3AG)388. The prosthetic group requirements for protein folding were
reconstructed based on an extensive review of the literature and several databases (see Table S3AM). Ta-
ble S3M lists the chaperones required to fold each protein monomer and the prosthetic group stoichiometry
of each protein monomer.

Computational Representation

Mathematical Model
This process implements a model of the chaperone-mediated folding of processed, translocated polypeptides.
Because the kinetics and energetics of protein folding are not well understood, this process represents the
three-dimensional configuration of each protein as a two-state – folded, unfolded – Boolean variable. Fur-
thermore, this process makes the simplifying assumption that the folding rate, ri, of protein species i is a
Boolean function of the copy numbers of metabolites and chaperones,

ri = min








protein
︷︸︸︷

pu
i ,

metabolites
︷ ︸︸ ︷
⌊

min
j

mj

Mji

⌋

,

enzymes
︷ ︸︸ ︷

min
j

ej

Cji








, (S19)

where pu
i is the unfolded copy number of protein species i, mi is the copy number of metabolite i, ei is the

copy number of chaperone i, Mji is the stoichiometry of prosthetic group j in protein i, and Cji is true if

protein species i requires chaperone j to fold. pf
i is the folded copy number of protein species i.

Integration
The Metabolite state represents the copy number of each metabolite species. The Protein Monomer and
Protein Complex states represent the copy numbers of unfolded and folded proteins. Protein folding is
one of the last steps in protein maturation following protein processing and translocation (see Protein

Processing I and Protein Translocation processes) and preceding protein modification (see Protein

Modification process). See Section 2.10 for further discussion.

Initial Conditions
The Protein Monomer and Protein Complex states initialize the total copy number of each protein species,
and set all protein monomers and complexes to their mature – folded and modified – configuration.

Dynamic Computation
Algorithm S17 outlines the implementation of the protein folding model.

Algorithm S17 | Protein folding simulation.

repeat
foreach protein species i do

Calculate the relative Boolean-valued folding rate, ri, of each protein species
ri ← min {pu

i , mj/Mij , ck ≥ Cik}

Select a protein species i to fold according to multinomialRand(1, ~r)

Increment the folded copy number of protein species i, pf
i ← pf

i + 1
Decrement the unfolded copy number of protein species i, pu

i ← pu
i − 1

Decrement the copy numbers of the prosthetic groups of protein species i, mj ← mj −Mij

until no additional proteins can fold (~r = 0)

Dynamic Computation
Chaperone expression was fit to provide sufficient enzymes to quickly fold all newly synthesized proteins, or
more precisely, to prevent accumulation of unfolded proteins. See Section 1.3 for further discussion.
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3.14 Protein Modification

Biology

Post-translational protein modification serves several important functions281,890. First, post-translation mod-
ification can increase the structural and chemical diversity of the proteome by stabilizing alternative con-
formations and providing catalytic cofactors. Second, post-translational modification, and in particular
phosphorylation, provides a mechanism to regulate protein activity. Third, post-translational modification
can be used to regulate protein expression through proteasome recruitment. This process models protein
covalent modification including phosphorylation, lipoyl transfer, and α-glutamate ligation.

Reconstruction

The M. genitalium protein modification complement was reconstructed in three steps. First, protein modi-
fications that have been observed in M. genitalium94, M. pneumoniae94,277,282,283,672, or other related bac-
teria96,105,276,280,673 or which have been computationally predicted268,278,575 were curated. Second, curated
protein modifications were mapped to M. genitalium homologs using sequence alignment. Third, based on
the genome annotation182, M. genitalium was determined to have three protein modification pathways: (1)
phosphorylation catalyzed by serine/threonine kinase PrkC (MG109), (2) lipoyl transfer to lysine catalyzed
by LplA (MG270), and (3) C-terminal α-glutamate ligation catalyzed by RimK (MG012). Fourth, mod-
ifications were rejected which do not belong to one of these three pathways, or for which a specific locus
was not reported. Table S3AH outlines the reconstruction process and lists the reconstructed protein mod-
ifications. The reconstructed protein modification network contains one kinase that modifies 16 proteins,
one lipoyl transferase that modifies the E2 subunit of pyruvate dehydrogenase (PdhC, MG272), providing
an important organosulfur cofactor which contains a catalytic disulfide bond, and one α-glutamate ligase
that modifies 50S ribosomal protein L6 (RplF, MG166). The stoichiometry and kinetics of all three modeled
protein modification reactions were based on a review of the primary literature110,288–290,294 (see Table S3O).
Catalytic disulfide bonds were separately reconstructed and are modeled by several chemical reactions in the
Metabolism process (see Table S3O).

Computational Representation

Mathematical Model
This process models protein covalent modification, the fifth step of post-translational processing. In par-
ticular, this process models protein phosphorylation, lipoyl transfer, and α-glutamate ligation. Because the
mechanisms of protein modification are not well characterized on the genomic scale, this process make several
simplifying assumptions. First, this process assumes that each protein is fully modified in a single time step,
collapses the modification of each protein into a single reaction, and only represents unmodified and fully
modified proteins. Intermediate protein configurations are not represented. Second, this process assumes
that the mean arrival rate, vi of modification events of each protein species i is independently limited by (1)
the copy number of unmodified protein, pu

i , (2) the copy numbers of intracellular metabolites, mj , and (3)
the copy numbers of the protein modification enzymes, ej . Based on these assumptions, the functional form
of vi is given by

vi = min









Protein
︷︸︸︷

pu
i ,
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⌊

min
j

mj
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ji

⌋

,

enzymes
︷ ︸︸ ︷

poissonRand

(

min
j

ej

Kji
∆t

)









, (S20)

where Mji is the stoichiometry of metabolite j in the modification of protein species i, Ms = max (0, −M)
is the negative part of M , Kji is the experimentally observed catalytic rate of enzyme j in the modification
of protein species i, and ∆t = 1 s is the simulation time step.

This process implements a stochastic model of the arrival of protein monomer and macromolecular com-
plex modification events with relative rates vi. Until protein, metabolic, and/or enzymatic resources are
exhausted, the model iteratively (1) computes the arrival rate, vi, of each modification event, (2) selects a
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single modification event to execute according to a multinomial distribution parameterized by vi, and (3)
executes the selected modification reaction, updating the copy numbers of proteins and metabolites and
decrementing the available enzymatic capacity. Algorithm S18 outlines the implementation of the protein
modification model.

Integration
The Protein Monomer and Protein Complex states represent the copy number of each protein modification
enzyme. The Protein Monomer state also represents the unmodified and modified copy numbers of each
protein monomers species. The Metabolite state represents the copy number of each intracellular metabolite.

Protein are synthesized and matured in six steps (see Section 2.10). This process models the fifth step
in protein synthesis following protein folding (see Protein Folding process) and preceding macromolecule
assembly (see Macromolecular Complexation, Ribosome Assembly, Protein Folding, and Protein Mod-

ification processes).

Initial Conditions
Section 1.4 outlines the cell state initialization algorithm. Briefly, after the Mass state initializes the total
cell mass, the Protein Monomer state initializes the total copy number of each protein monomer species
and initializes all monomers to their mature – processed, folded, modified, and localized – configuration.
Second, the Macromolecular Complexation and Ribosome Assembly processes initialize the copy number
of each ribonucleoprotein complex, and set all initialized complexes to their mature – folded and modified –
configuration. Finally, several processes including Transcription and Translation initialize the detailed
configurations of RNA polymerases, 70S ribosomes, DNA-binding proteins, and FtsZ.

The unmodified configurations of each protein monomer species is initialized with zero copy number because
the typical occupancy this configuration is small compared to that of the modified/mature configuration.

Dynamic Computation
Algorithm S18 outlines the implementation of the protein modification model.

Algorithm S18 | Protein modification simulation. See Mathematical Model section above for definition of the mathe-

matical notation.
Input: pm

i copy number of modified protein species i

Let ki ← ei∆t be the capacity of enzyme i for protein modification
repeat

Calculate modification rates
foreach protein species i do

Calculate vi according to Eq. S20

Select protein species i ∼ multinomialRand(1, vi/
∑

j
vj)

Update protein copy numbers: pu
i ← pu

i − 1, pm
i ← pm

i + 1
Update metabolites: m← m−M•i

Update enzyme catalytic capacity: k ← k −K•i

until no further modification possible (vi = 0 ∀ i)

Fitting
The expression of the protein modification enzymes was fit to provide sufficient enzymes to quickly modify
newly synthesized proteins, or more specifically to prevent sustained accumulation of unmodified proteins.
See Section 1.3 for further discussion.
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3.15 Protein Processing I

Biology

Bacterial translation is initiated by the formation of the 70S ribosome and the recruitment of the initiator
tRNAfMet to the ribosomal P site. This process models N-terminal formylmethionine deformylation and
N-terminal methionine cleavage, the first steps in post-translational processing.

The exact function of the initiator tRNAfMet is unknown. Several authors suggest that bacteria employ
a separate tRNA for translation initiation in order to control the rate of protein synthesis through the
expression of initiator tRNA887,889. Others believe that cells use a separate initiator tRNA to differentiate
between initiation factor 2-dependent recruitment of the first tRNA to the ribosomal P site and EF-Tu-
dependent recruitment of subsequent tRNA to the A site887,888. The unique formyl group of tRNAfMet has
been suggested to enable initiation factor 2 to discriminate between initiator and other tRNA887. The role
of formylmethionine as the starting amino acid is also not well understood886,888. Some authors believe
that bacteria employ methionine as the first amino acid because it is the most expensive to synthesize and
therefore couples translation to general cell health886. Furthermore, neither the formyl group of tRNAfMet

nor methionine is essential for translation initiation886,888. Several studies have shown that other amino
acids are able to support translation initiation886,888.

Following translation, bacteria deformylate the N-terminal methionine of most proteins and cleave the N-
terminal methionine of approximately 7% of proteins. The function of peptide deformylation and methionine
cleavage is not well understood. Some authors believe that bacteria employ these reactions to recycle
formylmethionine which is a metabolically expensive amino acid886. Other authors, citing the N-end rule586,
believe that bacteria cleave the N-terminal methionine of specific proteins in order to regulate protein half-
lives by exposing the second-most N-terminal amino acid886.

Reconstruction

M. genitalium peptide deformylase (MG106) was assumed to deformylate all protein monomers. The protein
substrates of M. genitalium methionine aminopeptidase (MG172) where reconstructed based on specific N-
terminal methionine cleavages of M. genitalium homologs observed in Shewanella oneidensis MR-1280. The
kinetics of peptide deformylation and N-terminal methionine cleavage were reconstructed from the primary
literature21,26. Table S3O lists the stoichiometry and kinetics of the deformylation and cleavage reactions.

Computational Representation

Mathematical Model
This process models N-terminal formylmethionine deformylation and N-terminal methionine cleavage, the
first step of post-translational processing. Because the mechanisms of early protein processing are not well
characterized on the genomic scale, this process make several simplifying assumptions. First, this process
assumes that each protein is both deformylated and cleaved in a single time step. Consequently, this process
collapses the processing of each protein into a single reaction, and only represents nascent and fully processed
proteins. Intermediate protein configurations are not represented. Second, this process assumes that the
mean arrival rate, vi of processing events of each protein species i is independently limited by (1) the copy
number of unprocessed protein, pu

i , (2) the copy numbers of intracellular metabolites, mj , and (3) the copy
numbers of processing enzymes, ej . Based on these assumptions, the functional form of vi is given by

vi = min
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, (S21)

where Mji is the stoichiometry of metabolite j in the processing of protein species i, Ms = max (0, −M) is
the negative part of M , Kji is the experimentally observed catalytic rate of enzyme j in the processing of
protein species i, and ∆t = 1 s is the simulation time step.
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The Protein Processing I process implements a stochastic model of the arrival of early protein monomer
processing events with relative rates vi. Until protein, metabolic, and/or enzymatic resources are exhausted,
the model iteratively (1) computes the arrival rate, vi, of each processing event, (2) selects a single processing
event to execute according to a multinomial distribution parameterized by vi, and (3) executes the selected
processing reaction, updating the copy numbers of protein monomers and metabolites and decrementing the
available enzymatic capacity. Algorithm S19 outlines the implementation of the early protein processing
model.

Integration
The Protein Monomer and Protein Complex states represent the copy number of each protein processing
enzyme. The Protein Monomer state also represents the nascent and processed copy numbers of each protein
monomers species. The Metabolite state represents the copy number of each intracellular metabolite.
Proteins are synthesized and matured in six steps (see Section 2.10). This process models the first step in
post-translational processing following translation (see Translation process) and preceding membrane and
extracellular protein translocation and cytosolic protein folding (see Protein Translocation and Protein

Folding processes).

Initial Conditions
Section 1.4 outlines the cell state initialization algorithm. Briefly, after the Mass state initializes the total
cell mass, the Protein Monomer state initializes the total copy number of each protein monomer species
and initializes all monomers to their mature – processed, folded, modified, and localized – configuration.
Second, the Macromolecular Complexation and Ribosome Assembly processes initialize the copy number
of each ribonucleoprotein complex and set all initialized complexes to their mature – folded and modified –
configuration. Finally, several processes including Transcription and Translation initialize the detailed
configurations of RNA polymerases, 70S ribosomes, DNA-binding proteins, and FtsZ.

The nascent and processed configurations of each protein monomer species are initialized with zero copy
number because the typical occupancy these configurations is small compared to that of the mature config-
uration.

Dynamic Computation
Algorithm S19 outlines the implementation of the protein processing (I) model.

Algorithm S19 | Protein processing (I) simulation. See Mathematical Model section above for definition of the mathe-

matical notation.

Input: pp
i copy number of processing protein monomer species i

Let ki ← ei∆t be the capacity of enzyme i for protein processing
repeat

Calculate processing rates
foreach protein monomer species i do

Calculate vi according to Eq. S21

Select protein monomer species i ∼ multinomialRand(1, vi/
∑

j
vj)

Update protein monomer copy numbers: pu
i ← pu

i − 1, pp
i ← pp

i + 1
Update metabolites: m← m−M•i

Update enzyme catalytic capacity: k ← k −K•i

until no further processing possible (vi = 0 ∀ i)

Fitting
The expression of the protein processing enzymes was fit to provide sufficient enzymes to quickly process
proteins, or more specifically to prevent sustained accumulation of unprocessed proteins. See Section 1.3 for
further discussion.
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3.16 Protein Processing II

Biology

This process models the third step of post-translational processing: lipoprotein diacylglyceryl adduction and
lipoprotein and secreted protein signal peptide cleavage.

Lipoproteins
As discussed in Section 3.17, M. genitalium lipoproteins are translated in the cytosol and subsequently tar-
geted to the plasma membrane by type II N-terminal signal sequences. Following membrane insertion, M.
genitalium lipoproteins are first anchored to the outer leaflet of the plasma membrane. This is achieved
via covalent adduction of diacylglyceryl to the sulfhydryl group of the lipobox cysteine by diacylglyceryl
transferase (MG086)266,629,654. Many bacteria further anchor lipoproteins through phospholipidation. How-
ever, M. genitalium does not have an apolipoprotein transacylase, and is not believed to phospholipidate
lipoproteins655–657. Second, lipoprotein N-terminal signal sequences are cleaved immediately C-terminal to
the lipobox cysteine by type II signal peptidase (MG210)654. See Section 3.17 for further discussion of the
structure of type II signal sequences.

Secreted Proteins
Extracellular M. genitalium proteins are transcribed in the cytosol and targeted to the plasma membrane
by type II signal sequences. In contrast to lipoproteins, extracellular proteins do not undergo diacylglyceryl
transfer, and instead are cleaved immediately C-terminal to the cysteines of their lipoboxes by type II signal
peptidase, releasing the resultant protein and signal peptide into the extracellular space.

Integral Membrane Proteins
M. genitalium does not have a type I signal sequence protease634 and does not cleave the signal sequences of
integral membrane proteins. Integral membrane protein signal peptides are believed to help anchor proteins
to the membrane3.

Reconstruction

The localization and N-terminal signal sequence length of each protein monomer was reconstructed based
on an extensive review of the primary literature, several proteomic database, and several computational
predictions. See Section 3.17 for further discussion. The stoichiometry and kinetics of each protein processing
reaction was reconstructed from the primary literature8,158,167,266,654. Table S3O lists the reconstructed
stoichiometry and kinetics of each reaction.

Computational Representation

Mathematical Model
This process models lipoprotein diacylglyceryl adduction and lipoprotein and secreted protein signal peptide
cleavage, the third step of post-translational processing. Because the mechanisms of protein processing are
not well characterized on the genomic scale, this process make several simplifying assumptions. First, this
process assumes that each protein is both covalently modified and cleaved in a single time step. Consequently,
this process collapses the processing of each protein into a single reaction and only represents unprocessed
and fully processed proteins. Intermediate protein configurations are not represented. Second, this process
assumes that the mean arrival rate, vi of processing events of each protein species i is independently limited
by (1) the copy number of unprocessed protein, pu

i , (2) the copy numbers of intracellular metabolites, mj ,
and (3) the copy numbers of processing enzymes, ej . Based on these assumptions, the functional form of vi
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is given by

vi = min
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where Mji is the stoichiometry of metabolite j in the processing of protein species i, Ms = max (0, −M) is
the negative part of M , Kji is the experimentally observed catalytic rate of enzyme j in the processing of
protein species i, and ∆t = 1 s is the simulation time step.

This process implements a stochastic model of the arrival of protein monomer processing events with relative
rates vi. Until protein, metabolic, and/or enzymatic resources are exhausted, the model iteratively (1)
computes the arrival rate, vi, of each processing event, (2) selects a single processing event to execute
according to a multinomial distribution parameterized by vi, and (3) executes the selected processing reaction,
updating the copy numbers of protein monomers and metabolites and decrementing the available enzymatic
capacity. Algorithm S20 outlines the implementation of the protein processing model.

Integration
The Protein Monomer and Protein Complex states represent the copy number of each protein processing
enzyme. The Protein Monomer state also represents the unprocessed and processed copy numbers of each
protein monomers species. The Metabolite state represents the copy number of each intracellular metabolite.

Protein are synthesized and matured in six steps (see Section 2.10). This process models lipoprotein di-
acylglyceryl transfer and lipoprotein and secreted protein signal sequence cleavage following translocation
(see Protein Translocation process) and preceding folding and modification (see Protein Folding and
Protein Modification processes).

Initial Conditions
Section 1.4 outlines the cell state initialization algorithm. Briefly, after the Mass state initializes the total
cell mass, the Protein Monomer state initializes the total copy number of each protein monomer species
and initializes all monomers to their mature – processed, folded, modified, and localized – configuration.
Second, the Macromolecular Complexation and Ribosome Assembly processes initialize the copy number
of each ribonucleoprotein complex, and set all initialized complexes to their mature – folded and modified –
configuration. Finally, several processes including Transcription and Translation initialize the detailed
configurations of RNA polymerases, 70S ribosomes, DNA-binding proteins, and FtsZ.

The unprocessed and processed configurations of each protein monomer species are initialized with zero
copy number because the typical occupancy these configurations is small compared to that of the mature
configuration.

