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DeepSatData: Building large scale datasets of
satellite images for training machine learning

models
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Abstract—This paper presents DeepSatData a pipeline for au-
tomatically generating satellite imagery datasets for training ma-
chine learning models. We also discuss design considerations with
emphasis on dense classification tasks, e.g. semantic segmentation.
The implementation presented makes use of freely available
Sentinel-2 data which allows the generation of large scale datasets
required for training deep neural networks (DNN). We discuss is-
sues faced from the point of view of DNN training and evaluation
such as checking the quality of ground truth data and comment
on the scalability of the approach. Accompanying code is made
publicly available in https://github.com/michaeltrs/DeepSatData.

I. INTRODUCTION

Currently there are more than 150 satellites in orbit
equipped with dedicated instruments gathering data for a
variety of Earth Observation (EO) tasks. An ever increasing
amount of that data are made freely accessible to the pub-
lic, for example approximately 20Tb of new data are made
available every day just through the European Space Agency’s
Sentinel 1-3 satellites.
The Copernicus Open Access Hub (COAH) provides free and
open access to data captured by the European Space Agency’s
Sentinel missions starting from the In-Orbit Commission-
ing Review (IOCR). These data are made available directly
through COAH either by use of a graphical user interface [1],
through a variety of platforms from the Copernicus Data and
Information Access Services (DIAS) [2], [3], [4], [5], [6] or
through mirror sites [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16], [17].
However, there are not, to the best of our knowledge, publicly
available tools automating the entire process from download-
ing to processing Sentinel products at a scale required for
successfully training machine learning models. In this paper
we present DeepSatData a simple tool for downloading and
processing Sentinel products from the point of view of DNN
training. With DeepSatData it is possible to automatically
download available satellite imagery for a given area of interest
(AOI) and time period of interest (POI) and to couple these
with available ground truth data to create fully annotated
datasets. In addition we present some general considerations
for generating satellite imagery datasets suitable for DNN
training. Particular emphasis is placed on dense classification
for agricultural data, e.g. crop type semantic segmentation,
however, the structure of the provided code is general enough
to accommodate different types of geodata and remote sensing
tasks.

II. BACKGROUND

A. Densely annotated data

Typically, the anatomy of a dense classification dataset for
computer vision involves input arrays and dense annotations
matching two or more dimensions of the inputs. In general
obtaining annotations for dense classification tasks is a time
consuming process, for example it is estimated that annotating
a single image from the Cityscapes dataset [18] fine set
takes approximately 90min of work. For datasets in which
annotations are not included for all objects found in the inputs
it is common practice to assign all multiple unknown objects
into a single class which is either treated as an unknown or as
part of a background class. Depending on the formulation of
the task it is possible to treat the background class as another
regular class or mask its influence during training and only
learn to recognise the remaining classes.

B. Dense classification tasks

Similar to the general classification problem where the
goal is to assign one of N known classes to an input array,
dense classification aspires to assign a class to every location,
e.g. pixel, of an input array. Distinguishing between the
different types of input arrays and the type of information
encoded by the output classes can lead to defining several
problems in computer vision. Inputs in general contain 2
or 3 spatial dimensions or a time dimension each with
a fixed number of channels. For satellite imagery we are
interested in either 2D images, i.e. a single image, or
time series of images. In the second case each image is
typically accompanied by a time stamp indicating the image
capture time. The interval between successive satellite image
captures at the same location is generally not constant.
This is in contrast to video data, also consisting of time
series of 2D images, in which there is a fixed time-step
between successive frames, the inverse of the frame rate.
The model output most commonly encodes semantic or
identity information or both leading to the tasks of semantic
segmentation [19], [20], [21], [22], [23], [24], [25], [26],
[27], instance segmentation [28], [29], [30], [31], [32], [33],
[34] and joint semantic-instance segmentation [35], [36], [37].