Dynamic Computation
Algorithm S20 outlines the implementation of the protein processing (II) model.

Fitting
The expression of the protein processing enzymes was fit to provide sufficient enzymes to quickly process
proteins, or more specifically to prevent sustained accumulation of unprocessed proteins. See Section 1.3 for
further discussion.
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Algorithm S20 | Protein processing (II) simulation. See Mathematical Model section above for definition of the

mathematical notation.

Input: pp
i copy number of processed protein monomer species i

Input: ps
i copy number of cleaved signal sequence of protein monomer species i

Let ki ← ei∆t be the capacity of enzyme i for protein processing
repeat

Calculate processing rates
foreach protein monomer species i do

Calculate vi according to Eq. S22

Select protein monomer species i ∼ multinomialRand(1, vi/
∑

j
vj)

Update protein monomer copy numbers: pu
i ← pu

i − 1, pp
i ← pp

i + 1, ps
i ← ps

i + 1
Update metabolites: m← m−M•i

Update enzyme catalytic capacity: k ← k −K•i

until no further processing possible (vi = 0 ∀ i)

3.17 Protein Translocation

Biology

Bacterial proteins are translated in the cytosol. However, many functionally important proteins including
nutrient transporters, ATP synthase, metabolic enzymes, adhesins, receptors, transducers, virulence factors,
and the protein translocation machinery itself must be embedded in the cell membrane or secreted in or-
der to properly function658. Cells employ short N-terminal and C-terminal signal sequences to selectively
translocate proteins. This process models membrane and extracellular protein localization, the second step
in post-translational processing.

Reconstruction

The subcellular localization – cytosol, integral membrane, lipoprotein, terminal organelle cytosol, terminal
organelle lipoprotein, or extracellular space – of each protein monomer and the N-terminal signal sequence
of each lipoprotein and secreted protein was reconstructed based on an extensive review of the primary
literature88,89,91–93,284,303,406–409, several proteomic databases96,253,386,570,572–574, and several computational
predictions252,254,255,257–263. Table S3AC-S3AE describe the reconstruction process in detail and list the
reconstructed localization and signal sequence of each protein monomer.

M. genitalium employs two convergent SecA-dependent pathways – co-translational and post-translational
– to translocate approximately 35-45% of all protein monomers into the plasma membrane3. M. genitalium
does not contain a type I Tat transporter or sortase631. The co-translational SecA pathway translocates
integral membrane proteins into the cell membrane. First, GTP-dependent signal recognition particles (SRP;
MG0001, MG048) and molecular chaperones co-translationally recognize the type I signal sequence of nascent
integral membrane proteins3. Second, SRPs deliver nascent proteins to their cognate receptor FtsY (MG297)
which is associated with the SecA type II preprotein translocon3. Finally, the preprotein translocase SecA
(MG072) iteratively pushes nascent proteins through the SecYEG (MG170, MG055, MG476) translocase
pore by an ATP-dependent, step-wise mechanism3. Several studies have shown that SecDF (MG277)6 and
YidC (MG464)57,328 also participate in the translocase pore. SecDF and YidC are believed to increase the
efficiency of protein translocation3. The exact functions of SecDF and YidC are not known.

The M. genitalium post-translational SecA pathway translocates lipoproteins and secreted proteins. First,
nascent proteins complete translation. Second, SecA translocons directly recognize the type II signal sequence
of nascent proteins. Type II signal sequences are short, positively charged N-terminal sequences3. Type II
signal sequences are composed of three regions – n, h, and c. The n region is composed of 1-5 positively
charged amino acids. The h region is composed of 7-15 hydrophobic amino acids and forms an α-helix. The
c region is composed of 3-7 polar amino acids and forms a β-strand. Signal peptidase II cleaves type II signal
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sequences at lipoboxes distinguished by the sequence L[ASI][GA]C inside the c region. Finally, similar to
the co-translational pathway, SecA iteratively translocates nascent proteins into the plasma membrane.

Following translocation M. genitalium anchors lipoproteins to the outer leaflet through the covalent ligation
of diacylglyceryl by diacylglyceryl transferase and extracellularly cleaves the type II signal sequence of each
lipoprotein and secreted protein at conserved lipoboxes (see Protein Processing II). M. genitalium does
not have a I signal sequence protease634 and does not cleave the signal sequences of integral membrane
proteins. Integral membrane protein signal peptides are believed to help anchor proteins to the membrane3.

Following insertion into the plasma membrane and signal peptide cleavage, terminal organelle-localized
lipoproteins are recruited into the terminal organelle. See the Terminal Organelle Assembly process for
further discussion.

The stoichiometry, energetics, and kinetics of each protein translocation reaction were reconstructed from
the primary literature1,2,10 (see Table S3D and S3O). Tomkiewicz et al. reported that SecA translocates
270 pmol amino acid min−11. Doyle et al. reported that SecA translocates 20-30 amino acids per ATP2.

Computational Representation

Mathematical Model
This process models integral membrane, lipoprotein, and secreted protein translocation into the cell mem-
brane by the SecA preprotein translocase, the second step of post-translational processing. Because the
mechanisms of protein translocation are not well characterized on the genomic scale, this process make
several simplifying assumptions. First, this process decouples translation, N-terminal formylmethionine pro-
cessing, and translocation by assuming that translocation does not begin until after translation termination
and N-terminal formylmethionine processing. Second, this process assumes that each protein is fully translo-
cated in a single time step. Consequently, this process collapses the translocation of each protein into a single
reaction, and only represents untranslocated and fully translocated proteins. Intermediate protein localiza-
tions are not represented. Third, this process assumes that the mean arrival rate, vi of translocation events
of each protein species i is independently limited by (1) the copy number of untranslocated protein, pu

i , (2)
the copy numbers of intracellular metabolites, mj , and (3) the copy numbers of the translocation enzymes,
ej . Based on these assumptions, the functional form of vi is given by

vi = min
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where Mji is the stoichiometry of metabolite j in the translocation of protein species i including ATP and
GTP hydrolysis, Ms = max (0, −M) is the negative part of M , Kji is the experimentally observed catalytic
rate of enzyme j in the translocation of protein species i, and ∆t = 1 s is the simulation time step.

This process implements a stochastic model of the arrival of protein monomer translocation events with
relative rates vi. Until protein, metabolic, and/or enzymatic resources are exhausted, the model iteratively
(1) computes the arrival rate, vi, of each translocation event, (2) selects a single translocation event to execute
according to a multinomial distribution parameterized by vi, and (3) executes the selected translocation
reaction, updating the copy numbers of protein monomers and metabolites and decrementing the available
enzymatic capacity. Algorithm S21 outlines the implementation of the protein translocation model.

Integration
The Protein Monomer and Protein Complex states represent the copy number of each protein translocation
enzyme. The Protein Monomer state also represents the cytosolic- and membrane-localized copy numbers
of each protein monomers species. The Metabolite state represents the copy number of each intracellular
metabolite.

Protein are synthesized and matured in six steps (see Section 2.10). This process models protein transloca-
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tion following deformylation and N-terminal methionine cleavage (see Protein Processing I process) and
preceding lipoprotein diacylglyceryl transfer and lipoprotein and secreted protein signal sequence cleavage
(see Protein Processing II process).

Initial Conditions
Section 1.4 outlines the cell state initialization algorithm. Briefly, after the Mass state initializes the total
cell mass, the Protein Monomer state initializes the total copy number of each protein monomer species
and initializes all monomers to their mature – processed, folded, modified, and localized – configuration.
Second, the Macromolecular Complexation and Ribosome Assembly processes initialize the copy number
of each ribonucleoprotein complex, and set all initialized complexes to their mature – folded and modified –
configuration. Finally, several processes including Transcription and Translation initialize the detailed
configurations of RNA polymerases, 70S ribosomes, DNA-binding proteins, and FtsZ.

The untranslocated and translocated configurations of each protein monomer species are initialized with zero
copy number because the typical occupancy these configurations is small compared to that of the mature
configuration.

Dynamic Computation
Algorithm S21 outlines the implementation of the protein translocation model.

Algorithm S21 | Protein translocation simulation. See Mathematical Model section above for definition of the mathe-

matical notation.

Input: pt
i copy number of translocated (membrane- or extracellular-localized) protein monomer species i

Let ki ← ei∆t be the capacity of enzyme i for protein translocation
repeat

Calculate translocation rates
foreach protein monomer species i do

Calculate vi according to Eq. S23

Select protein monomer species i ∼ multinomialRand(1, vi/
∑

j
vj)

Update protein monomer copy numbers: pu
i ← pu

i − 1, pt
i ← pt

i + 1
Update metabolites: m← m−M•i

Update enzyme catalytic capacity: k ← k −K•i

until no further translocation possible (vi = 0 ∀ i)

Fitting
The expression of the protein translocation enzymes was fit to provide sufficient enzymes to quickly translo-
cate proteins, or more specifically to prevent sustained accumulation of untranslocated proteins. See Sec-
tion 1.3 for further discussion.

3.18 Replication

Biology

DNA replication is an integral part of the cell cycle which produces a complete chromosome for each daughter
cell. DNA replication is initiated by the formation of a large multimeric DnaA complex at the origin of
replication (oriC), which enables the recruiting of the DNA replication machinery to the oriC. Replication
proceeds bidirectionally from the oriC to the terminus (terC), half way around the circular chromosome.
The chromosome has two strands of base pairing DNA called the leading and lagging strands. Replication
of the leading strand proceeds continuously the 5’ to 3’ direction. Replication of the lagging strand occurs
in short Okazaki fragments, also in the 5’ to 3’ direction927.
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Reconstruction

The DNA replication machinery consists of multiple proteins (See Schematic S11), and there is one set of
machinery for each of the two replication bubbles (on each side of the oriC). The replicative DNA helicase
serves to unwind the coiled DNA628. The DNA primase makes short primers that help initiate the poly-
merization of a long stretch of DNA. Primers are made once at the origin for the replication of the leading
strand, and one primer is made to start each Okazaki fragment606. DNA polymerization is carried out by
DNA polymerase III molecules, consisting of two core subunits, a gamma complex, and beta-clamps739.
One core resides on each of the leading and lagging strands, and is made up of two alpha subunits. The
two cores are held together by a gamma complex, consisting of delta, delta prime, gamma, and tau sub-
units. The core is also bound to a sliding beta-clamp which helps anchor the polymerase to the DNA and
maintain processivity. On the lagging strand, beta-clamps are swapped out each time a new DNA loop is
created to make a new Okazaki fragment (See Schematic S11). A “back-up” beta-clamp binds downstream
of the lagging DNA loop to facilitate this switch and formation of the next loop739. (The lagging stand
polymerization requires the formation of DNA loops, so that the DNA can be polymerized in the opposite,
5’ to 3’, direction.) DNA ligases connect the separate polymerized Okazaki fragments together733. Finally,
single-stranded binding proteins (SSBs) stabilize and protect single-stranded DNA, which is created as the
DNA is unwound to make room for the DNA machinery637,857. For example, the lagging stand DNA loop
often has long stretches of unwound DNA waiting to be polymerized. All of the replication proteins are
described in List S15, and all of the parameters used in replication are described in List S16.

List S15. Enzymes and complexes used in the Replication process class.

Enzymes/Complexes Composition Gene Name(s) DNA Footprints (nt)

DNA helicase (6) MG094 dnaB 20
DNA primase (1) MG250 dnaG 14
β-clamp (2) MG001 dnaN 25
DNA polymerase core (1) MG031, (1) MG261 polC, polC-2 24
γ-complex (1) MG007, (1) MG351,

(4) MG419
holB, holA, dnaX 26

DNA ligase (1) MG254 ligA 19
Single stranded binding protein (SSB)
8mer

(8) MG091 ssb 145

Helicase
Leading

Lagging

5’

3’

Primase

Polymerase 

Core
Beta-clamp

5’

3’

5’

3’

‘Backup’ 

Beta-clamp
SSB

Gamma

Complex

Ligase
Primer

Schematic S11. Schematic of DNA replication.

Computational Representation

Upon replication initiation (the binding of 29 DnaA-ATP molecules near the oriC by the Replication Ini-

tiation process class), the Replication process class tracks the progression of the replication proteins on
the known chromosome sequences. Some bacterial species are known to have multiple replication initiation
events during their life cycles. This has never been demonstrated in M. genitalium and we model up to
1 chromosome duplication event per cell cycle. Further, the exact mechanism of replication initiation in
M. genitalium is unknown. M. genitalium does not include a DnaC homolog, which in other species is an
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List S16. Fixed parameters used in the Replication process class.

Parameter Value Symbol Source

OriC position Base: 1 oriC [182]
TerC position Base: 290038 terC [182]
Primer length 11 nt lprim [606]
DNA polymerase elongation rate 100 nt s−1 kel [851]
SSB complex spacing 30 nt sssb [637]
Okazaki fragment mean length 1500 nt lOF [623, 926, 927]
Ligase kinetic rate 0.04 s−1 klig [488]
Current Okazaki fragment length before “back-up” beta-clamp
can bind

750 nucleotide lbeta Set as half lOF

Length of lagging strand loop at the start of Okazaki fragment
polymerization

50 nt lloop Set to be larger
than polymerase
footprint

DNA polymerase stall time upon anti-direction collision with RNA
polymerase

1.7 s tstall [799]

SSB dissociation rate 0.3 s−1 kdssb [857]
Chromosome length 580076 [182]
Chromosome sequence See [182] [182]
DNA footprints of Proteins See ’Enzymes/

Complexes’
[628, 733, 739,
743]

ATP cost of beta-clamp binding 1 ATP molecule ebeta [628]
ATP cost of 1 base pair unwinding 1 ATP molecule ehel [739]
NAD requirement per ligation event 1 NAD molecule elig [733]

essential cue for the binding of the replication machinery to the oriC. Here, the binding of 29 DnaA-ATP
molecules to the oriC is the cue for replication initiation.

To duplicate the chromosome, the exact position of each replisome protein is tracked over time on both the
leading and lagging strands. The polymerization of Okazaki fragments is explicitly modeled. Since the exact
primer binding sites for M. genitalium Okazaki fragments are uncharacterized, the Okazaki fragment lengths
are randomly determined based on a Poisson distribution centered around the mean fragment length (lOF).
Polymerization of both the leading and lagging strands is limited by the average rate of polymerization (kel)
in Mycoplasmas851, the availability of nucleotides and energy, and the available protein binding sites on the
chromosome. Further, polymerization of the leading strand is prevented if additional unwinding will lead to
too many unprotected single-stranded bases on the lagging stand, or if the leading polymerase will progress
over two Okazaki fragment length distances beyond the lagging strand polymerase. Leading strands are not
polymerized past the terC, and the lagging strands are not polymerized past the ends of Okazaki fragments.

This process outputs the progress of replication, which has a big impact on many other processes in the
system. For example, the copy number of each gene plays a role in RNA polymerase binding in the Tran-
scription process, and affects the cell’s gene expression. The duplicated regions of the chromosome have to
be wound appropriately by the DNA supercoiling process, and the completion of replication triggers other
cell cycle events such as the decatenation of the chromosomes by the Chromosome Segregation process.

Collisions of the replication machinery with the transcription machinery (as determined by the Chromosome

state class) are also handled by the Replication process class. A helicase may collide with a RNA polymerase
in two ways, head-on (RNA polymerase is traveling in a direction opposite to the helicase) or co-directionally
(RNA polymerase is traveling in the same direction as the helicase)638. There is some debate in the literature
regarding the pausing of the replication loop upon collisions and whether RNA polymerases are displaced
upon collisions638,659,711,852,853. Based on these studies as well as modeling considerations, we assume that
the RNA polymerase is always displaced upon collisions, and the replication loop is only stalled upon a
head-on collision. If the helicase hits an RNA polymerase, polymerization pauses, the RNA polymerase
falls off, and its transcript is degraded. If it is a head-on collision (the helicase and RNA polymerase were
traveling in opposite directions on the DNA), the impact will stall progression of the replication bubble for
some amount of time (tstall). If it is a codirectional collision, polymerization will continue at full speed the
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following time step638,659,711.

Integration
List S17 outlines the states integrated with the Replication process class.

List S17. State classes connected to the Replication process class.

Connected States Read from state Written to state

Chromosome • Whether a DnaA complex has formed at oriC • Polymerized regions of DNA
• DNA-bound protein locations • DNA-bound protein locations
• Superhelicity • Unwound bases (Effect on superhelicity)
• DNA strand breaks to be ligated • DNA strand breaks to be ligated
• DNA sequence
• DNA footprints of proteins
• Chromosome regions accessible for protein

binding
• Damaged DNA bases
• OriC position
• TerC position
• Sequence Length

Initial Conditions
At the beginning of the simulation, we choose Okazaki fragment lengths randomly based on a Poisson
distribution around the mean length of 1500 nucleotides (lOF). From this we obtain the start position of
each Okazaki fragment, to be used to determine primer, beta-clamp, and polymerase core binding during
the simulation.

Dynamic Computation
The Replication process class is built up of 8 subfunctions which move the replication proteins along the
chromosomes, and evolve the DNA copy number of the cell from 1 to 2. These subfunctions are evaluated
in random order, such that shared resources across subfunctions, such as energy, are allocated fairly.

1. Initiate Replication

• If a 29-mer DnaA-ATP complex exists at the oriC,
• If sufficient proteins and metabolites exist to make 2 replisomes,

• Unwind enough DNA bases (bunwound) to bind 2 sets of replication machinery. One set binds on
either side of the oriC. All proteins are bound to the leading strand of DNA. Each set includes:
• 1 helicase
• 1 primase
• 2 polymerase cores
• 1 gamma complex
• 1 beta-clamp

• Account for total ATP usage (as well as H2O usage, and ADP, Pi, and H+ production):

ATP usage = 2ebeta + ehelbunwound

• Note: following the initiation of replication, the dissociation of the DnaA complex is handled by the
Chromosome state class.

2. Advance replisomes

• If an Okazaki fragment is starting at the current timestep,
• Bind a primase and a polymerase core to the lagging strand

• Model the unwinding and polymerizing of the DNA. The leading and lagging polymerases and helicases
are advanced only so far as the following conditions are met:
Let N = the number of polymerized/unwound bases on a given strand in the given timestep.
Let P be the last polymerized position. P varies from 0 (at the oriC) to 290038 (at the terC).
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• N ≤ lprim if a primer is being synthesized
• N ≤ kel

• Available dNTPs ≤ dNTP requirements
• Available ATP ≤ Nehel

• # Bound SSBs = Length of lagging single strand region
SSB 8mer footprint×sssb

• Upstream DNA regions accessible to replisome proteins (no DNA damage, non-displacable proteins)
• Leading strand P ≤ terC , Lagging strand P ≤ Okazakifragmentlength
• Leading strand P ≤ 2LOF + lagging strand P
• P ≤ position of colliding RNA polymerase

3. Bind and Unbind SSBs

SSBs nucleate as a tetramer, binding single-stranded DNA around them. These tetramers generally bind in
sets of two.

• For all single-stranded stretches of DNA,
• Randomly bind SSBs (as 8mers) to deterministically selected position (with fixed spacing: sssb)

• Randomly release SSB 8mers according to the dissociation rate (kdssb)
• Dissociate all free 8mer SSBs into two tetramer SSBs

4. Bind “Back-up” Beta-Clamp

The formation of a new Okazaki fragment requires the formation of a new lagging strand DNA loop. To
prepare for this event, while the current Okazaki fragment is being polymerized, a “back-up” beta-clamp is
bound just downstream of the start position of the next Okazaki fragment. The beta-clamp assembles as a
dimer on the chromosome, and the binding event requires hydrolysis of one ATP molecule to ADP (ebeta ).

• If







# available beta-clamp monomers> 2

# available ATP>ebeta

Position on the DNA is accessible

Helicase has passed beta-clamp binding site

Okazaki fragment length > lbeta

• Bind “back-up” beta-clamp
• Decrement ATP, H2O, and increment ADP, Pi, and H+

5. Terminate Okazaki fragments

When an Okazaki fragment has been completely polymerized, its beta-clamp is released, and the end of
the Okazaki fragment is marked as having a single-strand break to be ligated by DNA ligase. The lagging
strand primase and polymerase associate with the “back-up” beta clamp that was previous bound. This
forms a new lagging strand DNA loop.

• If







Okazaki fragment has been completely polymerized

Number of bound SSBs = Length of lagging single strand region
SSB 8mer footprint×sssb

A "back-up" clamp has been bound on the lagging strand

The replication machinery on the leading strand has advanced beyond the Okazaki start site
• Release beta-clamp
• Mark Okazaki fragment as having a single-strand break to be ligated by DNA ligase
• Associate lagging strand primase and polymerase with the “back-up” beta clamp that was previously

bound (This forms a new lagging strand DNA loop.)

6. Ligate DNA

• If single-strand breaks exist (usually between polymerized Okazaki fragments),
• Ligate these breaks in random order up to the limits of:
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• DNA ligase availability
• Ligase kinetics (klig)
• NAD availability

• Decrement NAD, and increment AMP, NMM, and H+

7. Terminate Replication

• If leading and lagging strands to both sides of the terC have been completely polymerized,
• Release all replication machinery from the chromosome
• Mark terC as having a single-strand break to be ligated by DNA ligase

Representation of Replication Machinery on the Chromosome
The Replication process class involves keeping track of the specific positions of the replication proteins on
the chromosome. We define where on the chromosome the proteins bind based on the following rules:

1. The Helicase is centered on the boundary between double stranded DNA (wound) and single-stranded
DNA (unwound). The position over which it is centered is the next position to be unwound.

2. There is no gap between the helicase and leading strand DNA polymerase core or between the leading
strand polymerase core and the leading strand beta-clamp. Therefore, movement of the helicase controls
the movement of the leading strand polymerase core.

3. There is no gap between the lagging strand DNA polymerase core and the beta-clamp on the current
Okazaki fragment.

4. The positions over which the polymerase cores are centered are the next position to be polymerized.
5. “Back-up” beta-clamps bind slightly upstream of the start site of the next Okazaki fragment to be

polymerized such that when the next Okazaki fragment starts polymerizing, there will be no gap between
the polymerase and beta-clamp, and the polymerase core will be centered on the Okazaki fragment start
site.

6. At replication initiation, the mother strands are separated such that the leading polymerase cores are
centered at oriC ±1 base and the helicases are 11 nucleotides (lprim) ahead

7. During replication initiation (and the final step of replication after the last Okazaki fragment has com-
pleted), the lagging polymerase, beta-clamp, and primase are accounted for as part of a complex on
the leading strand (containing also the helicase, leading polymerase, gamma complex, and leading beta-
clamp). At all other times, the lagging polymerase, lagging beta-clamp, and primase are accounted for as
a complex on a different strand. This allows for separate tracking of the leading and lagging polymerase
positions.

8. SSBs are bound at a fixed spacing (sssb) in the single-stranded regions of DNA.

3.19 Replication Initiation

Biology

The Replication Initiation process determines when during the cell cycle chromosome duplication be-
gins. This replication initiation time is therefore very important in determining the cell’s division time.

Reconstruction

The mechanism of replication initiation used here is modeled after that described for E. coli by Messer
involving the protein DnaA (MG469)924. Chromosome Replication begins when a complex of 29 DnaA-ATP
molecules assembles near the replication origin, OriC, at specific DNA motifs called R1-R5. The assembly of
this complex is rare because the DnaA molecules are titrated out by approximately 2000 additional binding
sites, or ”DnaA boxes” that exist all around the chromosome925. DnaA needs to be bound to ATP or ADP
to bind to these sites, and binds on and off these sites throughout the cell cycle. Binding of the DnaA-
ATP at the R1-R5 sites is cooperative, enabling the large complex to form at this specific location on the
chromosome.

All of the parameters used in the Replication Initiation process class are described in List S18.
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List S18. Fixed parameters used in the Replication Initiation process class.

Parameter Value Symbol Source

Positions of all the DnaA binding sites on the chromo-
some(s)

(see Table S3L) Calculated
from motif
in [819]

Factor by which DnaA-ATP to oriC site binding probabil-
ity increases when other sites are bound

85.6909 Csite See
Parameter
Fitting

Factor by which DnaA-ATP to oriC site binding probabil-
ity increases when x*4 sized DnaA complex has formed
at oriC

1 Cstate See
Parameter
Fitting

Rate for DnaA-ATP binding high affinity DnaA boxes 25 nM−1 h−1 kb1ATP [448]
Rate for DnaA-ATP binding medium affinity DnaA boxes 0.6 nM−1 h−1 kb2ATP [448]
Rate for DnaA-ATP dissociating from the DNA 20 h−1 kd1ATP [448]
Rate for DnaA-ADP binding high affinity DnaA boxes 2.5 nM−1 h−1 kb1ADP [448]
Rate for DnaA-ADP binding medium affinity DnaA boxes 0.61 nM−1 h−1 kb2ADP [448]
Rate for DnaA-ADP dissociating from the DNA 20 h−1 kd1ADP [448]
Rate for DnaA-ADP to DnaA-ATP regeneration 2.3 h−1 k_Regen [447]
Rate for DnaA-ADP to DnaA-ATP regeneration catalyzed
by membrane lipids

0.018 g L−1 K_Regen_P4 [447]

Parameter Assignment
All of the rate constants used in this process class were obtained from previous models of replication initi-
ation447,448. The site and state cooperativity constants were fit according to the cell cycle length. The site
and state cooperativity constants directly affect the time required for replication initiation. The total cell
cycle length has been experimentally measured, and the time required for Cytokinesis and Chromosome
Replication can be estimated from their process classes. Thus:

timeReplicationInitiation = timeCellCycle − timeCytoknesis − timeReplication (S24)

The site and state cooperativity constants were fit such that on average the simulated cell divides in the
experimentally measured amount of time.

Computational Representation

The methods we use to model replication initiation are based on existing models by Atlas et al. and Browning
et al.447,448. First, DnaA rapidly associates with ATP, and in some cases DnaA-ATP can be converted
to DnaA-ADP. DnaA-ATP and DnaA-ADP molecules bind to and release from the binding sites on the
chromosome. The number of binding/unbinding events that occur in a given period of time is determined
by the number of available DnaA-ATP and DnaA-ADP molecules and binding/unbinding rates calculated
as in Browning et al.448.

Binding Sites
In addition to the R1-R5 sites at the origin, there 2227 DnaA binding sites around the chromosome. All of
the DnaA binding sites are based on theM. genitalium motifs described by Cordova et al.819. The motifs are
9 bases long. A high affinity site is defined as one that exactly matches the motif or its reverse complement
(148 sites). A medium affinity motif is defined as one that matches 8 of the 9 bases in the motif or its reverse
complement (2079 sites), and a low affinity site is one that only matches 7 of 9 bases. Our model allows
binding to all of the high and medium affinity sites outside of the oriC region.

We recognize 5 DnaA binding sites in the OriC region: one high affinity (R4), three medium affinity (R1-R3),
and one low affinity (R5), to mimic E. coli’s 5 R-sites854 and the 5 R-sites predicted for M. genitalium819.
These sites reside between the genes MG469 and MG470 (bases: 578581-579224). There are 9 high and
medium affinity motifs in this region, but we only recognize 4 to match the E. coli pattern, and therefore
ignore the sites at genome positions 578837, 578855, 578881, 578966, and 579139. R5 matches 7 of 9 bases

79

http://covertlab.stanford.edu/projects/WholeCell/knowledgebase/index.php?WholeCellModelID=PUB_0819
http://covertlab.stanford.edu/projects/WholeCell/knowledgebase/index.php?WholeCellModelID=PUB_0448
http://covertlab.stanford.edu/projects/WholeCell/knowledgebase/index.php?WholeCellModelID=PUB_0448
http://covertlab.stanford.edu/projects/WholeCell/knowledgebase/index.php?WholeCellModelID=PUB_0448
http://covertlab.stanford.edu/projects/WholeCell/knowledgebase/index.php?WholeCellModelID=PUB_0448
http://covertlab.stanford.edu/projects/WholeCell/knowledgebase/index.php?WholeCellModelID=PUB_0448
http://covertlab.stanford.edu/projects/WholeCell/knowledgebase/index.php?WholeCellModelID=PUB_0448
http://covertlab.stanford.edu/projects/WholeCell/knowledgebase/index.php?WholeCellModelID=PUB_0447
http://covertlab.stanford.edu/projects/WholeCell/knowledgebase/index.php?WholeCellModelID=PUB_0447
http://covertlab.stanford.edu/projects/WholeCell/knowledgebase/index.php?WholeCellModelID=PUB_0447
http://covertlab.stanford.edu/projects/WholeCell/knowledgebase/index.php?WholeCellModelID=PUB_0448
http://covertlab.stanford.edu/projects/WholeCell/knowledgebase/index.php?WholeCellModelID=PUB_0447
http://covertlab.stanford.edu/projects/WholeCell/knowledgebase/index.php?WholeCellModelID=PUB_0448
http://covertlab.stanford.edu/projects/WholeCell/knowledgebase/index.php?WholeCellModelID=PUB_0448
http://covertlab.stanford.edu/projects/WholeCell/knowledgebase/index.php?WholeCellModelID=PUB_0819
http://covertlab.stanford.edu/projects/WholeCell/knowledgebase/index.php?WholeCellModelID=PUB_0854
http://covertlab.stanford.edu/projects/WholeCell/knowledgebase/index.php?WholeCellModelID=PUB_0819


of the motif, so it is a very weak binder of DnaA. Since we do not know its exact mechanism/purpose we
bind this site after a 28-mer DnaA-ATP initiator complex at R1-R4 is formed, and the R5 binding triggers
initiation. This is the only low affinity binding site included in our model.

7 States
The 28-mer initiator complex consists of 7 DnaA-ATP molecules bound to each of the R1-R4 sites854. This
binding is split up into 7 serial states, and in each state one additional DnaA-ATP molecule binds to each
of the R1-R4 sites. All four sites must be bound before transition to the next state.

Cooperative Binding
DnaA-ATP binding at the origin is cooperative. There are two forms of cooperativity in our model of repli-
cation initiation. The first type of cooperativity is state cooperativity, which helps increase the probability of
transitioning into higher states. Once the binding within a state is completed, the cooperativity to transition
into the next state is calculated as:

State Cooperativity Factor = Cstate(State − 1) (S25)

where Cstate is a fixed cooperativity constant. This calculation is described in Schematic S12.

The second type of cooperativity is site cooperativity, which describes the effects of the binding of one or
more of the R1-R4 sites, on the probability of binding the other sites. The site cooperativity factor of a
given site is 1 unless certain other R-sites are already bound, in which case the cooperativity factor changes
to Csite. R4 is a high affinity site, so it generally is the first to bind and has the highest cooperative effect
on the other sites. The site cooperativity rules can be seen in Schematic S13).

R5 is also bound by cooperativity, given the presence of a complete 28-mer DnaA-ATP initiator complex at
the R1-R4 sites. The resulting DnaA-ATP 29-mer is the trigger to begin the Replication of the chromosome.

Post-Replication Initiation
Following initiation, the DnaA-ATP complex at the origin dissociates and hydrolyzes. DnaA molecules can
continue to bind around the chromosome. The formation of a second complete initiation complex is rare
because the time left in the cell cycle is generally less than that needed for an initiation event and because
DnaA molecules are further titrated with a 2nd set of binding sites on the 2nd chromosome. For simplicity,
we do not model a second DNA replication event.

1

State State Cooperativity

Factor

0 C
state

2 1 C
state

3 2 C
state

..
.

7 6 C
state

R4 R3 R2 R1

Schematic S12. Calculation of the state cooperativity factor for DnaA-ATP binding at the origin of replication.
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Schematic S13. Calculation of the total cooperativity factor for DnaA-ATP binding at the origin of replication.

Integration

List S19. State classes connected to the Replication Initiation process class.

Connected States Read from State Written to State

Chromosome • Positions on chromosome(s) where DnaA
molecules are bound

• Updated positions on chromosome(s) where
DnaA molecules are bound

• Accessible DnaA binding sites
• Copy numbers of DnaA binding sites

Mass • Membrane mass (used to calculate membrane

concentration)

Geometry • Cell volume (used to calculate membrane

concentration)

Initial Conditions
This process is initialized to a steady state. The steady state amounts of free, medium affinity site bound, and
high affinity site bound DnaA-ATPs and DnaA-ADPs are found using non-linear constrained optimization
where we try to identify a state which is a stable point and which maximizes the amount of high affinity site
bound DnaA-ATP. All DnaA proteins are either ADP or ATP bound at the initial timestep. There are also
no DnaA polymers at the R1-R4 sites at the start of the simulation.

Dynamic Computation
At each timestep, we perform the following algorithm:

1. DnaA activation

• Deterministically form DnaA-ATP complexes up to the limit of available DnaA and ATP. The kinetics
of DnaA activation are not known, and are not modeled.

Number of activation events = min

{

Number of available ATP molecules

Number of free DnaA molecules

• Update the counts of free DnaA, DnaA-ATP, and ATP

2. DnaA-ATP complex dissociation
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A complex of multiple bound DnaA-ATPs is only found near the oriC. This complex can be released from the
chromosome by the DNA polymerase at the start of DNA replication. The resulting DnaA-ADP molecules
are able to re-bind to the chromosome or reactivate to DnaA-ATP.

• If 29-mer DnaA-ATP complex is disrupted by the replisome machinery,
• Dissociate the complex to individual DnaA-ATP molecules
• Hydrolyze the ATP to form free DnaA-ADP molecules
• Decrement the counts of DnaA-ATP complexes and H2O molecules
• Increment the counts of free DnaA-ADP, H+, and Pi

3. Binding DnaA-ATP and DnaA-ADP
Up to 7 DnaA-ATPs can polymerize at each of the origin sites and only one DnaA-ATP can bind at each
site outside of the origin. Only one DnaA-ADP can bind at each site.

• If the chromosomes are sufficiently supercoiled,
• Stochastically select both high and low affinity sites at the origin and around the chromosome to

bind DnaA-ATP and DnaA-ADP molecules. Binding proceeds such that the rate of binding each site
is as follows (where the cooperativity factor, depends on the polymerization status of the R1-R4 boxes):

rate of DnaA-ATP binding R4 (high affinity) =
kb1ATP × numFreeDnaAATP

cell volume × cooperativity factor

rate of DnaA-ATP binding R1-R3 (medium affinity) =
kb2ATP × numFreeDnaAATP

cell volume × cooperativity factor

rate of DnaA-ATP binding non-origin high affinity sites =
kb1ATP × numFreeDnaAATP

cell volume

rate of DnaA-ATP binding non-origin medium affinity sites =
kb2ATP × numFreeDnaAATP

cell volume

The rate equations for DnaA-ADP binding are the same as above, except that the rate constants are
kb1ADP and kb2ADP.

4. Cooperativity
The binding of DnaA-ATP to the R1-R4 sites is cooperative at two levels. Site cooperativity increases the
probability of binding successive sites within a state. State cooperativity increases the probability of entering
successive states. The cooperativity factors for sites R1-R4 are calculated as follows:

• Calculate the State Cooperativity Factor as described in Schematic S12:

State Cooperativity Factor = Cstate(State − 1)

• Calculate the Site Cooperativity as described in Schematic S13. The Site Cooperativity Factor for a given
site is 1 or Csite depending on the occupancy of the other R-sites

• Assign the total Cooperativity Factor for sites R1, R2, and R3 as their respective Site Cooperativity
Factors

• Assign the total Cooperativity Factor for R4 as its Site Cooperativity Factor+State Cooperativity Factor

The cooperativity factors calculated here will be used in the rate calculation in Step 3.

5. Displacing DnaA-ATP and DnaA-ADP
We model the release of DnaA-ATP and DnaA-ADP molecules from their binding sites throughout the cell
cycle at the following rates:

• Stochastically select DnaA-ATP and DnaA-ADP molecules to unbind from both high and low affinity
sites at the origin and around the chromosome, such that the number of unbinding events is in agreement
with the following rates:
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rate of DnaA-ATP displacement = kd1ATP

rate of DnaA-ADP displacement = kd1ADP

6. Reactivation of DnaA-ADP to DnaA-ATP
The rejuvenation of DnaA-ADP to DnaA-ATP is incorporated similarly to that described by Atlas et al.447.
This reaction is promoted by the acidic phospholipids cardiolipin and phosphatidylglycerol.

• Deterministically reactivate free DnaA-ADP at a rate of:

rate of reactivation = numFreeDnaAADP
k_Regen membraneConcentration

K_Regen_P4 + membraneConcentration

where the membrane concentration is the grams of membrane in the cell divided by the volume of the
cell. These values are read from the Mass and Geometry state classes.

7. Replication-dependent bound DnaA-ATP release
Atlas et al. included a global term for the effect of active beta-clamps (a part of the DNA polymerase
machinery) on bound DnaA-ATP inactivation447. Our model predicts the exact position of the active beta-
clamps on the chromosome. Therefore, we do not need to use a global term, and instead can model the
release of a DnaA-ATP molecule exactly when the beta-clamp encounters it on the DNA. We however cannot
distinguish between free DnaA-ATP in the cytosol and DnaA-ATP that has been recently released by a beta-
clamp. Therefore, we model the release in the form of DnaA-ATP and not the hydrolysis to DnaA-ADP.
This beta-clamp-dependent release is handled by the DNA Replication process class and Chromosome state
class.

3.20 Ribosome Assembly

Biology

Ribosomes are large ribonucleoproteins which synthesize polypeptides. The M. genitalium 70S ribosome is
composed of two subunits – the 30S and 50S ribosomal particles – which assemble at the mRNA Shine-
Dalgarno sequence with assistance from initiation factors 1-3393,660. This process models the enzyme-
catalyzed formation of 30S and 50S ribosomal particles.