III. DOWNLOADING SATELLITE DATA

Downloading all required data for an AOI and POI can
be a lengthy process. That is particularly the case for data
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captured more than 12 months in the past which will need to
be accessed through the COAH’s Long-Term Archive (LTA).
This means that the data will first have to be requested by
the LTA and will be made available to download within after
some time has elapsed (24h). Additionally, there is a maximum
allowed number of requests per user to the LTA at a rate of
one product request every 30min. In fact when working with
annotated data it is most likely that these correspond to a
period in the past thus all imagery products will need to be
downloaded following that process. The limit in the amount of
data that can be requested by the LTA poses a hard constraint
on the number of products that can realistically be downloaded
forcing us to optimize our product selection process. Given the
importance of selecting the right products in space and time
we propose to perform the selection process manually and
automate the remaining part of the dataset generation process.
Below are some general criteria for optimizing the product
selection process.

A. Low cloud cover ratio
Cloud cover percentage is calculated for the full spatial

extent of a Sentinel product. While it can be the case that
a clear view of the AOI can be found in a cloudy image,
especially so for a small AOI, it is likely to get more clear
images from products with low cloud coverage. Thus, we
prioritize downloading the less cloudy products first.

B. Large overlap with the AOI
Each Sentinel-2 tile covers a region of around 100km ×

100km which is large enough such that a single tile can be
used for a dataset. For example using striding windows of
240m × 240m (24×24 pixels for the largest resolution band)
results in approximately 200k samples. For a small AOI it is
likely that it can be covered by a single Sentinel tile in which
case there is 100% coverage of the AOI by that tile. Otherwise
more than one products will need to be downloaded to cover
the full extent of the AOI, in which case it is convenient to
start with the products that cover the largest part of the AOI.

C. Large product size
As described in the S2 product description website ”Tiles

can be fully or partially covered by image data. Partially
covered tiles correspond to those at the edge of the swath.”.
In products partially covered with image data only part of the
image contains information with remaining part covered by
zero values. We prioritize downloading products with a small
proportion of zero valued regions and make use of the product
size (Mb) as a proxy for the degree of coverage.

D. Uniformly spread along the time period of interest
Modern EO satellites can have a very small revisit time.

For example the two satellites which form the Sentinel-2
constellation can have a revisit time of as few as 5 days. Rather
than downloading products for all available dates during a POI
we may need to sample from available dates. Unless otherwise
required by experimental settings we choose to select products
such that they are spread as uniformly as possible during the
POI.

IV. DATA GENERATION PIPELINE

Having downloaded a set of satellite imagery products what
is of interest is to extract small image patches of constant size
that can fit into hardware accelerator memory. When working
with temporal tasks it is also of interest to group/sort these
patches by location into time series objects that can be used
to train temporal models. Fig.1 shows a schematic overview
of this process and also indicates the relative size of typically
extracted patches compared to the size of downloaded satellite
products. Depending on whether there are available ground
truth annotations we may choose to only process locations
for which there are ground truths. These steps are further
elaborated in the following sections.

A. From vector to raster ground truth data

This step is only relevant for cases when there are available
ground truth annotations. We assume these collections are in
the form of geo-polygons whose vertices are GPS coordinates
at a given coordinate reference system (CRS) as this is the
way most commonly used to denote the location of objects
on the Earth’s surface. To ensure consistency we define a
canonical form of representing such collections which includes
the following fields for each object:

• geometry is a geo-polygon containing GPS coordinates
for all the vertices of the object.

• crs denotes the geographic CRS used.
• ground_truth indicates the ground truth value corre-

sponding to area defined by geometry.This is typically
of type int for semantic or identity classes and type
float in the case of regression tasks.

• year denotes the time period the ground truth is valid
for the given geometry. This value need not necessarily
correspond to a calendar year, any distinct value will be
used to group observations corresponding to the same
time period.