Reconstruction

Table S3N lists the observed subunit composition of the 30S and 50S particles6. The 30S particle is composed
of 1 RNA and 20 protein monomer subunits. The 50S particle is composed of 2 RNA and 32 protein
monomer subunits. The 30S and 50S particles have both been shown to assemble in stereotyped patterns
with assistance from several GTPases58,102,104,105,222,223,660,661. Era (MG387) and RbfA (MG143) have been
associated with 30S particle formation104,105. EngA (MG329), EngB (MG335), Obg (MG384), and RbgA
(MG442) have been associated with 50S particle formation104,105,222,223. The exact functions, kinetics, and
energetics of the six GTPases are unknown.

Computational Representation

Mathematical Model
Because 30S and 50S ribosomal assembly are not well characterized, this process makes several simplifying
assumptions to model ribosomal particle assembly. First, the process only represents individual rRNA
transcripts and protein monomers and fully formed ribosomal particles. Intermediate states of ribosomal
particle formation are not represented. Second, this process assumes that ribosomal particle formation is
kinetically fast and energetically favorable such that ribosomal particle formation proceeds to completion
within the 1 s simulation time step. Finally, the process assumes that each GTPase hydrolyzes 1 GTP
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molecule per ribosomal particle. With these assumptions, the rate of formation of ribosomal particle i is
given by

∆ci =







min







rRNA
︷ ︸︸ ︷

min
j

rj

Rji
,

protein
︷ ︸︸ ︷

min
j

pj

Pji
,

GTP
︷ ︸︸ ︷
mGT P

ηi







GTPases
︷ ︸︸ ︷
(

min
j

ej

Eji

)

> 0

0 otherwise

(S26)

where m, r, p, c, and e represent the copy number of each metabolite, rRNA transcript, protein monomer,
ribosomal particle, and GTPase, Rij and Pij represent the stoichiometry of rRNA transcript or protein
monomer i in ribosomal particle j, Eij is true if ribosomal particle j formation requires GTPase i and false
otherwise, and ηi =

∑

j Eij is the GTP cost of forming ribosomal particle i.

This process implements a stochastic model of the arrival of ribosomal particle assembly events with relative
rates ∆ci. Until RNA, protein, metabolic, and/or enzymatic resources are exhausted, the model iteratively
(1) computes the arrival rate, ∆ci, of each assembly event, (2) selects an event to execute according to
a binomial distribution parameterized by ∆ci, and (3) executes the selected assembly reaction, updating
the copy numbers of RNA, protein, and metabolites and decrementing the available enzymatic capacity.
Algorithm S22 outlines the implementation of the Boolean ribosomal particle assembly model.

Integration
The Rna and Protein Monomer states represents the free copy numbers of each RNA and protein monomer
species. The Protein Complex state represents the copy numbers of 30S and 50S ribosomal particles and
the 70S ribosome. The Ribosome state represents the (t)mRNA location of each 70S ribosome.

Several processes including Transcription and Translation model the synthesis and maturation of rRNA
transcripts and protein monomers (see Section 2.12 and 2.10). The Translation process models (1) transla-
tion initiation: 70S ribosome formation at mRNA Shine-Dalgarno sequences, (2) translation elongation: 70S
ribosome-catalyzed polypeptide synthesis, and (3) translation termination: mRNA release and 70S ribosome
disassembly. The Translation process also models ribosome stalling whereby the mRNA template is re-
placed by a tmRNA and the 70S ribosome synthesizes a SsrA degradation tag at the polypeptide C-terminus,
marking the nascent polypeptide for degradation. The Protein Activation process models the effect of
antibiotics on the catalytic activity of 30S and 50S ribosomal particles.

Initial Conditions
After the Mass state initializes the total cell mass, the Rna and Protein Monomer states initialize the total
copy number of each rRNA and protein monomer species. Next, the Ribosome Assembly process initializes
the total copy numbers of 30S and 50S ribosomal particles to a steady-state of the ribosome assembly model
by evaluating Algorithm S22 with excess GTP. Finally, the Translation process initializes the copy number
of 70S ribosomes, and randomly positions each 70S ribosome on mRNA weighted by the expressed copy
number of each codon (see Algorithm S4).

Dynamic Computation
Algorithm S22 outlines the implementation of the Boolean ribosomal particle assembly simulation.

Fitting
The expression of each ribosomal RNA and protein monomer was fit to provide sufficient ribosomes for
translation and prevent sustained amino acid accumulation. See Section 1.3 for further discussion.
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Algorithm S22 | Ribosome assembly simulation. See Mathematical Model section above for definition of the mathe-

matical notation.

foreach ribosomal particle i in random order do
Calculate the extent of ribosomal particle formation, ∆ci, using Eq. S26

Form ribosomal subunits and decrement the copy numbers of rRNA transcripts and protein monomers.
r ← r −R•i∆ci

p← p− P•i∆ci

ci ← ci + ∆ci

Hydrolyze GTP
mGT P ← mGT P − ηi∆ci

mGDP ← mGDP − ηi∆ci

mP i ← mP i − ηi∆ci

mH2O ← mH2O − ηi∆ci

mH+ ← mH+ − ηi∆ci

3.21 RNA Decay

Biology

In presence of ribonucleases such as ribonuclease R, RNAs have relatively short half-lives compared to that
of other macromolecules (eg. protein, DNA) and the M. genitalium doubling time. The relatively short half-
lives of RNAs enables the small M. genitalium with its very small pool of RNAs and particularly mRNAs
to sample a broader range of configurations of the RNA pool over a shorter period that would be possible
with longer half-lives. This helps the cell more finely tune the expression of proteins, more efficiently execute
cell-cycle dependent events, and respond to the external environment. However, this enhanced fitness due
to short RNA half-lives comes at a large energetic cost. In addition to ribonucleases, aminoacylated RNAs
require peptidyl tRNA hydrolase to release their conjugated amino acids. This process decays all species of
RNA, and at all maturation states including aminoacylated states.

Reconstruction

RNA decay is modeled as requiring ribonuclease R (MG104). The decay of tRNAs also requires peptidyl
tRNA hydrolase (Pth: MG083). Given the availability of the necessary decay enzymes, RNAs are randomly
selected for degradation by a Poisson probability distribution based on the RNA half lives. All of the
parameters used in the Replication Initiation process class are described in List S20.

List S20. Fixed parameters used in the RNA Decay process class.

Parameter Value Symbol Source

Rate of peptidyl tRNA hydrolase activity 0.7 s−1 khyd [26]
Half lives of all RNA species See

Table S3Y
t1/2i [602]

Decay rates of all RNA species kdecay i Derived from RNA half lives.
See Transcription Process
Class.

Reactants and products of decay reactions of all RNAs Mdecay Computed from RNA sequences

Computational Representation

Half-lives of all the RNA species are largely based on experimental measurements of homologous E. coli
genes. The E. coli genes are mapped to the M. genitalium genes by homology. (Refer to the Transcrip-

tion Process Class for additional details regarding the determination of RNA half-lives.) RNA species are
randomly selected to decay from a Poisson distribution based on the half-life of each RNA species. This
process class contains no intermediate representation of RNA degradation. RNA degradation is treated as
an all-or-nothing event that proceeds to completion in a single timestep. Upon degradation, water is used
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to break the nucleotide-nucleotide bonds and the nucleotides are recycled. All aborted transcripts (due to
stalled RNA polymerases or RNA polymerases that have been knock off of the DNA) are also degraded by
this process.

Integration

List S21. State classes connected to the RNA Decay process class.

Connected State Read from state Written to state

Rna • Count of each RNA species • Updated count of each RNA species
• Decay Rates of all RNAs

Transcript • Aborted transcript sequences

Initial Conditions
No initialization steps are required for this process.

Dynamic Computation
1. Determine the counts of free ribonuclease R (NR) and peptidyl tRNA hydrolase (NT ) from the Protein

Monomer State Class
2. Determine the limits on the number of RNA decay events, DR:

(The number of tRNA decay events is designated DT )
(a) If NR = 0, then DR = 0

(All RNAs require ribonuclease R in order to decay, but ribonuclease R has a high rate of activity,
so as long as NR > 0, RNA decay can occur)

(b) DT = NT khyd

(The tRNA decay limit is dependent on the peptidyl tRNA hydrolase availability and kinetic rate)
3. Considering each RNA independently, decide whether to decay an RNA by random number selection from

a Poisson distribution with a rate parameter, λcalculated as:

λ = RNAikdecay i (S27)

where RNAi is the count of a given RNA species i
4. If aborted transcripts exist in the cell due to RNA polymerase stalling or RNA polymerase displacement

on the DNA, decay all aborted sequences
5. Calculate the total number of metabolites used and produced from the decay of the given RNA species,

using the matrix Mdecay, update the counts of existing RNAs and metabolites.

3.22 RNA Modification

Biology

Bacteria employ post-transcriptional base modification in order to degenerately encode approximately 61
triplet codes using far fewer tRNA species than possible using only Watson-Crick base pairing885. Modifi-
cation of wobble position 34 is believed to be most important for improving codon recognition885. Bacteria
modify several positions in addition to position 34885. Modifications distant from the anticodon are be-
lieved to help tRNAs properly fold and stabilize their catalytically active structures885. Bacteria also post-
transcriptionally modify rRNA105. rRNA modifications are believed to help stabilize rRNA, participate in
protein synthesis, and confer resistance to ribosomal inhibitors105. The exact role of rRNA modification is
unknown105. This process models tRNA and rRNA modification.

Reconstruction

The M. genitalium tRNA modification complement was reconstructed based on the observed complement
of E. coli modifications. Table S3AA describes the reconstruction process in detail. First, the E. coli
modification complement was reconstructed45,47,55,56,64,65,560,651. Second, modifications situated in conserved
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motifs were transferred to M. genitalium. The M. genitalium rRNA modification complement was similarly
reconstructed (see Table S3Z). The stoichiometry and kinetics of each RNA modification reaction were
reconstructed based on an extensive review of the literature (see Table S3O, S3Z, and S3AB).

Computational Representation

Mathematical Model
This process models non-coding RNA modification. Because the kinetics of RNA modification are not well
characterized, this process make several simplifying assumptions. First, this process assumes that each RNA
is fully modified in a single time step. Consequently, this process collapses the modification of each RNA
into a single reaction, and only represents unmodified and fully modified RNA. Intermediate modification
configurations are not represented. Second, this process assumes that the mean arrival rate, vi of modification
events of each RNA species i is independently limited by (1) the copy number of unmodified RNA, ru

i , (2)
the copy numbers of intracellular metabolites, mj , and (3) the copy numbers of RNA modification enzymes,
ej . Based on these assumptions, the functional form of vi is given by

vi = min
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, (S28)

where Mji is the stoichiometry of metabolite j in the modification of RNA species i, Ms = max (0, −M) is
the negative part of M , Kji is the experimentally observed catalytic rate of enzyme j in the modification of
RNA species i, and ∆t = 1 s is the simulation time step.

This process implements a stochastic model of the arrival of RNA modification events with relative rates
vi. Until RNA, metabolic, and/or enzymatic resources are exhausted, the model iteratively (1) computes
the arrival rate, vi, of each modification event, (2) selects a single modification to execute according to a
multinomial distribution parameterized by vi, and (3) executes the selected modification reaction, updating
the copy numbers of RNA and metabolites and decrementing the available enzymatic capacity. Algorithm S23
outlines the implementation of the RNA modification model.

Integration
The Rna state represents the unmodified and modified copy numbers of each RNA species. The Metabol-

ite state represents the copy number of each intracellular metabolite. The Protein Monomer and Protein

Complex states represent the copy number of each RNA modification enzyme.

RNA are synthesized and matured in four steps (see Section 2.12). This process models the modification of
individual non-coding RNA following RNA processing (see RNA Processing process). The Macromolecu-

lar Complexation and Ribosome Assembly processes model the formation of macromolecular complexes,
including the 30S and 50S ribosomal particles. The Translation process models the function of m-, r-, s-,
and tRNA in translation.

Initial Conditions
Section 1.4 outlines the cell state initialization algorithm. Briefly, after the Mass state initializes the total
cell mass, the Rna state initializes the total copy number of each RNA species and initializes all RNA to
their mature – processed and modified – configuration. Second, the tRNA Aminoacylation process initializes
tRNA to the aminoacylated configuration. Next, the Macromolecular Complexation and Ribosome Ass-

embly processes initialize the copy number of each ribonucleoprotein complex. Finally, the Translation

process initializes the mRNA location of each 70S ribosome.

Dynamic Computation
Algorithm S23 outlines the implementation of the RNA modification model.
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Algorithm S23 | RNA modification simulation. See Mathematical Model section above for definition of the mathematical

notation.

Input: rp
i copy number of modified RNA species i

Let ki ← ei∆t be the capacity of enzyme i for RNA modification
repeat

Calculate modification rates
foreach non-coding RNA species i do

Calculate vi according to Eq. S28

Select non-coding RNA species i ∼ multinomialRand(1, vi/
∑

j
vj)

Update RNA copy numbers: ru
i ← ru

i − 1, rm
i ← rm

i + 1
Update metabolites: m← m−M•i

Update enzyme catalytic capacity: k ← k −K•i

until no further modification possible (vi = 0 ∀ i)

Fitting
The expression of the RNA modification enzymes was fit to provide sufficient enzymes to quickly modify
RNA, or more specifically to prevent sustained accumulation of unmodified RNA. See Section 1.3 for further
discussion.

3.23 RNA Processing

Biology

Bacteria transcribe genes both individually as well in groups referred to as transcription units or oper-
ons. Operonic transcription has several advantages compared to single-gene transcription. First, operonic
transcription allows cells to minimize the number of transcriptional regulators required to control gene ex-
pression. Second, operonic transcription increases the likelihood that groups of gene products have similar
stoichiometry. At the same time, operonic transcription carries the costs of synthesizing intercistronic RNA
and cleaving operonic non-coding transcripts into individual RNAs. Additionally, operonic transcription
doesn’t provide separate control of the expression of each gene. This process models operonic RNA cleavage
into individual RNA gene products.

Reconstruction

Transcription Unit Structure
The transcription unit organization of the M. genitalium chromosome was reconstructed by mapping the
“suboperon” structure of M. pneumoniae chromosome defined by Güell et al.418 on to that of M. genitalium
(see Table S3U) with two modifications. First, non-coding RNA were organized into transcription units
according to their “reference operons”418. Second, all mRNAs either not associated with suboperons, with-
out M. pneumoniae homologs, or which have been rearranged since divergence from M. pneumoniae, were
assigned to their own transcription units. The in silico M. genitalium chromosome is organized into 335
transcription units containing 525 genes.

Leader Sequences
Bacteria also transcribe 3’ and 5’ leader sequences before and after each non-coding RNA gene. These leader
sequences must be cleaved to produce functional non-coding RNA.

mRNA Cleavage
M. genitalium mRNA cleavage is not well described and is not modeled. The model assumes M. genitalium
polycistronic mRNA are not cleaved.
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rRNA Cleavage
E. coli rRNA have been shown to be transcribed as a single 30S transcript which is cleaved into individual 5S,
16S, and 23S rRNA transcripts by the action of several ribonucleases105. The E. coli rRNA cleavage scheme
was adapted and simplified for the reduced ribonuclease complement of M. genitalium by removing cleavage
reactions catalyzed by non-homologous enzymes. Schematic S14 illustrates the reconstructed M. genitalium
rRNA cleavage scheme. First, ribonuclease III (MG367) hydrolytically cleaves the 30S rRNA into 5S, 16S, and
23S rRNA precursors. Second, hydrolytic ribonuclease J (MG139) and phosphorolytic ribonucleases RsgA
(MG110) and DeaD (MG425) cleave the 3’ and 5’ ends of the 5S and 16S rRNA precursors. M. genitalium
doesn’t contain a homolog of the E. coli 9S RNA cleavage enzyme ribonuclease E. The mechanisms of 3’
and 5’ cleavage of the M. genitalium 5S rRNA precursor are unknown. 3’ and 5’ cleavage of the 5S rRNA
precursor are modeled as a spontaneous process.

sRNA Cleavage
The reconstructed M. genitalium small non-coding RNA (sRNA) precursor cleavage scheme illustrated in
Schematic S14 was based on that of E. coli39,649. ffs (MG0001) is cleaved at both its 3’ and 5’ ends by
ribonuclease III. ribonuclease P cleaves the 5’ end of rpnB (MG0003) and ssrA (MG0004).

tRNA Cleavage
The reconstructed M. genitalium tRNA precursor cleavage scheme illustrated in Schematic S14 was based
on that of E. coli39,649. Ribonucleases III (MG367) and P (MG0003, MG465) hydrolytically cleave the 3’
and 5’ ends of each pre-tRNA, removing the 3’ and 5’ leader regions and intercistronic regions to produce
individual tRNA.

Unprocessed RNA Processed RNA

pre-tRNA pre-tRNA
3’: RNAse III

5’: RNAse P

ffs

rpnB

ssrA

pre-ffs

pre-rpnB

pre-ssrA
5’: RNAse P

5’: RNAse P

3’, 5’: RNAse III

30S RNA

9S RNA

pre 16/17S RNA

pre-23S RNA

5S rRNA

16S rRNA

23S rRNA
3’: DeaD

5’: RNAse J

3’: RsgA

5’: RNAse J

RNAse III

Schematic S14. Non-coding RNA cleavage.

Cleavage Reactions
The stoichiometry, kinetics, and energetics of each non-coding RNA cleavage reaction were reconstructed
based on extensive review of the primary literature (see Table S3D and S3O).

Computational Representation

Mathematical Model
This process models the cleavage of operonic non-coding RNA into individual gene products and intercistronic
RNA fragments. Because the kinetics of RNA cleavage are not well characterized, this process makes several
simplifying assumptions. First, this process assumes that each RNA is fully cleaved in a single time step.
Consequently, this process collapses the cleavage of each RNA into a single reaction, and only represents
uncleaved and fully cleaved RNA. Intermediate cleavage configurations are not represented. Second, this
process assumes that the mean cleavage rate, vi of each RNA species i is independently limited by (1) the
copy number of unprocessed RNA, ru

i , (2) the copy numbers of intracellular metabolites, mj , and (3) the
copy numbers of RNA processing enzymes, ej . Based on these assumptions, the functional form of vi is
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given by

vi = min









RNA
︷︸︸︷

ru
i ,

metabolites
︷ ︸︸ ︷
⌊

min
j

mj

Ms
ji

⌋

,

enzymes
︷ ︸︸ ︷

poissonRand

(

min
j

ej

Kji
∆t

)









, (S29)

where Mji is the stoichiometry of metabolite j in the processing of RNA species i including NTP hydrolysis
coupled to phosphorolytic cleavage, Ms = max (0, −M) is the negative part of M , Kji is the experimentally
observed catalytic rate of enzyme j in the processing of RNA species i, and ∆t = 1 s is the simulation time
step.

This process implements a stochastic model of the arrival of RNA processing events with relative rates
vi. Until RNA, metabolic, and/or enzymatic resources are exhausted, the model iteratively (1) computes
the arrival rate, vi, of each processing event, (2) selects a single processing event to execute according to a
multinomial distribution parameterized by vi, and (3) executes the selected processing reaction, updating the
copy numbers of RNA and metabolites and decrementing the available enzymatic capacity. Algorithm S24
outlines the implementation of the RNA processing model.

Integration
The Rna state represents the copy numbers of unprocessed, processed, and intercistronic RNA. The Metabol-

ite state represents the copy number of each intracellular metabolite. The Protein Monomer and Protein

Complex states represent the copy number of each RNA processing enzyme.

RNA are synthesized and matured in four steps (see Section 2.12). This process models the cleavage of
RNA transcripts produced by the Transcription process. The RNA Modification process models the
modification of transcripts cleaved by this process. The Macromolecular Complexation and Ribosome

Assembly processes model the formation of macromolecular complexes, including the 30S and 50S ribosomal
particles. The Translation process models the function of m-, r-, s-, and tRNA in translation. The RNA

Decay process models the degradation of cleaved intercistronic RNA fragments.

Initial Conditions
Section 1.4 outlines the cell state initialization algorithm. Briefly, after the Mass state initializes the total
cell mass, the Rna state initializes the total copy number of each RNA species and initializes all RNA to
their mature – processed and modified – configuration. Second, the tRNA Aminoacylation process initializes
tRNA to the aminoacylated configuration. Next, the Macromolecular Complexation and Ribosome Ass-

embly processes initialize the copy number of each ribonucleoprotein complex. Finally, the Translation

process initializes the mRNA codon location of each 70S ribosome.

Dynamic Computation
Algorithm S24 outlines the implementation of the RNA processing model.

Fitting
The expression of the RNA processing enzymes was fit to provide sufficient enzymes to quickly process RNA,
or more specifically to prevent sustained accumulation of unprocessed RNA. See Section 1.3 for further
discussion.
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Algorithm S24 | RNA processing simulation. See Mathematical Model section above for definition of the mathematical

notation.

Input: rp
i copy number of processed RNA species i

Input: ri
i copy number of intercistronic fragment i

Input: Rg
ji is one if operonic RNA i contains gene j, and zero otherwise

Input: Ri
ji is one if operonic RNA i contains intercistronic fragment j, and zero otherwise

Let ki ← ei∆t be the capacity of enzyme i for RNA processing
repeat

Calculate cleavage rates
foreach operonic non-coding RNA species i do

Calculate vi according to Eq. S29

Select operonic non-coding RNA species i ∼ multinomialRand(1, vi/
∑

j
vj)

Update RNA copy numbers: ru
i ← ru

i − 1, rp ← rp + Rg
•i, ri ← ri + Ri

•i

Update metabolites: m← m−M•i

Update enzyme catalytic capacity: k ← k −K•i

until no further cleavage possible (vi = 0 ∀ i)

3.24 Terminal Organelle Assembly

Biology

Balish and Krause have shown that M. genitalium maintains a flask shape with a single 300 × 80 nm
membrane-bound bleb or terminal attachment organelle throughout most of its life cycle91. Krause and
Balish have also shown that the M. genitalium terminal organelle divides during cell division, producing
a daughter organelle which subsequently migrates to the opposite pole409. The M. genitalium terminal
organelle been associated with several cellular processes including motility, adhesion, replication, and cy-
tokinesis88,91,406–409,794,803,813. This process models the assembly of the protein content of the terminal
organelle.

Reconstruction

Krause and Balish have shown that the terminal organelle is composed of eight proteins – high molecular
weight cytadherence accessory proteins (HMW) 1-3 (MG312, MG218, MG317), adhesins MgPa (MG191),
P32 (MG318) and P65 (MG217), and proteins P110 (MG192) and P200 (MG386)406–409. The termi-
nal organelle protein content is believed to assemble in the stereotyped hierarchical pattern illustrated in
Schematic S15408,409. First, HMW1 and HMW2 mutually recruit each other into the terminal organelle.
Second, HMW1 recruits MgPa, HMW3, and P200 into the terminal organelle. Third, HMW3 recruits P32
which in turn recruits P65. P110 independently localizes to the terminal organelle. The kinetics of terminal
organelle assembly are unknown.

HMW1
MG312

HMW2
MG218

P110
MG192

MgPa
MG191

HMW3
MG317

P200
MG386

P32
MG318

P65
MG217 Membrane

Cytosol

Schematic S15. Hierarchical assembly of the M. genitalium terminal organelle.
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Computational Representation

Mathematical Model
This process implements a Boolean model of the observed hierarchical assembly of the protein content of
the M. genitalium terminal organelle. Schematic S15 outlines the Boolean assembly model. Algorithm S25
describes the model implementation in detail.

Integration
The Protein Monomer state represents the copy number of each protein species in each of four compart-
ments: cytosol (c), membrane (m), and terminal organelle cytosol (tc) and membrane (tm). The Host

state represents the status of the host urogenital epithelium to which the M. genitalium terminal organelle
attaches.

Several processes including Translation model the synthesis and maturation of protein monomers (see
Section 2.10). The Host Interaction process models the role of the terminal organelle in host attachment
and immune activation.

Initial Conditions
After the total cell mass is initialized, the Protein Monomer state initializes the terminal organelle copy
number of each terminal organelle protein.

Dynamic Computation
Algorithm S25 outlines the implementation of the Boolean terminal organelle assembly model.

Algorithm S25 | Terminal organelle assembly simulation.

if HMW1 and HMW2 expressed (HMW 1c + HMW 1tc > 0 and HMW 2c + HMW 1tc > 0) then
Localize HMW1 and HMW2 to the terminal organelle
HMW 1tc ← HMW 1tc + HMW 1c

HMW 2tc ← HMW 2tc + HMW 2c

HMW 1c ← 0
HMW 2c ← 0

if HMW1 localized to terminal organelle (HMW 1tc > 0) then
Localize HMW3, MgPa, P200 to terminal organelle
HMW 3tc ← HMW 3tc + HMW 3c

MgP atm ←MgP atm + MgP am

P 200tc ← P 200tc + P 200c

HMW 3c ← 0
MgP am ← 0
P 200c ← 0

if HMW3 localized to terminal organelle (HMW 3tc > 0) then
Localize P32 to terminal organelle
P 32tm ← P 32tm + P 32m

P 32m ← 0

if P32 localized to terminal organelle (P 32tm > 0) then
Localize P65 to terminal organelle
P 65tc ← P 65tc + P 65c

P 65c ← 0

Localize P110 to terminal organelle
P 110tm ← P 110tm + P 110m

P 110m ← 0
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3.25 Transcription

Biology

Transcription is the first step in the synthesis of functional gene products where RNA polymerase and several
accessory enzymes translate transcription units (regions of the DNA containing 1 or more genes) into RNA
molecules. An RNA polymerase can bind on and off of the DNA either specifically to a gene promoter or
non-specifically to a non-promoter site775. Transcription begins with the recruitment of RNA polymerase to
a gene promoter with the help of a sigma initiation factor and possibly transcription factors. Next elongation
factors are recruited, RNA begins to be polymerized, and the sigma factor is released. In this stage, the RNA
polymerase is said to be in the actively transcribing state. Finally the RNA polymerase reaches a terminator
at the end of the transcription unit, and with the help of termination factors releases the polymerized RNA
and dissociates from the DNA.

Termination of transcription in some bacteria can require the hexameric ATP-dependent helicase Rho233.
However, Rho is not essential in B. subtilis (gram positive) or M. genitalium234, and therefore we chose
to only include Rho-independent termination in our model. Rho-independent termination occurs via the
intrinsic properties of RNA which disrupt RNA polymerase-DNA binding.

As soon as the RNA begins to polymerize, even prior to termination, the mRNA transcripts may be bound
by ribosomes and translated to polypeptides. For simplicity, our model doesn’t represent this phenomenon,
allowing translation only of completed mRNAs.

Reconstruction

Enzymes
All of the enzymes required for transcription are detailed in List S22.

List S22. Enzymes and complexes used in the Transcription process class.

Enzymes/Complexes Composition Gene
Name(s)

DNA Footprint
(bases)

RNA polymerase sigma factor (1) MG249 rpoD 58
Transcription elongation factor (1) MG282 greA
Transcription termination factor (1) MG141 nusA
Transcription termination/antitermination
protein

(1) MG027 nusB

DNA-directed RNA Polymerase (1) MG022, (2) MG177,
(1) MG340, (1) MG341

rpoE, rpoA,
rpoC, rpoB

75

Parameters
The parameters required for transcription were derived from multiples sources including mircoarray gene
expression data and RNA half life data. The data used and calculations performed pre-fitting, are described
below:

mRNA Gene expression data
Gene expression data for M. genitalium was unavailable, so we used data (measured at 37°C) from My-
coplasma pneumonie, the closest phylogenetic relative of M. genitalium569. The microarray data by Weiner
III et al. was presented in normalized log form. Since the exact method of normalization was unknown to
us, to re-derive expression levels we simply calculated 2^(presented value). The M. genitalium genome is
contained in the larger M. pneumonie genome and we were able to map a M. pneumonia gene to all but 6 M.
genitalium genes576. The genes were mapped based on matching gene names, matching gene descriptions,
and Bio-cyc’s Align Multi-Genome Browser6.

tRNA expression data
We also require tRNA expression estimates analogous to the mRNA microarray data. Since no microarray
data is available, we use cell composition data to approximate tRNA expression870. We approximate the
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total tRNA expression as the total mRNA expression multiplied by the ratio of the tRNA to mRNA weight
fractions of the cell. Next we need to approximate the expression of each individual tRNA. We use mea-
surements of the relative abundances of each amino acid in the cell. A tRNA’s expression is the total tRNA
expression multiplied by the fraction of the total amino acid weight represented by its amino acid53,182. For
example, alanine accounts for about 8% of the total amino acid mass. Then the expression of tRNA for
alanine, MG471, is 8% of the total tRNA expression. In cases of degeneracy, where multiple tRNAs bind to
the same amino acid, the amino acid weight fractions is split evenly between the tRNAs.

rRNA and sRNA expression data
Similar to the tRNA expression calculations, the total rRNA expression is calculated as the total mRNA
expression multiplied by the ratio of the rRNA to mRNA weight fractions of the cell. This total rRNA
expression is split between the three rRNA species (23S, 16S, 5S) based on their relative abundances in
the cell. sRNA expression is also calculated in the same way, such that expression is proportional to RNA
abundance in the cell.

Half-life data
We obtained mRNA half-lives from measurements in E. coli performed at 30◦C in M9 minimal media602.
Additional sets of E. coli half-life data are available, but we chose the set with the most comprehensive list
of genes mapping to homologous M. genitalium genes, and the set whose average half-life was closest to the
reported bulk E. coli mRNA half-life601,603. The gene mapping between E. coli and M. genitalium was based
on common gene names and annotations, Bio-Cyc’s Align Multi-Genome Browser, and UniProt6,96,182. This
have us a half-life estimate for 274 M. genitalium genes. For the remaining genes, we assigned the average
half-life, 4.425 minutes. We used separate sources to acquire the half-lives of tRNAs (45 minutes), rRNAs
(150 minutes), and sRNAs (89 minutes)604,608.

Gene assignment to transcription units
The transcription unit structure (sets of genes that are transcribed together following a single promoter
binding event) was compiled from several sources including primary reports176,186,188,244,247–249,411 and
databases182,250 of cotranscribed genes, and a computational model251that predicts promoter and transcrip-
tion unit start sites. We also predicted transcription units using information on the conservation of gene
order across multiple species, the related functions of adjacent genes, the similar expression levels of adjacent
genes as measured by microarrays, and the strandedness (transcription direction) of adjacent genes569. We
transcribe the 525 M. genitalium genes in 355 transcription units. 294 genes fall in transcription units of
more than one gene. The longest transcription unit contains 4 genes.

Rate at which each transcript is produced
The rate of change of the concentration of an RNAi, is its synthesis net its degradation:

d[RNAi]

dt
= ksynth,i
︸ ︷︷ ︸

synthesis

− kdeg,i [RNAi]
︸ ︷︷ ︸

degradation

, (S30)

where ksynth,i is the rate of synthesis and kdeg,i is the rate of degradation of RNAi

The degradation rate is described by the first-order degradation constant of RNAi with half-life, hi (obtained
as described above).

kdeg,i =
ln(2)

hi
(S31)

At steady state RNA concentration, d[RNA]
dt = 0:

ksynth,i =
ln(2)

hi
[RNAi]SS (S32)

The relative expression, Ei, as described above, was obtained from microarray and cell composition data.
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Substituting [RNAi]SS with Ei[RNA], where the relative expression, Ei, as described above, was obtained
from microarray and cell composition data, and [RNA] is the total RNA concentration in the cell, we get
the synthesis rate of RNAi:

ksynth,i =
ln(2)

hi
Ei [RNA] (S33)

Rate at which each transcript is produced (assuming exponential growth)
We adjust the above derivation for growth and dilution. Assuming exponential growth of the cell:

ksynth,i = ksynth,iinite
ln(2) t

τ (S34)

[RNAi] = [RNAi]inite
ln(2) t

τ (S35)

where τ is the cell cycle length,

d[RNAi]

dt
= ksynth,iinite

ln(2) t
τ

︸ ︷︷ ︸

degradation

− kdeg,i[RNAi]inite
ln(2) t

τ

︸ ︷︷ ︸

degradation

(S36)

Assuming that mother and daughter cells are identically distributed:

[RNAi]t=τ = 2[RNAi]init (S37)

[RNAi]init =

τ̂

0

d[RNAi]

dt
(S38)

= (ksynth,iinit − kdeg,i[RNAi]init)
ln(2)

τ
(S39)

ksynth,iinit = [RNAi]init

(
τ

ln(2)
+ kdeg,i

)

(S40)

Again substituting [RNAi] with Ei[RNA]:

ksynth,iinit = Ei[RNA]init

(
τ

ln(2)
+ kdeg,i

)

(S41)

Synthesis Rate Adjustment for Transcription Units
Genes that are transcribed together in a transcription unit must have the same synthesis rate. This is
because we do not model incomplete transcription of a transcription unit, where the RNA polymerase can
fall off the unit, after transcribing a subset of its genes. For half-lives that have not been measured in E. coli
and were set to an average 4.425 minutes, we adjusted the half-lives to even out the synthesis rates within a
transcription unit. For the other cases, we set the synthesis rate of the transcription unit to be the average
of the rates within the transcription unit.

Determining the probabilities of making transcripts
The probability of an RNA polymerase binding a given transcription unit, i, is based on the synthesis rate
of transcription unit i relative to the synthesis rate of all the other transcription units:
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Probability(transcribing i) = Ptu,i (S42)

=
ksynth,i

∑

j=1:335 ksynth,ij
(S43)

Substituting in the synthesis rate from above:

Ptu,i =
Ei[RNA]init(

τ
ln(2) + kdeg,i)

∑

j=1:335 Ei[RNA]init(
τ

ln(2) + kdeg,i)
(S44)

=
Ei

(
τ

ln(2) + kdeg,i

)

∑

j=1:335 Ei(
τ

ln(2) + kdeg,i)
(S45)

Parameter Fitting
After and all of the raw data has been transformed according to the calculations described above, and fit
to assure growth of a wildtype cell that will accommodate doubling in 9hours, we reach the parameters
described in List S23.

List S23. Fixed parameters used in the Transcription process class.

Parameters Value Symbol Source

RNA polymerase elongation rate 50 nt s−1 kel [562, 563]
Transcription unit binding probabilities Ptu See ’Data and

Calculations’
RNA polymerase state transition probabilities Ptrans [775]
Enzyme DNA footprints See

’Enzymes/complexes’
[747, 748]

Transcription unit sequences See Table S3K, [182] [182]
Transcription unit directions See Table S3K [182]
Transcription unit lengths See Table S3K [182]
Transcription unit 5’ coordinates See Table S3K [182]
Cell Cycle Length 8.9 h τ Experimentally

measured. See
Experimental
Methods.

Computational Representation

We use a Markov model to determine the state of each RNA polymerase. An RNA polymerase may exist in
any of the four following states:

1. Free (not bound to a chromosome) (FS)
2. Non-specifically bound somewhere on a chromosome (NSB)
3. Specifically bound to the promoter of a transcription unit (SB)
4. Actively transcribing a transcription unit (AT)

Transition probabilities between these states are designed to maintain the occupancy of each state within
a narrow window around their expected values775. The transition probabilities (Ptrans) are determined by
four logistic control functions, tuned by the RNA polymerase state expectations.

Free State
All newly created or released RNA polymerases are in the free state. From the free state, a polymerase can
transition to the non-specifically bound state, transition to the specifically bound state, or remain in the free
state.
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Non-specifically bound state
From the non-specifically bound state, a polymerase can transition to the free state, transition to the
specifically bound state, or remain in the non-specifically bound state. A random position on a chromosome
for the non-specifically bound polymerase is selected from the polymerase accessible sites as determined by
the Chromosome state.

Specifically bound state
From the specifically bound state, a polymerase can transition to the free state, non-specifically bound state,
or actively transcribing state, or remain in the specifically bound state. A polymerase can only transition
into the specifically bound state if a free sigma factor is available. Upon transition a polymerase into this
state, we randomly pick a transcription unit to bind to. The probability of binding each transcription unit
is based on experimentally measured gene expression and half life data, as detailed below.

Actively transcribing state
Once in the actively transcribing state, a polymerase will remain in the actively transcribing state until
transcription is terminated, the RNA polymerase is displaced by another protein, or the RNA polymerase
falls off due to a stall. In all these cases, the RNA polymerase falls off into the free state. For a polymerase in
the actively transcribing state, we release any bound sigma factors and elongate the transcript according to
nucleic acid limits (given the transcript sequence) and the elongation rate kel. The transcript and polymerase
are released if transcription is complete and the necessary termination factors are available.

Integration

List S24. State classes connected to the Transcription process class.

Connected States Read from state Written to state

Chromosome • Regions accessible for transcription machinery
to bind

• Positions and strands on the DNA where
transcription machinery is bound

• Polymerized regions of DNA

Rna • Counts of RNA species • Updated couents of RNA species

RNA Polymerase • RNA polymerase states (FS, NSB, SB, AT) • Updated states of RNA polymerases
• DNA positions and strands of DNA bound

RNA polymerases
• Updated positions and strands of DNA bound

RNA polymerases
• Expectations of RNA polymerases in FS, NSB,

SB, and AT states (used to derive transition
Probabilities Ptrans)

Transcript • Transcription unit indexes of bound RNA
polymerases

• Updated transcription unit indexes of bound

RNA polymerases
• RNA polymerase position within transcript • Updated RNA polymerase position
• Chromosome on which RNA polymerase

resides (1 or 2)
• Transcription unit sequences, directions,

lengths, and 5’ start coordinates

Initial Conditions
All RNAs are initialized to the mature state. RNA polymerases are initialized as follows:

1. Each RNA polymerase is randomly assigned (with replacement) to one of the actively transcribing, specif-
ically bound, non-specifically bound, or free states weighted by the expected occupancy of each state

2. Actively transcribing and specifically bound polymerases are randomly assigned to transcription units
weighted by the transcription unit binding probabilities (Ptu).