Using these data we follow a rasterization step. Here we first
define a grid which is initiated by a value corresponding to the
background. For classification tasks this will be the value of
the background class. For each pixel in the grid we calculate
the ratio of the pixel area that is covered by the geo-polygon.
All pixels partly or fully covered by the geo-polygon are
assigned the ground_truth corresponding to that polygon.
Additionally, each polygon is assigned a unique id which is
used to create a raster map for object identities using the
same process as above. This could be used either for instance
segmentation like tasks or as a means to aggregate information
during evaluation, e.g. calculate performance metrics with
respect to the size or the geometry of objects. It is typical
to define the grid size equal to the largest resolution satellite
image available, however, this need not necessarily be the case.
For example using CNNs it is straightforward to control the
output size of our model to match any rasterization resolution
of choice. Also, for crop-type semantic segmentation [38]
showed that it is possible to successfully learn to distinguish
crop types at a higher resolution than satellite image pixels.
An example of performed rasterization is shown in Fig.2.

https://scihub.copernicus.eu/userguide/LongTermArchive
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/product-types
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Figure 1. Data generation process with ground truth annotations. Satellite product shown here (left) is a Sentinel-2 tile which covers a 100× 100 km2 area
at a resolution of 10 m. Extracted sample size (right) covers a 0.5× 0.5 km2 area.

Figure 2. Parcel rasterization. Parcel vector geometries (left) are rasterized to get a ground truth class map (center) and doubly assigned pixel masks (right).
Two different resolutions shown at 10m (top) and 2.5m (bottom). We note how the high resolution raster image contains a smaller ratio of doubly assigned
pixels.

1) Masking ground truth inconsistencies: The process of
generating dense ground truth annotations for geodata is
unique w.r.t other dense labelled data, e.g natural images [18],
[39], [40], in that source images and ground truths are first
collected separately and are then aligned by location. While a

human annotator working on a semantic segmentation dataset
will draw semantic classes on top of captured images, ground
truth collection for remote sensing involves a step of gathering
GPS coordinates on the field and a separate step of matching
these with source images. This introduces the possibility for
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Figure 3. Example of data extracted using the proposed pipeline. (left) Satellite image inputs. Here shown all four 10m bands, six 20m bands and three 60m
bands for a variable number of time steps T depending on location. (right) Ground truth data. From left to right we show crop types, parcel ids and doubly
assigned pixels. Shown at 10m resolution (top row) and 2.5m resolution (bottom row). If there are no available ground truths only the input data are extracted
(left).

systematic geolocation errors, the gathered GPS coordinates
might not be in complete agreement with the geolocation
corresponding to the satellite images. While it is possible to
identify some cases where there are noticeable offsets between
inputs and ground truths by inspection, [41] identify single
pixel offset errors, in general it is impossible for a human
to correct all such mistakes. For this reason we are using
boolean masks to mark inconsistencies when it is possible
to identify, such as pixels that fall inside multiple polygons
during the rasterization step. We distinguish between pixels
that are partly or fully claimed by two or more polygons.
While the former case is a natural outcome of the rasterization
step and is improved with using a higher resolution grid, as
shown in Fig.2 low vs high resolution, the latter case clearly
indicates a geocoding error in either polygon.

B. Splitting a Sentinel product to small windows and making
time series objects

The main reason for choosing to split a satellite imagery
product into smaller, equal size patches is the requirement
to load multiple time series objects into hardware accelerator
memory for efficient training. While the size of a satellite
image is in the order of tens or hundreds of km, e.g a single
Sentinel-2 tile covers a 100 × 100 km2 area, sizes typically
used for semantic segmentation are in the order of hundreds of
m, e.g 240m [41], 480m [41], [38], 640m [42]. An example
of that scale difference can be seen in Fig.1. We may choose to
split the AOI only for locations where ground-truth annotations
are available or, as is the case for unsupervised learning tasks,
we may choose to split the entire AOI.

The end result of the data generation process is a set of
time series objects containing image patches corresponding
to the same location at different time stamps. Even though

it would be possible to load all satellite images for all time
stamps in memory and split-save to disk in one step this can
be forbidding in terms of memory consumption for large AOI
and POI. For this reason we choose to separate the steps of
extracting patches and grouping/sorting these in time to create
the final outputs. An example of data included in a single
sample point extracted using the DeepSatData pipeline can be
seen in Fig.3.

V. CONCLUSION

This paper presented DeepSatData a pipeline for automati-
cally generating data for training machine learning models on
earth observation tasks and explained the main considerations
behind its design. While particular emphasis was placed on
generating datasets for dense classification tasks using time
series of satellite images it is trivial to extend the provided
code to extract single images for dense or global classification.
We intend to provide such capabilities in future updates.
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