3. Each transcription unit to which one or more actively transcribing polymerases have been assigned is
divided into 1 segment for each polymerase

4. Actively transcribing polymerases are randomly assigned to positions within the assigned segment of their
assigned transcription unit (positions near the segment border are not allowed to prevent polymerases
from being too close to each other) with uniform probability.

97



5. Non-specifically bound polymerases are randomly assigned to an accessible region on the chromosome.

Dynamic Computation
At each timestep, we follow the following algorithm:

1. Assign all newly synthesized RNA polymerases to the free state
2. Use the Markov model to randomly transition RNA polymerases among the FS, NSB, SB, and AT states,

weighted by the state transition probabilities Ptrans.
3. Randomly assign RNA polymerases entering the NSB state to an accessible position on the Chromosome

(performed by Chromosome state).
4. Randomly assign RNA polymerases entering the SB state to specific transcription units weighted by the

product of the transcription unit binding probabilities (Ptu) and the binding probability fold changes.
(Fold changes arise from other cellular processes and are described in the Transcriptional Regulation

and DNA Supercoiling process classes.) We determine whether the selected promoter site is accessible
and bind the polymerase to a chromosome using the Chromosome state class. RNA polymerase specific
binding can only occur if there is an available sigma factor, and a sigma factor is accordingly decremented.

5. Simulate RNA polymerization by actively transcribing RNA polymerases with the aid of elongation
factors.
(a) Release the sigma factor if this is the first second of elongation, and increment the free sigma factor

count
(b) If all of the necessary elongation factors are available, elongate the transcript according to nucleic acid

limits (given the transcript sequence) and the elongation rate kel. We allocate available nucleic acids
among the actively polymerizing RNA polymerases, by adding a base to each elongating transcript
before moving to the next base of a given transcript. Polymerization can also be limited if the new
site at which the polymerase will land is not accessible (for example, if another RNA polymerase lies
in its way)

6. If transcription is complete and the necessary termination factors are available,
(a) Release the completed transcript
(b) Transition the RNA polymerase to the free state
(c) Increment the RNA count

3.26 Transcriptional Regulation

Biology

Transcription factors are one of many mechanisms cells employ to respond to external signals and main-
tain homeostasis. Transcription factors regulate the synthesis rates of RNA by modulating the affinity of
RNA polymerase for promoters. Transcriptional enhancers stabilize RNA polymerase-promoter complexes
by contributing negative free energy to the complex, for example by providing additional surfaces for RNA
polymerase binding. Transcriptional repressors destabilize RNA polymerase-promoter complexes, for ex-
ample by sterically blocking promoters. This process models the binding of transcriptional regulators to
promoters and the fold-change effect of transcriptional regulators on the affinity of RNA polymerase for
individual promoters.

Reconstruction

The M. genitalium transcriptional regulatory network was reconstructed based on an extensive review of the
primary literature110,112,186,196,395,411,418,420,433–438,505 and the proteomic database DBTBS419. M. genital-
ium has few homologs to reported transcription factors. The reconstructed network contains five regulators
which regulate 54 genes through 29 regulatory interactions, including one regulator (Spx, MG127) which
interacts directly with RNA polymerase. Table S3P lists the five reconstructed transcriptional regulators
and the binding site, motif, and affinity, and fold-change effect of each regulatory interaction.
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Computational Representation

Mathematical Model
This process models the binding of transcriptional regulators to promoters and the fold-change effect of
transcriptional regulators on RNA polymerase-promoter binding. Because M. genitalium transcriptional
regulation is not well characterized, this process makes several simplifying assumptions. First, this process
assumes that transcriptional regulator-DNA binding is kinetically fast and energetically favorable, and there-
fore proceeds to completion within the 1 s simulation time step. Second, because transcriptional regulator-
promoter affinities have not been systematically characterized, this process assumes that transcriptional
regulators bind promoters with affinity proportional to their fold change effect. Third, this process assumes
that only one copy of each transcriptional regulator can bind at each promoter. Fourth, this process as-
sumes that transcriptional regulators stably bind DNA. Consequently, transcriptional regulator dissociation
is ignored except displacement by other DNA-binding proteins which is modeled by the Transcription

and Replication processes. Finally, this process assumes that transcriptional regulators independently af-
fect RNA polymerase, and thus their fold change effects add multiplicatively. Algorithm S26 outlines the
implementation of the transcriptional regulation model.

Integration
The Protein Monomer and Protein Complex states represent the free and DNA-bound copy numbers of
each transcriptional regulator. The Chromosome state represents the exact chromosomal location of each
DNA-bound transcriptional regulator. The RNA Polymerase state represents the fold change effect of tran-
scriptional regulation on the affinity of RNA polymerase for each promoter.

Several processes including Translation model protein synthesis (see Section 2.10). The Transcription

process models (1) transcription initiation: RNA polymerase-promoter binding including the fold-change
effects of transcriptional regulation, (2) transcript elongation, and 3) transcription termination.

Initial Conditions
Section 1.4 outlines the cell state initialization algorithm. Briefly, after the Protein Monomer and Protein

Complex states initialize the total copy number of each transcriptional regulator, the Transcriptional Reg-

ulation process initializes the status – free or DNA-bound – and chromosomal location of the transcriptional
regulators to a steady-state of the transcriptional regulatory network by iteratively evaluating Algorithm S26
until convergence. Because the transcriptional regulatory model assumes that transcriptional regulator-
promoter binding proceeds to completion within the 1 s simulation time step and is stable, Algorithm S26
converges in one iteration.

Dynamic Computation
Algorithm S26 outlines the implementation of the Transcriptional Regulation model.
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Algorithm S26 | Transcriptional regulation simulation.

Input: nik is true if promoter i is expressed in chromosome k
Input: pc,i free cytosolic copy number of transcriptional regulator i
Input: pb,i DNA-bound copy number of transcriptional regulator i
Input: xij Binding site of transcriptional regulator i at promoter j
Input: Fij fold-change effect of transcriptional regulator i on promoter j
Input: bm

ijkl, bc
ijkl chromosomal protein occupancy as defined in List S2

Output: fi fold-change effect of transcriptional regulation on RNA polymerase affinity for promoter i

Calculate the relative rate, rijk, transcriptional regulator i binds promoter j of chromosome k:
foreach DNA-binding transcriptional regulator i in promoter j of chromosome k = {1..2} do

rijk ← njkpc,iFij

Bind transcriptional regulators to the chromosome:
repeat

Select regulator i, promoter j, and chromosome k ∼ multinomialRand(1, rijk/
∑

ijk
rijk)

if regulator i expressed (pc,i > 0) and isRegionAccessible(promoter j of chromosome k to regulator i) then
Bind protein to chromosome: bz

y•ki = 1 ∀ y ∈ {xij ..xij + li− 1}, where z = m for monomers and c for complexes
Update free and bound copy numbers: pc,i ← pc,i − 1, pb,i ← pb,i + 1

Update binding rate: rijk ← 0

until no additional transcriptional regulator can bind DNA (rij = 0 ∀ i, j)

Calculate the fold-change effect of transcriptional regulators on the affinity of RNA polymerase for each promoter
Initialize fold-change effects: fi ← 1 ∀ i
foreach promoter j of chromosome k = {1..2} bound by DNA-binding transcriptional regulator i do

Add fold-change effects multiplicatively: fj ← fjFij

foreach promoter j regulated by an expressed non-DNA-binding transcriptional regulator i (pc,i > 0) do
fj ← fjFij

3.27 Translation

Biology

Translation is the process whereby the ribosome, accessory enzymes, and tRNAs transcode mRNAs and
produce amino acid polymers. Translation begins with the recruitment of the 30S and 50S ribosomal particles
and initiation factor 3 (IF3) to an mRNA molecule. Next, the ribosomal particles assemble into a 70S
ribosome on the mRNA molecule with the help of initiation factors. Third, the ribosome polymerizes
amino acids presented by aminoacylated tRNAs with the help of elongation factors. Finally, a release factor
recognizes the stop codon UAG or UAA, hydrolyzes the peptidyl tRNA bond, and dissociates. A ribosome
recycling factor dissociates the E-site tRNA, an elongation factor G releases the release factor and 50S
ribosome, and an initiation factor 3 dissociates the 30S ribosome, P-site tRNA, and mRNA393.

A ribosome may stall for various reasons including collisions with other proteins and limited resources
required of translation. When a ribosome stalls, its last tRNA is expelled and replaced by the tRNA-like
domain of a tmRNA molecule. Next, the mRNA-like domain of the tmRNA expels the bound mRNA.
Third, the ribosome resumes polymerization, now using the tmRNA’s mRNA-like domain as its template.
This results in the production of an amino acid polymer containing a C-terminal proteolysis tag. Finally,
the proteolysis tag will be recognized by the protein degradation machinery, and the amino acid polymer
will be degraded into its individual component amino acids226.

Reconstruction

All of the enzymes required for translation are detailed in List S25, and all of the parameters are detailed in
List S26.
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List S25. Enzymes and complexes used in the Translation process class.

Enzymes/Complexes Composition Gene Name(s)

Initiation factor IF-1 (1) MG173 infA
Initiation factor IF-2 (1) MG142 infB
Initiation factor IF-3 (1) MG196 infC
Elongation factor G (2) MG089 fusA
Elongation factor P (1) MG026 efp
Elongation factor Tu (2) MG451 tuf
Elongation factor Ts (2) MG433 tsf
Peptide chain release factor 1 (1) MG258 prfA
Ribosome recycling factor (1) MG435 frr
30S ribosomal subunit (1 each) MGrrna16S, MG070,

MG087, MG088, MG090, MG092,
MG150, MG155, MG157, MG160,
MG164, MG165, MG168, MG175,
MG176, MG311, MG417, MG424,
MG446, MG481, MG522

16S rRNA, rpsB, rpsL,
rpsG, -, rpsR, rpsJ,
rpsS, rpsC, rpsQ, rpsN,
rpsH, rpsE, rpsM, rpsK,
rpsD„ rpsI, , rpsO, ,
rpsP, -, -

30S ribosomal subunit - initiation factor IF-3 complex (1) Ribosome_30S, (1) MG196 30S ribosomal subunit,
infC

50S ribosomal subunit (1 each) MGrrna23S, MGrrna5S,
MG081, MG082, MG093, MG151,
MG152, MG153, MG154, MG156,
MG158, MG159, MG161, MG162,
MG163, MG166, MG1676, MG169,
MG174, MG178, MG197, MG198,
MG257, MG325,MG361, MG362,
MG363, MG418, MG426, MG444,
MG466, MG473

23S rRNA, 5S rRNA,
rplK, rplA, -, rplC, rplD,
rplW, rplB, rplV, rplP,
rplC, rplN, rplX, rplE,
rplF, rplR, rplO, rpmJ„
rplQ, rpmI, rplT, rpmE,
rpmG, -, rplL, rpmF,
rplM, rpmB, rplS,
rpL34, rpmG-2

70S ribosome (1) Ribosome_50S, (1)
Ribosome_30S

50S ribosomal subunit,
30S ribosomal subunit

tmRNA, MCS6 (10sa RNA) (1) MG0004 ssrA
SsrA binding protein (1) MG059 smpB
peptidyl-tRNA hydrolase (1) MG083 pth

List S26. Fixed parameters used in the Translation process class.

Parameter Value Symbol Source

Ribosome elongation rate (amino
acids/second)

16 kelong [564]

Probability that stationary ribosome is
moved to a stalled state (mRNA re-
placed by tmRNA)

1× 10−6 Pstalled See “Parameter Fitting”

tRNA sequences of the protein
monomers

Determined from genome sequence, tRNA code [247]

tRNA sequences of the proteolysis tags Determined from genome sequence, tRNA code [247]

Parameter Assignment
Most of the parameters required for this process class were obtained from the literature or derived from the
M. genitalium genome sequence. The probability that a ribosome stalled is an uncharacterized value, and
therefore we set this probability to be very low, such that ribosome stalling is a rare event which does not
typically limit the simulation.

Computational Representation

This process simulates protein translation by ribosomes and accessory initiation, elongation, and termination
factors. Ribosomes transition from a free to active state if the necessary factors are present, and bind to
an mRNA. The selection of a specific mRNA to bind to a ribosome is random and weighted by mRNA
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abundances. As the sequence of each gene is known, the codons presented by the mRNAs are translated
using aminoacylated tRNAs and elongation factors at a rate of up to 16 amino acids per second (measured
by radioactive labeling in E. coli)564. Once a stop codon has been reached, translation is terminated and the
polypeptide will undergo further modifications by other processes in our simulation. The process class also
simulates the identification of stalled ribosomes by the tmRNA, the replacement of the tRNA and mRNA
with the tmRNA, and the synthesis of the proteolysis tag encoded by the tmRNA’s mRNA-like domain.

Integration

List S27. State classes connected to the Translation process class.

Connected State Read from state Written to state

Polypeptide • List of ribosome-bound mRNAs • Updated list of ribosome-bound mRNAs
• Lengths of nascent polypeptides (proteolysis

tags)
• Updated lengths of nascent polypeptides

(proteolysis tags)
• tRNA sequences of protein monomers and

proteolysis tags

Ribosome • List of ribosome-bound mRNAs • Updated list of ribosome-bound mRNAs
• Lengths of nascent polypeptides (proteolysis

tags)
• Updated lengths of nascent polypeptides

(proteolysis tags)
• State of each ribosome: free, actively

translating, or stalled
• Updated state of each ribosome: free, actively

translating, or stalled

Rna • Counts of mRNA, aminoacylated tRNA, and
aminoacylated tmRNA species

• Updated counts of aminoacylated tRNA and

aminoacylated tmRNA species

Initial Conditions
The simulation begins in a state in which ribosomes are already bound to mRNAs and in the process of
elongating. Each ribosome is randomly assigned (without replacement) to an mRNA species, weighted by the
current expression of the mRNAs. Then, each ribosome is assigned to positions within the assigned mRNA
with uniform probability. No ribosomes are initialized to the stalled state, since the expected probability of
stalling is negligible. No tmRNAs are initiated to the bound state.

Dynamic Computation
Initiation
Each ribosome exists in one of two states, free or actively transcribing. Ribosomes are created in the free
state and may transition to the actively transcribing state as follows:

• If ribosome factor A is present, initiation factors (IF-1, IF-2, and IF-3) are present, and one unit of energy
(GTP) is available
• Randomly select free ribosomes to initiate up to the limits of ribosome factor A, initiation factors, and

GTP
• Randomly select mRNA species for each initiating ribosome to bind to, weighted by the counts of each

mRNA species
• Update the state of each ribosome and mRNA, and the amount of available substrates

Elongation
Next, we elongate polypeptides. We assume that one of each elongation factor (EF-tu, TS, and G) is sufficient
for each ribosome, but require a separate set of factors for each ribosome. Elongation proceeds as follows:

• If elongation factors (EF-tu, TS, and G), aminoacylated tRNAs, and energy (GTP) are available,
• Randomly select actively transcribing ribosomes to elongate up to the limits of elongation factors.

Available amino acids and energy are allocated among actively translating ribosomes.
• If the ribosome is newly initiated,

• Release the initiation factors
• Associate a tRNA for f-methionine to bind the first amino acid, and release a free tRNA

• Else,
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• Derive the amino acid sequence of the translating gene by converting the genome sequence into a
tRNA sequence using the amino acid code

• Associate aminoacylated tRNAs to bind amino acids to the growing polypeptide up to the aminoa-
cylated tRNA limit, energy limit, and elongation limit, kelong. Release free tRNAs

• Update the state of each ribosome, the progress of all actively translating ribosomes, and the amount
of available substrates

Note, for cases in which translation of a peptide finishes partway through the time step, the elongation
factors are released, but only available at the timestep. For simplicity, we do not explicitly model the
transition between P an E sites.

Termination
Once all amino acids of a protein have been translated, one release factor, one recycling factor, one elongation
factor G, and one GTP molecule are sufficient to terminate the polypeptide, as follows:

• If at release factors, recycling factors, elongation factors G, and energy (GTP) are available,
• Randomly select completed polypeptide-mRNA-ribosome complexes to dissociate
• Update the state of each ribosome and mRNA, monomer counts, and the amount of available substrates.

The ribosome will be available to bind mRNA at the following iteration

Translation Stalling
The stalling of ribosomes is dealt with as follows:

• If in a timestep an elongating ribosome hasn’t advanced,
• Then with a small probability, Pstalled,

• Transition the ribosome to the stalled state
• Expel the mRNA and replace it with a tmRNA
• Encode a proteolysis tag and mark the amino acid chain for degradation by the Protein Decay

process class.

3.28 tRNA Aminoacylation

Biology

The tRNA Aminoacylation process class simulates the conjugation of amino acids to the tRNAs. tRNAs
serve as mediators between the ribosome and the amino acids which form polypeptides. tRNAs are composed
of short RNA sequences which recognize specific codons (triplets of bases) on mRNAs. Each tRNA binds
to a specific amino acid, and then interacts with a ribosome to deliver this amino acid to an elongating
polypeptide chain, according to the mRNA code.

tmRNAs are short RNA structures that add a proteolysis tag to the end of incomplete polypeptides upon
ribosomal stalling, signaling the polypeptides for degradation. The tRNA Aminoacylation process class also
simulates the aminoacylation of the tmRNA which delivers the amino acid alanine to stalled ribosomes.

Reconstruction

These aminoacylation reactions are both enzyme and energy dependent. M.genitalium is believed to have
36 tRNA aminoacylation reactions and 1 tmRNA aminoacylation reaction, and all of the reactions require 1
ATP53,100. There are also two tRNA modification reactions that must occur. Since there is no glutaminyl-
tRNA synthetase (to add a glutamine to a tRNA), glutamyl-tRNA synthetase first adds a glutamate to
tRNA MG502, and then Glu-tRNA Gln amidotransferase converts the glutamate into a glutamine. Also, a
methionylformyltransferase is used to add the formyl group onto the methionine on tRNA MG488 (formyl-
methionine is used as the start codon).

All of the enzymes required for tRNA aminoacylation are detailed in List S28, and all of the parameters are
detailed in List S29.
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List S28. Enzymes and complexes used in the tRNA Aminoacylation process class.

Enzymes/Complexes Composition Gene Name(s)

Alanyl-tRNA synthetase (4) MG292 alaS
Arginyl-tRNA synthetase (1) MG378 argS
Aspartyl-tRNA synthetase (2) MG036 aspS
Asparaginyl-tRNA synthetase (2) MG113 asnS
Cysteinyl-tRNA synthetase (1) MG253 cysS
Glutamyl-tRNA synthetase (1) MG462 gltX
Glycyl-tRNA synthetase (2) MG251 glyS
Histidyl-tRNA synthetase (2) MG035 hisS
Isoleucyl-tRNA synthetase (1) MG345 ileS
Leucyl-tRNA synthetase (1) MG266 leuS
Lysyl-tRNA synthetase (2) MG136 lysS
Methionyl-tRNA synthetase (2) MG021 metG
Phenylalanyl-tRNA synthetase (2) MG194, (2) MG195 pheS, -
Prolyl-tRNA synthetase (2) MG283 proS
Seryl-tRNA synthetase (2) MG005 serS
Threonyl-tRNA synthetase (2) MG375 thrS
Tryptophanyl-tRNA synthetase (2) MG126 trpS
Tyrosyl-tRNA synthetase (2) MG455 tyrS
Valyl-tRNA synthetase (1) MG334 valS
Glutamyl-tRNA(Gln) amidotransferase (1) MG098, (1) MG099, (1) MG100 -, -, gatB
Methionyl-tRNA formyltransferase (1) MG365

List S29. Fixed parameters used in the tRNA Aminoacylation process class.

Parameters Source

Free metabolites required for each reaction [53, 100]
tRNA aminoacylated by each reaction [53, 100]
Enzymes required to aminoacylate each tRNA [100]
kcat of the catalyzing enzyme of each aminoacylation reaction (s−1) [100]

Computational Representation

The tRNA Aminoacylation process maximizes the number of aminoacylation reactions (tRNA aminoacy-
lations, tmRNA aminoacylations, and tRNA modifications) up to the limits of available RNAs, enzymes,
and metabolites. The enzymatic bounds are calculated from the catalytic turnover constant (kcat) of each
enzyme. The required metabolites include, among others, amino acids and ATP. Since multiple reactions
require the same metabolites and enzymes, reactions to occur within a given timestep are randomly selected
using a probability distribution that is weighted by the abundances of the reaction requirements. That is,
the limits of each reaction are calculated assuming that all of the available required resources would be
allocated to the given reaction. The probability distribution for selecting given reactions is weighted by
these calculated limits. Reactions are performed one by one until insufficient resources exist to perform any
additional reactions. Intermediate steps in the aminoacylation of tRNAs are not represented.

Integration
The tRNA Aminoacylation process class reads from and writes to the Rna state class. It reads in the counts
of free and aminoacylated tRNAs and tmRNA, and writes back the updated counts.

Initial Conditions
All of the tRNAs are initialized to an aminoacylated state.

Dynamic Computation
At each timestep,

1. For each of the 39 possible reactions (36 tRNA aminoacylations, 1 tmRNA aminoacylation, 1 Glu-Gln
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amidotransfer, 1 methionylformyltransfer), i, calculate the maximum number of reactions that can occur:

Reaction Limit i = min







Number of available required metabolites (amino acid, ATP, ...)

Number of available required enzyme × kcat

Number of free tRNA or tmRNA

2. The available ATP, amino acids, and enzyme activities used in the limits calculation in Step 1, may
be double counted as multiple reactions may require the same metabolites or enzymes. Therefore, the
selection of which reactions occur, within the calculated limits, is randomly determined.
While resources are available:
(a) Randomly select a reaction to perform, weighing the probability of selecting a given reaction by its

calculated reaction limit
(b) Decrement the used metabolites, enzyme activities, free tRNAs, free tmRNAs
(c) Increment the produced metabolites, and modified RNA
(d) Recalculate the reaction limits as in Step 1, based on the new availabilities
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Chapter 4

Experimental Procedures

4.1 Media Composition

Each liter of SP-4 is comprised of broth base 600 ml (Mycoplasma Broth Base 3.5 g (BD 211458), Bacto
Tryptone 10 g (BD 211705), Bacto Peptone 5.3 g (BD 211677), distilled water 598 ml, pH 7.5 by KOH and
autoclaved), 20% glucose 25 ml (CalBioChem 346351), CMRL 1066 10X 50 ml (ATCC20-2207), 7.5% sodium
bicarbonate 5 ml (EMDSX-0320-1), 200 mM L-glutamine 5 ml, 2% yeast extract solution 35 ml (BD 210933),
2% autoclaved TC Yeastolate 100 ml (BD 255772), fetal bovine serum albumin (heat inactivated at 55°C for
2 hours) 170 ml (Gibco 26140-079), penicillin G (100,000 U ml−1) 2.5 ml (Sigma P7794), and 0.5% phenol
red 4 ml (Sigma P0290).

4.2 Frozen Stocks

Cells were harvested for storage as a frozen stock when the media in the 10 cm petri dish cultures was yellow
(pH 6.3-6.7). The media from the 10 cm plate cultures was aspirated. Cells were collected by scraping
the bottom of the plates, resuspended in 3 ml of FBS, and serial filtered through 1.2, 0.8, 0.45, and 0.2 µm
polyethersulfone filters to sterilize and de-clump the cells. Stocks were stored at -80°C.

4.3 Colorimetric Growth Assay Serial Dilutions

Cells were harvested for serial dilutions when the media in the 10 cm petri dish culture was yellow (pH
6.3-6.7), and were harvested as described above for frozen stocks. The filtered suspension was used to make
a serial dilution plate. The initial solution in the serial dilution plate is comprised of 50 ul of culture in
450 ul of SP-4. (For strains that were especially difficult to culture, 100 ul culture was added to 400 ul SP-4.)
From this concentration we made three 5-fold serial dilutions. Dilutions were performed in triplicate for each
culture, and 200 ul of each diluted sample was plated in a 96-well plate. The 96-well plates were stored at
37°C and 5% CO2. Optical density readings were taken at 550 nm twice a day and used to make growth
curves.

4.4 Colorimetric Growth Assay Calculations

The growth rate constant and doubling time for each strain was calculated using the growth curves of serially
diluted bacterial cultures measured by the colorimetric assay and the serial dilution factor.

Assuming exponential growth, the cell concentration (C) in dilution1 can be defined as:
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Schematic S16. Comparison of consecutive dilutions.

Cdilution1,timex
= Cdilution1,time0

exp(growth rate × timex) (S46)

And the concentration of dilution2 as:

Cdilution2,timey
= Cdilution2,time0

exp(growth rate × timey) (S47)

Because the concentration of a dilution at the start of the experiment is five times less than that of the
previous dilution:

Cdilution1,time0
= 5Cdilution2,time0

(S48)

Furthermore, the two dilutions reach a given OD550 at different times x and y (see horizontal arrows in
Schematic S16):

Cdilution1,timex
= Cdilution2,timey

(S49)

(This calculation was done at 5 OD550 values:0.26, 0.27, 0.28, 0.29, and 0.30)

By substitution, the relation for growth rate constant (for a specific pair of cultures and OD500) and is
defined:

growth rate constant =
ln(5)

timey − timex
(S50)

The doubling time is then calculated as:
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doubling time =
ln(2)

growth rate constant
(S51)

4.5 Quantitative PCR to Measure Cell Growth

Some strains grew so slowly that the colorimetric assay was inadequate to determine a growth rate. In
these cases, a DNA quantitfication method was used to estimate the growth rate. This method calculates
the number of chromosomes in a sample, and assumes that changes in chromosome count is correlated with
changes in the M. genitalium cell count. The strains were cultured in 4 mL SP-4 and incubated at 37°C
with 5% CO2. Three replicate cultures were made for each of 14 days of harvest, resulting in 42 cultures
per strain. Each day, cells were harvested by scraping the bottom of the plate, spun down at 4575 xg for 15
minutes, and resuspended in 20-400 µl of TE with 1% SDS. Samples were run on a 0.8% electrophoresis gel,
and the DNA band was quantified using a Typhoon scanner and ImageQuant. The slope of the exponential
region of the resulting growth curves was used to calculate a growth rate constant and doubling time (see
Table S1). Comparing the relative growth of wild-type and the tkt gene deletion strain, we see that the
results of the PCR method match those of the colorimetric assay.
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Appendix A

Computational Implementation

A.1 Whole-Cell Model Architecture

This chapter outlines the computational implementation of the whole-cell model and briefly summarizes the
most important whole-cell model classes and functions. All of the source code for the whole-cell model,
as well as comprehensive documentation of each class and function is freely available at SimTK: http:

//www.simtk.org/home/wholecell.

As illustrated in Schematic S17, the Simulation class coordinates the entire whole-cell model and is the
primary class users interact with to execute the whole-cell model.

Simulation

State 1

State 2

State m

Process 1

Process 2

Process n

FitConstants

KnowledgeBase

Analysis

Logger

Schematic S17. Whole-cell model architecture.

The Simulation class performs several functions to coordinate the whole-cell model. First, the Simulation

class instantiates all of the states and processes. Second, the Simulation class constructs an object graph of
the states and processes. Specifically, the Simulation class triggers the states and process to store references
to the other states and processes with which they will interact during the simulation. Third, the Simula-

tion class initializes the structural and quantitative parameters of each state and process. Specifically, the
Simulation class passes the KnowledgeBase to the states and processes and triggers the states and process
to retrieve data from the knowledge base. Fourth, the Simulation class manages the calculation of the
initial cell state by triggering initialization methods of the states and processes. Fifth, the Simulation

class oversees the simulation time line. Sixth, at each time step of the simulation the Simulation class
orchestrates the calculation of the temporal evolution of the cell state by allocating shared resources among
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the processes and triggering the temporal evolution method of each of the processes. Finally, at each time
step of the simulation the Simulation class triggers loggers to store the predicted values of the states.

The role of cell state allocation is most clearly illustrated by counterexample. If processes were executed
serially and each process was passed the total count of each metabolite at the beginning of the time step, then
there would be no constraint which prevents the processes from together using more than the total amount
of a metabolite, resulting in a negative and unphysical metabolite count. If alternatively the processes were
executed serially in the same order at each time step and each process updated the cell state following its
execution, then there would be no constraint which prevents the earliest executed processes from using all of
the copies of a metabolite needed by a later executed process. If processes were executed as in the previous
example, except that processes were executed in a random order at each time step, then early processes
could outcompete later processes as before, resulting in high frequency artifacts where processes randomly
oscillate between metabolically on and off states on the same time scale as the simulation time step. In
summary, input allocation has the benefit of reducing the process evaluation order dependence of the model
without introducing high frequency artifacts.

The KnowledgeBase class represents the reconstructed M. genitalium knowledge base and provides this data
to the states and processes. The KnowledgeBase is constructed outside the Simulation class, and is passed
to the Simulation class to set the values of the parameters of the states and processes. The M. genitalium
knowledge base was implemented in MySQL. The knowledge base web-interface was implemented in PHP.

Each cellular process sub-model is implemented as a subclass of Process and each cellular state is imple-
mented as a subclass of CellState. This standardizes the implementation of the processes and states, and
in particular, ensures that each process and state exposes a common interface. Specifically, each state class
(1) implements a common method to retrieve structural and quantitative data from the KnowledgeBase,
(2) implements a common method to initialize its value at the beginning of each simulation, (3) implements
a common method to calculate its contribution to the total cell mass, and (4) sets the value of a common
property which tells the loggers which properties to store at each time step.

Each process class implements common methods that (1) retrieve structural and quantitative data from the
KnowledgeBase, (2) model each process’ contribution to the initialization and temporal evolution of the
cell state, and (3) calculate the instantaneous and total life cycle metabolic and enzymatic requirements of
each process. In addition to implementing the Process interface, each process satisfied a contract with the
cell state classes to conserve mass and synchronize the redundantly represented parts of the cell state. For
example, the process classes maintained synchrony between the DNA-bound copy number of each protein
complex represented by the Protein Complex state and the location of each DNA-bound protein complex
represented by the Chromosome state. Unit testing was used to verify that this contract between the states
and processes was upheld.

The role of the FitConstants class is to fit the whole-cell model predictions to match the experimentally
observed properties of M. genitalium including the mass doubling time, chemical composition, and RNA
decay and expression. The FitConstants class implements an algorithm which computationally refines the
values of the parameters of the states and processes. See Section 1.3 for further discussion of the simulation
fitting algorithm.

The role of the Logger classes is to store the simulated dynamics represented by the cell states, and to
later retrieve this information for computational analysis. Logged dynamics are plotted and analyzed by the
several classes in the analysis package, including the PaperFigures class which produces Figure 2-6 of the
accompanying manuscript.

A.2 Test-Driven Development

The whole-cell model was extensively tested throughout the development process to ensure correctness. Using
the MATLAB xUnit framework894, we developed 1,058 tests of the whole-cell model MATLAB code, including
100% of all state and process class methods and 92% of all state and process class lines. First, we developed
791 tests of each individual state and process class. For example, we developed several tests of the Metab-
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olism process which check that the predicted and observed growth rates are approximately equal, that the
predicted growth rate responds correctly to the external environment and enzyme copy numbers, and that
the Metabolism process conserves mass. Second, we developed 41 tests of collections of related processes and
states. For example, we developed several tests of the process classes responsible for modeling translation
and protein maturation. These tests check that these processes receive adequate amino acids from the Met-

abolism process, translate mRNA, and produce mature proteins. Third, we developed five tests of the entire
simulation which check that the model predicts exponential growth with growth rates approximately equal to
the experimentally observed rate, that all of the mass fractions – DNA, RNA, protein, metabolite, etc. – of
the cell are approximately equal to their experimentally observed sizes, that the simulated and observed gene
expression are approximately equal, and that the simulation obeys mass conservation. Stochastic functions
were tested by checking the mean of their outputs. Additionally, we developed tests of the KnowledgeBase,
analysis, and utility classes.

The whole-cell model code was maintained using Subversion896. All tests were run at each code revision
using the freely available Hudson continuous integration server895, providing rapid feedback throughout the
development process.

Separately, the model was experimentally validated as discussed in the accompanying manuscript and Sec-
tion 1.6.

A.3 Distributed Simulation

The whole-cell model was implemented in object-oriented MATLAB (R2010b) and simulated on a 128 core
Rocks (v5.4)897 Linux cluster. Simulation code was compiled using the MATLAB compiler900 and executed
on the cluster nodes using the freely distributable MATLAB component runtime900. The open-source resource
manager Torque899 and cluster scheduler Maui898 were used to distribute simulation jobs among the cluster
nodes.

A.4 Computational Analysis

The whole-cell model simulations were analyzed using the MATLAB code in the edu.stanford.covert.cell.

sim.analysis package.

A.5 Knowledge Base

The M. genitalium knowledge base was stored using a modified version of the BioWarehouse schema918

in a MySQL relational database. Several tables and columns were added to the BioWarehouse schema
primarily to represent additional functional genomic data. The knowledge base was viewed and edited using
a web-interface implemented in PHP. The KnowledgeBase classes represented the knowledge base MySQL
relational database in MATLAB.

A.6 Source Code Organization

The whole-cell model source code is available at SimTK, http://www.simtk.org/home/wholecell. The
model source code is contained in the simulation/src directory and organized into several packages using
the Java package naming convention:

• edu.stanford.covert.cell.sim: Simulation class and cellular process and state superclasses
• edu.stanford.covert.cell.sim.analysis: simulation analysis code
• edu.stanford.covert.cell.sim.constant: classes which represent constants such gene names
• edu.stanford.covert.cell.sim.process: implementations of all cellular processes
• edu.stanford.covert.cell.sim.state: implementations of all cell states
• edu.stanford.covert.cell.sim.util: utility classes for fitting, logging, plotting, printing, and more
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• edu.stanford.covert.cell.kb: classes which represent the M. genitalium knowledge base
• edu.stanford.covert.db: classes for interacting with MySQL relational databases
• edu.stanford.covert.io: classes for reading and writing MAT- and JSON-formatted data
• edu.stanford.covert.test: classes for unit test logging, assessing code coverage, and mocking
• edu.stanford.covert.util: various utility functions

The simulation directory contains several unpackaged MATLAB, Perl, PHP, and Shell scripts for running
simulations and unit tests on individual machines and compute clusters. The whole-cell model test code is
similarly organized to the source code in the simulation/src_test directory. The knowledge base source
code is located in the knowledgebase directory.

A.7 Key Classes & Functions

A.7.1 CellState

edu.stanford.covert.cell.sim.CellState is the base class from which all cell state classes are derived.
CellState defines the interface each state exposes to Simulation. This interface enables Simulation to
construct each state using data from the knowledge base, initialize the value of each state, account for the
contribution of each state to the total cell mass, and log the dynamics of each state to disk. Molecule-

CountState extends CellState by defining properties which represent the identity and copy numbers of
molecules, and by providing a function which calculates the state’s contribution to the total cell mass.

A.7.2 Chromosome

edu.stanford.covert.cell.sim.state.Chromosome implements the Chromosome state and provides an
API which cellular process classes use to modify the chromosome object. To efficiently represent chromo-
somes, each property of the Chromosome class, except catenation, is implemented as an instance of the
CircularSparseMat class of size L × 4 where the first two columns represent the base-paired strands of
the first chromosome and the second two columns represent the second chromosome. List S31 summa-
rizes the properties of the Chromosome class. polymerizedRegions(i, j) sparsely represents the length in
nt of a contiguous DNA strand starting at nucleotide i of strand/chromosome j. linkingNumbers(i, j)
sparsely represents the linking number of a contiguous double-stranded DNA region starting at nucleotide i
of strand/chromosome j. gapSites(i, j) is true if the sugar-phosphate of nucleotide i of strand/chromosome
j is absent, and false otherwise. abasicSites(i, j) is true if the base of nucleotide i of strand/chromosome
j is absent, and false otherwise. damagedBases(i, j) and damagedSugarPhosphates(i, j) are enumerations
indicating the Metabolite identity of the base and sugar-phosphate of nucleotide i of strand/chromosome
j. intrastrandCrossLinks(i, j) is true if nucleotide i of strand/chromosome j is cross linked to nucleotide
i + 1 of the same strand and chromosome, and false otherwise. strandBreaks(i, j) is true if the phos-
phodiester bond between nucleotides i and i + 1 of strand/chromosome j is broken, and false otherwise.
hollidayJunctions(i, j) is true if nucleotide i of strand/chromosome j forms a Holliday junction with
the opposite strand, and false otherwise. monomerBoundSites(i, j) and complexBoundSites(i, j) are enu-
merations indicating the Protein Monomer or Protein Complex identity of the protein bound starting at
nucleotide i of strand/chromosome j.

Due its complexity, the Chromosome class provides an API which process classes use to access and mod-
ify its properties. First, the API allows the Chromosome class to prevent processes from specifying invalid
configurations of the chromosome state such as single-stranded binding proteins binding to double-stranded
DNA or multiple proteins occupying the same nucleotide. Second, the API ensures that the Chromosome

properties remains synchronized with the rest of the cell state. In particular, the API ensures that the
monomerBoundSites and complexBoundSites properties remain synchronized with the copy numbers of
DNA-bound proteins stored in the Protein Monomer and Protein Complex classes. Third, the API pro-
vides an abstraction layer over the chromosome representation, allowing process classes to focus on modeling
biology. In particular, the API provides process classes methods for calculating the chromosomal regions
accessible to each protein species and binding and releasing proteins to and from the chromosome. Fur-
thermore, the API centralizes the modeled interactions among DNA-binding proteins, and specifically the
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reconstructed rules which describe the bound proteins each protein species is able to displace from the chro-
mosome (see Table S3O). Fourth, the API eliminates the need to redundantly implement similar codes in
each of the chromosome-interacting process classes. Finally, the API allows the Chromosome class to imple-
ment caching and other strategies to optimize simulation run-time performance. List S30 summarizes the
public methods of the Chromosome class.

Each chromosome-interacting process class inherits from ChromosomeProcessAspect. This class provides
several additional methods to help process classes interact with the Chromosome class. See Section A.7.3 for
further discussion of the implementation of ChromosomeProcessAspect.

List S30. Chromosome class public methods.

Function Description

Accessors
isRegionSingleStranded Checks if region is single-stranded.
isRegionDoubleStranded Checks if region is double-stranded.
isRegionPolymerized Checks if region is polymerized.
isRegionNotPolymerized Checks if region is not polymerized.
isRegionProteinFree Checks if region is not occupied by proteins.
isRegionUndamaged Checks if region is unmodified (except methylated MunI R/M sites).
isRegionAccessible Checks if a protein species can bind a region. Checks if region is polymer-

ized, protein free or the query protein is capable of displacing all bound
proteins, and undamaged.

getAccessibleRegions Returns all regions accessible (polymerized, protein free or the query pro-
tein is capable of displacing all bound proteins, and undamaged) to a
protein species.

sampleAccessibleSites Efficiently returns a short list of regions accessible (polymerized, protein
free or the query protein is capable of displacing all bound proteins, and
undamaged) to a protein species.

sampleAccessibleRegions Efficiently returns a short list of sites vulnerable to a specific type of DNA
damage.

Modifiers
setRegionPolymerized Marks a region polymerized.
setRegionUnwound Moves a region of strand 2 of chromosome 1 to strand 2 of chromosome 2.

Conserves the linking number of chromosome 1 by increasing the super-
helical density of the downstream double-stranded region of chromosome
1.

setSiteProteinBound If the region is accessible to the query protein, binds query protein to
region. Displaces any previously bound proteins. Updates Protein Mon-

omer and Protein Complex states.
setRegionProteinUnbound Releases all proteins bound to a region. Updates Protein Monomer and

Protein Complex states.
setSiteDamaged Introduces a gap site, abasic site, modified base or sugar phosphate, cross

link, strand break, or Holliday junction at the query nucleotide.
stochasticallySetProteinUnbound Stochastically releases all copies of a protein species at a specified prob-

ability. Updates Protein Monomer and Protein Complex states.
modifyBoundProtein If the query protein and previous bound protein have the same footprint,

changes the identity of the protein bound at a site. Updates Protein

Monomer and Protein Complex states.

A.7.3 ChromosomeProcessAspect

edu.stanford.covert.cell.sim.ChromosomeProcessAspect provides several convenience methods which
cellular process classes use to access and modify the properties of the Chromosome class. S32 summarizes
the public methods of the ChromosomeProcessAspect class.
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List S31. Computational representation of the Chromosome class.

Physical Property Name Size Type

Polymerization polymerizedRegions L× 4 CircularSparseMat<int>

Winding linkingNumbers L× 4 CircularSparseMat<double>

Modification
Gap site gapSites L× 4 CircularSparseMat<logical>

Abasic site abasicSites L× 4 CircularSparseMat<logical>

Sugar-phosphate damagedSugarPhosphates L× 4 CircularSparseMat<int>

Base damagedBases L× 4 CircularSparseMat<int>

Intrastrand cross link intrastrandCrossLinks L× 4 CircularSparseMat<logical>

Strand break strandBreaks L× 4 CircularSparseMat<logical>

Holliday junction hollidayJunctions L× 4 CircularSparseMat<logical>

Protein occupancy
Monomer monomerBoundSites L× 4 CircularSparseMat<int>

Complex complexBoundSites L× 4 CircularSparseMat<int>

Catenation segregated 1× 1 logical

List S32. ChromosomeProcessAspect class public methods.

Function Description

Accessors
isDnaBound Checks if a site is bound by a specified protein species.
findProteinInRegion Returns positions of a protein species within a specified region.

Modifiers
bindProteinToChromosome Convenience function for setSiteProteinBound. Updates local

enzyme state and global Protein Monomer and Protein Complex

states.
bindProteinToChromosomeStochastically Binds multiple copies of a protein species to specified positions each

with a specified probability. Updates local enzyme state and global
Protein Monomer and Protein Complex states.

modifyProteinOnChromosome Convenience function for modifyBoundProtein. Updates local en-
zyme state and global Protein Monomer and Protein Complex

states.
releaseProteinFromChromosome Convenience function for stochasticallySetProteinUnbound.

Updates local enzyme state and global Protein Monomer and Pro-

tein Complex states.
releaseProteinFromSites Convenience function for setRegionProteinUnbound. Updates lo-

cal enzyme state and global Protein Monomer and Protein Com-

plex states.
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A.7.4 CircularSparseMat

edu.stanford.covert.util.CircularSparseMat efficiently represents sparse, circular, multidimensional
matrices. CircularSparseMat inherits from SparseMat, adding support for circular matrix reference and
assignment. Several properties of the Chromosome class are implemented as instances of CircularSparse-

Mat.

A.7.5 Compartment

edu.stanford.covert.cell.sim.constant.Compartment defines the identifier and name of each of the six
modeled compartments: cytosol, extracellular space, membrane, nucleoid, terminal organelle cytosol, and
terminal organelle membrane. State classes which derive from MoleculeCountState represent the copy
number of each molecule in each of these six compartments.

A.7.6 DatabaseLogger

edu.stanford.covert.cell.sim.util.DatabaseLogger provides methods to store and retrieve simulated
single cell dynamics and simulation meta data to/from a relational database. DatabaseLogger implements
the logger interface defined by Logger.

A.7.7 DiskLogger

edu.stanford.covert.cell.sim.util.DiskLogger was the primary logger used to store the simulated
single cell dynamics. DiskLogger provides methods to store and retrieve the simulated dynamics of individual
cells and simulation meta data to/from disk. DiskLogger implements the logger interface defined by Logger.
SimulationEnsemble provides methods to retrieve simulated data stored by DiskLogger for multiple cells.
SimulationDiskUtil provides methods to retrieve and search simulation meta data.

A.7.8 FitConstants

edu.stanford.covert.cell.sim.util.FitConstants provides several methods for fitting the simulated
dynamics of cellular populations to experimental observations as well as computationally aligning the quan-
titative parameters of the cellular process sub-models such that the sub-models are mutually consistent. See
Section 1.3 for further discussion of simulation fitting.

A.7.9 Gene

edu.stanford.covert.cell.sim.constant.Gene defines the identifier, name, type (m-, r-, s-, or t-RNA),
location, length, and directionality of each gene.

A.7.10 Logger

DatabaseLogger, DiskLogger, and SummaryLogger define three ways of storing simulated single cell dynam-
ics. DatabaseLogger provides methods to store and retrieve simulated data to/from a relational database.
DiskLogger provides methods to store and retrieve simulated data directly to/from disk. SummaryLogger

provides methods to store a small amount of key simulated data to/from disk. DatabaseLogger, DiskLogg-

er, and SummaryLogger derive from edu.stanford.covert.cell.sim.util.Logger. Logger defines the
common interface which Simulation uses to initialize, append, and finalize each simulation log.

A.7.11 KnowledgeBase

The primary function of edu.stanford.covert.cell.kb.KnowledgeBase is to represent the curated knowl-
edge base of M. genitalium physiology, and to provide this information to the states and processes. In this
way, KnowledgeBase serves as an abstraction layer between the knowledge base relational database and the
whole-cell MATLAB model. Specifically, the knowledge base represents several reconstructed properties of M.
genitalium including the genomic sequence; the location, length, and direction and observed expression of
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half-life of each gene; the transcription unit organization of the chromosome; the subunit composition of each
macromolecular complex; the chemical composition of M. genitalium and its typical external environment;
and the stoichiometry, kinetics, energetics, and catalysis of each chemical reaction.

A.7.12 KnowledgeBaseObject

edu.stanford.covert.cell.kb.KnowledgeBaseObject is the base class from which all MATLAB classes
which represent objects contained the M. genitalium knowledge base are derived, including KnowledgeBase.
See Section A.7.11 for further discussion of the role of the M. genitalium knowledge base.

A.7.13 MoleculeCountState

edu.stanford.covert.cell.sim.MoleculeCountState is the superclass for all cell state classes which rep-
resent the copy numbers of individual molecules including the Metabolite, Rna, Protein Monomer, and
Protein Complex classes. MoleculeCountState extends CellState by defining properties which represent
the identifier, name, and molecular weight of each molecular species and the copy number of each species in
each of the six compartments defined by Compartment.

A.7.14 PaperFigures

The run method of edu.stanford.covert.cell.sim.analysis.PaperFigures produces Figure 2-6 pre-
sented in the accompanying manuscript.

A.7.15 polymerize

edu.stanford.covert.cell.sim.util.polymerize implements a model of nutrient and energy allocation
among nascent polymers. The Replication, Transcription, and Translation processes use polymerize to
model the allocation of dNTPs, NTPs, and amino acids among active DNA polymerases, RNA polymerases,
and ribosomes. See Section 3.18, 3.25, or 3.27 for further discussion of the mathematical model implemented
by the polymerize function.

A.7.16 Process

edu.stanford.covert.cell.sim.Process is the base class from which all process sub-model classes are
derived. Process defines the public interface that each process exposes to Simulation. This interface
enables Simulation to construct each sub-model using data from the knowledge base, evaluate each process’
contributions to the initialization and temporal evolution of the cell’s state, determine the parts of the cell
state accessed and modified by each sub-model, and to calculate the life cycle and instantaneous metabolic
demands of each process. ReactionProcess extends Process by adding several properties which represent
the structure of the modeled biological network as well as one method which initializes the values of those
properties using the knowledge base.

A.7.17 RandStream

The MATLAB built in RandStream class provides four low-level methods – rand, randi, randn, and randperm

– for generating random numbers from a specific random stream. edu.stanford.covert.util.RandStream

extends the functionality of the built in RandStream class by (1) providing methods to execute four statistics
toolbox functions – multinomially-distributed random number generation (mnrnd), Poisson-distributed ran-
dom number generation (poissrnd), a wrapper over several random number generation methods (random),
and multinomially-distributed random number generation with and without replacement (randsample) – on
a specific random stream, and (2) adding four methods randCounts, stochasticRound, randomlySelect-

Rows, and randomlySelectNRows. randCounts returns the number of times each of N objects with counts
mi for i = 1..N is selected without replacement. stochasticRound stochastically rounds elements of a ma-
trix M . With probability Mij mod 1 stochasticRound replaces Mij with is ceiling, and otherwise replaces
Mij with its floor. randomlySelectRows randomly returns each row of a matrix with a specified probability.
randomlySelectNRows randomly returns N rows of a matrix, each with equal probability.
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A.7.18 ReactionProcess

edu.stanford.covert.cell.sim.ReactionProcess is the base class from which several process classes
representing large network models including Metabolism are derived. ReactionProcess extends Process by
defining several properties which represent the structure of the modeled biological network and by providing
one method which initializes the values of those properties using the knowledge base.

A.7.19 SparseMat

edu.stanford.covert.util.SparseMat efficiently represents sparse multidimensional matrices. Externally,
SparseMat behaves similarly to matrices created using the built in MATLAB sparse function with two excep-
tions: (1) SparseMat supports multidimensional matrices, whereas the built in sparse function supports
only one- and two-dimensional matrices, and (2) SparseMat redefines linear indexing in reference and as-
signment operations as syntactic sugar for the composition of linear indexing with sub2ind. SparseMat

supports many common matrix operations including addition, subtraction, multiplication, and division. In-
ternally, SparseMat represents an N -dimensional matrix containing n non-zero elements as an n × (N + 1)
two-dimensional matrix containing the indices and values of each non-zero element. CircularSparseMat ex-
tends SparseMat by enabling circular matrix reference and assignment. Several properties of the Chromosome

class are implemented as instances of CircularSparseMat.

A.7.20 Simulation

edu.stanford.covert.cell.sim.Simulation is the primary class users interact with to run and analyze
whole-cell model simulations. The primary functions of Simulation are several-fold: (1) initializeCon-

stants constructs the states and processes using data contained in the knowledge base, (2) initialize-

State randomly initializes the cell state, (3) evolveState sequentially executes the process sub-models in
a random order, (4) applyOptions, applyParameters, applyPerturbations override the default values of
each option and parameter, for example to simulate gene disruption, (5) run executes a complete simulation
by initializing the cell state, iteratively executing evolveState, and optionally triggering loggers to store
the predicted single cell dynamics.

A.7.21 SimulationEnsemble

edu.stanford.covert.cell.sim.util.SimulationEnsemble provides methods for retrieving simulated sin-
gle cell dynamics stored by DiskLogger and SummaryLogger for multiple cells. DiskLogger and Summary-

Logger provide methods for retrieving the simulated dynamics of individual cells.

A.7.22 SimulationDiskUtil

edu.stanford.covert.cell.sim.util.SimulationDiskUtil provides methods to retrieve and search sim-
ulation meta data generated by DiskLogger.

A.7.23 SimulationStateSideEffect

edu.stanford.covert.cell.sim.SimulationStateSideEffect and edu.stanford.covert.cell.sim.Sim-

ulationStateSideEffectItem represent the side effects of one process on parts of the cell state outside the
direct focus of that process. For example, when a sub-model binds one protein to the chromosome, displacing
another protein from the chromosome modeled by a different cellular process, these classes represent the side
effect of displacing that second protein on the DNA-bound copy number of that second protein redundantly
represented by the Protein Monomer state. During the execution of each cellular process sub-model, cel-
lular states use SimulationStateSideEffect to keep track of their side effects on other parts of the cell
state primarily modeled by other sub-models. After the completion of the execution of each sub-model,
the Simulation class processes the accumulated side effects and updates the affected states. The principal
advantages of this approach are two-fold. First, this approach minimizes direct communication among the
cellular states which reduces complexity and run time. Second, this approach outlines the side effects of
processes on parts of the cell state outside their direct purview.
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Each atomic, mass-balanced modification of a distant part of the cell’s state is represented by an instance of
the SimulationStateSideEffect class of size 1 × 1 whose children of type SimulationStateSideEffect-

Item represent the specific effect of the modification on the other parts of the cell state. For example, each
event where a process displaces a foreign protein from the chromosome is represented by an instance of the
SimulationStateSideEffect class which has two children each of type SimulationStateSideEffectItem,
one of which represents the decrement of the DNA-bound copy number of the displaced protein and a second
which represents the increment of the free copy number of the displaced protein.

A.7.24 SimulationStateSideEffectItem

See Section A.7.23 for discussion of the SimulationStateSideEffectItem class.

A.7.25 SummaryLogger

edu.stanford.covert.cell.sim.util.SummaryLogger provides methods to store a key subset of simulated
single cell dynamics to disk. SummaryLogger implements the common logger interface defined by Logger.
SimulationEnsemble provides methods to retrieve results logged by SummaryLogger.

A.8 Third-Party Software

The M. genitalium whole-cell model and knowledge base were developed using the software libraries and
applications listed below.

Knowledge Base

• BioWarehouse
biowarehouse.ai.sri.com

• Excel
office.microsoft.com/en-us/excel

• GeSHi
qbnz.com/highlighter

• Marvin
chemaxon.com/products/marvin

• MySQL
mysql.com

• MySQL connector J
mysql.com/products/connector

• Pear
pear.php.net

• PHP
php.net

• PHPExcel
phpexcel.codeplex.com

Modeling

• GLPKmex
glpkmex.sourceforge.net

• MATLAB
mathworks.com/products/matlab

• MATLAB Utilities
home.online.no/ pjacklam/matlab/software/util

• multiprod
mathworks.com/matlabcentral/fileexchange/8773

Simulation

• CentOS
centos.org

• JSON Marshaller
code.google.com/p/jsonmarshaller

• MATLAB Compiler
mathworks.com/products/compiler

• Maui
clusterresources.com/products/maui

• Torque
adaptivecomputing.com/products/torque.php

• Perl
perl.org

• Rocks
www.rocksclusters.org
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Analysis & Visualization

• Apache
apache.org

• boundedline
mathworks.com/matlabcentral/fileexchange/27485

• Bullseye
mathworks.com/matlabcentral/fileexchange/16458

• DHTML Window
dynamicdrive.com/dynamicindex8

• ffmpeg
ffmpeg.org

• flowplayer
flowplayer.org

• Funct_Bezier
mathworks.com/matlabcentral/fileexchange/6661

• Illustrator
www.adobe.com/products/illustrator.html

• Inkscape
inkscape.org

• LATEX
www.latex-project.org

• jqGrid
trirand.com/blog

• pdftk
pdflabs.com/tools/pdftk-the-pdf-toolkit

• PHP
php.net

• propertygrid
mathworks.com/matlabcentral/fileexchange/28732

• rude
mathworks.com/matlabcentral/fileexchange/6436

• Silk
famfamfam.com/lab/icons/silk

• spanFigure
mathworks.com/matlabcentral/fileexchange/31604

• swtest
mathworks.com/matlabcentral/fileexchange/13964

• tick2text
mathworks.com/matlabcentral/fileexchange/16003

• Uniform
uniformjs.com

• uitabpanel
mathworks.com/matlabcentral/fileexchange/11546

Interactive Visualization

• alivepdf
alivepdf.bytearray.org

• amfphp
silexlabs.org/amfphp

• as3gif
code.google.com/p/as3gif

• AS3FlexDB
code.google.com/p/as3flexdb

• degrafa
degrafa.org

• Flash
adobe.com/products/flashplayer.html

• Flex
adobe.com/products/flex.html

• flexlib
code.google.com/p/flexlib

• Flex Menu Accelerators
rphelan.com/2008/03/17/flex-menu-accelerators

• Flex Multiline Button
forestandthetrees.com/flex-multiline-button

• MS Visual C#
microsoft.com/visualstudio

• Premier
adobe.com/products/premiere.html

• print-as3
code.google.com/p/printf-as3

• Screen2Video
viscomsoft.com/products/screen2video

• Tooltip Speech Bubble
blog.flexmp.com/2008/09/10

• tweener
code.google.com/p/tweener

Testing & Development

• absolutepath
mathworks.com/matlabcentral/fileexchange/3857

• Doxygen
www.stack.nl/ dimitri/doxygen

• Hudson
hudson-ci.org

• MATLAB xUnit framework
mathworks.com/matlabcentral/fileexchange/22846

• m2cpp
mathworks.com/matlabcentral/fileexchange/25925

• m2html
artefact.tk/software/matlab/m2html

• Subversion
subversion.apache.org
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Appendix B

List of Abbreviations

API Application programming interface

BER Base excision repair

DDR Direct damage reversal

DSBR Double-strand break repair

FBA Flux-balance analysis

GAM Growth-associated maintenance
energy

GG Global genomic

HR Homologous recombination

MOMA Minimization of metabolic adjustment

mRNA Messenger RNA

NER Nucleotide excision repair

NF-κB Nuclear factor
kappa-light-chain-enhancer of
activated B cells

ODE Ordinary differential equation

R/M Restriction/modification

rRNA Ribosomal RNA

SMC Structural maintenance of
chromosome protein

SP-4 Spiroplasma medium #4

sRNA Small non-coding RNA

SRP signal recognition particle

SSB Single-stranded binding protein

TLR Toll-like receptor

tRNA Transfer RNA

TSS Transcription start site

UV Ultraviolet
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